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OUTPUT FEEDBACK CONTROL OF A CASCADE SYSTEM OF1

LINEAR KORTEWEG-DE VRIES EQUATIONS∗2

CONSTANTINOS KITSOS §† , EDUARDO CERPA ‡ , GILDAS BESANÇON § , AND3

CHRISTOPHE PRIEUR§4

Abstract. This paper is about the stabilization of a cascade system of n linear Korteweg-de5
Vries equations in a bounded interval. It considers an output feedback control placed at the left6
endpoint of the last equation, while the output involves only the solution to the first equation.7
The boundary control problems investigated include two cases: a classical control on the Dirichlet8
boundary condition and a less standard one on its second-order derivative. The feedback control law9
utilizes the estimated solutions of a high-gain observer system and the output feedback control leads10
to stabilization for any n for the first boundary conditions case and for n = 2 for the second one.11

Key words. Korteweg-de Vries equation, cascade systems, output feedback control12

AMS subject classifications. 68Q25, 68R10, 68U0513

1. Introduction. In this paper, we study the following cascade system of n14

linear Korteweg-de Vries (KdV for short) equations posed in a bounded interval of15

length L16

vt + vx + vxxx = (An −B)v, in (0,∞)× (0, L),(1.1)1718

where v =
(
v1 · · · vn

)>
is the state and19

An =


0 1 0 · · · 0

. . .
. . .

...
... 1
0 · · · 0

, B = diag (1, 1, . . . , 1,−1) .20

21

Let us consider two different types of boundary conditions, where the input control u22

in both of them is placed on the left side and only acts on the n-th coordinate of the23

state.24

Boundary conditions A (BC-A):25

vi(t, 0) =0, i = 1, . . . , n− 1, for all t > 0,

vn(t, 0) =u(t), for all t > 0,

v(t, L) =0, vx(t, L) = 0, for all t > 0.

(1.2a)26

27
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icia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Santiago, Chile (ed-
uardo.cerpa@mat.uc.cl).
§Gipsa-lab, CNRS, Department of Automatic Control, Grenoble INP, Université Greno-
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2 C. Kitsos, E. Cerpa, G. Besançon, and C. Prieur

Boundary conditions B (BC-B):28

vi,xx(t, 0) = 0, i = 1, . . . , n− 1, for all t > 0,

vn,xx(t, 0) = u(t), for all t > 0,

v(t, L) = 0, vx(t, L) = 0, for all t > 0.

(1.2b)29

30

In order to complete our control system, we add an initial condition given by31

v(0, x) = v0(x), x ∈ (0, L)(1.3)3233

and a distributed measurement given by the following output34

y(t, x) =Cv(t, x);(1.4)35

C =
(
1 0 · · · 0

)
.3637

The nonlinear version of a single KdV equation describes propagation of waters38

with small amplitude in closed channels. It was introduced in 1895 and since then39

its properties have gained much consideration, see for instance [6]. Surveys on recent40

progresses and open problems on control and stabilization of such models can be found41

in [26] and [3].42

The aim of the present work is to stabilize the cascade system (1.1) considering43

any of the boundary control problems (BC-A) and (BC-B) and by utilizing the knowl-44

edge of the first state only, while the other states are estimated via an observer. Notice45

that this system is unstable due to the instability of the trajectory corresponding to46

its last equation, as it can be seen by following classical energy arguments. In the47

recent decades, stabilization of single KdV equations has gained significant interest,48

see for instance [4], where backstepping method is used for feedback controls placed49

on the left boundary, see also [29, 7, 27, 13]. Output feedback laws for single linearized50

and nonlinear KdV equations have been already established via boundary observers in51

[21, 23] (see also [28, 11, 14, 2]), by means of backstepping and Lyapunov techniques.52

In these two works, the measurement injected in the observer involves the right end-53

point of the domain, more precisely, the second derivative of the boundary or the54

Dirichlet condition, depending on the boundary conditions. Output feedback control55

laws for systems written in the cascade form considered here have not yet appeared56

in the literature, while controllability of coupled KdV equations but with couplings,57

different from the ones studied here (particularly, internal couplings in one-order de-58

rivatives), describing strong interactions of weakly nonlinear long waves, have been59

investigated for instance in [5]. However, coupling in zero-order internal terms, rep-60

resented by matrix An, might result from the linearization of coupled nonlinear KdV61

equations of some forms appearing in [20], describing oceanic and atmospehric phe-62

nomena, such as the atmospheric blockings, the interactions between the atmosphere63

and ocean, the oceanic circulations, and hurricanes (see system (27)-(28) and model64

5, therein, according to the well-known Painlevé classification), see also the Hirota-65

Satsuma model [12] and [10] for multicomponent KdV equations (related to the weak66

nonlinear dispersion). For these systems, it is often difficult to control and observe di-67

rectly all the equations. Also, general settings of coupled infinite-dimensional systems68

with couplings in zero-order terms, as the ones considered here, have been studied69

with respect to their controllability and observability properties, when considering70

reduced numbers of controls and observations, see [1], [19]. In those works, the au-71

thors have shown that the problem of control of undeactuated systems with reduced72
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Output feedback control of a cascade system of linear KdV equations 3

number of observations is quite challenging. Furthermore, placing the control on the73

second derivative of the left boundary, as in the considered second boundary control74

problem is even more original and its investigation exhibits some technical difficulties,75

for which solutions are proposed in the present work. To the best of our knowledge,76

boundary control problems of this second type have not appeared in the literature.77

Here, we aim at observing the full state of a system of KdV equations written in a78

cascade form and finally controlling it, by considering a single observation. Observer79

design for nonlinear systems of partial differential equations written in such a form,80

based on the well-known high-gain methodology, have been considered, for instance81

in [17, 16, 18], in the framework of first-order hyperbolic systems, extending results82

for finite-dimensional systems [15]. A similar form considered here, in its linearized83

version, allows an observer design, which relies on a choice of a sufficiently large84

parameter in its equations, while appropriate choice of the latter leads simultaneously85

to the closed-loop output feedback stabilization. In summary, the contribution of the86

present work first lies in stabilizing the trajectory of the last equation by means of an87

observer relying on the measurement of the first state only. The control placed on the88

left boundary, combined with the observer gain, brings this trajectory asymptotically89

to zero in an arbitrarily fast manner (first part of Theorem 3.2). Subsequently, it90

is proven that 1) the whole cascade system becomes asymptotically stable for any91

L > 0, when boundary condition (BC-A) is considered, and 2) this result holds for92

boundary condition (BC-B), only when n = 2 (number of equations), noting that for93

n > 2, stabilization is achieved for quite small L (last part of Theorem 3.2). The94

methodology relies on backstepping techniques and appropriate Lyapunov analysis.95

Exponential stabilization for (BC-B) is proven here to be linked to the solvability of an96

ordinary differential equations problem, similar to the differential equation satisfied97

by the eigenvectors of the associated differential operator to these KdV equations,98

and being subject to some constraints.99

In Section 2 we prove a preliminary result on the stability of a single damped100

KdV equation and then we prove the full state stabilization of the cascade system for101

both boundary condition problems. In Section 3, we first present the observer design102

for the coupled system and finally the main output feedback stabilization result. In103

Section 4, we provide conclusions and some perspectives.104

2. Full State Feedback Stabilization. In this section, we study the full state105

feedback stabilization of system (1.1) for boundary control problems (BC-A) and106

