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Abstract

Image denoising and demosaicking are the most impor-
tant early stages in digital camera pipelines. They consti-
tute a severely ill-posed problem that aims at reconstruct-
ing a full color image from a noisy color filter array (CFA)
image. In most of the literature, denoising and demo-
saicking are treated as two independent problems, with-
out considering their interaction, or asking which should
be applied first. Several recent works have started ad-
dressing them jointly in works that involve heavy weight
CNNs, thus incompatible with low power portable imag-
ing devices. Hence, the question of how to combine de-
noising and demosaicking to reconstruct full color images
remains very relevant: Is denoising to be applied first, or
should that be demosaicking first? In this paper, we re-
view the main variants of these strategies and carry-out
an extensive evaluation to find the best way to reconstruct
full color images from a noisy mosaic. We conclude that
demosaicking should applied first, followed by denoising.
Yet we prove that this requires an adaptation of classic de-
noising algorithms to demosaicked noise, which we jus-
tify and specify.

1 Introduction
Most digital cameras capture image data by using a sin-
gle sensor coupled with a color filter array (CFA). At each
pixel in the array, only one color component is recorded
and the resulting image is called a mosaic. The most com-
mon CFA is the Bayer color array [6], in which two out of
four pixels measure the green component, one measures
the red and one the blue. The process of completing the
missing red, green and blue values at each pixel is called
demosaicking. Noise is inevitable, especially in low light
conditions and for small camera sensors like those used
in mobile phones. The conventional approach in image
restoration pipelines for processing noisy raw sensor data
has long been to apply denoising and demosaicking as two
independent steps [46]. Furthermore, the immense ma-
jority of image processing papers addressing one of both
operations do not address its combination with the other
one. All classic denoising algorithms have been designed
for color or grey level images with white noise added. Yet
the realistic data are different: either a mosaic with white
noise or a demosaicked image with structured noise.

Joint denoising/demosaicking methods. This has led
several recent works to propose joint demosaicking- de-
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noising methods [9, 20, 26, 32]. For example [21] pro-
posed a variational model to solve jointly demosaick-
ing, denoising and deblurring. It uses a sparsifying prior
based on wavelet packets and applied on decorrelated
color channels. More detail about the technicalities of
this sophisticated method can be found in [2]. Life has
become far easier for joint denoising/demosaicking with
the emergence of machine learning methods. It is, in-
deed, easy to simulate as many learning data as needed.
This methodology can be used to obtain ground breaking
demosaicking algorithms such as [52]. This paper pro-
posed in 2018 a demosaicking CNN outperforming the
best handcrafted algorithms including ARI [45] by nearly
2 decibels. In [32] a public ground truth dataset was intro-
duced and used for one of the first joint demosaicking and
denoising methods based on machine learning. In a rapid
succession, two state of the art denoising+demosaicking
methods based on deep learning were proposed: [20] and
[37]. This last paper performs joint denoising and demo-
saicking by a customized neural network presented as a
cascade of energy minimization methods tuned by learn-
ing. The outstanding results beat the claimed anterior best
method [25] by 1 decibel. Then in 2018 we have two still
better performing methods, [15] involving a GAN, which
compares favorably to [20] and [54]. The method recently
proposed in [38] performs joint denoising and demosaick-
ing by inserting many residual denoising layers in a CNN.
This complex method is claimed to beat [20] and [37]
by a good margin. Lastly, in 2019, [17] introduced a
“mosaic-to mosaic” training strategy analog to the noise-
to-noise [41] and frame-to-frame [18] frameworks to han-
dle noisy mosaicked raw data, and training both demo-
saicking and joint denoising and demosaicking networks
without requiring ground truth. The method starts from
pairs or bursts of raw images of the same scene. It regis-
ters them and learns to predict the missing colors.

Yet the question of how to combine denoising and de-
mosaicking algorithms conceived as independent blocks
remains very relevant, especially in the context of low
power or portable devices, and given the fact that the main
effort in denoising and demosaicking has addressed them
independently. A big argument in favour of performing
denoising before demosaicking is that most existing de-
mosaicking algorithms have been developed under the un-
realistic assumption of noise-free data [8, 10, 20, 23, 24,
28, 33–36, 38, 42, 45, 49, 53–56, 60]. Yet the perfor-

mance of these algorithms can degrade dramatically when
the noise level increases on the CFA raw image. There-
fore, a previous denoising step is implicitly required by
these algorithms.

In this paper we focus on the early CFA processing in
the imaging pipeline (operating in linear space). We as-
sume that the noise in the raw mosaic is additive white
Gaussian (AWGN) and that its variance is known. This
is realistic because, first, a variance stabilizing transform
(VST) [5] applied to a raw image results in a nearly AWG
noise and, second, because an accurate noise model is
often known or can be estimated [11, 50]. In general,
image denoising methods can be grouped into two ma-
jor categories, the model based methods such as non-
local means [7, 29, 30], nlBayes [39], CBM3D [12] and
WNNM [22], and deep learning methods such as [27, 57].
The ensuing CNNs are sometimes flexible in handling de-
noising problems with various noise levels.

