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ABSTRACT

New algorithms are presented for computing annihilating polyno-
mials of Toeplitz, Hankel, and more generally Toeplitz+ Hankel-
like matrices over a �eld. Our approach follows works on Cop-
persmith’s block Wiedemann method with structured projections,
which have been recently successfully applied for computing the
bivariate resultant. A �rst baby-step/giant step approach—directly
derived using known techniques on structured matrices—gives a
randomized Monte Carlo algorithm for the minimal polynomial
of an = × = Toeplitz or Hankel-like matrix of displacement rank

U using $̃
(

=l−2 (l)U2 (l)
)

arithmetic operations, where l is the

exponent of matrix multiplication and 2 (2.373) ≈ 0.523 for the
best known value of l . For generic Toeplitz+Hankel-like matri-
ces a second algorithm computes the characteristic polynomial in

$̃
(

=2−1/l
)

operations when the displacement rank is considered

constant. Previous algorithms required$
(

=2
)

operationswhile the
exponents presented here are respectively less than 1.86 and 1.58
with the best known estimate for l .

KEYWORDS

Characteristic polynomial, minimal polynomial, Toeplitz matrix,
Hankel matrix, Toeplitz+Hankel-like matrix.

1 INTRODUCTION

We consider the problem of computing the minimal or the charac-
teristic polynomial of Toeplitz-like andHankel-likematrices, which
include Toeplitz and Hankel ones. The necessary de�nitions about
those structures are given in Section 2.

Throughout the paper ) ∈ K=×= is non-singular and either
Toeplitz-like or Hankel-like, where K is a commutative �eld. The
structure is parameterized by the displacement rank 1 ≤ U ≤ = of
) [12, 19]. In particular a Toeplitz or a Hankel matrix has displace-
ment rank U = 2.

The determinant of) can be computed in $̃
(

Ul−1=
)

operations
in K, where l ≤ 3 is a feasible exponent for square = × = matrix
multiplication. For the best known value of l one can take l ≈
2.373 [1, 18]. When ) has generic rank pro�le (the leading princi-
pal submatrices are non singular) a complexity bound $̃

(

U2=
)

for
the determinant is derived from [19, Cor. 5.3.3, p. 161]. In the gen-
eral case, for ensuring the rank pro�le one uses rank-regularization

techniques initially developed in [13, 15] that lead to randomized
Las Vegas algorithms assuming that the cardinality of K is large
enough; see [19, Sec. 5.6-5.7] and [3] for detailed studies in our
context. Taking advantage of fast matrix multiplication is possible
using the results in [3], where fundamental matrix operations, in-
cluding the determinant, are performed in time $̃

(

Ul−1=
)

for a
wide spectrum of displacement structures. In this approach the de-
terminant is revealed by the recursive factorization of the inverse.

The characteristic polynomial det(G�= −) ) of) is a polynomial
of degree =. Using an evaluation-interpolation scheme it follows
that it can be computed in $̃

(

Ul−1=2
)

operations in K. We also
refer to [19, Ch. 7] for a Newton-Structured iteration scheme in
time $̃

(

U2=2
)

.
For a Toeplitz or Hankel matrix these complexity bounds for

computing the characteristic polynomial were quadratic; our con-

tribution establishes an improved bound $̃
(

=2−1/l
)

for generic

matrices (given in compressed form), which is sub-quadratic in-
cluding when using l = 3. We build on the results of [23] where
only the case of a Sylvester matrix was treated, and show that
the approach can be generalized to larger displacement rank fami-
lies. In particular, the Hankel-(like) case requires the use of sophis-
ticated techniques in order to handle the Toeplitz+Hankel struc-
ture [7, 9] and its generalizations [19].

The algorithms we propose �t into the broad family of Copper-
smith’s blockWiedemann algorithms ; we refer to [16] for the nec-
essary material and detailed considerations on the approach. An-
other interpretation in terms of structured lifting and matrix frac-
tion reconstruction is given in [23].

From) ∈ K=×= , the problem is to compute the determinant (or a
divisor) of the characteristic matrix" (G) = G�=−) . For 1 ≤< ≤ =
and well chosen projection matrices+ and, in K=×< , the princi-
ple is to reconstruct an irreducible fraction description % (G)&−1 (G)
of+ T" (G)−1, ∈ K(G)<×< , where %,& ∈ K[G]<×< , from a trun-
cated series expansion of the fraction. The denominator matrix &
carries information on the Smith normal form of " (G) [16, Thm.
2.12]. Using random+ and, allows to recover the minimal poly-
nomial of ) from the largest invariant factor of " (G), and for a
generic matrix) the characteristic polynomial is obtained [16, 23].
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The matrix & is computed from a truncation ( (<) ∈ K[G]<×<

of the series expansion of+ T" (G)−1, ,

( (<) (G) = −

2 ⌈=/<⌉
∑

:≥0

+ T()−1):,G: (1)

using for example matrix fraction reconstruction [2, 5]. We will
not detail these latter aspects in this paper since they can be found
elsewhere in the literature: see [16, 23] for the general techniques
involved; [22, Cor. 6.4] for the power series truncation; and [17]
for alternative reconstruction possibilities. The results we need on
matrix polynomials are recalled in Section 3.