(BC-B).107

2.1. Stability of a single KdV equation. Prior to the stabilization of the108

cascade system, we present a preliminary result about the stability of a single damped109

linear KdV equation, which will be invoked in the sequel. Consider a single KdV110

equation in the domain (0, L)111

wt + wx + wxxx + λw = 0, in (0,∞)× (0, L),(2.1)112113

satisfying one of the following distinct cases of boundary conditions114

w(t, 0) =w(t, L) = wx(t, L) = 0, t > 0,(2.2a)115

wxx(t, 0) =w(t, L) = wx(t, L) = 0, t > 0,(2.2b)116117

and initial condition of the form118

w(0, x) = w0(x), x ∈ (0, L).(2.3)119120
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4 C. Kitsos, E. Cerpa, G. Besançon, and C. Prieur

The stability result for solutions w to the above problem is presented in the following121

propositions. Although asymptotic stability assuming boundary conditions (2.2a) is122

ensured for every λ > 0, for (2.2b) asymptotic stability is guaranteed only when λ ≥ λ0123

for some λ0 > 0. These results are stated precisely in the next two propositions and124

will be used throughout this work.125

Proposition 2.1. Consider system (2.1) with boundary conditions (2.2a) and126

initial condition w0 ∈ L2(0, L). Then for all λ > 0, we have127

‖w(t, ·)‖L2(0,L) ≤ e−λt‖w0(·)‖L2(0,L), t ≥ 0,(2.4)128129

for every L > 0.130

Proposition 2.1 concerning boundary conditions (2.2a) is a standard result and can131

be derived from energy estimates. Well-posedness of this equation is presented in132

Appendix B.1. Let us note here, that asymptotic stability for this case can be proven133

even when the damping is not constant in the domain but localized to a part of it,134

see for instance [24], and even when the damping is saturated, see [22].135

To proceed to the stability result for boundary conditions (2.2b), we utilize the136

following lemma.137

Lemma 2.2. There exists λ0 > 0, such that the following assertions hold true.138

Assertion 1: For every λ ≥ λ0, there exist π(·) in C3(0,∞) and b > 0, such that139

the following holds for all x ≥ 0140 
π′′′(x) + π′(x)− 2λπ(x) = −2bπ(x),
π′′(0)π(0) + (π′(0))2 + π2(0) ≤ 0,
π(x) > 0,
π′(x) ≥ 0.

(2.5)141

142

Assertion 2: For every λ ∈ (0, λ0), there exist L̄, b > 0 and π(·) in C3(0,∞)143

satisfying (2.5) for all x ∈ [0, L̄].144

Proof. See Appendix A145

The following proposition concerns the second case of boundary conditions.146

Proposition 2.3. Consider system (2.1) with boundary conditions (2.2b) and147

initial condition w0 ∈ L2(0, L). Then, there exists λ0 > 0, such that:148

1) For all λ ≥ λ0, there exist a, b > 0, such that the solution to (2.1)-(2.3)-(2.2b)149

satisfies the following:150

‖w(t, ·)‖L2(0,L) ≤ ae−bt‖w0(·)‖L2(0,L), t ≥ 0,(2.6)151152

for every L > 0.153

2) For all λ ∈ (0, λ0), there exist L̄, a, b > 0 such that (2.6) is satisfied for all154

L ∈ (0, L̄].155

Proof. In this context, we are interested by unique solutions w beloging to156

C
(
0,∞;L2(0, L)

)
. Well-posedness of the initial boundary value problem (2.1)-(2.3)-157

(2.2b) can be easily proven by invoking classical arguments, although these boundary158

conditions are less common in the literature. More details about the well-posedness159

of such systems are presented in Appendix B.1.160

To prove the stability result, let us consider the following weighted L2-norm161

E(t) :=

∫ L

0

π(x)w2(x)dx162
163
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along the L2 solutions to (2.1)-(2.3)-(2.2b), for some appropriate choice of positive164

π(·) ∈ C3[0, L]. Calculating its time-derivative and applying integrations by parts,165

we obtain166

Ė(t) =

∫ L

0

(π′′′(x) + π′(x)− 2λ)w2(x)dx− 3

∫ L

0

π′(x)w2
x(x)dx167

+
[
(−π′′(x)− π(x))w2(x)− 2π(x)wxx(x)w(x) + π(x)w2

x(x)168

+2π′(x)wx(x)w(x)]
L
0 .169170

Substituting boundary conditions (2.2b) we get171

Ė(t) =

∫ L

0

(π′′′(x) + π′(x)− 2λ)w2(x)dx− 3

∫ L

0

π′(x)w2
x(x)dx172

−
(
wx(0) w(0)

)( π(0) −π′(0)
−π′(0) −π(0)− π′′(0)

)(
wx(0)
w(0)

)
.173

To ensure the exponential decay of E(t), we invoke assertions of Lemma 2.2 for π(·),174

for which we assume that it satisfies (2.5). By Assertions 1 and 2, the second integral175

and the third boundary term of the above equation become nonpositive and we obtain176

the existence of a constant b > 0, such that177

Ė(t) ≤ −2bE(t)178179

and, therefore, (2.6) holds with a =
√

π(L)
π(0) . This completes the proof of Proposi-180

tion 2.3.181

2.2. Full state stabilization. Following the previous results, we are in a po-182

sition to study the closed-loop stabilization. Here, the considered state feedback183

controls, which are placed in the last equation, will be proven to be of the following184

form for each of the problems (BC-A) and (BC-B)185

(BC-A): u(t) =

∫ L

0

p(0, y)vn(t, y)dy,(2.7a)186

(BC-B): u(t) = −ω + 1

3
Lvn(t, 0) +

∫ L

0

pxx(0, y)vn(t, y)dy,(2.7b)187
188

with ω > 0 to be chosen appropriately and kernel function p : Π → R depending on189

ω, where Π := {(x, y);x ∈ [0, L], y ∈ [x, L]}.190

We now present the exponential decay result of the solution v to the cascade191

system (1.1) via the control (2.7), which utilizes the full state. The proof uses back-192

stepping tools appearing in [4], [3] for single KdV equations.193

Theorem 2.4. Consider system (1.1) with boundary conditions (BC-A) or (BC-194

B), feedback control laws of the form (2.7a) or (2.7b), respectively, and initial condi-195

tion v0 ∈ L2(0, L)n.196

a) If (BC-A) holds and n ≥ 2, then for every L > 0, there exist constants c, d > 0,197

such that the solution v to (1.1) satisfies the following198

‖v‖L2(0,L)n ≤ ce−dt‖v0‖L2(0,L)n ,∀t ≥ 0.(2.8)199200

b) If (BC-B) holds and n = 2, then for every L > 0, there exist constants c, d > 0,201

such that solution v to (1.1) satisfies (2.8).202

c) If (BC-B) holds and n > 2, then there exists L̄ > 0, such that (2.8) is guaran-203

teed for all L ∈ (0, L̄].204
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6 C. Kitsos, E. Cerpa, G. Besançon, and C. Prieur