Our goal here is to determine which strategy is more ad-
vantageous for coupling demosaicking and denoising : Is
it applying denoising and then demosaicking (which we
will denote DN&DM : DN and DM indicate denois-
ing and demosaicking respectively), or is it better to apply
first demosaicking and then denoising (DM&DN )?

DN&DM methods (i.e. denoising then demosaicking):
advantages and drawbacks. Many state of the art
works [31, 46, 47, 58] support the opinion thatDN&DM
outperforms DM&DN . Their first convincing argument
is that after demosaicking noise becomes correlated, thus
losing its independent identically distributed (i.i.d.) white
Gaussian property. This increases the difficulty of apply-
ing efficient denoising and actually seems to discard all
classic algorithms, that mostly rely on the AGWN as-
sumption. A second obvious argument is that the best
demosaicking algorithms have been designed with noise-
free images.

For example, Park et al. [47] considered the classic
Hamilton-Adams (HA) [23] and [16] for demosaicking,
combined with two denoising methods, BLS-GSM [51]
and CBM3D [13]. This combination raises the question
of adapting CBM3D to a CFA. To do so, the authors ap-
ply a sparsifying 4D color transform to the 4-channel im-
age formed by rearranging the Bayer pixels, apply BM3D
to each channel, then apply the inverse color transform.

2



In the very same vein, in the BM3D-CFA method [14]
BM3D is applied directly on the CFA color array. To
do so, “only blocks having the same CFA configuration
are being compared to build the 3D blocks. This is the
only modification of the original BM3D”. A little thought
leads to the conclusion that this amounts to denoise four
different mosaics of the same image before aggregating
the four values obtained for each pixel. The authors com-
pare two denoising algorithms with two different setups:
a) filtering CFA as a single image and b) splitting the CFA
into four color components, filtering them separately, and
recombining back the denoised CFA image. This paper
showed a systematic improvement over [58]. They use
Zhang-Wu [59] as demosaicking method for their com-
parison of result after demosaicking. In our comparisons
the method of [14] will be mentioned every time we con-
sider theDN&DM setup with BM3D. We will neverthe-
less replace the demosaicking of [59] by RCNN [54] or
RI [33], which clearly outperform it.

Similarly in [9] denoising is performed by an adap-
tation of NL-means to the Bayer pattern, where only
patches with the same CFA configuration are being
matched. This paper formulates the demosaicking as a
super-resolution problem, assuming that the observed val-
ues are actually averages of four values in the high reso-
lution image. It then guides this super-resolution prob-
lem by the NL-means weights. The method is compared
with [44] and [58]. The authors of [58] also propose an
DN&DM method, where the demosaicking method is
[59] and the the denoising method is an adaptation of nl-
Bayes [39] to a Bayer pattern. First, the method extracts
blocks with similar configuration in the Bayer array and
groups them by similarity, then it applies to them PCA
and a Wiener denoising procedure which can be also in-
terpreted as an LMMSE. In our experiments, this PCA
method [58] will be considered every time we evaluate
the DN&DM scheme (but combined with a more recent
demosaicking algorithm such as RCNN [54]). The more
recent paper [61] involves similar arguments. This pa-
per uses [4], a linear filter to extract the luminance from
the CFA. Then it remarks that this luminance is corre-
lated, so it applies a variant of NL-means that attempts to
decorrelate the noise. The same method is applied to each
downsampled color channel and the high frequency of the
grey level is transported back to the color channels. This
method under-performs with respect to others considered

here, so we shall not include it to our final comparison ta-
bles. Nevertheless, it remains of interest as a fast method
compatible with low power cameras. The paper proves
that it has a performance very close to a combination of
[58] and [26].

The paper [48] is another method promoting denoising
before demosaicking, involving dictionary learning meth-
ods to remove the Poisson noise from the single chan-
nel images prior to demosaicing. Experimental results
on simulated noisy images as well as real camera acqui-
sitions, show the advantage of these methods over ap-
proaches that remove noise subsequent to demosaicing.
The paper nevertheless uses [43] which is a historic but
outdated demosaicking method.

To summarize, in theDN&DM strategy all classic de-
noising algorithms such as CBM3D, nlBayes, nlMeans
have been adapted to handle a noisy mosaic where only
one of R, G or B is known at each pixel. Several of them
[31, 46, 47, 58] address this realistic case by processing
the noisy CFA images as a half-size 4-channel color im-
age (with one red, two green and one blue channels) and
then apply a multichannel denoising algorithm to it. The
advantage of the denoising step of DN&DM is that the
Poisson noise can be led back by the classic Anscombe
transform to the case of i.i.d. white Gaussian, and the
disadvantage is that the resolution of the image is reduced
and, as a result, some details might be lost after denoising.
Another issue of this strategy is that the spatial relative po-
sitions of the R, G, and B pixels are lost by handling the
image as a four channel half size image.

In this paper, we address the above mentioned issues.
We shall first delve into the advantages and disadvan-
tages of DN&DM and DM&DN approaches. We shall
then analyze noise properties after demosaicking and ad-
just two existing classic denoising algorithms (CBM3D
and nlBayes) to accommodate them to this type of noise.
Then, we shall perform a thorough experimental evalua-
tion that will lead us to conclude that DM&DN (with an
adjusted noise parameter) is superior to DN&DM . This
result is opposite to the conclusion of [31, 46, 47, 58]. The
advantages ofDM&DN seem to be linked to the fact that
this scheme does not handle a half size 4-channels color
image; it therefore uses the classic denoising methods di-
rectly on a full resolution color image; this results in more
details being preserved and avoids checkerboard effects.

