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New algorithms are presented for computing annihilating polynomials of Toeplitz, Hankel, and more generally Toeplitz+ Hankellike matrices over a eld. Our approach follows works on Coppersmith's block Wiedemann method with structured projections, which have been recently successfully applied for computing the bivariate resultant. A rst baby-step/giant step approach-directly derived using known techniques on structured matrices-gives a randomized Monte Carlo algorithm for the minimal polynomial of an × Toeplitz or Hankel-like matrix of displacement rank using ˜ -( ) ( ) arithmetic operations, where is the exponent of matrix multiplication and (2.373) ≈ 0.523 for the best known value of . For generic Toeplitz+Hankel-like matrices a second algorithm computes the characteristic polynomial in ˜ 2-1/ operations when the displacement rank is considered constant. Previous algorithms required 2 operations while the exponents presented here are respectively less than 1.86 and 1.58 with the best known estimate for .

INTRODUCTION

We consider the problem of computing the minimal or the characteristic polynomial of Toeplitz-like and Hankel-like matrices, which include Toeplitz and Hankel ones. The necessary de nitions about those structures are given in Section 2.

Throughout the paper ∈ K × is non-singular and either Toeplitz-like or Hankel-like, where K is a commutative eld. The structure is parameterized by the displacement rank 1 ≤ ≤ of [START_REF] Kailath | Displacement ranks of matrices and linear equations[END_REF][START_REF] Victor | Structured Matrices and Polynomials: Uni ed Superfast Algorithms[END_REF]. In particular a Toeplitz or a Hankel matrix has displacement rank = 2.

The determinant of can be computed in ˜ -1 operations in K, where ≤ 3 is a feasible exponent for square × matrix multiplication. For the best known value of one can take ≈ 2.373 [START_REF] Alman | A Re ned Laser Method and Faster Matrix Multiplication[END_REF][START_REF] Gall | Powers of Tensors and Fast Matrix Multiplication[END_REF]. When has generic rank pro le (the leading principal submatrices are non singular) a complexity bound ˜ 2 for the determinant is derived from [START_REF] Victor | Structured Matrices and Polynomials: Uni ed Superfast Algorithms[END_REF]Cor. 5.3.3,p. 161]. In the general case, for ensuring the rank pro le one uses rank-regularization techniques initially developed in [START_REF] Kaltofen | Asymptotically fast solution of Toeplitz-like singular linear systems[END_REF][START_REF] Kaltofen | On Wiedemann's method of solving sparse linear systems[END_REF] that lead to randomized Las Vegas algorithms assuming that the cardinality of K is large enough; see [START_REF] Victor | Structured Matrices and Polynomials: Uni ed Superfast Algorithms[END_REF]] and [START_REF] Bostan | On matrices with displacement structure: generalized operators and faster algorithms[END_REF] for detailed studies in our context. Taking advantage of fast matrix multiplication is possible using the results in [START_REF] Bostan | On matrices with displacement structure: generalized operators and faster algorithms[END_REF], where fundamental matrix operations, including the determinant, are performed in time ˜ -1 for a wide spectrum of displacement structures. In this approach the determinant is revealed by the recursive factorization of the inverse.

The characteristic polynomial det( -) of is a polynomial of degree . Using an evaluation-interpolation scheme it follows that it can be computed in ˜ -1 2 operations in K. We also refer to [START_REF] Victor | Structured Matrices and Polynomials: Uni ed Superfast Algorithms[END_REF]Ch. 7] for a Newton-Structured iteration scheme in time ˜ 2 2 .

