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Gaëtan Heidsiecka,∗, Daniel de Oliveirab, Esther Pacittia, Christophe Pradala,c, François Tardieud, Patrick Valdurieza

aInria,University of Montpellier, CNRS, LIRMM, France
bFluminense Federal University, Niterói, Brazil
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Abstract

Many scientific experiments today are performed using scientific workflows, which become more and more data-intensive.
We consider the efficient execution of such workflows in a multisite cloud, leveraging heterogeneous resources available at
multiple geo-distributed data centers. Since it is common for workflow users to reuse code or data from previous workflows,
a promising approach for efficient workflow execution is to cache intermediate data in order to avoid re-executing entire
workflows. However, caching intermediate data and scheduling workflows to exploit such caching in a multisite cloud
is complex. In particular, workflow scheduling must be cache-aware, in order to decide whether reusing cache data or
re-executing workflows entirely. In this paper, we propose a solution for cache-aware scheduling of scientific workflows in
a multisite cloud. Our solution includes a distributed and parallel architecture and new algorithms for adaptive caching,
cache site selection, and dynamic workflow scheduling. We implemented our solution in the OpenAlea workflow system,
together with cache-aware distributed scheduling algorithms. Our experimental evaluation in a three-site cloud with a
real application in plant phenotyping shows that our solution can yield major performance gains, reducing total time up
to 42% with 60% of the same input data for each new execution.

Keywords: Multisite cloud, Distributed Caching, Scientific Workflow, Workflow System, Workflow Scheduling

1. Introduction

In many scientific domains, e.g., bio-science [1], complex
numerical experiments typically require many processing or
analysis steps over huge datasets. They can be represented
as scientific workflows, or workflows for short in this paper
(but not to be confused with business workflows, which
are different). These workflows facilitate the modeling,
management, and execution of computational activities
linked by data dependencies. As data size and computation
complexity keep increasing, these workflows become data-
intensive [1], thus requiring high-performance computing
(HPC) resources.

The cloud is a convenient infrastructure for support-
ing workflow execution, as it allows leasing resources at
very large scale and relatively low cost. In this paper,
we consider the execution of data-intensive workflows in
a multisite cloud, i.e., a cloud with geo-distributed data
centers (or sites). Today, all popular public clouds, e.g.,
Microsoft Azure, Amazon AWS, and Google Cloud, provide
a multisite option that allows accessing multiple cloud sites
with a single cloud account. The main reason for using
multiple sites is that they often exceed the capabilities of a
single site, either because the site imposes usage limits for
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fairness and security, or simply because the datasets are
too big.

In scientific applications, the storage and computing
capabilities of the different sites, e.g., on premise servers,
HPC platforms from research organizations or federated
sites at the national level [2], can be very heterogeneous.
For instance, in plant phenotyping, greenhouse platforms
generate Terabytes of raw data from plants. Such data are
typically stored at data centers close to the greenhouse to
minimize data transfers. However, the computation power
of those data centers may be limited and fail to scale when
the analyses become complex, as in plant modeling or 3D
reconstruction. In this case, the computing capabilities of
other sites are required.

Most scientific workflow management systems, or work-
flow systems for short, can execute workflows in the cloud
[3]. Some examples are Swift/T [4], Pegasus [5], SciCumu-
lus [6], Kepler [7] and OpenAlea [8]. Our work is based on
OpenAlea, which is widely used in plant science for sim-
ulation and analysis. Most existing systems use naive or
manual approaches to distribute workflow tasks across sites.
The problem of workflow scheduling on a multisite cloud
has started to be addressed in [9], using performance models
to predict the execution time on different resources. In [10],
the authors proposed a solution based on multi-objective
scheduling and a single site virtual machine provisioning
approach, assuming relatively homogeneous sites, as in a



public cloud.
Since it is common for workflow users to reuse code

or data from other workflows or previous executions [11],
a promising approach for efficient workflow execution is
to cache intermediate data in order to avoid entire re-
execution. Very often, a user may re-execute a workflow
many times with different values of parameters and input
data depending on the previous results. When the same
workflow is executed several times with different param-
eters, some workflow fragments, i.e., subsets of workflow
activities and dependencies, can be unchanged, and thus,
their intermediate data be reused. Another important ben-
efit of caching intermediate data is to make it easy for users
to share it with other research teams, thus fostering new
analyses at low cost.

Caching has been supported by some workflow systems,
e.g., Kepler [12], VisTrails [13] and OpenAlea [14]. In [15],
we proposed an adaptive caching method for OpenAlea
that automatically determines the most suited intermediate
data to cache, but only for a single site. Another inter-
esting single site method is to compute the ratio between
re-computation cost and storage cost to determine the in-
termediate data that should be stored [16]. Distributed
caching in a multisite cloud has been addressed in [17]
to deal with hot metadata (frequently accessed metadata)
only, not intermediate data.

Caching data in a multisite cloud with heterogeneous
sites is much more complex. In addition to the trade-off be-
tween re-computation and storage cost at single sites, there
is the problem of site selection for placing the cache data.
The problem is harder than data allocation in distributed
databases [18], which only deals with well-defined base data,
not intermediate data. Furthermore, workflow scheduling
should be cache-aware, i.e., exploit the knowledge of cache
data to decide whether reusing and transferring cache data
or re-executing the workflow fragments.

In this paper, we propose a solution for cache-aware
scheduling of scientific workflows in a multisite cloud. Our
solution enables users to automatically store, share, and
reuse intermediate data to speed up workflow execution.
The solution includes a distributed and parallel architec-
ture and new algorithms for adaptive caching, cache site
selection and dynamic workflow scheduling.

The main contributions of this paper are:

• A novel distributed and parallel architecture for work-
flows systems that supports caching and cache-aware
scheduling algorithms in a multisite cloud;

• A cost model for estimating workflow execution time
and the benefit of caching based on a combination
of data transfer time, execution time, and resource
usage of cloud sites;

• Three cache-aware scheduling algorithms for multisite
cloud, including one that optimizes the overall cost
of workflow execution with cache data;
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Figure 1: Phenomenal plant analysis workflow.

• A full-fledged implementation of our solution in the
OpenAlea worflow system.

• An extensive experimental evaluation of our solution
using the Phenomenal workflow and real data in a
cloud with three heterogeneous sites.

This paper is organized as follows. Section 2 presents
our real use case in plant phenotyping. Section 3 introduces
our workflow system architecture. Section 4 describes our
caching solution. Section 5 gives our experimental evalua-
tion. Section 6 discusses related work. Finally, Section 7
concludes.

2. Use Case in Plant Phenotyping

In this section, we introduce a real use case in plant
phenotyping that will serve as motivation for the work
and as the basis for the experimental evaluation. In the
last decade, high-throughput phenotyping platforms have
emerged, allowing for the acquisition of quantitative data
on thousands of plants in well-controlled environmental
conditions. For instance, the seven facilities of the French
Phenome project1 produce each year 200 Terabytes of data,
which are various (images, environmental conditions and
sensor outputs), multiscale and coming from different sites.
Analyzing such massive datasets is an open, yet important,
problem for biologists [19].

The Phenomenal workflow [20], shown in Figure 1, has
been developed in OpenAlea to analyze and reconstruct
the geometry and topology of thousands of plants through
time in various conditions. Phenomenal is continuously
evolving with the addition of new state-of-the-art methods,

1https://www.phenome-emphasis.fr/phenomeeng/
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Figure 2: Two workflows in plant analysis and their intermediate
data (the shared activities have same color).

thus yielding new biological insights. The workflow is com-
posed of different fragments, i.e., reusable subworkflows:
binarization (circled in green), 3D volume reconstruction
(blue), images calibration (red), and organ segmentation
(purple). Figure 1.2 gives an abstract representation of the
workflow, with the activities grouped by fragments F1 to
F4. The intermediate datasets, processed by the activities
during execution are shown in Figure 1.3. Dataset D0 con-
tains raw data that serves as input for the first fragment.
Dataset D1 is generated by activity 2 and is the input of
fragment 2 as it is processed by activity 4. The datasets
are grouped by fragments.