We focus on the computation of the power series terms �: =

+ T ()−1):, in Eq. (1). The idea for improving the complexity bounds
is to use structured projections + and, in order to speed up the
computation of the expansion such as in [4, 23]. A typical choice
is such that the matrix product by + and, is reduced. The cen-
tral di�culty is to show that the algorithm remains correct; special
choices for + and, could prevent a fraction reconstruction with
appropriate cost, or give a denominator matrix & with too little
information on the invariant structure of ) .

For a generic input matrix and our best exponent, in Section 5
we follow the choice of [23] and work with + = , = - where

- =

(

�< 0
)T
∈ K=×< . An = ×= Toeplitz or a Hankel matrix is de-

�ned by 2=−1 elements ofK, and our algorithm is correct except on
a certain hypersurface of K2=−1. The same way, a Toeplitz-like or
Hankel-like matrix of displacement rank U is de�ned by the 2=U
coe�cients of its generators, and our algorithm is correct for all
values of K2=U except for a hypersurface. If ) is Hankel, the ma-
trix" (G) = G�= −) is Toeplitz+Hankel and the algorithm involves
a compressed form that generalizes the use of generators associ-
ated to displacement operators [9, 19]. The algorithm computes a
compressed representation of " (G)−1 modulo G2 ⌈=/<⌉+1 , and ex-
ploits its structure to truncate it into a compressed representation
of ( (<) (G) = - T" (G)−1- mod G2 ⌈=/<⌉+1 at no cost. The param-

eter< can be optimised to get an algorithm using $̃
(

=2−1/l
)

op-

erations when the displacement rank is considered constant.
Before considering the fast algorithm for the generic case, in

Section 4 we consider the baby steps/giant steps algorithm of [16].
Indeed, thanks to the incorporation of fast matrix multiplication in
basis structured matrix operations [3], the overall approach with
dense projections + and, already allows a slight exponent im-
provement. Taking into account that the input matrix ) is struc-
tured, a direct cost analysis of the algorithm of [16] improves on
the quadratic cost for Toeplitz and Hankel matrices as soon as one
takesl < 3. However it is unclear to us how to compute the charac-
teristic polynomial in this case (see the related Open Problem 3 in
[14]). The algorithm we propose is randomized Monte Carlo and

we compute the minimal polynomial in $̃
(

=l−2 (l)
)

operations

with 2 (l) = l−1
5−l . For Toeplitz-like and Hankel-like matrices with

displacement rank U , the cost is multiplied by $̃
(

U2 (l)
)

.

Notation. Indices of matrix and vectors start from zero. The vec-
tors of the=-dimensional canonical basis are denoted by 4=0 , . . . , 4

=
=−1.

For a matrix " , "8, 9 denotes the coe�cient (8, 9) of this matrix,
"8,∗, its row of index 8 and "∗, 9 its column of index 9 .

2 MATERIAL FOR RANK DISPLACEMENT

STRUCTURES

A wide range of structured matrices are e�ciently described by
the action of a displacement operator [12]. There are two types of
such operators: the Sylvester operators of the form

∇",# : � ↦→ "� −�#,

and the Stein operators of the form

Δ",# : � ↦→ � −"�# ;

where " and # are �xed matrices. A Toeplitz matrix ) is de�ned
by 2= − 1 coe�cients C−=+1, . . . , C=−1 ∈ K such that ) = (C8− 9 )8, 9 .
Its image through Δ/=,/

T
=
, where /= = (X8, 9+1)0≤8, 9≤=−1 has rank

2. Similarly, a Hankel matrix � is de�ned by 2= − 1 coe�cients
ℎ0, . . . , ℎ2=−2 such that � = (ℎ8+9 )8, 9 and its image through ∇/=,/

T
=

has rank 2.
As a generalization, the class of Toeplitz-like (resp. Hankel-like)

matrices is de�ned [8, 19] as those matrices which image through
Δ/=,/

T
=
(resp. ∇/=,/

T
=
) has a bounded rank U , called the displace-

ment rank. Lastly, any sum of a Toeplitz and a Hankel matrix,
(forming the class of Toeplitz+Hankel matrices) has an image of
rank 4 through the displacement operator ∇*= ,*=

where *= =

/= +/
T
= . However, contrarily to the previous instances, this opera-

tor is no longer regular, and the low rank image does not su�ce to
uniquely reconstruct the initial matrix: additional data (usually a
�rst or a last column) is required for a unique reconstruction. The
class of Toeplitz+Hankel-like matrices is formed by those matrices
whose image through ∇*= ,*=

has a bounded rank.