Proof. The well-posedness of controlled system (1.1) with boundary conditions205

(BC-A) or (BC-B) is shown in Appendix B.1.206

We first prove a preliminary result concerning the exponential stability of vn. We207

apply a Volterra transformation T : L2(0, L)→ L2(0, L) of the form208

z(x) = T [vn](x) := vn(x)−
∫ L

x

p(x, y)vn(y)dy(2.9)209
210

to the solution to the last equation of the cascade system, with p defined on Π. Under211

appropriate choice of p(·, ·), we prove that this transformation maps solution vn to212

the trajectory z satisfying the following target equation in [0,∞)× [0, L]213

zt + zx + zxxx + ωz = 0,(2.10)214

(BC-A, z) : z(t, 0) = z(t, L) = zx(t, L) = 0,215

(BC-B, z) : zxx(t, 0) = z(t, L) = zx(t, L) = 0.216217

with control given by (2.7). Indeed, performing standard differentiations and integra-218

tions by parts (for more intuition about such operations, the reader can refer to [4]),219

we derive the following equations220

zt(t, x) + zx(t, x) + zxxx(t, x) + ωz(t, x) =221

−
∫ L

x

(pxxx(x, y) + pyyy(x, y) + py(x, y) + (ω + 1)p(x, y)) vn(t, y)dy222

+ p(x, L)vn,xx(t, L) + p(x, L)vn(t, L) + pyy(x, L)vn(t, L)− py(x, L)vn,x(t, L)223

+

(
ω + 1 +

d2

dx2
p(x, x) +

d

dx
px(x, x) + pxx(x, x)− pyy(x, x)

)
vn(t, x)224

+

(
px(x, x) + py(x, x) + 2

d

dx
p(x, x)

)
vn,x(t, x).225

226

By choosing p(·, ·) satisfying the following equations227  pxxx + pyyy + px + py + (ω + 1)p = 0, (x, y) ∈ Π
p(x, x) = p(x, L) = 0, x ∈ [0, L]
px(x, x) = ω+1

3 (L− x), x ∈ [0, L]
(2.11)228

229

we achieve to obtain target system (2.10) for both boundary problems (BC-A, z) and230

(BC -B, z). Solutions to (2.11) are proven to be unique in C3(Π) in [4], by following231

successive approximation methods. The feedback control u is easily checked to satisfy232

(2.7), if we use (2.9) and also calculate the value of the second derivative, viz.233

zxx(x) =vn,xx(x) +
d

dx
p(x, x)vn(x) + p(x, x)vn,x(x) + px(x, x)vn(x)234

−
∫ L

0

pxx(x, y)vn(y)dy235
236

for x = 0.237

Now, as we saw in Propositions 2.1 and 2.3 of the previous subsection, solution238

z to target system (2.10) is asymptotically stable for every L > 0, if ω > 0 when239

(BC A, z) holds and if ω ≥ 1 when (BC B, z) holds. This implies the asymptotic240

stability of vn, solution to (1.1), with control given by (2.7) for each of the boundary241
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problems (BC-A) and (BC-B). The latter follows from the fact that, as proven in242

[4], transformation (2.9), mapping solution vn to z, is bounded and invertible with243

bounded inverse. So, for every d̄ > 0, there exist ω0, c̄ > 0, such that for all ω ≥ ω0,244

we have245

‖vn‖L2(0,L) ≤ c̄e−d̄t‖v0
n‖L2(0,L),∀t ≥ 0.(2.12)246247

To prove the asymptotic stability of the full state, consider vector v[n−1] :=248 (
v1 · · · vn−1

)>
. Then, v[n−1] satisfies the following equations249  v[n−1],t + v[n−1],x + v[n−1],xxx = (An−1 − In−1)v[n−1] + `vn,

(BC-A, v[n−1]) : v[n−1](t, 0) = v[n−1](t, L) = v[n−1],x(t, L) = 0,
(BC-B, v[n−1]) : v[n−1],xx(t, 0) = v[n−1](t, L) = v[n−1],x(t, L) = 0,

(2.13)250

251

where
` :=

(
0 · · · 0 1

)>
.

To prove stability of this system, consider a Lyapunov functional of the following form252

W (t) =

∫ L

0

π(x)|v[n−1](x)|2dx253
254

along the L2(0, L)n−1 solutions v[n−1] to the last equations, where π(·) is a positive255

increasing C3 function to be chosen. After substistuting the above equations satisfied256

by v[n−1] and applying integrations by parts, we obtain for the time-derivative of W257

Ẇ (t) =

∫ L

0

(π′′′(x) + π′(x))|v[n−1](x)|2dx− 3

∫ L

0

π′(x)|v[n−1],x(x)|2dx258

−
∫ L

0

π(x)v>[n−1](x)
(
2In−1 −A>n−1 −An−1

)
v[n−1](x)dx259

+ 2

∫ L

0

π(x)vn−1(x)vn(x)dx+W0,260
261

with262

W0 :=
[
−(π′′(x) + π(x))|v[n−1](x)|2 + π(x)

(
|v[n−1],x(x)|2 − 2v>[n−1],xx(x)v[n−1](x)

)
263

+2π′(x)v>[n−1],x(x)v[n−1](x)
]L

0
.(2.14)264

265

Matrix 2In−1 −A>n−1 −An−1 is positive definite and its eigenvalues are

ρ := 2− 2 cos
πj

n
, j = 1, . . . , n− 1.

Hence, its minimal eigenvalue is given by266

ρn := λmin(2In−1 −A>n−1 −An−1) = 2− 2 cos
π

n
,N 3 n ≥ 2.(2.15)267

268

Since π′(x) ≥ 0, by use of Young’s inequality we obtain269

Ẇ (t) ≤
∫ L

0

(π′′′(x) + π′(x)− ρnπ(x))|v[n−1](x)|2dx270

+ 2δ

∫ L

0

π(x)|v[n−1](x)|2dx+
1

2δ

∫ L

0

π(x)v2
ndx+W0,271

272
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and δ > 0 is chosen sufficiently small as in (A.4) in the proof of Lemma 2.2 of the273

previous subsection.274

Now, we choose π(·) for each of the two boundary problems as follows.275

For (BC-A, v[n−1]) we choose

π(·) = 1.

From this, taking also into account the exponential stability of vn (2.12), we get276

for the case (BC-A, v[n−1]) the following estimate277

Ẇ (t) ≤ −2dW (t) +
1

2δ
π(L)c̄2e−2d̄t‖v0

n‖2L2(0,L)(2.16)278
279

with d = ρn/2− δ.280

For (BC-B, v[n−1]) we choose a positive and increasing π(·) satisfying (2.5) (see281

Assertion 1 in Lemma 2.2) with λ = ρn
2 − δ and b > 0. It turns out by Assertion 1282

that there is π(·) and b > 0 satisfying this equation for any L > 0, when λ = 1 − δ,283

corresponding to ρ2 = 2 (for n = 2). Then, the exponential decay of the Lyapunov284

functional is ensured similarly as in Proposition 2.3. More precisely, there exists d > 0,285

such that for all L > 0, (2.16) is satisfied for (BC-B, v[n−1]) as well. Also, as shown286

in Proposition 2.3, for n > 2, which renders ρn < 2, (2.16) is satisfied for some π(·),287

b > 0, only when 0 < L ≤ L̄, with L̄ depending on n.288

Combining the above results, from (2.16), which holds for both (BC-A, v[n−1])289

and (BC-B, v[n−1]), we derive by Gronwall’s inequality290

W (t) ≤ e−2dtW (0) +
π(L)c̄2

4δ(d− d̄)

(
e−2d̄t − e−2dt

)
‖v0
n‖2L2(0,L),(2.17)291

292

recalling also, that d̄ depending on the parameter ω of the control laws, can be chosen,293

such that d̄ > d. Combining (2.17) and (2.12), we get294

‖v‖L2(0,L)n ≤‖v[n−1]‖L2(0,L)n−1 + ‖vn‖L2(0,L) ≤

√
π(L)