The raw data is produced by the Phenoarch platform,
which has a capacity of managing 1,680 plants within a
controlled environment (e.g., temperature, humidity, irriga-
tion) and automatic imaging through time. The total size
of the raw image dataset for one experiment is 11 Terabytes.
The raw data is stored on a server close to the experimental
platform. This server is considered as a site and has both
data storage and computing resources. However, these
resources may not be sufficient to perform a full workflow
execution in a relatively short time. Thus, the solution
is to use additional resources provided by other sites and
execute the workflow in a distributed way on multiple sites.

The multisite cloud used to execute the Phenomenal
workflow (see Figure 1.4) is composed of heterogeneous sites,
in terms of computing and storage resources. The site with
the raw data is used to execute some Phenomenal frag-
ments that do not require powerful resources. Whenever
more computational resources are needed, it is necessary
to choose whether transferring the raw data or some inter-
mediate data to a more powerful site, or re-executing some
fragments locally before transferring intermediate data.
The workflow fragments are distributed and executed on
different sites depending on the site resources. At each
site, some intermediate data generated by the fragment
execution is stored in a cache to be reused in other fragment
executions.

Different users can conduct different analyses by exe-
cuting some workflow fragments on the same dataset in
order to test different hypotheses [15]. To save both time
and resources, it may be useful to reuse the corresponding

intermediate data that has already been computed rather
than recompute the fragments again. In our use case, we
suppose that workflows are submitted from the site where
the raw data is produced and executed in sequential order.

Figure 2 shows two workflows used in plant analysis:
the Phenomenal workflow (Wf1) and a workflow to simulate
light competition for plants in greenhouse (Wf2). Both
workflows use fragments F1 (binarization) and F2 (3D
reconstruction), so the subsequent execution of Wf2 may
benefit from reusing the data generated previously from
the corresponding fragments in Wf1. Suppose for instance
that the execution of Wf1 has generated some data that
has been cached, as shown in Figure 1.4. Then, a user can
reuse the datasets D1 and D2 to speed up the execution of
Wf2. Thus, the only fragment that requires to be executed
is F7.

3. Problem Definition and System Model

In this section, we start by giving an overview of dis-
tributed workflow execution. Then, we formulate the prob-
lem of cache-aware scheduling in a multisite cloud. Finally,
we present our workflow system architecture that integrates
caching and reuse of intermediate data in a multisite cloud.
We motivate our design decisions and describe our architec-
ture in two ways: in terms of functional layers (see Figure
3), which shows the different functions and components;
and in terms of nodes and components (see Figure 4), which
are involved in the processing of workflows.

3.1. Problem Definition

We consider a multisite cloud with a set of sites S={s1,
..., sn}. A workflow W (A,D) is a directed acyclic graph
(DAG) of computational activities A and their data de-
pendencies D. A task t is the instantiation of an activity
during execution with associated input data. A fragment
f of an instantiated workflow is a subset of tasks and their
dependencies.

We introduce basic cost functions for data transfer and
distributed execution. The time to transfer data d from
site si to site sj , noted Ttr(d, si, sj), is defined by

Ttr(d, si, sj) =
Size(d)

TrRate(si, sj)
(1)

where TrRate(si, sj) is the transfer rate between si and
sj .

The time to transfer input and cache data, In(f) and
Cached(f), respectively, to execute a fragment f at site si
is Tinput(f, si):

Tinput(f, si) =

S∑
sj

(Ttr(In(f), sj , si)

+ Ttr(Cached(f), sj , si))

(2)

Note that both the input data In(f) and cache data
Cached(f) used to execute a fragment can be distributed
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on several sites. The time to transfer data considers the
data transfer from all sites.

The time to compute a fragment f at site s, noted
Tcompute(f, s), can be estimated using Amdahl’s law [21]:

Tcompute(f, s) =
(αn + (1− α)) ∗W (f)

Pperf (s)
(3)

where W (f) is the workload for the execution of f , Pperf (s)
is the average computing performance of the processors at
site s and n is the number of processors at site s. We assume
that the local scheduler may parallelize task executions.
Therefore, α represents the percentage of the workload
that can be executed in parallel. The expected waiting
time to be able to execute a fragment at site s is noted
Twait(s), which is the minimum expected time for s to
finish executing the fragments in its queue.

The time to transfer the intermediate data generated
by fragment f at site si to site sj , noted Twrite(Output(f),
si, sj), is defined by:

Twrite(Output(f), si, sj) = Ttr(Output(f), si, sj) (4)

where Output(f) is the data generated by the execution of
f .

Based on these different cost functions, we make three
assumptions to define our scheduling problem:

• A1. The frequency of reusing each fragment is un-
known. For each fragment execution, storing data
into the cache has a cost (see Equation 4), which gets
amortized only if it is reused. Thus, scheduling must
take into account cache management.

• A2. The sites are heterogeneous and have limited
storage and computing resources. For each fragment,
the input data and cache data can be distributed
on multiple sites. The time to retrieve data before
execution (see Equation 2) can be significant. Thus,
the scheduling decision should consider the cost of
transferring data, both cached and intermediate data.

• A3. The workflows are executed in sequential order.
Thus, we do not consider concurrency in the data
and resources access.

We focus on the problems of workflow scheduling and
cache management. The workflow scheduling problem is to
map each workflow fragment f for execution to a site in S in
a way that minimizes execution time (from Equations 2 and
3). The cache management problem involves the decision
of choosing which intermediate data should be added to
the cache dynamically. However, the two problems are not
independent. Workflow scheduling depends on cache data
management as the cache data can be reused for execution
but may require to be transferred to the execution site. On
the other hand, cache management depends on workflow
scheduling as the intermediate data is generated on the
execution site, which may not be the optimal site to do

Figure 2. Multisite SWfMS Functional Architecture

Workflow mgr (fragment execution)Workflow mgr (fragment execution)

Global schedulingGlobal scheduling Metadata 
(catalog, cache index, 

provenance)

Metadata 
(catalog, cache index, 

provenance)Local schedulingLocal scheduling

Task mgr (task execution)Task mgr (task execution)

Data mgr (file mgt, data transfer, intersite replication…)Data mgr (file mgt, data transfer, intersite replication…)

SchedulerScheduler

Figure 3: Workflow System Functional Architecture.

caching. However, an efficient solution for one of these
problems may not be optimal when considering the overall
cost of workflow execution. Thus, our goal is to minimize
this overall cost by considering both workflow scheduling
and cache management.

3.2. Workflow System Architecture

Our architecture capitalizes on the latest advances in
distributed and parallel data management to provide per-
formance and scalability [18]. We consider a distributed
cloud architecture with on premise servers, where raw data
is produced, e.g., a phenotyping experimental platform
in our use case, and remote sites, where the workflow is
executed. The remote sites are data centers using shared-
nothing clusters, i.e., clusters of server machines, each
with independent processors, disk and memory. We adopt
shared-nothing as it is the most scalable and cost-effective
architecture for big data analysis.

In the cloud, metadata is critical for workflow schedul-
ing as it provides a global view of data location, e.g., at
which nodes some raw data is stored, and enables task
tracking during execution [17]. We organize the metadata
in three repositories: catalog, provenance database and
cache index. The catalog contains all information about
users (access rights, etc.), raw data location and workflows
(code libraries, application code). The provenance database
captures all information about workflow specification and
execution. The cache index contains information about
tasks and cache data, as well as the location of files that
store the cache data. Thus, the cache index itself is small
(only file references) and the cache data can be managed
using the underlying distributed file system. A good so-
lution for implementing these metadata repositories is a
key-value store, such as Cassandra2 which provides effi-
cient key-based access, scalability and high availability in
a shared-nothing cluster.

The raw data files are initially produced and stored
at some sites, e.g., in our use case, the Phenoarch plat-
form. During workflow execution, the intermediate data is
generated and consumed at one site’s node in memory. It
gets written to disk when it must be transferred to another
node (potentially at the same site) or explicitly added to
the cache.

2https://cassandra.apache.org
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Figure 4: Multisite Workflow System Architecture.