2.1 Product of Structured Matrices

Proposition 2.1 ([3, Theorem 1.2]). Let� ∈ K=×= be a Toeplitz-

like or Hankel-like matrix with displacement rank U given by its gen-

erators and � ∈ K=×< be a dense matrix. The multiplication of �

by � can be computed in $̃
(

=max(U,<)min(U,<)l−2
)

operations

in K.

Proposition 2.2. Let �, � ∈ K=×= be two Toeplitz-like matrices

of displacement rank U and V respectively, then their product�� is a

Toeplitz-like matrix of displacement rank at most U + V + 1. Further-
more, given generators for � and � w.r.t. Δ/=,/

T
=
, one can compute

generators for �� w.r.t. the same operator in $̃
(

=(U + V)l−1
)

�eld

operations.

Proof. Let ��, �� and �� , �� be the generators of � and �
respectively. They satisfy A-/=�/T

= = ���
T

�
and � − /=�/T

= =

���
T

�
. Consequently

�� = (/=�/
T
= +���

T

�)(/=�/
T
= +���

T

� )

= /=��/
T
= − /=�∗,=�=,∗/

T
= + (/=�/

T
=�� )�

T

�

+�� (�
T

�/=�/
T
= + �

T

����
T

� ),

and therefore �� − /=��/T
= = ����

T

��
for

��� =

(

�� /=�/
T
=�� −/=�∗,=

)

��� =

(

/=�
T/T

=�� +���
T

�
�� �� /=�

T
=,∗

)

,

thus showing that �� has displacement rank at most U + V + 1.
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Computing these generators involves applying� on a dense =×
V matrix and � on a dense U×=matrix, and computing the product
of an U × = by an = × V matrix and the product of an U × V by a
V × = matrix. Using [3, Theorem 1.2], these cost $̃

(

=(U + V)l−1
)

�eld operations. �

Proposition 2.3. Let �, � ∈ K=×= be two Hankel-like matrices

of displacement rank U and V respectively, then their product�� is a

Toeplitz-like matrix of displacement rank at most U + V + 1. Further-
more, given generators for � and � w.r.t. ∇/=,/

T
=
, generators for ��

w.r.t. Δ/=,/
T
=
can be computed in $̃

(

=(U + V)l−1
)

.

Proof. Let��, �� and�� , �� be the generators of � and � re-
spectively, satisfying /=�−�/T

= = ���
T

�
and /=�−�/T

= = ���
T

�
.

Using a similar reasoning as for Proposition 2.2 we can deduce that
�� − /=��/

T
= = ����

T

��
for

��� =

(

�� �/T
=�� �∗,=

)

��� =

(

���
T

�
�� − �

T/T
=�� �� �T=,∗

)

,

thus showing that �� has displacement rank at most U + V + 1.
Computing these generators again costs $̃

(

=(U + V)l−1
)

�eld op-
erations. �

Proposition 2.4. Let � ∈ K=×= be a Toeplitz-like (resp. Hankel-

like) matrix of displacement rank U , then for an arbitrary (resp. even)

A , �A is a Toeplitz-like matrix of displacement rank at most (U + 1)A
and its generators can be computed in $̃

(

=(UA )l−1
)

�eld operations.

Proof. Using fast exponentiation one computes �A as:

�A =

⌊log A ⌋
∏

:=0

(

�2:
);:

where A =

log A
∑

:=0

;:2
: ,

which only requires squarings and products between matrices of

the form �2: . When � is Toeplitz-like the result is a straightfor-
ward consequence of Proposition 2.2; when it is Hankel-like the
product�2 is computed using Proposition 2.3, the remaining prod-
ucts are between Toeplitz-like matrices, and the result again fol-
lows from Proposition 2.2. �

2.2 Reconstruction of a Toeplitz+Hankel-like

Matrix from its Generators

The operator∇*=,*=
is de�ned in [19, Section 4.5] as partly-regular,

which means that a Toeplitz+Hankel-like matrix is completely de-
�ned by its generators and its irregularity set that contains all the
entries in either its �rst row, its last row, its �rst column or its last
column.

A formula to recover a dense representation of the matrix from
its generators and its �rst column is given in [19, Theorem 4.5.1].

Theorem 2.5 ([19]). Let " ∈ K=×= be a Toeplitz+Hankel-like

matrix, �, � ∈ K=×U its generators and 20 = "4=0 its �rst column,

then

" = g*=
(20) −

U−1
∑

9=0

g*=
(�∗, 9 )g/=

(/=�∗, 9 )
T (2)

where for an = × = matrix � and a vector E of length = g� (E) de-

notes the matrix of the algebra generated by � which has E as its

�rst column.

We show that one can derive a fast reconstruction algorithm
for a Toeplitz+Hankel-like matrix from Eq. (2) and �rst detail the
structure of the various g� (E) matrices.

Lemma 2.6. g/=
(E)T is the Toeplitz upper-triangular matrix with

ET as its �rst row.