The rest of the paper is structured as follows. In Sec-
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Figure 1: Bayer color filter array, CFA, which is used by
most cameras.

tion 2 we present in detail the problem and the main ideas
behind the proposed demosaicking and denoising strat-
egy. Section 3 is a detailed evaluation of the proposed
strategy. Section 4 concludes.

2 The demosaicking and denoising
framework

In a single-sensor camera equipped with a color filter ar-
ray (CFA) [6], only one pixel value among the three RGB
values is recorded at each pixel. Consider a CFA block
as shown in Fig. 1. The raw Bayer CFA images are
scalar mosaic matrices with noise. Obtaining high qual-
ity color images requires completing the missing color
channels and removing the noise. As mentioned in the
introduction, for this task we will consider two main
schemes: DM&DN (demosaicking then denoising) and
DN&DM (denoising then demosaicking).

Park et al. [47] argued that demosaicking introduces
chromatic and spatial correlations to the noisy CFA im-
age. Then the noise is no longer i.i.d. white Gaussian,
which makes it harder to remove. In [31], some ex-
periments were done to show that DN&DM schemes
are more efficient to suppress noise than DM&DN
schemes. Based on this argument several denoising meth-
ods [3, 40, 47, 58] for raw CFA images before demosaick-
ing were introduced. Other denoising methods that are
not explicitly designed to handle raw CFA images (such
as CBM3D and nlBayes) can also be applied on noisy
CFA images by rearranging the CFA image into a half-
size four-channels image with two greens on which the
denoising algorithm is applied [47]. The denoised CFA is
then recovered by undoing the pixel rearrangement. How-

(a1) Ground truth (a2) Ground truth

(b1)DN&DM /26.92dB (b2)DN&DM /26.92dB

(c1) DM&DN /25.38dB (c2) DM&DN /25.38dB

(d1) DM&1.5A /26.95dB (d2) DM&1.5A /26.95dB

(e1) JCNN /27.46dB (e2) JCNN /27.46dB

Figure 2: Comparison of different denoising and demo-
saicking schemes with noise σ0 = 20. In each experi-
ment: left, detail of the demosaicked and denoised im-
age; right, the difference with original that should con-
tain mainly noise. DN : CBM3D denoising; DM : de-
mosaicking (here we use RCNN). 1.5DN means that if
noise level is σ0, the input noise level parameter of de-
noising method DN is σ = 1.5σ0; DN&DM : uses the
BM3D-CFA framework [14] for denoising.

ever, this strategy reduces the resolution of the image seen
by the denoiser, and we observed checkerboard effects re-
sulting from chromatic aberrations in the two green chan-
nels after denoising. To address this issue, Danielyan et
al. [14] proposed BM3D-CFA which amounts to denoise
four different mosaics of the same image before aggregat-
ing the four values obtained for each pixel.
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Modeling demosaicking noise. In order to solve the
above two problems, we shall revisit the DM&DN
scheme. Compared to the DN&DM scheme, the advan-
tage of DM&DN is that it does not halve the image size.
This is a way around the above mentioned problems. A
serious drawback, though, is that chromatic and spatial
correlations have been introduced by the demosaicking in
the noise of the CFA image. The result is that the noise is
no longer white. We next analyze some properties of the
demosaicked noise.

Definition Given a ground truth color image (R,G,B)
we define the demosaicked noise associated with a demo-
saicking methodDM in the following way: first the image
is mosaicked so that only one value of either R,G,DM
is kept at each pixel, according to a fixed Bayer pat-
tern. Then white noise with standard deviation σ0 is
added to the mosaicked image, and the resulting noisy
mosaic is demosaicked by DM , hence giving a noisy im-
age (R̃, G̃, B̃). We call demosaicked noise the difference
(R̃−R, G̃−G, B̃ −B). In short, it is the difference be-
tween the demosaicked version of a noisy image and its
underlying ground truth.

The model of the demosaicked noise depends on the
choice of the demosaicking algorithm DM . For the de-
mosaicking step we will evaluate the following state of
the art methods, which have an increasing complexity:
HA [23], RI [33], MLRI [34], ARI [45], LSSC [42],
RCNN [54] and JCNN [20]. We are interested in algo-
rithms with low or moderate power; only HA, RI, MLRI
and RCNN have a reasonable complexity in this context.
For the denoising step we shall likewise consider two clas-
sic hand-crafted algorithms, CBM3D and nlBayes.

Fig. 2 (c1) and (c2) shows an example where noisy CFA
images with noise of standard deviation σ0 were first de-
mosaicked by RCNN and then restored by CBM3D as-
suming a noise parameter σ = σ0. The output of CBM3D
with σ = σ0 has a strong residual noise. Similar re-
sults are also obtained with nlBayes (see the supplemen-
tary material). To understand empirically the right noise
model to adopt after demosaicking, we simulated this
DM&DN pipeline for different levels of noise σ0, and
applied CBM3D after demosaicking with a noise param-
eter corresponding to σ0 multiplied by different factors
(1.0, 1.1, · · · , 1.9).