Figure 3 extends the workflow system architecture pro-
posed in [22] for single site. It is composed of six modules:
workflow manager, global scheduler, local scheduler, task
manager, data manager and metadata manager. The work-
flow manager provides a user interface for workflow defini-
tion and processing. Before workflow execution, the user
selects a number of virtual machines (VMs), given a set of
possible instance formats, i.e., the technical characteristics
of the VMs, deployed on each site’s nodes. When a work-
flow execution is started, the workflow manager simplifies
the workflow by removing some workflow fragments and
partitions, depending on the raw input data and the cache
data (see Section 4). The global scheduler uses the meta-
data (catalog, provenance database, and cache index) to
schedule the workflow fragments of the simplified workflow.
The VMs on each site are then initialized, i.e., the programs
required for the execution of the tasks are installed and all
parameters are configured. The local scheduler schedules
the workflow fragments received on its VMs.

The data manager handles data transfers between sites
during execution for both newly generated intermediate
data and cache data, and manages cache storage. At a
single site, data storage is distributed between cluster nodes.
Finally, the task manager takes care of executing fragments
on the VMs at each site. It exploits the provenance data
to decide whether or not the task’s output data should
be placed in the cache, based on the cache provisioning
algorithm (see Section 4). Local scheduling and execution
can be performed as in [15].

Figure 4 shows how these components are organized, us-
ing the traditional master-worker model. Each site provides
the same functionality, i.e., all the components described
in Figure 3. Thus, users can trigger a workflow execution
at any site. However, for a given workflow execution, there
is one coordinator site, where the execution is started. The
coordinator site performs workflow management and global
scheduling, and manages the execution with other partici-
pant sites. The workflow manager and the global scheduler
modules are involved only on the coordinator site while all
other modules are involved on all sites.

At each site, there are three kinds of nodes: master,
compute and data nodes, which are mapped to cluster
nodes at configuration time, e.g., using a cluster manager

like Yarn3. Each site has one active master node and
a standby node to deal with master node failure. The
master nodes are the only ones to communicate across sites.
Each master node supports the top layers of the functional
architecture: workflow manager, global scheduler, local
scheduler and metadata management.

The master nodes are responsible for transferring data
between sites during execution. They are lightly loaded as
most of the work of serving clients is done by the compute
and data nodes (or worker nodes), which perform local
execution and data management, respectively.

4. Cache-aware Workflow Execution

In this section, we present in more details our solution
to cache-aware workflow execution in a multisite cloud. In
particular, the global scheduler must decide which data to
cache (cache data selection) where (cache site selection),
and where to execute workflow fragments (execution site
selection). Since these decisions are not independent, we
propose a cost function to make a global decision, based
on the cost components for individual decisions. We start
by presenting the methods and cost functions for cache
data selection, cache site selection, execution site selection,
and global decision. Then, we introduce our algorithms for
cache-aware scheduling.

The execution of a workflow W (A,D) in S starts at a
coordinator site sc and proceeds in three main steps:

1. The global scheduler at sc simplifies and partitions
the workflow into fragments. Simplification uses
metadata to decide whether a task can be replaced
by corresponding cache data references. Partitioning
uses the dependencies in D to produce fragments.

2. For each fragment, the global scheduler at sc com-
putes a cost function to make a global decision on
which data to cache where, and on which site to
execute. Then, it triggers fragment execution and
caching at the selected sites.

3. At each selected site, the local scheduler performs
the execution of the received fragments using its task
manager (to execute tasks) and data manager (to
transfer the required input data). It also applies
the decision of the global scheduler on storing new
intermediate data into the cache.

4.1. Workflow Simplification

Workflow simplification is performed by the workflow
manager before execution, transforming the workflow into
an executable workflow and considering the metadata, in-
put, and cache data location. It is based on the workflow
simplification method presented in [23].

First, the workflow W (A,D) is transformed into an ex-
ecutable workflow Wex(A,D, T, Input), where T is a DAG

3http://hadoop.apache.org
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of tasks corresponding to the activities in A and Input is
the input data. The goal is to transform an executable
workflow Wex(A,D, T, Input) into an equivalent, simpler
subworkflow W ′ex(A′, D′, T ′, Input′), where A′ is a sub-
graph of A with dependencies D′, T ′ is a subgraph of T
corresponding to A′ and Input′ is a subset of Input.

The workflow simplification algorithm is recursive and
traverses the DAG T , starting from the sink tasks to the
source tasks. The algorithm marks each task whose output
is already in the cache. Then, the subgraphs of T for which
each of their sink tasks is marked are removed and replaced
by the associated data from the cache. The remaining
graph is noted T ′. Finally, the algorithm determines the
fragments of T ′, i.e., the subgraphs that still need to be
executed.

4.2. Cache Data Selection

To determine what new intermediate data to cache,
we consider two different methods: greedy and adaptive.
Greedy data selection simply adds all new data to the cache.
Adaptive data selection extends our method proposed in
[15] to a multisite cloud. It achieves a good trade-off
between the cost saved by reusing cache data and the cost
incurred to feed the cache.

To determine whether it is worth adding some interme-
diate data Output(f) at site sj , we consider the trade-off
between the cost of adding Output(f) to the cache and
the potential benefit if it were reused. The cost of adding
Output(f) to site sj is the time to transfer from the site,
say site si, where it was generated. The potential benefit
is the time saved from loading Output(f) from sj to the
site of computation instead of re-executing the fragment.
We model this trade-off with the ratio between the cost
and benefit of the cache, noted p(f, si, sj), which can be
computed from Equations 2, 3 and 4,

p(f, si, sj) =
Twrite(Output(f), si, sj)

Tinput(f, si) + Tcompute(f, si)
−Ttr(Output(f), sj , si)

(5)

In the case of multiple users, the probability thatOutput(f)
will be reused or the number of times fragment f will be
re-executed is not known when the workflow is executed.
Thus, we introduce a threshold Threshold (computed on
behalf of the user) as the limit value to decide whether a
fragment output will be added to the cache. The decision
on whether Output(f) generated at site si is stored at site
sj can be expressed by

df,i,j =

{
1 if p(f, si, sj) < Threshold.

0 otherwise.
(6)

4.3. Cache Site Selection

Cache site selection must take into account the data
transfer cost and the heterogeneity of computing and stor-
age resources. We propose two methods to balance either

storage load (bStorage) or computation load (bCompute)
between sites. The bStorage method prevents bottlenecks
when loading cache data. To assess this method at any
site s, we use a load indicator, noted LbStorage(s), which
represents the relative storage load as the ratio between
the storage used for the cache data (Storageused(s)) and
the total storage (Storagetotal(s)).

LbStorage(s) =
Storageused(s)

Storagetotal(s)
(7)

The bCompute method balances the cache data between
the most powerful sites, i.e., with more processors, to pre-
vent computing bottlenecks during execution. Using the
knowledge on the sites’ computing resources and usage, we
use a load indicator for each site s, noted LbCompute(s),
based on processors idleness (Pidle(s)) versus total proces-
sor capacity (Ptotal(s)).

LbCompute(s) =
1− Pidle(s)
Ptotal(s)

(8)

The load of a site s, depending on the method used, is
represented by L(s), ranging between 0 (empty load) and
1 (full). Given a fragment f executed at site si, and a set
of sites {sj} with enough storage for Output(f), the best
site s∗ to add Output(f) to its cache can be obtained using
Equation 1 (to include transfer time) and Equation 6 (to
consider multiple users),

s∗(f)si = argmax
sj

(df,i,j ∗
(1− L(sj))

Twrite(Output(f), si, sj)
) (9)

4.4. Execution Site Selection

To select an execution site s for a fragment f , we need
to estimate the execution time for f as well as the time
to feed the cache with the result of executing f . The
execution time of f at site s (Texecute(f, s)) is the sum of
the time to transfer input and cache data to s, the time
to get computing resources and the time to compute the
fragment. It is obtained using Equations 2 and 3.

Texecute(f, s) = Tinput(f, s) + Tcompute(f, s) + Twait(s)
(10)

Given a fragment f executed at site si and its interme-
diate data Output(f), the time to write Output(f) to the
cache (Tfeed cache (f, si, sj)) can be defined as:

Tfeed cache(f, si, sj , df,i,j) = df,i,j∗Twrite(Output(f), si, sj)
(11)

where sj is given by Equation 9.