π(0)
e−dt‖v[n−1](0, ·)‖L2(0,L)n−1295

+
c̄
√
π(L)

2
√
π(0)δ(d̄− d)

√
e−2dt − e−2d̄t‖v0

n‖L2(0,L) + c̄e−d̄t‖v0
n‖L2(0,L).296

297

The last inequality leads to (2.8) for a suitable choice of c.298

This concludes the proof and shows, also, that although the exponential conver-299

gence to zero of vn can become arbitrarily fast by the choice of parameter ω inside300

the controls, solution v to the whole cascade system has a fixed convergence rate.301

Remark 2.5. Note that in the above proof, parameter ρn in (2.15), depending302

on n, does not permit the stabilization of the closed-loop system to be achieved for303

any number of equations n, when the length of the domain L is arbitrary. As it304

was shown in Proposition 2.3, the damped KdV equation in the case of boundary305

conditions of the type (BC-B) requires a damping with coefficient λ larger than a306

critical damping coefficient λ0. The parameter ρn, which appears in the stabilization307

of the closed-loop system corresponding to the damping coefficient, is decreasing with308

n. For n > 2 the stabilization cannot be ensured for any L > 0, since, because of309

ρn, the damping coefficient becomes lower than the critical one, while for n = 2, the310

damping coefficient of the coupled equation is exactly equal to the critical one.311
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Output feedback control of a cascade system of linear KdV equations 9

3. Observer Design and Output Feedback Stabilization. In this section,312

we first present the proposed observer, along with its convergence proof for each of the313

boundary control problems (BC-A) and (BC-B). Then, we study the output feeedback314

stabilization of system (1.1) with controls placed on the left boundaries as described in315

each of problems (BC-A) and (BC-B). We note here that, even though the considered316

system is linear, the use of the high-gain observer design is instrumental in the output317

feedback control in the two following manners and is based on the methodology [17],318

introduced for quasilinear hyperbolic systems. 1) For (BC-B), the choice of the high-319

gain parameter is needed to establish convergence of the observer, contrarily to a320

simpler Luenberger observer design, which would be sufficient for (BC-A); 2) The321

high-gain parameter is used in the stabilization of the closed-loop system for both322

boundary control problems (BC-A) and (BC-B).323

In the following subsection we present the observer for the cascade system, whose324

exponential stability relies on the result presented in Proposition 2.3 of Section 2.325

3.1. Observer. Define, first, diagonal matrix Θn by326

Θn := diag
(
θ, θ2, . . . , θn

)
,327

where θ > 0 represents a gain, which will be selected later. Consider a vector gain328

Kn =
(
k1 · · · kn

)>
and let P ∈ Rn×n be a symmetric and positive definite matrix329

satisfying a quadratic Lyapunov equation of the form330

(3.1) P (An +KnC) + (An +KnC)
>
P = −In.331

The previous equation is always feasible, due to the observability of the pair (An, C).332

Then, our observer is defined to satisfy the following equations in (0,∞)× (0, L)333

v̂t(t, x) + v̂x(t, x) + v̂xxx(t, x) = (An −B)v̂(t, x)−ΘnKn (y(t, x)− Cv̂(t, x))(3.2)334335

with boundary conditions for each of (BC-A) and (BC-B) as follows336

(BC-A):
v̂i(t, 0) = 0, i = 1, . . . , n− 1, for all t > 0,
v̂n(t, 0) = u(t), for all t > 0,
v̂(t, L) = v̂x(t, L) = 0, for all t > 0,

(3.3a)337

(BC-B):
v̂i,xx(t, 0) = 0, i = 1, . . . , n− 1, for all t > 0,
v̂n,xx(t, 0) = u(t), for all t > 0,
v̂(t, L) = v̂x(t, L) = 0, for all t > 0.

(3.3b)338

339

and initial condition
v̂(0, x) = v̂0(x), x ∈ (0, L).

The main observer result is stated in the following theorem.340

Theorem 3.1. Consider system (1.1) with output (1.4) and boundary conditions341

satisfying (1.2) ((BC-A) or (BC-B)) and v0 ∈ L2(0, L)n, u ∈ L2
loc(0,∞). Consider,342

also, P and Kn satisfying a Lyapunov equation as in (3.1). Then, (3.2), with boundary343

conditions (3.3) and initial condition v̂0 ∈ L2(0, L)n is an observer for solution of344

(1.1), in the sense that for θ large it estimates the state v arbitrarily fast. More345

precisely, for every κ > 0, there exist θ0, such that for every θ > θ0, the following346

holds for all v0, v̂0 ∈ L2(0, L)n, t ≥ 0:347

‖v̂(t, ·)− v(t, ·)‖L2(0,L)n ≤ νθn−1e−κt‖v̂0(·)− v0(·)‖L2(0,L)n ,(3.4)348349

with ν > 0, depending on n and L.350
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10 C. Kitsos, E. Cerpa, G. Besançon, and C. Prieur

Proof. First, we prove in Appendix B.2 that observer system (3.2)-(3.3) is well-351

posed. Then, to prove its asymptotic convergence to the state v, let us define a scaled352

observer error ε by353

ε = Θ−1
n (v̂ − v).(3.5)354355

Then, ε satisfies the following equations356

εt + εx + εxxx = θ(An +KnC)ε−Bε(3.6)357358

and boundary conditions for each of the cases (BC-A) and (BC-B) as follows359

ε(t, 0) =ε(t, L) = εx(t, L) = 0,(3.7a)360

εxx(t, 0) =ε(t, L) = εx(t, L) = 0.(3.7b)361362

We expect that solutions to the previous coupled equations can approach zero363

exponentially fast, since An + KnC being Hurwitz will exhibit a damping effect (as364

in the single KdV equation), with its magnitude being controlled by θ. Indeed, to365

prove exponential stability, we choose the following Lyapunov functional defined on366

the L2(0, L)n solutions to the observer error equations367

V (t) :=

∫ L

0

µ(x)ε>(x)Pε(x)dx,(3.8)368
369

with positive µ(·) ∈ C3[0, L] to be chosen suitably for each of the boundary conditions370

cases. Taking its time-derivative and substituting (3.6) and Lyapunov equation (3.1),371

yields372

V̇ (t) =

∫ L

0

µ(x)
[
−∂3

x

(
ε>(x)Pε(x)

)
− ∂x(ε>(x)Pε(x)) + 3∂x(ε>x (x)Pεx(x))373

−θε>(x)ε(x)− 2ε>(x)PBε(x)
]

dx.374375

Performing successive integrations by parts, we obtain376

V̇ (t) ≤
∫ L

0

(
µ′′′(x) + µ′(x) +

(
−θ 1

|P |
+ 2

|P |
λmin(P )

)
µ(x)

)
ε>(x)Pε(x)dx377

− 3

∫ L

0

µ′(x)ε>x (x)Pεx(x)dx+ V0,378
379

where380

V0 :=
[
(−µ′′(x)− µ(x)) ε>(x)Pε(x)− µ(x)

(
ε>xx(x)Pε(x) + ε>(x)Pεxx(x)