For a Toeplitz or Hankel matrix these complexity bounds for computing the characteristic polynomial were quadratic; our contribution establishes an improved bound ˜ 2-1/ for generic matrices (given in compressed form), which is sub-quadratic including when using = 3. We build on the results of [START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF] where only the case of a Sylvester matrix was treated, and show that the approach can be generalized to larger displacement rank families. In particular, the Hankel-(like) case requires the use of sophisticated techniques in order to handle the Toeplitz+Hankel structure [START_REF] Heinig | Fast inversion algorithms of Toeplitzplus-Hankel matrices[END_REF][START_REF] Heinig | New fast algorithms for Toeplitz-plus-Hankel matrices[END_REF] and its generalizations [START_REF] Victor | Structured Matrices and Polynomials: Uni ed Superfast Algorithms[END_REF].

The algorithms we propose t into the broad family of Coppersmith's block Wiedemann algorithms ; we refer to [START_REF] Kaltofen | On the complexity of computing determinants[END_REF] for the necessary material and detailed considerations on the approach. Another interpretation in terms of structured lifting and matrix fraction reconstruction is given in [START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF].

From ∈ K × , the problem is to compute the determinant (or a divisor) of the characteristic matrix ( ) = -. For 1 ≤ ≤ and well chosen projection matrices and in K × , the principle is to reconstruct an irreducible fraction description ( ) -1 ( ) of T ( ) -1 ∈ K( ) × , where , ∈ K[ ] × , from a truncated series expansion of the fraction. The denominator matrix carries information on the Smith normal form of ( ) [START_REF] Kaltofen | On the complexity of computing determinants[END_REF]Thm. 2.12]. Using random and allows to recover the minimal polynomial of from the largest invariant factor of ( ), and for a generic matrix the characteristic polynomial is obtained [START_REF] Kaltofen | On the complexity of computing determinants[END_REF][START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF].

The matrix is computed from a truncation ( ) ∈ K[ ] × of the series expansion of T ( ) -1 ,

( ) ( ) = - 2 ⌈ / ⌉ ≥0 T ( -1 ) (1) 
using for example matrix fraction reconstruction [START_REF] Beckermann | A uniform approach for the fast computation of matrix-type Padé approximants[END_REF][START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF]. We will not detail these latter aspects in this paper since they can be found elsewhere in the literature: see [START_REF] Kaltofen | On the complexity of computing determinants[END_REF][START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF] for the general techniques involved; [START_REF] Villard | A study of Coppersmith's block Wiedemann algorithm using matrix polynomials[END_REF]Cor. 6.4] for the power series truncation; and [START_REF] Kaltofen | On the matrix Berlekamp-Massey algorithm[END_REF] for alternative reconstruction possibilities. The results we need on matrix polynomials are recalled in Section 3.

We focus on the computation of the power series terms

= T ( -1 )
in Eq. ( 1). The idea for improving the complexity bounds is to use structured projections and in order to speed up the computation of the expansion such as in [START_REF] Eberly | Faster inversion and other black box matrix computation using e cient block projections[END_REF][START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF]. A typical choice is such that the matrix product by and is reduced. The central di culty is to show that the algorithm remains correct; special choices for and could prevent a fraction reconstruction with appropriate cost, or give a denominator matrix with too little information on the invariant structure of .

For a generic input matrix and our best exponent, in Section 5 we follow the choice of [START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF] and work with = = where = 0 T ∈ K × . An × Toeplitz or a Hankel matrix is dened by 2 -1 elements of K, and our algorithm is correct except on a certain hypersurface of K 2 -1 . The same way, a Toeplitz-like or Hankel-like matrix of displacement rank is de ned by the 2 coe cients of its generators, and our algorithm is correct for all values of K 2 except for a hypersurface. If is Hankel, the matrix ( ) = -is Toeplitz+Hankel and the algorithm involves a compressed form that generalizes the use of generators associated to displacement operators [START_REF] Heinig | New fast algorithms for Toeplitz-plus-Hankel matrices[END_REF][START_REF] Victor | Structured Matrices and Polynomials: Uni ed Superfast Algorithms[END_REF]. The algorithm computes a compressed representation of ( ) -1 modulo 2 ⌈ / ⌉+1 , and exploits its structure to truncate it into a compressed representation of ( ) ( ) = T ( ) -1 mod 2 ⌈ / ⌉+1 at no cost. The parameter can be optimised to get an algorithm using ˜ 2-1/ operations when the displacement rank is considered constant.