4.5. Global Decision

At Step 2 of workflow execution, for each fragment f ,
the global scheduler must make a global decision on the best
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combination of individual decisions regarding cache data,
cache site, and execution site. These individual decisions
depend on each other. The decision on cache data depends
on the site where the data is generated and the site where
it will be stored. The decision on cache site depends on the
site where the data is generated and the decision of whether
or not the data will be cached. Finally, the decision on
execution site depends on what data will be added to the
cache and at which site. Using Equations 10 and 11, we can
estimate the total time (Ttotal) for executing a fragment f
at site si and adding its intermediate data to the cache at
another site sj :

Ttotal(f, si, sj , df,i,j) = Texecute(f, si)

+ Tfeed cache(f, si, sj , df,i,j)
(12)

Then, the global decision for cache data (df,i,j), cache
site (s∗cache) and execution site (s∗exec) implies minimizing
the following equation for the n2 pairs of sites si and sj

(s∗exec, s
∗
cache, df,i,j) = argmin

si,sj

(Ttotal(f, si, sj , df,i,j)) (13)

This decision is performed by the coordinator site before
each fragment execution. It only takes into account the
site’s status at that time. Note that s∗exec and s∗cache can
be the same site, including the coordinator site.

4.6. Cache-Aware Scheduling

In this section, we present in details our solution to
cache-aware scheduling. We propose three algorithms:
GlobalGreedyCache, SiteGreedyCache and FragGreedyCache.
GlobalGreedyCache is a new greedy algorithm that per-
forms cache-aware scheduling. The two other algorithms
extend distributed greedy scheduling algorithms [10] to be
cache-aware. These three algorithms are dynamic in that
they produce scheduling plans that distribute and allocate
executable tasks to computing nodes during workflow exe-
cution [22]. Such kind of scheduling is appropriate for our
workflows, where the workload is difficult to estimate, or
for environments where the computing capabilities vary
much during execution.

4.6.1. GlobalGreedyCache.

The GlobalGreedyCache algorithm (see Algorithm 1) is
based on the global decision (see Equation 13) made by
the coordinator site. It takes the simplified workflow graph
as input and, starting from the root fragment, computes
the global decision for each fragment. Recall that the
global decision combines individual decisions regarding
cache data, cache site, and execution site, before scheduling
each fragment.

Algorithm 1 proceeds as follows. The workflow is parti-
tioned into fragments (line 1), where F represents the set
of all fragments of the workflow. Whenever a fragment is
ready for execution, it is selected (line 3). Then (line 4),

the global decision is computed using Equation 13 to de-
termine the best execution site Sexec, cache placement site
Scache and cache decision df,i,j . At line 5, the fragment is
transferred to the site Sexec to be executed. Recall that the
cache decision df,i,j determines whether the intermediate
data will be cached. Whenever the intermediate data is
to be stored in the cache (lines 6-8), it is transferred at
site Scache (line 7). At line 8, the Cache Index is updated
locally and the update is propagated at all replicas at other
sites. Finally (line 11), the fragment is removed from F.

Algorithm 1: GlobalGreedyCache

Input: WF : a workflow,
Cache index : the index of the placement of the
data existing in the cache

1 F ← partition WF into fragment;
2 while F not empty do
3 f ← select a fragment of F that is next to be

computed ;
4 Sexec, Scache, df,i,j ← compute from Equation

13 ;
5 Schedule f execution on site Sexec ;
6 if df,i,j is True then

/* The intermediate data is cached

*/

7 Place the intermediate data on site Scache;
8 Update the Cache Index

9 else
/* The intermediate data will not be

cached */

10 end
11 Remove f from F ;

12 end

4.6.2. SiteGreedyCache and FragGreedyCache.

SiteGreedyCache (site greedy with caching) extends the
SiteGreedy algorithm presented in [10]. The scheduling
decision of SiteGreedy works as follows. Let F be the set
of workflow fragments. Whenever a site s is available, it
requests the execution of a ready fragment in F to the
coordinator site. The selection of the fragment is based
on a cost function that takes into account data transfer
and execution times. The idea is to keep sites as busy as
possible, scheduling a fragment whenever a site is available.
The caching decision is done after the workflow fragment
has been scheduled for execution by the local scheduler
at each site. Unlike GlobalGreedyCache, SiteGreedyCache
does not make the global decision at once but proceeds in
two steps. First, the choice of the site where the cache data
should be stored is determined by Equation 9. Then, the
decision on whether or not to store the intermediate data is
determined by Equation 5, considering the execution time
and the time to transfer the intermediate data. Note that
Equation 5 considers both the execution site and the cache
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site, which are already determined when computed during
the execution of SiteGreedyCache.

FragGreedyCache (fragment greedy with caching) ex-
tends the ActGreedy algorithm presented in [10]. Frag-
GreedyCache schedules each workflow fragment at the site
that minimizes a cost function based on execution time
and input data transfer time. The cost function is the sum
of the initialization, expected execution and data transfer
times for each fragment at each site. Then, after each
fragment execution at the selected site, the local scheduler
performs the cache site and cache data decisions based on
Equations 9 and 5.

These two greedy algorithms generate a dynamic schedul-
ing plan. After each fragment execution, the decision con-
cerning caching is made by the local scheduler. In contrast,
GlobalGreedyCache makes a global decision for each frag-
ment. Note that SiteGreedyCache and FragGreedyCache
perform less operations to schedule the fragments.

4.6.3. Analysis.

In this section, we analyze the runtime and storage
complexity of the GlobalGreedyCache algorithm.

Runtime complexity analysis. Let n be the num-
ber of given input datasets. Our algorithm generates a
constant number of tasks for each set of input data, i.e.,
in our usecase less than 14 tasks per set. Let |T | be the
number of generated tasks, then we have |T |= n ∗ c, where
c is a constant value. Our algorithm groups tasks into
fragments to be scheduled, generating at most |T | frag-
ments. Our algorithm performs one scheduling operation
for each fragment, and the time needed for each operation
is constant. Thus, the time complexity of the algorithm is
O(|T |). Since we have |T |= n ∗ c and c is a constant, the
time complexity of the algorithm is O(n), where n is the
number of sets of images.

Storage complexity analysis. The largest data struc-
ture used by our algorithm is a list containing the fragments.
As before, the number of fragment generated by the algo-
rithm is at most |T |. Thus, the storage complexity of the
algorithm is O(|T |), so O(n), where n is the number of sets
of images.

5. Experimental Evaluation

This section describes our experimental evaluation based
on a full-fledged implementation of our solution in the Ope-
nAlea worflow system using the Phenomenal workflow and
real data from the Phenoarch phenotyping platform in a
multisite cloud. We first present our experimental setup,
which features the multisite cloud with multiple users that
re-execute part of the workflow. Then, we compare the
performance of our multisite cache scheduling algorithms
against two baseline algorithms. We end the section with
concluding remarks.

5.1. Experimental Setup
We use a multisite cloud, with three sites in France.

Site 1 in Montpellier is the raw data server of the Phe-
noarch phenotyping platform, with the smallest number
of processors and largest amount of storage among the
sites. Site 2 is the coordinator site, located in Lille. Site 3,
located in Lyon, has the largest number of processors and
the smallest amount of storage.

To model site heterogeneity in terms of storage and
computing resources, we use the heterogeneity factor H in
three configurations: H = 0, H = 0.3 and H = 0.7. For the
three sites altogether, the total number of processors is 96
and the total storage 180 GB. With H = 0 (homogeneous
configuration), each site has 32 processors and 60 GB. With
H = 0.3, we have 22 processors and 83 GB for Site 1, 30
processors and 57 GB for Site 2 and 44 processors and
40 GB for Site 3. With H = 0.7 (most heterogeneous
configuration), we have 6 processors and 135 GB for Site 1,
23 processors and 35 GB for Site 2 and 67 processors and
10 GB for Site 3.

To determine the data transfer rate between sites, each
site sends to the other sites a 10 MB test file and measures
the time. This operation is repeated every 30 minutes and
the information is updated at the coordinator site.

The Phenomenal workflow (presented in Section 2)
which we use is composed of 9 main activities. The input
dataset is produced by the Phenoarch platform (see Section
2). Each workflow execution is performed on a subset of the
input dataset, i.e., 200 GB of raw data, which represents
the execution of 15,000 tasks. The workflow is executed
by several users. Each user wants the results produced by
the last activity, which requires the execution of all other
activities when executed from scratch. For each user, 60%
of the raw data is reused from previous executions. Thus,
each execution requires only 40% of new raw data. For the
first execution, no data is available in the cache.