)
381

+µ(x)ε>x (x)Pεx(x) + µ′(x)(ε>x (x)Pε(x) + ε>(x)Pεx(x))
]L
0

(3.9)382383

and λmin(P ) is the minimal eigenvalue of P .384

Let us now choose for boundary conditions case (3.7a)385

µ(·) := 1,(3.10)386387

for which we obtain388

V0 = −ε>x (0)Pεx(0) ≤ 0.389390
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Note that given (3.10) for the boundary conditions case (3.7a), for every θ > θ0,A,391

with392

θ0,A := 2
|P |2

λmin(P )
,393

394

we get395

V̇ (t) ≤ −2κAV (t), t ≥ 0,(3.11)396397

for some κA > 0.398

Considering boundary conditions of case (3.7b), (3.9) is written as399

V0 := −
(
ε>x (0) ε>(0)

)(Pµ(0) Pµ′(0)
Pµ′(0) −P (µ′′(0) + µ(0))

)(
εx(0)
ε(0)

)
400
401

For this case (3.7b), we see here that for all402

θ ≥ θ0,B := 2
|P |2

λmin(P )
+ 2|P |,403

404

Assertion 1 ((2.5) in Lemma 2.2) is satisfied with µ(·) in the place of π(·), λ =405

θ 1
2|P | −

|P |
λmin(P ) , λ0 = 1 and b = κB for some κB > 0. For all θ ≥ θ0, we choose,406

therefore, π(·) = µ(·) satisfying (2.5) and we derive again (3.11) satisfied for every407

θ ≥ θ0,B , with κA substituted by κB .408

Combining the previous estimates, we directly obtain (3.4) with

ν :=

√
µ(L)

µ(0)

√
|P |

λmin(P )

and this concludes the proof of Theorem 3.1.409

3.2. Output feedback stabilization. Next, it is proven that plugging the ob-410

server’s state considered in Theorem 3.1 in the feedback laws (2.7) of the previous411

section, the closed-loop system is stabilized. This is done in two steps. First, it is412

proven that the considered output feedback law stabilizes arbitrarily fast the solution413

of the last KdV equation and second, the stabilization of the whole cascade system414

of KdV equations follows. However, for system with boundary conditions (BC-B),415

stabilization for any L is only achieved when n = 2, corresponding to a cascade sys-416

tem of two equations, while for n > 2, stabilization is achieved for small L, following417

the result of Proposition 2.3 of the previous section. Even if this case is restrictive,418

we find several physical applications, where only two coupled equations appear in the419

model, see [20]. These statements are presented in the following theorem.420

Theorem 3.2. Consider the closed-loop system (1.1)-(3.2), output (1.4), and421

boundary conditions being of the form (BC-A) or (BC-B). Then, for any d̄ > 0,422

there exist an output feedback law u(t) of the form (2.7), where v is substituted by423

the observer state v̂, and constants θ0, ω0, c̄ > 0, such that for any design parameters424

θ > θ0, ω > ω0 (with θ involved in the observer and ω involved in the control laws),425

the closed-loop system solution with v0, v̂0 ∈ L2(0, L)n satisfies the following stability426

inequality (on the estimation error and last observer state)427
428

(3.12) ‖v̂ − v‖L2(0,L)n + ‖v̂n‖L2(0,L)429

≤ c̄e−d̄t
(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0

n‖L2(0,L)

)
,∀t ≥ 0.430431
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12 C. Kitsos, E. Cerpa, G. Besançon, and C. Prieur

Moreover, whenever the previous assertion holds, we get the following (full state432

convergence)433

a) When boundary conditions (BC-A) hold with n ≥ 2, for every L > 0, there434

exist constants c, d > 0, such that solutions v, v̂ satisfy the following435

436

(3.13) ‖v̂ − v‖L2(0,L)n + ‖v̂‖L2(0,L)n437

≤ ce−dt
(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0‖L2(0,L)n

)
,∀t ≥ 0,438439

with d depending on n.440

b) When boundary conditions (BC-B) hold with n = 2, for every L > 0, there441

exist constants c, d > 0, such that solutions v, v̂ satisfy (3.13).442

c) When (BC-B) holds, with n > 2 there exists L̄ > 0 small, such that asymptotic443

stability (3.13) is guaranteed for all L ∈ (0, L̄].444

Proof. To address the closed-loop control problem, let us rewrite observer error445

and observer coupled equations, viz. (see (3.6), (3.2))446 {
εt + εx + εxxx = θ(An +KnC)ε−Bε,
v̂t + v̂x + v̂xxx = (An −B)v̂ + θΘnKnε1,

(3.14)447
448

with boundary conditions (3.7), (3.3).449

Let us perform a Volterra transformation to the solution of the n-th equation of450

the observer, which by (3.2) is written as451

v̂n,t + v̂n,x + v̂n,xxx = v̂n + knθ
n+1ε1.(3.15)452453

The Volterra transformation454

q(x) = T [v̂n](x) := (knθ
n+1)−1v̂n(x)− (knθ

n+1)−1

∫ L

x

p(x, y)v̂n(y)dy,(3.16)455
456

under appropriate choice of p(·, ·) maps (3.15) into target system457

qt + qx + qxxx = −ωq + ε1 −
∫ L

x

p(x, y)ε1(t, y)dy,(3.17)458
459

with ω a constant involved in the controller, and boundary conditions for each of the460

two considered cases as follows461

q(t, 0) =q(t, L) = qx(t, L) = 0,(3.18a)462

qxx(t, 0) =q(t, L) = qx(t, L) = 0.(3.18b)463464

Then, the kernel functions p(·, ·) satisfy (2.11) for both problems (3.18a), (3.18b). It465

is easy to check this if we apply successive differentiations of (3.16) as in Theorem 2.4,466

we obtain the above target system, by choosing p(·, ·) satisfying (2.11). Subsequently,467

the output feedback control u(·) for (BC-A) is given by468

u(t) =

∫ L

0

p(0, y)v̂n(t, y)dy,(3.19a)469
470

and for (BC-B),471

u(t) = −ω + 1

3
Lv̂n(t, 0) +

∫ L

0

pxx(0, y)v̂n(t, y)dy.(3.19b)472
473
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As noticed in proof of Theorem 2.4, it has been proven that the kernel equations474

(2.11) are solvable in Π and the corresponding Volterra transformation is bounded475

and injective with bounded inverse.476

Consider now the Lyapunov function477

U1(t) = U1,1(t) + U1,2(t);478

U1,1(t) :=

∫ L

0

µ(x)ε>(x)Pε(x)dx, U1,2(t) :=

∫ L

0

σ(x)q2(x)dx,479
480

along the solutions to (3.6)-(3.7) and (3.17)-(3.18), where U1,1 is the same as (3.8) of481

Theorem 3.1 and σ(·) is a positive C3 increasing function in [0, L] to be chosen later.482

Taking the time-derivative of U1,2 and substituting (3.17), we infer483

U̇1,2(t) =

∫ L

0

(σ′′′(x) + σ′(x)− 2ω) q2(x)dx− 3

∫ L

0

σ′(x)q2
x(x)dx484

+ 2

∫ L

0

σ(x)q(x)ε1(x)dx− 2

∫ L

0

σ(x)q(x)

∫ L

x

p(x, y)ε1(y)dydx485

+
[
(−σ′′(x)− σ(x)) q2(x)− 2σ(x)qxx(x)q(x) + σ(x)q2

x(x)486

+2σ′(x)qx(x)q(x)]
L
0 .487488

By using489

2

∫ L

0

σ(x)q(x)

∫ L

x

p(x, y)ε1(y)dydx ≤ U1,2(t) + σ(L)