Before considering the fast algorithm for the generic case, in Section 4 we consider the baby steps/giant steps algorithm of [START_REF] Kaltofen | On the complexity of computing determinants[END_REF]. Indeed, thanks to the incorporation of fast matrix multiplication in basis structured matrix operations [START_REF] Bostan | On matrices with displacement structure: generalized operators and faster algorithms[END_REF], the overall approach with dense projections and already allows a slight exponent improvement. Taking into account that the input matrix is structured, a direct cost analysis of the algorithm of [START_REF] Kaltofen | On the complexity of computing determinants[END_REF] improves on the quadratic cost for Toeplitz and Hankel matrices as soon as one takes < 3. However it is unclear to us how to compute the characteristic polynomial in this case (see the related Open Problem 3 in [START_REF] Kaltofen | Challenges of symbolic computation: my favorite open problems[END_REF]). The algorithm we propose is randomized Monte Carlo and we compute the minimal polynomial in ˜ -( ) operations with ( ) = -1 5-. For Toeplitz-like and Hankel-like matrices with displacement rank , the cost is multiplied by ˜ ( ) .

Notation. Indices of matrix and vectors start from zero. The vectors of the -dimensional canonical basis are denoted by 0 , . . . , -1 . For a matrix , , denotes the coe cient ( , ) of this matrix, , * , its row of index and * , its column of index .

MATERIAL FOR RANK DISPLACEMENT STRUCTURES

A wide range of structured matrices are e ciently described by the action of a displacement operator [START_REF] Kailath | Displacement ranks of matrices and linear equations[END_REF]. There are two types of such operators: the Sylvester operators of the form

∇ , : ↦ → - ,
and the Stein operators of the form

Δ , : ↦ → - ;
where and are xed matrices. A Toeplitz matrix is de ned by 2 -1 coe cients -+1 , . . . , -1 ∈ K such that = ( -) , .

Its image through Δ , T , where = ( , +1 ) 0≤ , ≤ -1 has rank 2. Similarly, a Hankel matrix is de ned by 2 -1 coe cients ℎ 0 , . . . , ℎ 2 -2 such that = (ℎ + ) , and its image through ∇ , T has rank 2.

As a generalization, the class of Toeplitz-like (resp. Hankel-like) matrices is de ned [START_REF] Heinig | Algebraic Methods for Toeplitz-like Matrices and Operator[END_REF][START_REF] Victor | Structured Matrices and Polynomials: Uni ed Superfast Algorithms[END_REF] as those matrices which image through Δ , T (resp. ∇ , T ) has a bounded rank , called the displacement rank. Lastly, any sum of a Toeplitz and a Hankel matrix, (forming the class of Toeplitz+Hankel matrices) has an image of rank 4 through the displacement operator ∇ , where = + T . However, contrarily to the previous instances, this operator is no longer regular, and the low rank image does not su ce to uniquely reconstruct the initial matrix: additional data (usually a rst or a last column) is required for a unique reconstruction. The class of Toeplitz+Hankel-like matrices is formed by those matrices whose image through ∇ , has a bounded rank. ). Let ∈ K × be a Toeplitzlike or Hankel-like matrix with displacement rank given by its generators and ∈ K × be a dense matrix. The multiplication of by can be computed in ˜ max( , ) min( , ) -2 operations in K. P 2.2. Let , ∈ K × be two Toeplitz-like matrices of displacement rank and respectively, then their product is a Toeplitz-like matrix of displacement rank at most + + 1. Furthermore, given generators for and w.r.t. Δ , T , one can compute generators for w.r.t. the same operator in ˜ ( + ) -1 eld operations.

Product of Structured Matrices

P

. Let , and , be the generators of and respectively. They satisfy A-

T = T and - T = T . Consequently = ( T + T )( T + T ) = T - * , , * T + ( T ) T + ( T T + T T ),
and therefore

- T = T for = T - * , = T T + T T
, * , thus showing that has displacement rank at most + + 1.