For experiments 3, 4 and 5, the workflow executions
are done three times, so we will present average values of
the three executions.

We implemented our solution in OpenAlea and deployed
it at each site using the Conda multi-OS package manager.
The metadata database is implemented using the Cassan-
dra NoSQL data store. Communication between the sites is
done using the protocol library ZeroMQ. Data transfer be-
tween sites is done through SSH. We have also implemented
two baseline scheduling methods: 1) ActGreedy, a multisite
scheduling algorithm [10] that schedules the fragments at
multiple sites given a cost function based on execution
time and input data transfer time. This algorithm is not
cache aware and does not reuse intermediate data. 2)
a centralized version of the three cache-aware scheduling
algorithms proposed in this paper(GlobalGreedyCache, Site-
GreedyCache and FragGreedyCache). In our experiments,
the centralized cache is managed on Site 1.

Table 1 summarizes the different variants of the schedul-
ing algorithms used in our experiments. Prefix ”C-” in-
dicates that the cache is centralized at a single site while
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prefix ”D-” indicates that it is distributed. For all algo-
rithms that use a cache, the cache index is fully replicated
at all sites.

5.2. Experiments

We compare the three algorithms we proposed (Global-
GreedyCache, SiteGreedyCache, FragGreedyCache) in terms
of execution time, amount of data transferred, and total
time with two baselines. The total time includes workflow
execution time and data transfer time. We consider differ-
ent workflow executions: with and without caching (Experi-
ment 1); on a monosite or a multisite cloud (Experiment 2);
and using a centralized or distributed cache (Experiment 3).
Then, we consider multiple users that execute the workflow
in the following cases: on the same multisite configuration,
where 60% of the data is the same (Experiment 4); on dif-
ferent multisite configurations (Experiment 5); and when
adding or removing workflow fragments (Experiment 6).

5.2.1. Experiment 1: with and without caching

The goal of this experiment is to show that reusing
cache data can speed up workflow execution although data
caching also takes time. Thus, without a minimum amount
of cache data reused, the cost of data caching may ex-
ceed the benefits. We compare two workflow executions:
with caching, using the D-GlobalGreedyCache scheduling
algorithm and the bStorage load balancing method; and
without caching, using the ActGreedy algorithm. We con-
sider one re-execution of the workflow on different input
datasets, from 0% to 60% of data reuse. D-GlobalGreedy-
Cache outperforms ActGreedy from 20% of reused data.
Below 20%, the overhead of caching outweighs its bene-
fit. For instance, with no reuse (0%), the total time with
D-GlobalGreedyCache is 16% higher than with ActGreedy.
But with 30%, it is 11% lower, and with 60%, it is 42%
lower.

5.2.2. Experiment 2: single site versus multisite execution

The goal of this experiment is to show that, with sites
with limited resources, increasing the number of sites re-
duces the workflow total time despite increased data trans-
fers and network latencies. We compare the total time in
four cases with monosite and multisite clouds:

1. a raw data site (Site 1), with only 10 processors,
where the raw data is stored;

2. another site (Site 3) with 96 processors, which can
perform computation on the raw and cache data (that
needs to be transferred from Site 1);

3. a multisite cloud composed of three sites with config-
uration H = 0.7, using C-FragGreedyCache;

4. the same multisite cloud but using D-GlobalGreedy-
Cache.

Figure 5 shows the total time of the workflow for the
different cases. When executing on the raw data site (first
chart on Figure 5), all the input data as well as the cache
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Figure 5: Total time of Phenomenal workflow execution in four cases.

data are already stored on Site 1, thus there is no data
transfer between sites during workflow execution. However,
due to the reduced number of available processors, the
total time is by far longer than on any other infrastructure
(66% longer than the execution on Site 3, 238% longer
than the multisite execution with C-FragGreedyCache and
334% longer than the multisite execution with D-Global-
GreedyCache). Overall, executing the workflow on the full
raw dataset on Site 1 would take more than a week, which
is unpractical. In practice, the raw dataset is first sent
to a site with more computing resources available before
execution.

The execution on Site 3 yields the shortest execution
time, outperforming the multisite execution with C-Frag-
GreedyCache and D-GlobalGreedyCache in terms of execu-
tion time by 21% and 26%, respectively. However, the time
for transferring the raw data makes its total time much
longer, so it is outperformed by the multisite execution
using D-GlobalGreedyCache by 61%.

The intermediate data transfer time on the multisite
cloud is much smaller (83% smaller for the execution with
D-GlobalGreedyCache) than the raw data transfer time of
the execution on Site 3. Since fragments can be executed on
the site of their input data, the raw data is not transferred
between sites, but locally processed on Site 1 by the first
workflow fragment. The intermediate data generated by
the first fragment is smaller than the raw data and is more
easily transferred to other sites, where the other fragments
are scheduled.

5.2.3. Experiment 3: centralized versus distributed cache

The goal of this experiment is to show that distributing
the cache enables reducing significantly data transfer time
as well as total time. Figure 6 shows the total time of the
workflow for the three algorithms SiteGreedyCache, Frag-
GreedyCache and GlobalGreedyCache. The algorithms used
with a centralized cache on Site 1 are C-SiteGreedyCache,
C-FragGreedyCache and C-GlobalGreedyCache. They are
compared with D-GlobalGreedyCache, which uses a dis-
tributed cache in two configurations: (a) with two users;
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Table 1: Scheduling algorithms and their main dimensions.

Algorithm Cost function parameters Cache decision Cache placement
ActGreedy Activity exec. time Local No cache

Input transfer time after execution
C-GlobalGreedyCache Frag. exec. time Global per frag. Single

(C-G) Input & Cache transfer time before execution cache site
C-SiteGreedyCache Frag. exec. time Local Single

(C-S) Input transfer time after execution cache site
C-FragGreedyCache Frag. exec. time Local Single

(C-F) Input transfer time after execution cache site
D-GlobalGreedyCache Frag. exec. time Global per frag. Distributed

(D-G) Input & Cache transfer time before execution
D-SiteGreedyCache Frag. exec. time Local Distributed

(D-S) Input transfer time after execution
D-FragGreedyCache Frag. exec. time Local Distributed

(D-F) Input transfer time after execution

(b) with different site heterogeneity factors.
Let us first analyze the results of Figure 6.a, where

two users execute the Phenomenal workflow with 60% of
common raw data in two configurations: centralized cache
on Site 1 and distributed cache with H = 0.7. For the
first user execution, D-GlobalGreedyCache outperforms C-
SiteGreedyCache in terms of total time by 44%. This is
due to D-GlobalGreedyCache outperforming C-SiteGreedy-
Cache in terms of intermediate and cache data transfer
times by 66% and 60%, respectively. D-GlobalGreedyCache
outperforms C-FragGreedyCache in terms of total time by
24%, even though D-GlobalGreedyCache’s execution time
is lower than C-FragGreedyCache (5%). This is due to
D-GlobalGreedyCache outperforming C-FragGreedyCache
in terms of data transfer time by 44%. D-GlobalGreedy-
Cache outperforms C-GlobalGreedyCache in terms of total
time by 15%. The execution time and intermediate data
transfer time are similar (17% shorter and 11% longer).
Yet, D-GlobalGreedyCache outperforms C-GlobalGreedy-
Cache in terms of cache data transfer by 32%. For the
first execution D-GlobalGreedyCache outperforms the three
algorithms with centralized cache, mostly due to shorter
data transfer times. This is because the distributed cache
enables executing the workflow at a site with more comput-
ing resources and storing the cache data on that site. For
re-execution, D-GlobalGreedyCache outperforms the three
algorithms with centralized cache, C-SiteGreedyCache, C-
FragGreedyCache and C-GlobalGreedyCache, in terms of
total time by 63%, 47% and 23%, respectively.

Figure 6.b shows the total time of the workflow for
the second user and the four different algorithms: C-Site-
GreedyCache, C-FragGreedyCache, C-GlobalGreedyCache
and D-GlobalGreedyCache. The execution is performed on
three values of H in two configurations: centralized cache
on Site 1 and distributed cache. In any configuration, D-
GlobalGreedyCache outperforms the three other algorithms
with centralized cache, C-SiteGreedyCache, C-FragGreedy-
Cache and C-GlobalGreedyCache, in terms of total time by

44%, 33% and 17%, respectively for H = 0, by 53%, 40%
and 25%, respectively for H = 0.3, and by 61%, 44% and
22%, respectively for H = 0.7. The performance gain is
due to less data transfers.