Table 1: Denoising after demosaicking DM&DN ,
where DN is CBM3D [13] with noise parameter equal
to C σ0, while noise in the raw image has standard devi-
ation σ0 = 20. Each row shows the CPSNR result for C
ranging from 1.0 to 1.9. Each column corresponds to a
different demosaicking method DM . The best result of
each column is marked with a box . The best result of
each line is in red and the second best one is in green.
The best factor C for all methods is C ' 1.5, the same is
true for different values of σ0 as well (see supplementary
material).

C HA GBTF RI MLRI ARI LSSC RCNN

1.0 28.15 27.58 28.46 27.95 28.70 27.19 27.28

1.1 28.56 28.15 28.83 28.44 28.98 27.89 28.05

1.2 28.85 28.55 29.08 28.80 29.18 28.43 28.67

1.3 29.05 28.81 29.23 29.03 29.29 28.78 29.09

1.4 29.18 28.96 29.31 29.17 29.35 29.00 29.34

1.5 29.23 29.00 29.32 29.22 29.35 29.06 29.41
1.6 29.25 29.01 29.30 29.23 29.33 29.06 29.41
1.7 29.25 28.97 29.26 29.20 29.29 29.02 29.36
1.8 29.22 28.92 29.20 29.15 29.23 28.95 29.28

1.9 29.17 28.85 29.13 29.08 29.17 28.88 29.20

Table 2: RMSE between original and demosaicked im-
age for different demosaicking algorithms in presence of
noise of standard deviation σ0.

σ0 HA GBTF RI MLRI ARI LSSC RCNN

1 5.04 5.10 4.17 4.06 3.72 4.40 3.21

5 6.78 6.87 6.12 6.10 5.74 6.36 5.59

10 10.18 10.27 9.53 9.74 9.09 9.96 9.65

20 17.75 17.83 16.77 17.56 16.06 18.16 18.04

40 32.67 32.76 30.77 32.64 29.36 33.68 33.98

60 46.14 46.35 43.43 46.11 41.44 48.11 47.95
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The results are shown in Table 1, where the classic
color peak signal-to-noise ratio (CPSNR) [4] is adopted
as a logarithmic measure of the performance of the algo-
rithms. It is defined by

CPSNR = 10 log10
2552∑

X=R,G,B MSE(X)/3 , with

MSE(X) = 1
|Ω|

∑
(i,j)∈Ω(X̂(i, j)−X(i, j))2,

where X denotes the ground truth image and X̂ is the
estimated color image. From 1.0 to 1.9, the CPSNR in-
creases first and then decreases. We can see that the best
values are distributed on the lines with factors from 1.4 to
1.7. A similar behavior was also observed using nlBayes
for denoising as well as for other levels of noise (see the
supplementary material).

This does not mean that the overall noise standard de-
viation has increased after demosaicking. Let us consider
the noise standard deviation estimated as the mean RMSE
of the demosaicked images from the Imax [60] dataset
with different noise levels, given in Table 2. We observe
that for low noise (σ0 = 1) there is a serious demosaick-
ing error, of about 4, not caused by the noise, but by the
demosaicking itself. However, for σ0 > 10 we see that
the RMSE of the demosaicked image tends to roughly 3/4
of the initial noise standard deviation.

At first sight, this 3/4 factor seems to contradict the
observation that denoising with a parameter 1.5σ0 yields
better results. This leads us to analyzing the structure
of the residual noise. Fig. 3 shows an image contami-
nated with AWG noise with standard deviation σ0 = 20
and its resulting demosaicked noise for respectively HA,
MLRI, RCNN. In the last row of the figure, one can ob-
serve the color spaces (in standard (R,G,B) Cartesian co-
ordinates) of each of these noises, each cloud being pre-
sented in its projection with maximal area. As expected,
the AWG color space is isotropic and has an apparent di-
ameter proportional to 4σ0 ' 80. The color space of the
demosaicked noise is instead elongated in the luminance
direction Y = R+G+B√

3
to about 6σ0 ' 120 and squeezed

in the others. This amounts to an increased noise standard
deviation for Y after demosaicking, and much less noise
in the chromatic directions.

This is confirmed by Table 3 that shows variances and
covariances of (R,G,B) and (Y, U, V ) respectively for
an AWG noise with σ0 = 20, and then for the demo-

(a) AWG (b) HA (c) MLRI (d) RCNN

Figure 3: AWG noise image and demosaicking noise with
standard deviation σ = 20 for respectively HA, MLRI,
RCNN. Last row: the color spaces (in standard (R,G,B)
Cartesian coordinates) of each noise, presented in their
projection with maximal area. As expected, the AWG
color space is isotropic, while the color space after de-
mosaicking is elongated in the luminance direction Y and
squeezed in the others. This amounts to an increased
noise standard deviation for Y after demosaicking, and
less noise in the chromatic directions.

saicked noise obtained from it after demosaiciking with
RI, MLRI and RCNN. In Table 3 (a) these statistics are
computed on a pure white noise image with σ = 20.
Hence the variance of Y is 400, as the (R,G,B) →
(Y, U, V ) transform is implemented as an isometry of R3.
The variance of Y is a growing sequence for the demo-
saicked noise obtained by increasingly sophisticated de-
mosaicking: 715 for RI, 772 for MLRI, 972 for RCNN.
In contrast, the demosaicked noise is reduced in the U and
V axes, with its variance passing from 400 for AWGN to
168 and 94 for RI, and even down to 43 and 55 for RCNN.
Hence, the noise standard deviation on U or V has been
divided by a factor between 2 and 3. But Table 3 also
shows that the residual noise on U and V is strongly spa-
tially correlated, it is therefore a low frequency noise, that
will require stronger filtering than white noise to be re-
moved. This table also shows that the Y component of
the demosaicked noise remains almost white.