Computing these generators involves applying on a dense × matrix and on a dense × matrix, and computing the product of an × by an × matrix and the product of an × by a × matrix. Using [3, Theorem 1.2], these cost ˜ ( + ) -1 eld operations. P 2.3. Let , ∈ K × be two Hankel-like matrices of displacement rank and respectively, then their product is a Toeplitz-like matrix of displacement rank at most + + 1. Furthermore, given generators for and w.r.t. ∇ , T , generators for w.r.t. Δ , T can be computed in ˜ ( + ) -1 .

P

. Let , and , be the generators of and respectively, satisfying -T = T and -T = T . Using a similar reasoning as for Proposition 2.2 we can deduce that

- T = T for = T * , = T -T T T , * ,
thus showing that has displacement rank at most + + 1. Computing these generators again costs ˜ ( + ) -1 eld operations. P 2.4. Let ∈ K × be a Toeplitz-like (resp. Hankellike) matrix of displacement rank , then for an arbitrary (resp. even) , is a Toeplitz-like matrix of displacement rank at most ( + 1) and its generators can be computed in ˜ ( ) -1 eld operations.

P

. Using fast exponentiation one computes as:

= ⌊log ⌋ =0 2 where = log =0 2 ,
which only requires squarings and products between matrices of the form 2 . When is Toeplitz-like the result is a straightforward consequence of Proposition 2.2; when it is Hankel-like the product 2 is computed using Proposition 2.3, the remaining products are between Toeplitz-like matrices, and the result again follows from Proposition 2.2.

Reconstruction of a Toeplitz+Hankel-like Matrix from its Generators

The operator ∇ , is de ned in [19, Section 4.5] as partly-regular, which means that a Toeplitz+Hankel-like matrix is completely dened by its generators and its irregularity set that contains all the entries in either its rst row, its last row, its rst column or its last column.

A formula to recover a dense representation of the matrix from its generators and its rst column is given in [19, Theorem 4.5.1].

T 2.5 ([19]

). Let ∈ K × be a Toeplitz+Hankel-like matrix, , ∈ K × its generators and 0 = 0 its rst column, then

= ( 0 ) - -1 =0 ( * , ) ( * , ) T (2) 
where for an × matrix and a vector of length ( ) denotes the matrix of the algebra generated by which has as its rst column.

We show that one can derive a fast reconstruction algorithm for a Toeplitz+Hankel-like matrix from Eq. ( 2) and rst detail the structure of the various ( ) matrices. 

P

. The rst column of ( ) is .

C 2.8. Column of ( ) is ( ) .

P

. With Lemma 2.7 and after checking the property for ∈ {0, 1}, it su ces to prove ( ) * , +1 = ( ) * , -( ) * , -1 . This is true for ∈ {0, 1} and if it is for and -1, then

+1 ( ) * , +1 = 2 ( ) * , - ( ) * , -1 - -1 ( ) * , + -1 ( ) * , -1
From these we can write the following proposition, inspired by [7, Proposition 4.2], and which enables fast recursive reconstruction of the columns of a Toeplitz+Hankel-like matrix. P 2.9. Let ∈ K × be a Toeplitz+Hankel-like matrix, , ∈ K × its generators for ∇ , and 0 = 0 its rst column. With the notation -1 = 0, the columns ( ) 0≤ ≤ -1 of follow the recursion:

+1 = --1 - -1 =0 , * , . (3) 

P

. Let be the matrix de ned by the recursion formula and initial conditions of Proposition 2.9, we will prove = .