Lemma 2.7. g*=
(E) =

=−1
∑

8=0
E8&8 (*=) where &0 (G) = 1, &1 (G) = G

and &8+1(G) = G&8 (G) −&8−1(G).

Proof. The �rst column of &8 (*=) is 4=8 . �

Corollary 2.8. Column 9 of g*=
(E) is& 9 (*=)E .

Proof. With Lemma 2.7 and after checking the property for 9 ∈
{0, 1}, it su�ces to prove&8 (*=)∗, 9+1 = *=&8 (*=)∗, 9 −&8 (*=)∗, 9−1.
This is true for 8 ∈ {0, 1} and if it is for 8 and 8 − 1, then

&8+1(*=)∗, 9+1 = *
2
=&8 (*=)∗, 9 −*=&8 (*=)∗, 9−1

−*=&8−1(*=)∗, 9 +&8−1(*=)∗,8−1

�

From these we can write the following proposition, inspired by
[7, Proposition 4.2], and which enables fast recursive reconstruc-
tion of the columns of a Toeplitz+Hankel-like matrix.

Proposition 2.9. Let " ∈ K=×= be a Toeplitz+Hankel-like ma-

trix, �,� ∈ K=×U its generators for ∇*= ,*=
and 20 = "4=0 its �rst

column. With the notation 2−1 = 0, the columns (2: )0≤:≤=−1 of "

follow the recursion:

2:+1 = *=2: − 2:−1 −

U−1
∑

9=0

�:,9�∗, 9 . (3)

Proof. Let � be the matrix de�ned by the recursion formula
and initial conditions of Proposition 2.9, we will prove � = " .

By de�nition 20 is the �rst column of " ; assume now that for
9 ≤ :, 2 9 is column 9 of" , then Eq. (3) can be detailed as

2:+1 = &:+1 (*=)20 −

U−1
∑

9=0

:−1
∑

8=1

&:+1 (*=)�∗, 9�8, 9 )

−*=

U
∑

9=1

&: (*=)�∗, 9�:,9 −

U
∑

9=1

�:,9�∗, 9

= "∗,:+1 by Eq. (2)

�

3 MATERIAL FOR MATRIX POLYNOMIALS

We rely on the material from [16, 23]. For matrix polymonials and
fractions the reader may refer to [11]. The rational matrix � (G) =
+ T" (G)−1, over K(G) can be written as a fraction of two polyno-
mial matrices. A right fraction description is given by square poly-
nomial matrices % (G) and & (G) such that � (G) = % (G)& (G)−1 ∈

K(G)<×< , and a left description by %; (G) and&; (G) such that� (G) =
&; (G)

−1'; (G) ∈ K(G)
<×< . Degrees of denominator matrices are
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minimized using column-reduced forms. A non-singular polyno-
mial matrix is said to be column-reduced if its leading column co-
e�cient matrix is non-singular [11, Sec. 6.3]. We also have the no-
tion of irreducible and minimal fraction descriptions. If % and &
(resp. %; and&; ) have unimodular right (resp. left) matrix gcd’s [11,
Sec. 6.3] then the description is called irreducible. If& (resp. &; ) is
column-reduced then the description is called minimal.

For a given <, de�ne 1 ≤ a ≤ = to be the sum of the degrees
of the �rst < largest invariant factors of " (G) (equivalently, the
�rst< diagonal elements of its Smith normal form). The following
will ensure that the minimal polynomial of ) , which is the largest
invariant factor of " (G) can be computed from the Smith normal
form of an appropriate denominator & (G); see Corollary 4.2.

Theorem 3.1. ([16, Thm. 2.12] and [22]) Let + and, be block

vectors over a su�ciently large �eld K whose entries are sampled

uniformly and independently from a �nite subset ( ⊆ K. Then with

probability at least 1 − 2=/|( |, � (G) = + T" (G)−1, has left and

right irreducible descriptions with denominators of degree ⌈a/<⌉, of

determinantal degree a , and whose 8th invariant factor (starting from

the largest degree) is the 8th invariant factor of" (G).

The next result we need is concerned with the computation of
an appropriate denominator & as soon as the truncated power se-
ries in Eq. (1) is known. We notice that � (G) = + T" (G)−1, is
strictly proper in that it tends to zero when G tends to in�nity. For
fraction reconstructionwe use the computationofminimal approx-
imant bases (or f-bases) [2, 21], and the algorithmwith complexity
bound $̃

(

<l−1=
)

in [5, 10].

Theorem 3.2 ([5, Lemma 3.7]). Let � ∈ K(G)<×< be a strictly

proper power series, with left and right matrix fractions descriptions

of degree at most 3 . A denominator & of a right irreducible descrip-

tion � (G) = % (G)& (G)−1 can be computed in $̃
(

<l−1=
)

arithmetic

operations from the �rst 23 + 1 terms of the expansion of � .

In our case, from Theorem 3.1 we will obtain the existence of ap-
propriate fractions of degree less than ⌈=/<⌉, and use Theorem 3.2
for bounding the cost of the computation of& .