This leads to a simple conclusion: since image denois-
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ing algorithms are guided by the Y component [13, 39],
we can denoise with methods designed for white noise,
but with a noise parameter adapted to the increased vari-
ance of Y .

To understand why the variance of Y is far larger than
the AWG noise it comes from, let us study in Table 4 the
correlation between the three channels (R,G,B) in the
demosaicked noise of RI, MLRI and RCNN. We observe
a strong (R,G,B) correlation ranging from 0.6 for RI to
0.89 for RCNN, which is caused by the ”tendency to grey”
of all demosaicking algorithms. Assuming that the demo-
saicked noisy pixel components (denoted ε̃R, ε̃G, ε̃B) have
a correlation coefficient close to 1 then we have

Y =
ε̃R + ε̃G + ε̃B√

3
∼
√
3N(0, σ0).

This factor of about 1.7 corresponds to the case with max-
imum correlation. Our empirical observation of an opti-
mal factor near 1.5 responds to a lower correlation be-
tween the colors.

3 Experimental evaluation
To evaluate the proposed framework for denoising and de-
mosaicking, we shall use two classic noise free color im-
age datasets: Kodak and Imax. The Imax dataset [60]
consists of 18 images of 500 × 500 pixels, cropped from
high-resolution images of size: 2310 × 1814. The Ko-
dak dataset consists of 25 images of 768× 512 pixels re-
leased by the Kodak Corporation for unrestricted research
usage1. We also evaluated it on a set of 14 real raw im-
ages from the SIDD dataset [1], which comes with ground
truth acquisitions.

Evaluation of DN&DM and DM&DN strategies. We
performed simulations with the schemes: DN&DM and
DM&DN . The considered demosaicking methods range
from classic to very modern: HA[23], RI[33], MLRI[34],
ARI [45], and RCNN[54]. For the denoising stage two
classic hand-crafted patch-based denoising algorithms
were considered: CBM3D [13] and nlBayes [39]. As
commented in the introduction, both methods can be
adapted to handle mosaics (in the DN&DM setting). In

1Image source: http://r0k.us/graphics/kodak

Table 3: Variance and covariance of (R,G,B) and
(Y, U, V ) (each first row) and the corresponding correla-
tions (each second row) between pixels (i, j) and (i +
s, j + t), s, t = 0, 1, 2 first for AWGN (a) with standard
deviation σ = 20, then for its demosaicked versions by
RI (b), MLRI (c) and RCNN (d).

(i,j) (i,j+1) (i,j+2) (i+1,j) (i+1,j+1) (i+1,j+2) (i+2,j) (i+2,j+1) (i+2,j+2)

R 400.6 0.6 0.4 0.7 0.1 0.7 0.3 0.2 0.8
G 401.7 0.5 1.1 0.1 0.3 0.9 1.0 0.6 0.4
B 400.2 1.2 0.1 0.5 0.6 0.0 1.9 0.3 1.9

Y 399.6 1.1 0.1 0.3 0.1 0.9 0.2 0.5 1.2
U 401.5 0.1 0.8 0.6 0.3 0.3 0.9 0.5 1.3
V 401.4 0.2 1.8 0.9 0.2 1.0 0.6 0.2 0.2

(a) AWG noise
(i,j) (i,j+1) (i,j+2) (i+1,j) (i+1,j+1) (i+1,j+2) (i+2,j) (i+2,j+1) (i+2,j+2)

R 336.4 126.8 19.4 129.9 52.9 21.6 20.7 22.4 18.7
G 295.5 92.5 0.5 95.6 20.6 1.8 0.7 1.5 4.3
B 350.5 125.9 18.1 130.4 50.7 20.8 20.0 20.9 17.5

Y 715.6 170.9 32.3 178.6 2.6 5.4 34.0 7.1 20.5
U 168.4 108.3 41.3 110.1 73.4 28.2 44.1 29.4 9.7
V 98.3 66.0 27.9 67.3 48.1 21.4 29.9 22.4 10.4

(b) RI
(i,j) (i,j+1) (i,j+2) (i+1,j) (i+1,j+1) (i+1,j+2) (i+2,j) (i+2,j+1) (i+2,j+2)

R 361.4 128.4 18.9 130.5 46.4 20.6 21.6 21.5 19.8
G 298.9 93.0 0.5 95.1 19.1 0.9 1.0 0.5 3.8
B 370.9 127.8 19.3 130.4 46.0 20.6 21.2 20.3 19.0

Y 772.2 177.7 33.0 181.3 9.6 9.2 32.6 10.9 21.4
U 164.8 107.1 43.7 108.8 72.8 29.3 46.1 30.2 10.1
V 94.3 64.4 28.1 65.8 48.2 21.9 30.3 23.1 11.1