By de nition 0 is the rst column of ; assume now that for ≤ , is column of , then Eq. ( 3) can be detailed as

+1 = +1 ( ) 0 - -1 =0 -1 =1 +1 ( ) * , , ) - =1 ( ) * , , - =1 
, * , = * , +1 by Eq. ( 2)

MATERIAL FOR MATRIX POLYNOMIALS

We rely on the material from [START_REF] Kaltofen | On the complexity of computing determinants[END_REF][START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF]. For matrix polymonials and fractions the reader may refer to [START_REF] Kailath | Linear Systems[END_REF]. The rational matrix ( ) = T ( ) -1 over K( ) can be written as a fraction of two polynomial matrices. A right fraction description is given by square polynomial matrices ( ) and ( ) such that ( ) = ( ) ( ) -1 ∈ K( ) × , and a left description by ( ) and ( ) such that ( ) = ( ) -1 ( ) ∈ K( ) × . Degrees of denominator matrices are minimized using column-reduced forms. A non-singular polynomial matrix is said to be column-reduced if its leading column coe cient matrix is non-singular [START_REF] Kailath | Linear Systems[END_REF]Sec. 6.3]. We also have the notion of irreducible and minimal fraction descriptions. If and (resp. and ) have unimodular right (resp. left) matrix gcd's [11, Sec. 6.3] then the description is called irreducible. If (resp. ) is column-reduced then the description is called minimal. For a given , de ne 1 ≤ ≤ to be the sum of the degrees of the rst largest invariant factors of ( ) (equivalently, the rst diagonal elements of its Smith normal form). The following will ensure that the minimal polynomial of , which is the largest invariant factor of ( ) can be computed from the Smith normal form of an appropriate denominator ( ); see Corollary 4.2. T 3.1. ([16, Thm. 2.12] and [START_REF] Villard | A study of Coppersmith's block Wiedemann algorithm using matrix polynomials[END_REF]) Let and be block vectors over a su ciently large eld K whose entries are sampled uniformly and independently from a nite subset ⊆ K. Then with probability at least 1 -2 /| |, ( ) = T ( ) -1 has left and right irreducible descriptions with denominators of degree ⌈ / ⌉, of determinantal degree , and whose th invariant factor (starting from the largest degree) is the th invariant factor of ( ).

The next result we need is concerned with the computation of an appropriate denominator as soon as the truncated power series in Eq. ( 1) is known. We notice that ( ) = T ( ) -1 is strictly proper in that it tends to zero when tends to in nity. For fraction reconstruction we use the computation of minimal approximant bases (or -bases) [START_REF] Beckermann | A uniform approach for the fast computation of matrix-type Padé approximants[END_REF][START_REF] Van Barel | A general module theoretic framework for vector M-Padé and matrix rational interpolation[END_REF], and the algorithm with complexity bound ˜ -1 in [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF][START_REF] Jeannerod | Fast computation of approximant bases in canonical form[END_REF].

T 3.2 ([5, L 3.7]
). Let ∈ K( ) × be a strictly proper power series, with left and right matrix fractions descriptions of degree at most . A denominator of a right irreducible description ( ) = ( ) ( ) -1 can be computed in ˜ -1 arithmetic operations from the rst 2 + 1 terms of the expansion of .

In our case, from Theorem 3.1 we will obtain the existence of appropriate fractions of degree less than ⌈ / ⌉, and use Theorem 3.2 for bounding the cost of the computation of .

A BABY-STEP GIANT STEP ALGORITHM

In this section, we propose a direct adaptation of the baby steps/giant steps variant of Coppersmith's block-Wiedemann algorithm from [START_REF] Kaltofen | On the complexity of computing determinants[END_REF]Sec. 4] to the case of structured matrices. In order to compute the terms of the series (1), we will assume that the input matrix has been inverted, using [START_REF] Bostan | On matrices with displacement structure: generalized operators and faster algorithms[END_REF]Theorem 6.6]. In this section we will therefore denote by this inverse and compute the projections of its powers.