5.2.4. Experiment 4: multiple users

The goal of this experiment is to show that the proposed
algorithms reduce the workflow total time in the case of
multiple users executing the workflow. Figure 8 shows
the total time of the workflow for the three scheduling
algorithms, four users, H = 0.7, and our two cache site
selection methods: (a) bStorage, and (b) bCompute.

Let us first analyze the results in Figure 8.a (bStorage
method). For the first user execution, D-GlobalGreedy-
Cache outperforms D-SiteGreedyCache in terms of execu-
tion time by 10% and in terms of data transfer time by 36%.
The reason that D-SiteGreedyCache is slower is because
it schedules some compute-intensive fragments at Site 1,
which has the lowest computing resources. Furthermore, it
does not consider data placement and transfer time when
scheduling fragments.

Again for the first user execution, D-GlobalGreedyCache
outperforms D-FragGreedyCache in terms of total time by
20%, when considering the time to transfer data to the
cache. However, its execution time is a bit slower (by
11%). The reason that D-FragGreedyCache is slower is
that it does not take into account the placement of the
cache data, which leads to larger amounts (by 66%) of
cache data to transfer. For other users’ executions (when
cache data exists), D-GlobalGreedyCache outperforms D-
SiteGreedyCache in terms of execution time by 29%, and
for the fourth user execution by 31%. This is because D-
GlobalGreedyCache better selects the cache site in order to
reduce the execution time of the future re-executions. Fur-
thermore, D-GlobalGreedyCache balances the cache data
and computations. It outperforms D-SiteGreedyCache and
D-FragGreedyCache in terms of intermediate data trans-
fer time (by 63% and 11%, respectively) and cache data
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Figure 6: Centralized versus distributed cache in terms of execution time. Three scheduling algorithms with centralized cache: C-SiteGreedyCache
(C-S), C-FragGreedyCache (C-F) and C-GlobalGreedyCache (C-G), and one with distributed cache: D-GlobalGreedyCache (D-G).
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Figure 8: Total times for multiple users (60% of same raw data per user) for three scheduling algorithms (D-SiteGreedyCache (D-S), D-
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transfer time (by 78% and 69%, respectively).
Overall, D-GlobalGreedyCache outperforms D-SiteGreedy-

Cache and D-FragGreedyCache in terms of total time by
61% and 41%, respectively. The workflow fragments are
not necessarily scheduled to the site with shortest execu-
tion time, but to the site that minimizes the overall total
time. Considering the multiuser perspective, D-Global-
GreedyCache outperforms D-SiteGreedyCache and D-Frag-
GreedyCache, reducing the total time for each new user.

Let us now consider Figure 8.b (bCompute method). For
the first user execution, D-GlobalGreedyCache outperforms
D-SiteGreedyCache and D-FragGreedyCache in terms of
total time by 38% and 12%, respectively. bCompute stores
the cache data on the site with the most idle processors,
which is often the site with the most processors. This leads
the cache data to be stored close to where it is generated,
thus reducing data transfers when adding data to the cache.
For the second user, D-GlobalGreedyCache outperforms D-
SiteGreedyCache and D-FragGreedyCache in terms of to-
tal time by 54% and 24%, respectively. The cache data
generated by the first user is stored on the sites with more
available processors, which minimizes the transfers of inter-
mediate and cache data. From the third user, the storage
at some site gets full, i.e., for the third user’s execution,
Site 3’s storage is full and from the fourth user’s execution,
Site 2’s storage is full. Thus, the performance of the three
scheduling algorithms decreases due to higher cache data
transfer time. Yet, D-GlobalGreedyCache outperforms D-
SiteGreedyCache and D-FragGreedyCache in terms of total
time by 47% and 22%, respectively.

5.2.5. Experiment 5: site heterogeneity

We now compare the three algorithms in the case of
heterogeneous sites by considering the amount of data
transferred and execution time. In this experiment (see
Figure 7), we consider one user with the cache already
provisioned by previous executions on 60% of the same raw
data. We use the bStorage method for cache site selection.

Figure 7 shows the execution times and the amount
of data transferred using the three scheduling algorithms.
With homogeneous sites (H = 0), the three algorithms
have almost the same execution time. D-GlobalGreedy-
Cache outperforms D-SiteGreedyCache in terms of amount
of data transferred and total time by 47% and 32%, re-
spectively. The execution time of D-GlobalGreedyCache
is similar to D-FragGreedyCache (9% longer). The cache
data is balanced as the three sites have the same storage
capacities. Thus, total times of D-GlobalGreedyCache and
D-FragGreedyCache are almost the same.

With heterogeneous sites (H > 0), the sites with more
processors have less available storage but can execute more
tasks, which leads to larger amounts of intermediate and
cache data being transferred between the sites. ForH = 0.3,
D-GlobalGreedyCache outperforms D-SiteGreedyCache and
D-FragGreedyCache in terms of total time (by 41% and
17%, respectively) and amount of data transferred (by 48%
and 21%, respectively).
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Figure 9: Four subworkflows derived from the Phenomenal workflow.

With H = 0.7, D-GlobalGreedyCache outperforms D-
SiteGreedyCache and D-FragGreedyCache in terms of to-
tal time (by 58% and 42%, respectively) and in terms of
amount of data transferred (by 55% and 31%, respectively).
D-GlobalGreedyCache is faster because its scheduling leads
to a smaller amount of cache data transferred when reused
(50% smaller than D-FragGreedyCache) and added to the
cache (57% smaller than D-FragGreedyCache).

5.2.6. Experiment 6: adding and removing fragments

In this experiment, we evaluate our approach in terms
of total time when subworkflows (with common fragments)
derived from the Phenomenal workflow are executed inde-
pendently. Figure 9 shows four subworkflows, each corre-
sponding to a different analysis required by the user: WF1
performs image binarization, WF2 generates an analysis of
the binary images, WF3 generates a 3D reconstruction of
the plant and WF4 performs maize analysis. WF1 is mostly
data-intensive, the image binarization fragment performing
little computation but consuming Terabytes of data. WF2
requires more computational resources but is still mostly
data-intensive. Fragment F3 in WF3 (composed of activi-
ties 3 and 4 in Figure 9) is mostly computation-intensive.
Finally, WF4 is both data- and computation-intensive. The
subworkflows are executed two times starting without cache
data and 60% of the raw input data is common between
the users. Each user wants the output data generated by
the last activity of the workflow, i.e. activity 2 for WF1,
activity 3 for WF2, activity 5 for WF3, and activity for
WF9. All executions use method bStorage.

Figure 10 shows the total times for executing WF1,
WF2, WF3 and WF4 by two users, one after the other.
The first user executes the subworkflow without existing
cache data, then the second user executes the subwork-
flow using 60% of the same raw data. In the case of WF1
(see Figure 10a), D-SiteGreedyCache outperforms both
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Figure 10: Total times for executing the four subworkflows by two users (with 60% of same raw data for second user) with three algorithms
(D-SiteGreedyCache (D-S), D-FragGreedyCache (D-F) and D-GlobalGreedyCache (D-G)).
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D-FragGreedyCache and D-GlobalGreedyCache in terms
of execution times by 92% for the first user and by 83%
for the second user. This is becauseD-SiteGreedyCache
uses all processors at all sites, whereas D-FragGreedyCache
and D-GlobalGreedyCache almost only use the processors
of Site 1 (where the raw input data is). However, D-
GlobalGreedyCache transfers less intermediate data (70%
less) during execution, which makes D-GlobalGreedyCache
outperforming D-Sgreedy in terms of total time by 49%.
D-GlobalGreedyCache and D-FragGreedyCache have simi-
lar total times (D-GlobalGreedyCache is outperformed by
only D-FragGreedyCache by 2%). Since WF1 is mostly
data-intensive, both methods D-GlobalGreedyCache and
D-FragGreedyCache try to execute the workflow at the site
where the input data is.