4 A BABY-STEP GIANT STEP ALGORITHM

In this section, we propose a direct adaptation of the baby steps/giant
steps variant of Coppersmith’s block-Wiedemann algorithm from [16,
Sec. 4] to the case of structured matrices. In order to compute the
terms of the series (1), we will assume that the input matrix ) has
been inverted, using [3, Theorem 6.6]. In this section we will there-
fore denote by ) this inverse and compute the projections of its
powers.

4.1 Description of the Algorithm

Let + ,, ∈ K=×< be the block vectors used for the projection.
Algorithm 1 performs A baby steps and B giant steps to compute
the �rst terms of the sequence �: = + T):, = + T () A ) 9) 8, for
0 ≤ : ≤ 2⌈=/<⌉, 0 ≤ 8 < A , 0 ≤ 9 < B and AB ≥ : + 1.

This algorithm relies on three main operations:

(1) the product of a structured matrix to dense rectangular ma-
trix, supported by Proposition 2.1 for Lines 3 and 7;

(2) the exponentiation of a structuredmatrix, supportedby Propo-
sition 2.4 for Line 4;

Algorithm 1 Compute �: = + T):, for 0 ≤ : ≤ 2⌈=/<⌉

Input: Generators of) ∈ K=×= , Toeplitz-like or Hankel-like
Input: <,A, B ∈ N s.t. AB ≥ 2⌈=/<⌉ + 1, A even if ) is Hankel-like
Input: + ,, ∈ K=×<

Output: � =

(

�A 9+8
)

9<B,8<A where �: = + T):,

1: ,0 ←,

2: for 1 ≤ 8 ≤ A − 1 do
3: ,8 ← ),8−1

4: ' ← ) A

5: +0 ← +

6: for 1 ≤ 9 ≤ B − 1 do
7: + T

9 ← + T

9−1'

8: � ←
(

+0 . . . +B−1
)T (

,0 . . . ,A−1
)

(3) the product of two dense rectangular matrices for Line 8.

4.2 Cost Analysis

Theorem 4.1. Algorithm 1 runs in $̃
(

=l−
l−1
5−l U

l−1
5−l

)

operations

in K for well chosen<, A and B .

For instance, when the displacement rank U is constant, and
with the best known estimate l = 2.373 [1] the cost becomes
$̃
(

=1.851
)

while it is $̃
(

=2
)

for l = 3.

Proof. From Proposition 2.1, applying an = ×< block to ) can
be done in $̃

(

=max(<,U)min(<,U)l−2
)

�eld operations. Hence
the A baby-steps, Line 3, computing the () 8, )0≤8<A cost overall

$̃
(

=A max(<,U)min(<,U)l−2
)

(4)

�eld operations.
By Proposition 2.4, the initialization of the giant steps, Line 4

computing a structured representation for ) A , can be done in

$̃
(

=Al−1Ul−1
)

(5)

operations in K.
Then each of the giant steps, Line 7, is a product of an<×= dense

matrix with an = ×= matrix of displacement rank UA . From Propo-
sition 2.1, these B steps cost

$̃
(

=Bmax(<,UA )min(<,UA )l−2
)

(6)

Lastly, the computation of the product resulting in � , Line 8,
uses $̃

(

=max(<A,<B)min(<A,<B)l−2
)

or equivalently

$̃
(

=<l−1max(A, B)min(A, B)l−2
)

(7)

�eld operations.

Let< =

⌈

=
l−3
l−5 U

2
5−l

⌉

and set A = B =

⌈

√

2=/<
⌉

. Note that U ≤

< ≤ UA . Therefore (4) is dominated by (7). Moreover (6) writes

$̃
(

=2<l−3U
)

, (7) writes $̃
(

=
l+1
2 <

l−1
2

)

and both terms equal

$̃
(

=l−
l−1
5−l U

l−1
5−l

)

.

Finally, (5) writes $̃
(

=
l+1
2 ( U

2

< )
l−1
2

)

and is thus dominated by (7).
�
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Let us now suppose that the entries of + and, are sampled
uniformly and independently from a �nite subset ( ⊆ K, we then
have the following:

Corollary 4.2. Theminimal polynomial of an=×= Toeplitz-like

or Hankel-like matrix with displacement rank U can be computed by

a Monte Carlo algorithm in

$̃
(

=l−
l−1
5−l U

l−1
5−l

)

�eld operations with a probability of success of at least 1 − (=2 +
3=)/|( |.