∫ L

0

(∫ L

x

p(x, y)ε1(y)dy

)2

dx490

≤ U1,2(t) + L2σ(L) max
x,y∈[0,L]

p2(x, y)

∫ L

0

ε2
1(y)dy491

≤ U1,2(t) + L2 σ(L)

µ(0)λmin(P )
max

x,y∈[0,L]
p2(x, y)U1,1(t),492

493

we get494

U̇1,2(t) ≤
∫ L

0

(σ′′′(x) + σ′(x)− 2(ω − 1)) q2(x)dx− 3

∫ L

0

σ′(x)q2
x(x)dx+ hU1,1(t)495

+
[
(−σ′′(x)− σ(x)) q2(x)− 2σ(x)qxx(x)q(x) + σ(x)q2

x(x)496

+2σ′(x)qx(x)q(x)]
L
0 ,(3.20)497498

where h :=
(
L2 maxx,y∈[0,L] p

2(x, y) + 1
) σ(L)
µ(0)λmin(P ) .499

We can prove that for each of the two cases of boundary conditions we get500

U̇1(t) ≤ −2d̄U1(t).(3.21)501502

Case (BC-A):503

We choose µ(·) = σ(·) = 1 and we obtain:504

U̇1,2(t) ≤ −2(ω − 1)U1,2(t) + hU1,1(t).505506

As seen in Theorem 3.1, for µ(·) = 1, we have:507

U̇1,1(t) ≤
(
−θ 1

|P |
+ 2

|P |
λmin(P )

)
U1,1(t).508

509
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Combining the last two equations, if we choose θ, ω as follows:510

θ > h|P |+ 2
|P |2

λmin(P )
, ω > 1,(3.22)511

512

we get a d̄ > 0, such that (3.21) holds.513

Case (BC-B):514

We see for this case of boundary conditions that for all515

θ ≥ θ0 := 2
|P |2

λmin(P )
+ h|P |+ 2|P |,(3.23)516

517

Assertion 1 ((2.5) in Lemma 2.2) is satisfied with µ(·) in the place of π(·), λ =518

θ 1
2|P | −

|P |
λmin(P ) −

h
2 , λ0 = 1. For all θ ≥ θ0, we choose, therefore, µ(·) satisfying (2.5)519

and we get that the first term of the right hand side of520

U̇1(t) ≤
∫ L

0

(
µ′′′(x) + µ′(x)− 2

(
θ

1

2|P |
− |P |
λmin(P )

− h

2

)
µ(x)

)
ε>(x)Pε(x)dx521

+ U̇1,2(t), t ≥ 0.522523

becomes negative.524

Similarly, for every
ω ≥ 2,

we can find σ(·) = π(·) satisfying (2.5), with λ = ω − 1 and λ0 = 1 and by virtue525

of Proposition 2.3, right hand side of (3.20) becomes negative. Hence, returning to526

U̇1 and choosing θ ≥ θ0 and ω ≥ 2, we can always find µ(·), σ(·) as in Assertion 1 of527

Lemma 2.2, in a such way that we always get a c2 > 0, satisfying again (3.21).528

Consequently, for each of the two problems (BC-A) and (BC-B), for each d̄ > 0529

we can find θ, ω, chosen as before in such a way that there exists constant γ > 0530

depending polynomially on θ, such that531

‖v̂ − v‖L2(0,L)n + ‖q‖L2(0,L) ≤ γe−d̄t
(
‖v̂0 − v0‖L2(0,L)n + ‖q(0, ·)‖L2(0,L)

)
,∀t ≥ 0.532533

Transformation T is bounded with bounded inverse (see the comments in Theo-534

rem 2.4) and, therefore, we obtain an inequality as (3.12).535

Remark 3.3. The previous calculations indicate that gain θ appearing in observer536

system (3.2)-(3.3) is crucial in the stabilization of the closed-loop system. Indeed, in537

(3.23), we see that choice of θ compensates for some terms appearing therein. The538

dependence of the terms on the eigenvalues of matrix P indicates that a simpler539

Luenberger observer with pole placement would not suffice for the stabilization of540

the closed-loop system. These terms play the role of the nonlinearities, appearing in541

the Lyapunov derivative used for the observer error in high-gain observer designs for542

finite-dimensional systems. Although in finite dimension, a pole-placement observer543

is enough for linear systems, in the present framework of infinite dimension, a design544

similar to high-gain observers in finite-dimension is required.545

We are now in a position to prove the closed-loop stability for the whole system546

following the methodology of Theorem 2.4. Let v̂[n−1] :=
(
v̂1 · · · v̂n−1

)>
. Then, v̂[n−1]547

satisfies the following equations548

v̂[n−1],t + v̂[n−1],x + v̂[n−1],xxx = (An−1 − In−1)v̂[n−1] + `v̂n + Θn−1Kn−1(v̂1 − v1),
(BC-A, v̂[n−1]) : v̂[n−1](t, 0) = v̂[n−1](t, L) = v̂[n−1],x(t, L) = 0
(BC-B, v̂[n−1]) : v̂[n−1],xx(t, 0) = v̂[n−1](t, L) = v̂[n−1],x(t, L) = 0

549

550
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where ` :=
(
0 · · · 0 1

)>
and Θn−1,Kn−1 are involved in observer (3.2).551

By choosing552

U2(t) =

∫ L

0

π(x)|v̂[n−1](x)|2dx553
554

as a Lyapunov functional along the L2(0, L)n−1 solutions to the last equations, with555

π(·) a positive increasing C3 function, we obtain556

U̇2(t) =

∫ L

0

(π′′′(x) + π′(x)) |v̂[n−1](x)|2dx− 3

∫ L

0

π′(x)|v̂[n−1],x(x)|2dx557

− 2

∫ L

0

π(x)v̂>[n−1](x)Sym (In−1 −An−1) v̂[n−1](x)dx558

+ 2

∫ L

0

π(x)v̂n−1(x)v̂n(x)dx+ 2

∫ L

0

π(x)v̂>[n−1]Θn−1Kn−1(v̂1 − v1)dx+ U2,0,559
560

where U2,0 is as W0 in (2.14) (see the proof of Theorem 2.4), while v[n−1] is substituded561

by v̂[n−1]. Applying Young’s inequality, we get562

U̇2(t) ≤
∫ L

0

(π′′′(x) + π′(x)− (ρn − 2δ)π(x)) |v̂[n−1](x)|2dx563

+
1

δ

∫ L

0

π(x)v̂2
n(x)dx+

1

δ
θ2n−2|Kn−1|2

∫ L

0

π(x)|v̂1(x)− v1(x)|2dx+ U2,0,(3.24)564
565

with δ > 0 chosen sufficiently small, as in (A.4), determined in the proof of Lemma 2.2566

of previous section, and ρn defined in (2.15).567

Now, to ensure negativity of the Lyapunov derivative, we choose π(·) for each of568

the two boundary problems as follows.569

Case (BC A, v̂[n−1]):570

π(·) = 1.571572

Then, in conjunction with the previously proven equation (3.12), we get from (3.24)573

U̇2(t) ≤ −2dU2(t) +me−2d̄t
(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0

n‖L2(0,L)

)2
(3.25)574575

where d := ρn − 2δ > 0 and576

m :=
1

δ
π(L)c̄2 max

(
1, θ2n−2|Kn−1|2

)
.(3.26)577

578

Case (BC B, v̂[n−1]):579

For boundary conditions (BC B,v̂[n−1]), to obtain an asymptotic stability result,580

we first check that for n = 2, we have ρn = 2. For this ρ2, proof of Lemma 2.2581

suggests that there exists π(·) satisfying (2.5) for some b > 0, with the same π(·),582

λ = ρ2
2 − δ. Then, a similar inequality as (3.25) is satisfied for all L > 0, d = b and583

m as in (3.26). Additionally, following Assertion 2 in the proof of Lemma 2.2, we see584

that for any n > 2, implying ρn < 2, there exist again π(·), d = b > 0, such that (2.5)585

holds for L ∈ (0, L̄].586

Now, we see that for both boundary problems (BC-A) and (BC-B), (3.25) gives587

U2(t) ≤ e−2dtW (0) +
m

2d− 2d̄
(e−2d̄t − e−2dt)

(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0

n‖L2(0,L)

)2
.588

589
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The latter implies590

U2(t) ≤
(
e−2dt +

m

2d− 2d̄
(e−2d̄t − e−2dt)

)(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0‖L2(0,L)n

)2
.