In the case of WF2 (see Figure 10b), D-SiteGreedy-
Cache also outperforms both D-FragGreedyCache and D-
GlobalGreedyCache in terms of execution times by 91% for
the first user and 79% for the second user. This is because
the added fragment can be executed just after the execu-
tion of WF1 without any delay as it does not require much
computational resources. However, D-GlobalGreedyCache
outperforms D-SiteGreedyCache in terms of total time by
39% due to longer data transfer times with D-SiteGreedy-
Cache. D-GlobalGreedyCache and D-FragGreedyCache also
have similar total times, D-GlobalGreedyCache outperforms
D-FragGreedyCache by 4% for the second user. WF1 and
WF2 are both data-intensive, not compute-intensive. Since
the raw data is stored on Site 1, the site with the biggest
storage capacities, it is the most likely to be used as cache
site. For these subworkflows, the selection of the execution
site by both algorithms D-FragGreedyCache and D-Glob-
alGreedyCache depends mostly on the intermediate data
location. In this case, they make similar decisions, and
thus have similar performance.

In the case of WF3 (see Figure 10c), for the first user, D-
GlobalGreedyCache outperforms both D-SiteGreedyCache
and D-FragGreedyCache in terms of total time by 30%
and 8%, respectively. Then, for the second user, D-Glob-
alGreedyCache also outperforms both D-SiteGreedyCache
and D-FragGreedyCache by 47% and 18%, respectively.
This is due to D-GlobalGreedyCache outperforming D-Site-
GreedyCache and D-FragGreedyCache in terms of data
transfers by 69% and 35%, respectively. D-FragGreedy-
Cache selects the best sites that minimize execution times
and intermediate data transfer times. In the case of WF3,
which has a compute-intensive fragment, most of the com-
putation will be scheduled on the site with the biggest
computational resources. D-GlobalGreedyCache, however,
will schedule some of the computation to the sites where the
intermediate data will be cached and these sites may have
less computational resources. This is why D-FragGreedy-
Cache has shorter execution time, but is outperformed by
D-GlobalGreedyCache in terms of total time.

In the case of WF4 (see Figure 10d), D-GlobalGreedy-
Cache outperforms both D-SiteGreedyCache and D-Frag-
GreedyCache by 32% and 24% for the first user and 60%

and 40% for the second one, respectively. In the case of
WF4, the fragments are both data- and compute-intensive,
thus the scheduling decision becomes more complex. D-
FragGreedyCache schedules fragments to minimize execu-
tion and intermediate data transfer times, which makes it
outperforming D-GlobalGreedyCache in terms of execution
time and intermediate data transfer by 8%. However, the
intermediate data that is cached is bigger than with WF3,
and the time to transfer cache data becomes a major ele-
ment of the total time. This is why D-GlobalGreedyCache
outperforms D-SiteGreedyCache and D-FragGreedyCache
in terms of total time.

5.3. Concluding Remarks

The main result of this experimental evaluation is that
GlobalGreedyCache always outperforms the two greedy al-
gorithms SiteGreedyCache and FragGreedyCache, both in
case of multiple users and heterogeneous sites.

The first experiment (with or without caching) shows
that storing and reusing cache data becomes beneficial when
20% or more of the input data is reused. The fourth exper-
iment (multiple users) shows that D-GlobalGreedyCache
outperforms D-SiteGreedyCache and D-FragGreedyCache
in terms of total time by up to 61% and 41%, respec-
tively. It also shows that, with increasing numbers of
users, the performance of the three scheduling algorithms
decreases due to higher cache data transfer times. The
fifth experiment (heterogeneous sites) shows that D-Global-
GreedyCache adapts well to site heterogeneity, minimizing
the amount of cache data transferred and thus reducing
total time. It outperforms D-SiteGreedyCache and D-Frag-
GreedyCache in terms of total time by up to 58% and 42%,
respectively.

Both cache site selection methods bCompute and bStor-
age have their own advantages. bCompute outperforms
bStorage in terms of data transfer time by 13% for the first
user and up to 17% for the second user. However, it does
not scale with the number of users, and the limited storage
capacities of Site 2 and 3 lead to a bottleneck. On the
other hand, bStorage balances the cache data among sites
and prevents the bottleneck when accessing the cache data,
thus reducing re-execution times In summary, bCompute
is best suited for compute-intensive workflows that gener-
ate smaller intermediate datasets while bStorage is best
suited for data-intensive workflows where executions can
be performed at the site where the data is stored.

6. Related Work

There are many methods to optimize workflow exe-
cution in the cloud. However, to the best of the au-
thors’ knowledge, no solution that takes into account geo-
distribution in a multisite cloud, which should address two
related problems: 1) determine what intermediate data
should be cached, taking into account data transfers; 2)
schedule the workflow, considering that intermediate and
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cache data are distributed on multiple sites. This section
describes the related work on efficient workflow execution in
the cloud as follows. First, we present the approaches that
exploit centralized caching. Next, we broaden the scope
with approaches that use distributed caching. Then, we
present approaches that focus on scheduling algorithms in
a multisite cloud, but without considering caching. Finally,
we summarize the various approaches based on several
dimensions.

6.1. Centralized Caching

Several workflow systems, such as VisTrails, Kepler,
and OpenAlea, exploit centralized caching of intermediate
data for efficient workflow execution. Each system has
its unique way of addressing caching data. VisTrails sup-
ports visual analysis of workflow results and provenance,
by capturing and caching the graph of execution and the
intermediate data generated [13]. The intermediate data
is reused when tasks are re-executed on a local computer.
The user can then change some activities and parameters
in the workflow and efficiently re-execute some workflow
activities to analyze the different results. The intermediate
data is used to enhance reproducibitily when associated
with provenance metadata [24]. Caching and reuse of in-
termediate data is done whenever possible, but does not
scale up as the data size increases and exceeds the storage
capacity of the local computer. Finally, VisTrails does
not consider distribution when storing and using the cache
since all data is stored in the same computer.

When storing intermediate data in the cloud, the trade-
off between the cost of re-executing tasks and the costs of
storing intermediate data is not easy to estimate [25]. Yuan
et al. [16] propose an algorithm based on the ratio between
re-computation cost and storage cost at the fragment level.
The algorithm uses the provenance data to generate a
graph of intermediate dataset dependencies. Then, the
cost of storing each intermediate data set is weighted by
the number of dependencies in the graph. The algorithm
determines the optimized set of intermediate datasets to
store. Casas et al. [26] propose a scheduling algorithm
based on the trade-off between the cost of re-executing tasks
and the cost of storing intermediate data in the cloud. The
algorithm splits workflows into multiple workflow fragments
to balance system utilization via parallelization. It also
exploits data reuse and replication techniques to reduce
the amount of data that needs to be transferred among
tasks at run-time. These two approaches require global
knowledge of executions, such as the execution time of each
task, the size of each dataset and the number of incoming
re-executions, which is hard to estimate and monitor in
practice. Furthermore, they do not consider data transfers.

Kepler [27] provides intermediate data caching for work-
flow execution on a monosite cloud. The cache data is
stored on a remote server. When a workflow is re-executed,
the workflow specification is modified to access the cache
data. Then, all the cache data that will be reused by the

workflow is sent to the cloud where the workflow will be ex-
ecuted. This solution is improved in [28] to store the cache
data on the site where the workflow is executed. It finds a
near optimum data caching policy by selecting the interme-
diate data to cache using an algorithm based on the Ant
Colony Optimization probabilistic technique. Owsiak et al.
[12] propose an approach in Kepler to enable multiple users
to execute workflows and reuse intermediate data through
a cache. The approach encapsulates all Kepler instances
into Docker containers, which can be easily deployed in a
monosite cloud. During workflow execution, each user can
generate cache data, which is stored in a local cache, and
thus not shared with other users.

Guo and Engler [29] propose an approach for incre-
mental re-execution of workflows that are implemented as
Python scripts and managed by science gateways, some of
which are built on top of workflows systems. Their approach
caches results of long-running activities (i.e., functions) of
the workflow into a local file that can be reused to avoid fu-
ture activity re-executions. This approach only works with
Python-based workflows and is limited to a single machine,
as other Python-based workflow management approaches
[30].

Zohrevandi and Bazzi [31] propose a method to deter-
mine which intermediate datasets produced by a workflow
should be stored for further reuse. Considering that storage
is limited, they formulate the problem as a non-linear inte-
ger programming (NLP) problem and develop a heuristic
to efficiently generate a data reuse plan. Although a step
forward, this work does not consider data distribution.