Description of the Algorithm

Let , ∈ K × be the block vectors used for the projection. Algorithm 1 performs baby steps and giant steps to compute the rst terms of the sequence

= T = T ( ) for 0 ≤ ≤ 2⌈ / ⌉, 0 ≤ < , 0 ≤ < and ≥ + 1.
This algorithm relies on three main operations:

(1) the product of a structured matrix to dense rectangular matrix, supported by Proposition 2.1 for Lines 3 and 7; (2) the exponentiation of a structured matrix, supported by Proposition 2.4 for Line 4;

Algorithm 1 Compute = T for 0 ≤ ≤ 2⌈ / ⌉ Input: Generators of ∈ K × , Toeplitz-like or Hankel-like Input: , , ∈ N s.t. ≥ 2⌈ / ⌉ + 1, even if is Hankel-like Input: , ∈ K × Output: = + < , < where = T 1: 0 ← 2: for 1 ≤ ≤ -1 do 3: ← -1 4: ← 5: 0 ← 6: for 1 ≤ ≤ -1 do 7: T ← T -1 8: ← 0 . . . -1 T 0 . . . -1
(3) the product of two dense rectangular matrices for Line 8. For instance, when the displacement rank is constant, and with the best known estimate = 2.373 [START_REF] Alman | A Re ned Laser Method and Faster Matrix Multiplication[END_REF] the cost becomes ˜ 1.851 while it is ˜ 2 for = 3.

Cost Analysis

P

. From Proposition 2.1, applying an × block to can be done in ˜ max( , ) min( , ) -2 eld operations. Hence the baby-steps, Line 3, computing the ( ) 0≤ < cost overall ˜ max( , ) min( , ) -2 (4) eld operations. By Proposition 2.4, the initialization of the giant steps, Line 4 computing a structured representation for , can be done in

˜ -1 -1 (5) 
operations in K.

Then each of the giant steps, Line 7, is a product of an × dense matrix with an × matrix of displacement rank . From Proposition 2.1, these steps cost

˜ max( , ) min( , ) -2 (6)
Lastly, the computation of the product resulting in , Line 8, uses ˜ max( , ) min( , ) -2 or equivalently . Therefore ( 4) is dominated by [START_REF] Heinig | Fast inversion algorithms of Toeplitzplus-Hankel matrices[END_REF]. Moreover ( 6) writes ˜ 2 -3 , (7) writes ˜ and is thus dominated by [START_REF] Heinig | Fast inversion algorithms of Toeplitzplus-Hankel matrices[END_REF].

˜ -1 max( , ) min( , ) -2 (7 
Let us now suppose that the entries of and are sampled uniformly and independently from a nite subset ⊆ K, we then have the following: 

P

. The rst step is to compute the inverse of , using [3, Theorem 6.6] in ˜ -1 operations in K. Then running Algo-

rithm 1 on -1 costs ˜ --1 5- -1 5- which dominates ˜ -1
since ≤ . From the sequence of matrices ( ) 0≤ ≤2 / , one can compute a minimal denominator for ( )

= T ( -) -1 ∈ K[ ] × in ˜ -1
eld operations, by Theorem 3.2. Using Theorem 3.1, the minimal polynomial is then obtained as the rst invariant factor in the Smith form of , computed by [START_REF] Storjohann | High-order lifting and integrality certi cation[END_REF]Proposition 41]. This step also costs ˜ -1 eld operations and since ≤ we have

-1 ≤ +1 2 -1 2
which shows that the cost of these last two computations will always be dominated by the cost of the product [START_REF] Heinig | Fast inversion algorithms of Toeplitzplus-Hankel matrices[END_REF]. The probability of failure for the computation of -1 is ( +1)/| | by [START_REF] Bostan | On matrices with displacement structure: generalized operators and faster algorithms[END_REF]Lemma 6.2]. A union bound combining this probability and the failure probablity of Theorem 3.1 yields a probability of failure of

( 2 + 3 )/| |.
Note that this result carries over to the computation of the characteristic polynomial of any Toeplitz-like or Hankel-like matrix having fewer than invariant factors in its Frobenius normal form.