Proof. The �rst step is to compute the inverse of ) , using [3,
Theorem 6.6] in $̃

(

=Ul−1
)

operations in K. Then running Algo-

rithm 1 on)−1 costs $̃
(

=l−
l−1
5−l U

l−1
5−l

)

which dominates $̃
(

=Ul−1
)

since U ≤ =. From the sequence ofmatrices (�: )0≤:≤2=/< , one can

compute a minimal denominator& for � (G) = + T (G�= −) )
−1, ∈

K[G]<×< in $̃
(

=<l−1) �eld operations, by Theorem 3.2.
Using Theorem 3.1, the minimal polynomial is then obtained as

the �rst invariant factor in the Smith form of & , computed by [20,
Proposition 41]. This step also costs $̃

(

=<l−1) �eld operations
and since< ≤ = we have

=<l−1 ≤ =
l+1
2 <

l−1
2

which shows that the cost of these last two computations will al-
ways be dominated by the cost of the product (7). The probability of
failure for the computation of)−1 is =(=+1)/|( | by [3, Lemma 6.2].
A union bound combining this probability and the failure proba-
blity of Theorem 3.1 yields a probability of failure of (=2 + 3=)/|( |.

�

Note that this result carries over to the computation of the char-
acteristic polynomial of any Toeplitz-like or Hankel-like matrix
) having fewer than < invariant factors in its Frobenius normal
form.

5 AN ALGORITHM BASED ON STRUCTURED

INVERSION

In this section we propose an algorithm computing the determi-
nant of a generic structured polynomial matrix" ∈ K[G]=×= with
displacement rankU based on the structure of the Σ!* representation
of Toeplitz-like matrix, or a generalization thereof for Hankel-like
matrices, as presented in (2).

Principle of the algorithm. Here, the sequence (�: = + T)−:, ):
is obtained as thematrix coe�cients of the series expansion+ T"−1, .
As 2⌈=/<⌉ + 1 terms are required, and with the special choice

+ =, = - =

(

�< | 0
)T
, this boils down to computing a dense

representation of the < ×< leading principal submatrix of "−1

mod G2 ⌈=/<⌉+1 . The outline of the algorithm is as follows.

(1) Compute the inverse"−1 mod G2 ⌈=/<⌉+1 in a compressed
representation

(2) Crop this representation to form a representation of the<×
< leading principal submatrix;

(3) Extract the dense representation from this representation.

We will now present the algorithm specialized for the two classes
of interest.

5.1 The Algorithm for Toeplitz-like Matrices

A Toeplitz-like matrix ) is represented by a pair of generators
�,� ∈ K=×U satisfying ) =

∑U−1
8=0 !(�∗,8 )!(�∗,8)

) , where !(E)
is the lower triangular Toeplitz matrix with E as its �rst column
[12, 13]. The < × < leading principal submatrix of any product
!(E)!(F)T is the product of the< ×< leading principal submatrix
of these factors, which in turn is !(E1..<)!(F1..< )

T . Algorithm 2
relies on this property to produce ( (<) from the< �rst rows of the
generators of )−1.

Algorithm 2 Compute ( (<) : Toeplitz-like case

Input: (�, � ) generators of " ∈ K[G]=×= , a Toeplitz-like matrix
of displacement rank U

Output: Dense representation of ( (<) = - T"−1- mod
G2 ⌈=/<⌉+1

1: (�, � ) ← generators for "−1 mod G2 ⌈=/<⌉+1

2: �′ ← - T�; � ′ ← �-

3: ( (<) ←
∑U−1
8=0 !(�

′
∗,8)!(�

′
∗,8 )

T mod G2 ⌈=/<⌉+1

Theorem 5.1. Algorithm 2 is correct for " = G�= − ) and )

generic and uses

$̃

(

=2

<
Ul−1 + =<U

)

operations in K.

Proof. From the above remark, �′ = �1..<,∗ and � ′ = �1..<,∗

are generators for ( (<) = - T"−1- . Note that no division by G
in the ring K[G]/〈G2 ⌈=/<⌉+1 〉 will occur in Line 1 as) has generic
rank pro�le, and consequently all leading principal minors of" (G)
are not divisible by G which shows the correctness.

By [3, Theorem 34], Line 1, computing the generators of "−1,
can be computed in $̃

(

=Ul−1
)

operations over K[G]/〈G2 ⌈=/<⌉+1 〉
which in turn is

$̃

(

=2

<
Ul−1

)

(8)

operations in K.
The dense reconstruction of ( (<) in Line 3 is achieved byU prod-

ucts of an< ×< Toeplitz matrix !(�′∗,8) by an< ×< dense matrix

!(� ′∗,8)
T for a total cost of

$̃ (=<U) (9)

operations in K. �

Corollary 5.2. The characteristic polynomial of a generic = ×

= Toeplitz-like matrix with displacement rank U can be computed

in $̃

(

=2−
1
l U

(l−1)2

l

)

operations in K when U = $
(

=
l−2

−l2+4l−2

)

, and

$̃
(

=
3
2 U

l

2

)

otherwise.

Note that this is $
(

=1.579
)

(resp. $
(

=1.667
)

) for U constant and

l = 2.373 (resp. l = 3). When U = Θ

(

=
l−2

−l2+4l−2

)

and taking

l = 2.373 (resp. l = 3), both expressions become $̃
(

=1.74
)

(resp.
$̃
(

=3
)

).
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The complexity when U is low can also be written as

$̃
(

=l−5 (l)U 5 (l)
)

,

similarly as in Theorem 4.1, which can be interpreted as a transfer
of part of the exponent from = to U by using the structure of the
matrix.