Different from VisTrails and Kepler, OpenAlea [8] uses
both in memory and disk caching. In memory caching is
used on a local computer for small-scale workflows. Disk
caching is based on an adaptive cache method that auto-
matically determines the intermediate data that needs to
be stored [15]. This solution only works on monosite cloud
and the cache data is systematically reused.

6.2. Distributed Caching

Recently, some of the previous approaches have been
extended for distributed caching.

Cala et al. [32] propose a reusable provenance-based
approach to optimize workflow re-execution in the case of
evolving versions of the software used. The model computes
a ”restart tree”, i.e. a data-structure that captures the
evolution of the workflow when executed. Then, it uses
ReComp [33] a meta-process that enables re-computation
of processes such as workflows. The intermediate data can
be stored in a monosite cloud and the solution is adapted
for data-intensive workflows.

Vulimiri et al. [34] propose WANalytics, an Hadoop
based system that manages data-intensive workflows in a
multisite cloud. The system works on top of any work-
flow system , analyzing workflows before execution and
minimizing data transfers during execution by taking into
account the workflow workload and size of datasets. It
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automatically caches all intermediate data produced on
the execution site and replicates the cache data on all sites.
This provides efficient workflow re-execution, but at the
expense of major storage cost in the case of data-intensive
workflows.

6.3. Scheduling in a Multisite Cloud
The previous approaches focus on caching and reusing

data during workflow execution. Another way to yield
efficient workflow execution is to optimize scheduling. We
present some workflow scheduling approaches that are rele-
vant for a multisite cloud.

Scheduling algorithms have been proposed to allow dis-
tributed workflow execution on single and multiple sites.
de Oliveira et al. [35, 36] propose a scheduling heuristic
based on the collected provenance. The authors use his-
torical information to estimate the execution time of each
activity and then schedule the workflow to multiple virtual
machines in the cloud environment. The approach can be
applied in monosite and multisite clouds.

Teylo et al. [37] also consider execution time and finan-
cial costs when scheduling workflows in the cloud, consid-
ering workflow activities and data in the same dependency
graph. They formulate the problem as an Integer Linear
Programming (ILP) problem and propose a hybrid evolu-
tionary algorithm to efficiently schedule task and data.

Liu et al. [38] propose a scheduling algorithm based on
data location, that minimizes data transfer during workflow
execution. The algorithm is further improved in [10] with
a multi-objective cost function, which includes the time
and monetary cost of workflow execution in a dynamic
environment. Liu et al. also consider data transfer costs
in their multi-objective model. Zhang et al. [39] propose
another interesting approach based on a specialized hybrid
genetic algorithm, that optimizes data transfer between the
sites. Hu et al. [40] propose a multi-objective algorithm for
scheduling workflows in a multisite cloud. The algorithm
is based on the particle swarm optimization technique and
optimizes both task and data location during scheduling.
These aforementioned distributed scheduling approaches
focus on optimizing workflow execution, but do not consider
caching and reusing intermediate data.

6.4. Summary
To summarize the various workflow execution approaches

discussed above, Table 2 provides a comparison based on
the following dimensions:

• Load balancing (LB): the approach balances the ex-
ecution workload, data load or both;

• Data-intensive (DI): the approach considers the data-
intensive aspect of the workflow for efficient execution
and caching;

• Cache intermediate data (CID): the approach caches
and reuses intermediate data for an efficient re-exe-
cution of workflows (7 when cache is not supported,
L for local caching and D for distributed caching);

• Environment (Target Environment): the target
environment of the approach;

• Optimization method (OM): the optimization method
used in the approach (greedy, heuristic, ILP, etc.).

Table 2 highlights that there is no other approach that
combines all the dimension we focus on. Thus, our approach
is the only solution that combines cache data management
and workflow scheduling in a multisite cloud.

7. Conclusion

In this paper, we considered the efficient execution
of data-intensive scientific workflows in a multisite cloud,
using caching of intermediate data produced by previous
workflows. Caching intermediate data and scheduling work-
flows to exploit such caching is complex, because of the
heterogeneity of cloud data centers. In particular, workflow
scheduling must be cache-aware, in order to decide whether
reusing cache data or re-executing workflows.

We proposed a solution for cache-aware scheduling of
scientific workflows in a multisite cloud. Our solution
is based on a distributed and parallel architecture and
includes new algorithms for adaptive caching, cache site
selection and dynamic workflow scheduling. It has been
implemented in the OpenAlea workflow system. We pro-
vided an extensive experimental evaluation in a three-site
cloud with a real application in plant phenotyping (Phe-
nomenal). We compared our solution with two baselines:
1) a multisite workflow scheduling algorithm that does not
consider caching of intermediate data, 2) and a centralized
cache architecture for workflow execution. For further com-
parisons, we extended two multisite scheduling algorithms
to exploit our caching architecture. First, we showed that
our solution for caching and reuse can reduce the total
workflow execution up to 42% with 60% of same input
data for each new execution. Second, we showed that our
solution efficiently distributes the fragments to the sites,
which reduces data transfer time, and thus the total time
up by to 61% compared with a single remote site. Third,
we showed that our distributed cache architecture enables
reducing the total time by 22% compared with our algo-
rithm GlobalGreedyCache with a centralized cache. We
showed that the performance gain gets higher with hetero-
geneous sites. Fourth, we showed that the two methods
bStorage and bCompute efficiently distribute the cache data
to reduce total time in the case of multiple users execut-
ing the workflow. Each method provides its own benefits.
bStorage distributes the cache data so that each site still
has available storage for future intermediate data caching.
bCompute enables faster workflow re-executions but the
cache of the most powerful sites is rapidly full, which re-
duces the gain for future workflow executions. Fifth, we
showed that our solution provides similar results as the
adapted baseline algorithm in the case of homogeneous
sites. And as site heterogeneity increases, it reduces total
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Table 2: Workflow execution approaches along dimensions: Load balancing (LB), Data-intensive (DI), Caching intermediate data (CID),
Target Environment, and Optimization method (OM)

Proposed Approach LB DI CID Target Environment OM

de Oliveira et al. [35, 36] ± 7 Cloud Greedy

Lin et al. [41] 7 7 Cloud-IoT Heuristic

Zhang et al. [42] 7 7 Cloud Heuristic

Hu et al. [40] 7 7 Multisite Cloud Heuristic

Teylo et al. [37] 7 7 Monosite Cloud ILP

Zhang et al. [43] 7 Multisite Cloud Heuristic

Liu et al. [10, 38] 7 Multisite Cloud Greedy

Zhang et al. [39] 7 Multisite Cloud Heuristic

Owsiak et al. [12] 7 7 L Cloud Greedy

Callahan et al. [44] 7 7 L Local computer Heuristic

Guo and Engler [29] 7 ± L Local computer Heuristic

Yuan et al. [16] 7 ± L Local computer, Cluster Greedy, Heuristic

Zohrevandi and Bazzi [31] 7 L Local computer, Monosite Cloud NLP

Casas et al. [26] 7 L Monosite Cloud Greedy, Heuristic

Pradal et al. [8] L Cluster, Monosite Cloud Greedy

Qasha et al. [45] 7 7 D Multisite Cloud Greedy

Vulimiri et al. [34] 7 D Multisite Cloud Heuristic

Cala et al. [32, 33] 7 ± D - Graph-based

Our Approach D Multisite Cloud Greedy

time up to 42%. Finally, we showed that our solution re-
duces the total time of several data-intensive subworkflows
from the Phenomenal workflow. For compute-intensive
subworkflows only, our solution has a small overhead of up
to 4% compared with the adapted baseline algorithm.

This paper can be the basis for future work. The cost
model of our solution focuses on minimizing the total time.
Some other objectives, such as minimizing financial costs,
meeting deadline constraints, or following security con-
straints would change the decisions on scheduling and data
caching. Furthermore, the objective of minimizing envi-
ronmental cost becomes essential and could be integrated
with the cache decision. The work proposed in this paper
presents a solution for workflow caching in the environ-
ment of a multisite cloud with multiple users. A possible
improvement would be to consider other objectives in the
cost model.
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