(c) MLRI
(i,j) (i,j+1) (i,j+2) (i+1,j) (i+1,j+1) (i+1,j+2) (i+2,j) (i+2,j+1) (i+2,j+2)

R 359.9 47.8 5.0 51.9 21.8 17.8 5.1 19.4 9.2
G 354.8 32.6 4.4 36.3 5.8 8.4 6.4 8.8 0.6
B 356.0 49.6 6.3 53.7 23.6 18.8 7.3 19.4 9.2

Y 972.3 69.0 20.8 76.4 3.6 18.6 28.9 17.3 2.2
U 55.1 33.8 15.3 36.0 26.1 14.6 19.0 16.6 11.8
V 43.3 27.3 12.3 29.4 21.5 11.7 16.0 13.7 9.4

(d) RCNN
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Table 4: Covariances (each first row) and correlations
(each second row) of the three color channels (R, G, B) of
the demosaicked noise, when the initial CFA white noise
satisfies σ0 = 20

R G B

R
336.44 206.29 175.01

1.0000 0.6542 0.5097

G
206.29 295.54 200.96

0.6542 1.0000 0.6244

B
175.01 200.96 350.46

0.5097 0.6244 1.0000

(a) RI

R G B

R
361.42 224.39 201.41

1.0000 0.6826 0.5501

G
224.39 298.94 216.86

0.6826 1.0000 0.6512

B
201.41 216.86 370.92

0.5501 0.6512 1.0000

(b) MLRI

R G B

R
359.90 320.44 302.85

1.0000 0.8967 0.8461

G
320.44 354.83 299.85

0.8967 1.0000 0.8437

B
302.85 299.85 355.99

0.8461 0.8437 1.0000

(c) RCNN

R G B

R
334.84 297.31 275.28

1.0000 0.8675 0.8181

G
297.31 350.81 270.32

0.8675 1.0000 0.7848

B
275.28 270.32 338.17

0.8181 0.7848 1.0000

(d) JCNN

the case of CBM3D this amounts to applying the method
by Danielyan et al. [14], while for nlBayes this is done by
denoising the 4-channel image associated to the mosaic.

The denoising and demosaicking schemes with the
above mentioned demosaicking algorithms and de-
noising methods were applied to the mosaic im-
ages of the Imax image dataset corrupted by additive
white Gaussian noise with standard deviations σ0 =
1, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60.

Due to space constraints, in Table 5 we only report the
results corresponding to one noise level σ0 = 20. Results
corresponding to other noise levels are in the supplemen-
tary material. From Table 5, we can see that DM&DN
with parameter σ = σ0 is not better than DN&DM ,
butDM&1.5DN (which denotes denoisingDN with pa-
rameter σ = 1.5σ0) beats clearly DN&DM .This might
explain why many researchers think that the scheme
DN&DM was superior to the scheme DM&DN .

Table 5: Comparison in CPSNR(dB) of average restora-
tion performance between DN&DM and DM&DN for
a fixed level of noise σ0 = 20. We test two denoisers
DN namely CBM3D, and nlBayes, and 1.5DN means
that if noise level is σ0, the noise level parameter for the
denoising method DN is σ = 1.5σ0. Both denoisers can
be adapted to handle mosaics in the DN&DM schemes
(see in the text). The best result of each column is marked
with a box . The best result of each line is in red and the
second best one is in green.

DNAlgorithm HA RI MLRI ARI RCNN

C
B

M
3D

DN&DM 28.11 28.45 27.97 28.69 27.27

DM&DN 28.15 28.46 27.95 28.70 27.28

DM&1.5DN 29.24 29.32 29.22 29.36 29.41

nl
B

ay
es

DN&DM 28.17 28.17 28.17 28.18 28.28
DM&DN 28.67 28.99 28.57 29.21 28.02

DM&1.5DN 29.29 29.26 29.22 29.31 29.36

In addition to the good CPSNR results, one important
advantage of the DM&DN schemes is the high visual
quality of the final restored images. Fig. 2 demonstrates
the differences between the various solutions (based on
BM3D) obtained on the test image number 3 of the Imax
dataset with σ0 = 20. To save space, only crops of the
full-color results and corresponding differences with the
ground truth are shown here.

The DN&DM scheme shown in Fig. 2 (b1) and (b2)
uses BM3D-CFA [14] for denoising; we can observe
some minor checkerboard artifacts. From Fig. 2 (c1) and
(c2), we can deduce that there is no checkerboard ef-
fect but that much noise remains in the restored image by
DM&DN schemes with parameter 1.0σ0. The result of
DM&1.5DN (Fig. 2 (d1) and (d2)) are smooth without
checkerboard effects. Fig. 2 (e1) and (e2) correspond to
the outputs of the CNN joint denoising and demosaicking
method JCNN [20].