Proof. The family of Toeplitz matrices presented in Section 6.1
proves that for a generic Toeplitz-like matrix) , the matrixH (=) =
H1..=,1..= is non-singular, where

H =

(

+ T) 8+9,
)

0≤8, 9≤ ⌈=/<⌉−1
.

Then [23, Lemma 2.4] implies that the irreducible left and right
fractions descriptions of- T"−1- have degree atmost ⌈=/<⌉. Thus
Theorem 3.2 ensures that an appropriate denominator& of a right
fraction description of - T"−1- can be computed from ( (<) =

- T"−1- mod G2 ⌈=/<⌉+1 .
Besides the computation of ( (<) by Theorem 5.1, the computa-

tion of the denominator & of its irreducible right fraction descrip-
tion costs

$̃
(

=<l−1
)

(10)

operations by Theorem 3.2. Computing the determinant of & has
same cost by [6, 20]. The total cost depends on U .

Case 1: U = $
(

=
l−2

−l2+4l−2

)

. We set < = =
1
l U

l−1
l so that U =

$
(

<l−2) and the term (9) is dominated by (10). For the chosen
value of< the terms (8) (decreasing in<) and (10) (increasing in

<) are equal, leading to a full cost of $̃

(

=2−
1
l U

(l−1)2

l

)

operations

in K.

Case 2: U = Ω

(

=
l−2

−l2+4l−2

)

. We set < = =
1
2 U

l−2
2 so that U =

Ω
(

<l−2) . In this case the term (10) is dominated by (9) and for
this value of < we have equality between the terms (8) and (9),

leading to a full cost of $̃
(

=
3
2 U

l

2

)

operations in K. �

5.2 The Algorithm for Hankel-like Matrices

In this sectionwe are interested in adapting the previous algorithm
to Hankel-like matrices. If) is Hankel-like then" (G) = G�= −) is
Toeplitz+Hankel-like.

Wewill thus generalize and consider that) is a Toeplitz+Hankel-
like matrix. We are interested in computing the �rst 2⌈=/<⌉ + 1
terms of the series- T" (G)−1- . We are going to adapt the Toeplitz
algorithm and use Pan’s Divide-and-Conquer algorithm for inver-
sion [19, Chapter 5]. Computing the characteristic polynomial from
there does not depend on the structure of" or ) .

The strategy consists in computing generators for the truncated
matrix from which we can recover a dense representation. Algo-
rithm 3 details the steps. The generators and irregularity set of the
inverse in Line 1 are computed with Pan’s Divide and Conquer
algorithm [19], as well as the solution to the linear system. The
following lines are dedicated to the reconstruction of the dense
representation of ( (<) (G) from the generators. The correctness of
Algorithm 3 is proved by Proposition 2.9.

Algorithm 3 Compute ( (<) : Toeplitz+Hankel-like case

Input: (�, �, E) generators and irregularity set of " ∈ K[G]=×= ,
a Toeplitz+Hankel-like matrix of displacement rank U .

Output: Dense representation of ( (<) (G) = - T"−1 (G)-

mod G2 ⌈=/<⌉+1

1: (�, �, D), 2 ← generators and irregularity set of the inverse of
" , solution of"2 = 4=0

2: 20 ← - T2

3: 21 ← *<20 −
U−1
∑

8=0
�0,8�0...<−1,8

4: for 1 ≤ : ≤< − 2 do

5: 2:+1 ← *<2: − 2:−1 −
U−1
∑

8=0
�:,8�0...<−1,8

6: ( (<) (G) = (20 | | · · · | |2<−1)

Theorem 5.3. Algorithm 3 is correct for " = G�= − ) and )

generic and uses

$̃

(

=2

<
U2 +<=U

)

operations in K.

Proof. Line 1 can be done in $̃ (U2=) operations in the base ring,

so $̃
(

=2

< U
2
)

operations onK [19, Corollary 5.3.3]. Each step of the

for loop consists of a number of polynomial operations modulo
G2 ⌈=/<⌉+1 linear in <U as *< has only two non-zero entries on
each row. Lines 2 to 5 can be done in $̃ (<2U) operations in the
base ring, so $̃ (=<U) operations on K. �

The minimal polynomial is then obtained the same way as in
Section 4 which leads to Corollary 5.4.

Corollary 5.4. The characteristic polynomial of a generic = × =

Toeplitz+Hankel-like matrix with displacement rank U can be com-

puted in $̃
(

=2−
1
l U

2(l−1)
l

)

�eld operations when U = $
(

=
l−2
4−l

)

, and

$̃
(

=
3
2 U

3
2

)

otherwise.

The complexity in = is the same as in the Toeplitz-like case but
there is a stronger dependence in U as there is no known algo-
rithm to compute the inverse of a Toeplitz+Hankel-like matrix in
$ (=Ul−1), the best one depending on U2.