(3.27)

591
592

Recalling that d̄ depends on the adjustable observer parameter θ, we suppose, without593

loss of generality, that can be chosen such that d̄ > d, so that the previous inequality594

has meaning.595

Now, using trivial inequalities and by virtue of (3.27) and (3.12), we easily get:596

‖v̂ − v‖L2(0,L)n + ‖v̂‖L2(0,L)n ≤ ‖v̂ − v‖L2(0,L)n + ‖v̂n‖L2(0,L) + ‖v̂[n−1]‖L2(0,L)n−1597

≤

[
c̄e−d̄t +

1√
π(0)

√
e−2dt +

m

2d− 2d̄
(e−2d̄t − e−2dt)

]
598

×
(
‖v̂0 − v0‖L2(0,L)n + ‖v̂0‖L2(0,L)n

)
.599600

The latter completes the proof of Theorem 3.2, suggesting also that the asymptotic601

rate of the whole closed-loop cascade system is no larger than d, which is decreasing602

with n, contrary to the asymptotic rate for the last state vn, which is adjusted by the603

observer and control parameters.604

Remark 3.4. The considered stabilization problem of under-actuated and under-605

observed cascade systems of KdV equations was here limited to the linear case, and606

special forms of couplings. Even though stabilization results of the original nonlinear607

KdV equation can be found (see survey [3]), or observer results for some infinite-608

dimensional systems with nonlinearities (satisfying some “triangular structure”), as609

in [16, 18], extensions of our output feedback stabilization to more general couplings610

and/or nonlinearities are quite challenging, and are thus left for future studies: a611

strong difficulty comes from the coefficients of system’s differential operator, where612

the presence of distinct elements raises problems related to the notion of algebraic613

solvability, which has been given attention in [1, 19] and other works of the same614

authors. In the Lyapunov-based approach we have considered, this problem translates615

into the lack of a commutative property between a Lyapunov matrix and coefficients of616

system’s differential operator. Handling nonlinearities in one-order term (for instance617

terms vivi,x or even couplings of this type between the equations) and zero-order618

term at the same time is also part of the challenge, as this commutative property619

would not be fulfilled. We also refer to [9], where some open problems concerning620

such coupling are presented, while the reader can understand the difficulties in the621

controllability analysis of under-actuated systems with nontrivial coefficients of the622

differential operators and the presence of nonlinearities.623

Notice yet that it could be possible to adopt an indirect approach, based on our624

previous approaches [18], to deal with the case where the one-order and dispersion625

terms would be of the form A1vx+A2vxxx, for some A1, A2 ∈ Rn×n. Consideration of626

linear lower triangular couplings of one-order and third-order terms would be feasible627

as well, but more general cases remain open.628

Notice also that this under-observed problem being already challenging, the case629

when only a boundary measurement is available (instead of an internal one, at least630

localized to a part of the domain) is even more difficult: even though a solution does631

exist for a single equation and boundary measurement [23], it does not easily extends632

to the case of coupled KdV equations, via a backstepping and a single measurement633
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instead of a distributed one. For the case of n coupled equations, a backstepping634

approach that would lead to an exponentially stable observer error system would fail,635

even for n = 2, if the observations were fewer than the states. In addition, the control636

problem of under-actuated systems by itself is a hard problem, and if 2 × 2 systems637

have local solutions via backstepping, see [8], they concern hyperbolic systems where a638

dissipative target system is feasible. For the coupled KdV equations, the exponentially639

stable target system for the observer error would be needed to be a damped system,640

which cannot be achieved by a single observation.641

Some possible generalizations of the present framework, as the ones described642

before, will be a subject of our future works.643

4. Conclusion. In this work, output feedback stabilization for a class of cascade644

system of linear KdV equations was achieved. Two boundary control problems, with645

controls placed on the left side of the last equation, were investigated. Distributed646

measurement of the first state was considered, which provided an estimation (using a647

high-gain observer) of the states fed in the control laws. The cascade system is stabi-648

lized for both boundary problems, but with a limitation on the number of equations649

and length of the domain for the second one.650

Future developments might include the same stabilization framework, but with651

more general couplings (in zero-order and one-order derivative terms), including lo-652

calized terms and nonlinearities.653

Appendix A. Proof of Lemma 2.2. To prove Assertions 1 and 2 of654

Lemma 2.2, it is more convenient to write the characteristic equation of the differential655

equation in (2.5) as656

r3 + r − s3 − s = 0(A.1)657658

(as in [25], a technique used to solve the characteristic equation of the KdV operator),659

where660

s3 + s = 2λ− 2b(A.2)661662

and considering s being the real root of the latter equation. Then, solutions to (A.1)
are given by

r1 = s, r2 = −s
2

+ i

√
3s2 + 4

2
, r3 = −s

2
− i
√

3s2 + 4

2

and, therefore, unique solutions to the differential equation in (2.5) are given by663

π(x) = αesx + βe−
s
2x cos

√
3s2 + 4

2
x+ γe−

s
2x sin

√
3s2 + 4

2
x(A.3)664

665

with α, β, γ ∈ R chosen, such that restriction on initial conditions in (2.5) is satisfied.666

We can check numerically that there exists a number ε > 0 near zero, such that for667

s ≥ 1− ε, π(·) given by (A.3) with initial conditions π(0) = 4, π′(0) = 2, π′′(0) = −5668

(corresponding to α = 56/25, β = 44/25, γ = 8/25) is positive and increasing and,669

therefore, it satisfies (2.5). Defining a small constant δ > 0 by670

δ :=
ε3

5
− 3ε2

5
+

7ε

5
,(A.4)671

672
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Fig. 1. Solutions to (2.5) for different s

we see from (A.2) that for s ≥ 1 − ε we have λ ≥ λ0 := 1 − δ for choice b = 11
16λ.673

Thus, for all λ ≥ λ0, there exists b > 0, such that conditions (2.5) are satisfied.674

Hence, Assertion 1 is proven to hold for λ0 = 1 − δ, where δ is defined above. Now,675

notice that for s < 1 − ε, corresponding to λ < λ0, and for any initial condition of676

π(·), satisfying second equation of (2.5), there is a L̄ > 0, such that for x > L̄, π(·)677

becomes decreasing and, thus, fails to satisfy all conditions (2.5). This implies that678

for 0 < λ < λ0, Assertion 2 is satisfied for some small L̄ > 0. Letting s → 0+, and679

choosing initial conditions π(0) = 4, π′(0) = 2, π′′(0) = −5 as before, π approaches the680

trajectory of π(x) = −1+5 cos(x)+2 sin(x), for which π′(x) < 0 for L > arctan(2/5).681