One can observe thin structures in the upper left corner
of Fig 2 (a1), but they disappear in the restored image by
DN&DM . The proposedDM&1.5DN scheme restores
them. The second column of Fig 2 illustrates a similar sit-
uation in which thin details are recovered by DM&DN
and DM&1.5DN but not in the others.
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In short, it appears that the DM&DN scheme with
an appropriate parameter (namely DM&1.5DN ) outper-
forms the competition in terms of visual quality. This is
due to the fact that it efficiently uses spatial and spec-
tral image characteristics to remove noise, preserve edges
and fine details. Indeed, contrary to the DN&DM
schemes, DM&1.5DN does not reduce the resolution of
the noisy image. Using an DN&DM scheme ends up
over-smoothing the result. It comes to no surprise that
JCNN performs slightly better than the other methods;
however, it is much more computationally demanding and
only works for σ ≤ 20.

In a systematic comparison between the schemes in-
volving CBM3D and nlBayes, schemes with CBM3D
proved to perform slightly better. Furthermore, the
DM&DN schemes with CBM3D are about four times
faster than nlBayes. Hence, the following experiments
are more focused on CBM3D.

Comparison with methods from the literature. To
complete this comparison we went back to all DN&DM
schemes proposed in the literature, and performed a sys-
tematic comparison for the two classic Kodak and Imax
datasets. These databases are always used in demosaick-
ing evaluations, because they illustrate different chal-
lenges of the demosaicking problem, Imax being difficult
by its color contrast, and Kodak challenging for the recov-
ery of fine structure. In Tables 6 and 7 we compare rep-
resentative DN&DM methods from the literature with
the best DM&DN methods identified above (all of them
DM&1.5DN ):

– The two best performing demosaicking before de-
noising methods (DM&1.5DN ) from on Table 5 are
considered. Namely, RCNN for demosaicking fol-
lowed by CBM3D (denoted RCNN+CBM3D) or nl-
Bayes (RCNN+nlBayes) for denoising.

– We also consider a ”low-cost” DM&1.5DN combina-
tion using MLRI [34] for demosaicking and CBM3D
for denoising (MLRI+CBM3D).

The considered DN&DM methods from the literature
are:

– The BM3D-CFA filter was proposed in [14] to avoid
the checkerboard effects resulting from independently

30.84dB

Ground Truth JCNN [20]

29.46dB 30.97dB

BM3D+RCNN (DN&DM ) RCNN+BM3D (DM&1.5DN )

30.77dB 30.84dB

RCNN+nlBayes (DM&1.5DN ) MLRI+BM3D (DM&1.5DN )

Figure 4: Demosaicking and denoising results on an im-
age from the Kodak dataset with σ = 20. We com-
pare an DN&DM scheme BM3D+RCNN [14], with
three DM&1.5DN RCNN+CBM3D, RCNN+nlBayes
and MLRI+BM3D. As a reference we also include the re-
sult of a joint CNN method JCNN [20]. But its results are
only available for noise with σ ≤ 20 because the network
is not trained beyond that level.

applying BM3D to the color phases of CFA images.
We evaluate BM3D-CFA [14] followed by Hamilton
Adams demosaicking (denoted BM3D+HA), as well
as followed by a state-of-the-art RCNN demosaick-
ing [54] (BM3D+RCNN).

– The CFA denoising framework of Park et al. [47] ef-
fectively compacts the signal energy while the noise is
distributed equally in all dimensions by using a color
representation from the principal components analysis
of the pixel RGB values in the Kodak dataset and then
removes noise in each channel by BM3D. This pre-
processing is advantageous for the Kodak image set,
but inadequate for the Imax image set. We evaluate
this framework [47] with BM3D [12] followed by the
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Table 6: Comparison of the results (CPSNR in dB) be-
tween different denoising and demosaicking methods for
the Imax image set. The best result of each line is in red,
the second best one is in green and the third best one is in
blue.

DN&DM DM&1.5DN

BM3D BM3D Park PCA PCA RCNN RCNN MLRI

σ + + + + + + + + JCNN

HA RCNN RCNN DLMM RCNN CBM3D nlBayes CBM3D

1 34.63 38.53 35.37 33.99 37.52 38.36 38.42 36.52 38.59
5 33.43 35.62 32.86 32.69 34.87 35.39 35.29 34.60 33.48

10 31.84 32.92 30.06 30.73 31.89 32.75 32.59 32.36 33.09
20 29.22 29.55 26.86 27.57 27.99 29.41 29.25 29.22 29.79
40 25.50 25.51 23.86 23.50 23.57 25.52 25.09 25.39 –

60 21.55 21.34 21.75 20.89 20.89 22.78 22.31 22.63 –

Av 28.09 28.88 26.89 26.71 27.53 28.99 28.72 28.58 –

RCNN demosaicking [54] (Park+RCNN).

– The PCA-CFA filter proposed in [58] is a spatially-
adaptive denoising based on principal component anal-
ysis (PCA) that exploits the spatial and spectral corre-
lations of CFA images to preserve color edges and de-
tails. We evaluate PCA-CFA [58] followed by DLMM
demosaiciking [59] (PCA+DLMM) and RCNN demo-
saicking [54] (PCA+RCNN).

– Finally, as a reference, we include the deep learning
based joint denoising and demosaicking (JCNN) of [19,
20]. But its results are only available for noise with
σ ≤ 20 because the network is not trained beyond that
level.