Proof. The family of Hankel matrices presented in Section 6.2
now proves that for all generic Hankel-like matrix ) , the matrix
H (=) is non-singular. The rest of the proof is similar to the Toeplitz-
like case in Corollary 5.2.

Again the overall cost is that for computing the denominator
and its determinant in $̃

(

=<l−1) operations in K plus the cost of
computing the sequence �: . We distinguish two cases:

If U = $
(

=
l−2
4−l

)

: Setting< = =
1
l U

2
l so that U = $

(

<l−2) and

the full cost is $̃
(

=2−
1
l U

2(l−1)
l

)

.

If U = Ω

(

=
l−2
4−l

)

: Setting < = =
1
2 U

1
2 so that U = Ω

(

<l−2) and

the full cost is $̃
(

=
3
2 U

3
2

)

. �
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6 SPECIAL MATRICES FOR GENERICITY

The generic matrices ) for which our algorithms output the char-
acteristic polynomial are matrices such that H (=) = H1..=,1..= is
non-singular (Corollaries 5.2 and 5.4), where

H =

(

+ T) 8+9,
)

0≤8, 9≤ ⌈=/<⌉−1

The �rst algorithm is Monte Carlo with matrices+ and, sampled
at random. In the second algorithm, however+ =, = - are �xed,
and detH (=) is a polynomial in the coe�cients of ) . Toeplitz and
Hankel matrices have 2= − 1 independant coe�cients. The coe�-
cients of a Toeplitz-like or Hankel-like matrix of displacement rank
U are themselves polynomials in the coe�cients of its generators,
so detH (=) is by composition a polynomial on the 2=U coe�cients
of the = × U generators of ) .

In this section, we show that detH (=) is not uniformly zero
on the space of Toeplitz (resp. Hankel) matrices by �nding one
Toeplitz (resp. Hankel) matrix forwhichH (=) is non-singular. This
shows the algorithm is correct for all matrices of each class except
for those with coe�cients in a certain variety of K2=−1. As the
displacement rank of the matrices we show is 2 or less, they are
Toeplitz-like (resp. Hankel-like) and can be represented with larger
generators (padded with zeros). The algortihm is thus also correct
for matrices with displacement rank U ≥ 2 whose generators’ co-
e�cients are not in a certain variety of K2=U . Both matrices are
also Toeplitz+Hankel and Toeplitz+Hankel-like so the same rea-
soning shows the algorithm is correct for all Toeplitz+Hankel ma-
trices except for those with coe�cients in a certain hypersurface
of K4=−2 and all Toeplitz+Hankel-like matrices with displacement
rank U ≥ 4 except for those on a certain hypersurface of K2=U .

6.1 A Toeplitz Point

Let

) =

(

0 �<
−�=−< 0

)

and " (G) = G�= −) . Let % (G) ∈ K[G]=×< de�ned by:

%=−<+:,: = 1 for 0 ≤ : ≤ <

%8,: = G%8+<,: for 0 ≤ : ≤ <, 0 ≤ 8 ≤ = −< − 1

With

� (G) =

(

0 G ⌊=/<⌋ �= mod<

G ⌊=/<⌋−1�−= mod< 0

)

we can write % (G) =
(

� (G)T '(G) �<

)T

. From there we have

" (G)% (G) =
(

G� (G)T − �< 0
)T

and thus

- T"−1 (G)- = - T% (G) (G� (G) − �<)
−1 .

That is - T"−1 (G)- = � (G)&−1 (G) with & (G) = G� (G) − �< . As
G�<� (G) − �<& (G) = �< , the fraction �&−1 is irreducible and

det& = ±G ⌊=/<⌋ (= mod <)+( ⌊=/<⌋−1) (−= mod <) − 1

from which we get deg det& = =. By [23, Lemma 2.4], the matrix
H (=) is therefore non-singular.

6.2 A Hankel Point

Let )= = (�= + /
<
= ) �= . For 9 such that 2 9 ≤ ⌈=/<⌉ − 1, rows 9< to

( 9 + 1)< − 1 of) 29
= - are �< and the following rows are 0. This can

be seen by recursively applying the band matrix ) 2
= = /<= + �= +

/<= /
<T
= + /<T

= to - . By applying )= to ) 29
= - we get that the rows

=− ( 9 +1)< to =− 9<−1 of) 29+1
= - are �< , and the preceding rows

are 0.
Let  A be the �rst = columns of

(

) 0- | . . . |) ⌈=/<⌉−1-
)

.  A is

non-singular, as its columns can be permuted to get a matrix of
the form

(

!T1 0
0 !2

)

where !1 and !2 are lower triangular with ones on the diagonal.
As T is symmetric,  ; de�ned as the �rst = rows of

(

) 0T- | . . . |) ( ⌈=/<⌉−1)T-
)T

is also non-singular, as well asH (=) =  ; A .
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