By this, for λ→ 0+, b→ 0+, Assertion 2 is satisfied with L̄ = arctan(2/5).682

In Figure 1, we represent the evolution of π(x) for choice of initial condition683

π(0) = 4, π′(0) = 2, π′′(0) = −5 and various values of s, corresponding to various684

values of λ. For small values of s, corresponding to small values λ, π(·) is increasing685

until some point x = L̄ quite small, but for x > L̄, it is decreasing and, thus, fails to686

satisfy fourth equation of (2.5) after this point, in accordance with Assertion 2. We687

also see that for all s ≥ 1−ε, for ε > 0 small, given as before, π(·) is always increasing,688

verifying Assertion 1. The proof is complete.689

Appendix B. Well-posedness of system and observer.690

We show here the well-posedness of both controlled system (1.1)-(1.3) and ob-691

server system (3.2)-(3.3).692

B.1. Well-posedness of (1.1)-(1.3). First, for system (1.1), with boundary693

conditions (BC-A) or (BC-B), feedback control laws of the form (2.7a) or (2.7b),694

respectively, and initial condition v0 ∈ L2(0, L)n, it is sufficient to prove the well-695

posedness of target system, which results after applying the isomorphic transformation696

T , see (2.9), in conjunction with (2.10):697 
v[n−1],t + v[n−1],x + v[n−1],xxx = (An−1 − In−1)v[n−1] + `T −1[z],
zt + zx + zxxx + ωz = 0
(BC-A) : η(t, 0) = η(t, L) = ηx(t, L) = 0,
(BC-B) : ηxx(t, 0) = η(t, L) = ηx(t, L) = 0,

698

699
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where η =
(
v[n−1] z

)
is the target state and we adopt the same notation as in (2.13).700

We rewrite the above system as an abstract evolution system in L2(0, L)n as701

ζ̇ = Aζ,702703

where A :=
(
A1 · · · An

)
: D(A) → L2(0, L)n is an linear unbounded operator704

defined as705

Aiζi =− ζi,x − ζi,xxx − ζi + ζi+1, i = 1, . . . , n− 2706

An−1ζn−1 =− ζn−1,x − ζn−1,xxx − ζn−1 + T −1[ζn]707

Anζn =− ζn,x − ζn,xxx − ωζn,708709

with domain710

D(A) =
{
ζ ∈ H3(0, L)n; ζ(0) = ζ(L) = ζ ′(L) = 0, for (BC-A),711

or ζ ′′(0) = ζ(L) = ζ ′(L) = 0, for (BC-B)} .712713

Its adjoint operator satisfies714

A∗i ζi =ζi,x + ζi,xxx − ζi + ζi+1, i = 1, . . . , n− 2715

A∗n−1ζn−1 =ζn−1,x + ζn−1,xxx − ζn−1 + T −1[ζn]716

A∗nζn =ζn,x + ζn,xxx − ωζn,717718

with domain719

D(A∗) =
{
ζ ∈ H3(0, L)n; ζ(0) = ζ ′(0) = ζ(L) = 0, for (BC-A),720

or ζ ′′(0) = −ζ(0), ζ(L) = ζ ′(0) = ζ(L) = 0, for (BC-B)} .721722

Operator A and its adjoint A∗ are closed with domains dense in L2(0, L)n. Further-723

more, they are both dissipative. Indeed, from the stability proof of Theorem 2.4, we724

first see that An is dissipative. Then, the exponential stability of T [ζn] in (2.12), in725

conjunction with (2.17) implies that726 〈
A[n−1]ζ[n−1], πζ[n−1]

〉
L2(0,L)n−1 ≤ 0,(B.1)727

728

where π(·) satisfies (2.5). Inequality (B.1) is satisfied for every L > 0, if n ≥ 2 under729

boundary conditions (BC-A) and if n = 2 under boundary conditions (BC-B). For730

the latter case, the same inequality holds for n > 2, when L ∈ (0, L̄], for some L̄ > 0.731

This was shown in the stability proof of Theorem 2.4 and it implies that operator A732

is dissipative, namely733

〈Aζ, ζ〉L2(0,L)n ≤ 0.734
735

To show dissipativity of the adjoint operator A∗, i.e., that 〈A∗ζ, ζ〉L2(0,L)n ≤ 0,736

we can easily show first that A∗n is dissipative, by applying integrations by parts.737

Then, we show that
〈
A∗[n−1]ζ[n−1], ζ[n−1]

〉
L2(0,L)n−1

≤ 0. This implies that A∗ is738

dissipative.739

Consequently, we can apply the Lumer-Phillips theorem and we conclude that A
generates a C0-semigroup of contractions and, thus, returning to the original coordi-
nates via T −1, we have that for any initial condition v0 ∈ L2(0, L)n, there exists a
unique mild solution

v ∈ C0
(
0,∞;L2(0, L)n

)
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for system (1.1)-(1.3), noting also, that for (BC-A), the above holds for all L > 0740

and n ≥ 2, while for (BC-B), the above holds for all L > 0, when n = 2 and for all741

L ∈ (0, L̄], when n > 2, where L̄ is given in Lemma 2.2.742

The above well-posedness result for the n coupled equations holds also for the743

single damped KdV equation, see (2.1)-(2.3), as this system’s operator is equal to An,744

as defined above.745

B.2. Well-posedness of (3.2)-(3.3). Observer system given by (3.2) with746

boundary conditions (3.3) is well posed. To see this, it suffices to show the well-747

posedness of the error system (3.6)-(3.7), invoking also the well-posedness of initial748

system (1.1)-(1.3) that we showed before. The differential operator for error system749

(3.6)-(3.7) is given by750

Aζ = −ζx − ζxxx + θ(An +KnC)ζ −Bζ,751752

with domain753

D(A) =
{
ζ ∈ H3(0, L)n; ζ(0) = ζ(L) = ζ ′(L) = 0, for (BC-A),754

or ζ ′′(0) = ζ(L) = ζ ′(L) = 0, for (BC-B)} .755756

and its adjoint operator is given by757

A∗ζ = ζx + ζxxx + θ(An +KnC)ζ −Bζ,758759

with domain760

D(A∗) =
{
ζ ∈ H3(0, L)n; ζ(0) = ζ ′(0) = ζ(L) = 0, for (BC-A),761

or ζ ′′(0) = −ζ(0), ζ(L) = ζ ′(0) = ζ(L) = 0, for (BC-B)} .762763

By the stability proof in Theorem 3.1, we see that764

〈Aζ, µPζ〉L2(0,L)n ≤ 0,(B.2)765
766

whenever θ > θ0, where θ0 is defined in the proof of Theorem 3.1 and where function
µ(·) and matrix P are defined in the proof of Theorem 3.1. Inequality (B.2) implies
that A is dissipative. The adjoint A∗ is also dissipative and it can be shown by
proving that 〈A∗ζ, Pζ〉L2(0,L)n ≤ 0, by applying successive integrations by parts.
This, similarly as in Appendix B.1, proves the well-posedness of the error equations,
which along with the well-posedness of the initial system results in the well-posedness
of the observer system (3.2)-(3.3), namely for any initial condition v̂0 ∈ L2(0, L)n,
there exists a unique mild solution

v̂ ∈ C0
(
0,∞;L2(0, L)n

)
,

for all θ > θ0.767
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