From Tables 6 and 7 we see that theDM&DN method
RCNN+CBM3D as well as RCNN+nlBayes yield the best
results on the Kodak dataset, and the margin with re-
spect to the best DN&DM method (BM3D+RCNN, i.e.
BM3D-CFA [13] with RCNN [54]) is quite large: more
than 1.5dB on average. In Fig. 3 we compare some re-
sults obtained on an image from the Kodak dataset. From
the upper-left extract we can see that textures are better re-
stored with RCNN+CBM3D and MLRI+CBM3D, while
JCNN introduces some defects. From the extract we see
that the DM&1.5DN methods preserve much more de-
tails than BM3D+RCNN, and the result is comparable to

Table 7: Comparison of the results (CPSNR in dB) be-
tween different denoising and demosaicking methods for
the Kodak image set. The best result of each line is in
red, the second best one is in green and the third best one
is in blue.

DN&DM DM&1.5DN

BM3D BM3D Park PCA PCA RCNN RCNN MLRI

σ + + + + + + + + JCNN

HA RCNN RCNN DLMM RCNN CBM3D nlBayes CBM3D

1 34.70 40.55 40.36 38.19 39.12 40.98 40.98 38.52 41.15
5 32.84 34.89 34.87 34.99 35.42 36.55 36.42 35.71 34.13

10 30.34 30.93 30.85 31.83 32.01 33.36 33.18 32.94 33.27
20 27.59 27.70 27.42 28.11 28.14 29.98 29.87 29.70 29.95
40 24.79 24.78 24.88 24.15 24.08 26.71 26.29 26.44 –

60 22.58 22.55 23.19 21.77 21.70 24.42 23.93 24.16 –

Av 27.47 28.35 28.36 27.96 28.09 30.19 29.93 29.64 –

JCNN.
On the Imax database RCNN+CBM3D has the high-

est CPSNRs on high noise levels, by a small gap though.
For low noise levels BM3D+RCNN is better, but the
difference with RCNN+CBM3D is very small. The
joint denoising-demosaicking network JCNN [20] yield
the best results on the Imax dataset for σ ≤ 20 (not
trained above those levels) yet, the margin with respect
to RCNN+CBM3D is again small. Overall, by looking
at the average CPSNR we can say that the DM&1.5DN
scheme RCNN+CBM3D is indeed much more robust than
BM3D+RCNN.

Evaluation on real images. We evaluated on a set of 14
raw images taken from the Small SIDD dataset [1]. For
simplicity, the selected images correspond to phones from
the same manufacturer. We adopted the simple pipeline
proposed by the authors, which yields photo finished im-
ages that can be compared with the ground truth. The
considered methods (RCNN+CBM3D, CBM3D+RCNN,
and JCNN) were applied at the demosaicking stage (in
linear space). Before any denoising step (DN ) we ap-
plied a VST (squared root [5]), which whitens the noise,
and invert it afterwards. The noise level was estimated
using [11] and provided to the denoising algorithms and
JCNN.
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28.46dB 34.30dB 35.84dB

28.82dB 37.03dB 38.48dB

noisy demosaicked DN&DM DM&1.5DN

Figure 5: Details of a real images (enhanced contrast)
from the SIDD [1] dataset. From left to right: noisy input
(demosaicked), BM3D+RCNN , and RCNN+CBM3D.

Table 8: Average CPSNR over 14 raw images taken from
the Small SIDD dataset [1]. The reported average noise
level is scaled to the range 0-255.

mean σ CBM3D+RCNN RCNN+CBM3D JCNN
7.65 38.19 39.64 38.54

Table 8 reports the average CPSNR obtained on these
images and the average of the estimated noise levels (af-
ter whitening). These values are consistent with the simu-
lated results obtained on the Kodak database (Table 7).
The result in Fig. 5, and the supplementary material,
support the case in favor of the DM&1.5DN schemes
(RCNN+CBM3D).

4 Conclusions
This paper analyzed the advantages and disadvantages
of denoising before demosaicking (DN&DM ) schemes,
versus demosaicking before denoising (DM&DN ), to
recover high quality full-color images. We showed that
for the DM&DN schemes a very simple change of the
noise parameter of the denoiserDN coped with the struc-
ture of demosaicked noise, and led to efficient denoising
after demosaicking. We found that, this allowed to pre-
serve fine structures that are often smoothed out by the
DN&DM schemes. Our best performing combination
in terms of quality and speed is a DM&1.5DN scheme,
where demosaicking DM is done by a fast algorithm
RCNN [54] followed by CBM3D denoising 1.5DN with

noise parameter equal to 1.5σ0.
Nevertheless it seems ineluctable to see deep learn-

ing win the end game when solutions will be found to
have more compact or more rapid joint demoisaicking-
denoising algorithms.
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dra Pižurica, and Wilfried Philips. Computationally ef-
ficient locally adaptive demosaicing of color filter array
images using the dual-tree complex wavelet packet trans-
form. PloS one, 8(5):e61846, 2013.

[3] Hiroki Akiyama, Masayuki Tanaka, and Masatoshi Oku-
tomi. Pseudo four-channel image denoising for noisy cfa
raw data. In 2015 IEEE International Conference on Im-
age Processing (ICIP), pages 4778–4782. IEEE, 2015.

[4] David Alleysson, Sabine Susstrunk, and Jeanny Hérault.
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[20] Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and
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