AN ALGORITHM BASED ON STRUCTURED INVERSION

In this section we propose an algorithm computing the determinant of a generic structured polynomial matrix ∈ K[ ] × with displacement rank based on the structure of the Σ representation of Toeplitz-like matrix, or a generalization thereof for Hankel-like matrices, as presented in [START_REF] Beckermann | A uniform approach for the fast computation of matrix-type Padé approximants[END_REF].

Principle of the algorithm. Here, the sequence ( = T -) is obtained as the matrix coe cients of the series expansion T -1 . As 2⌈ / ⌉ + 1 terms are required, and with the special choice

= = = | 0
T , this boils down to computing a dense representation of the × leading principal submatrix of -1 mod 2 ⌈ / ⌉+1 . The outline of the algorithm is as follows.

(1) Compute the inverse -1 mod 2 ⌈ / ⌉+1 in a compressed representation (2) Crop this representation to form a representation of the × leading principal submatrix; (3) Extract the dense representation from this representation. We will now present the algorithm specialized for the two classes of interest.

The Algorithm for Toeplitz-like Matrices

A Toeplitz-like matrix is represented by a pair of generators , ∈ K × satisfying = -1 =0 ( * , ) ( * , ) , where ( ) is the lower triangular Toeplitz matrix with as its rst column [START_REF] Kailath | Displacement ranks of matrices and linear equations[END_REF][START_REF] Kaltofen | Asymptotically fast solution of Toeplitz-like singular linear systems[END_REF]. The × leading principal submatrix of any product ( ) ( ) T is the product of the × leading principal submatrix of these factors, which in turn is ( 1.. ) ( 1.. ) T . Algorithm 2 relies on this property to produce ( ) from the rst rows of the generators of -1 . 

Algorithm 2 Compute

P

. From the above remark, ′ = 1.. , * and ′ = 1.. , * are generators for ( ) = T -1 . Note that no division by in the ring K[ ]/ 2 ⌈ / ⌉+1 will occur in Line 1 as has generic rank pro le, and consequently all leading principal minors of ( ) are not divisible by which shows the correctness.

By [START_REF] Bostan | On matrices with displacement structure: generalized operators and faster algorithms[END_REF]Theorem 34], Line 1, computing the generators of -1 , can be computed in ˜ -1 operations over

K[ ]/ 2 ⌈ / ⌉+1 which in turn is ˜ 2 -1 (8) 
operations in K.

The dense reconstruction of ( ) in Line 3 is achieved by products of an × Toeplitz matrix ( ′ * , ) by an × dense matrix ( ′ * , ) T for a total cost of ˜ ( )

operations in K. otherwise.

Note that this is 1.579 (resp. 1.667 ) for constant and

= 2.373 (resp. = 3). When = Θ -2 -2 +4 -2
and taking = 2.373 (resp. = 3), both expressions become ˜ 1.74 (resp. ˜ 3 ).

The complexity when is low can also be written as

˜ -( ) ( ) ,
similarly as in Theorem 4.1, which can be interpreted as a transfer of part of the exponent from to by using the structure of the matrix.

P

. The family of Toeplitz matrices presented in Section 6.1 proves that for a generic Toeplitz-like matrix , the matrix H ( ) = H 1.. ,1.. is non-singular, where

H = T + 0≤ , ≤ ⌈ / ⌉-1 .
Then [START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF]Lemma 2.4] implies that the irreducible left and right fractions descriptions of T -1 have degree at most ⌈ / ⌉. Thus Theorem 3.2 ensures that an appropriate denominator of a right fraction description of T -1 can be computed from ( ) = T -1 mod 2 ⌈ / ⌉+1 . Besides the computation of ( ) by Theorem 5.1, the computation of the denominator of its irreducible right fraction description costs ˜ -1 [START_REF] Jeannerod | Fast computation of approximant bases in canonical form[END_REF] operations by Theorem 3.2. Computing the determinant of has same cost by [START_REF] Gupta | Triangular x-basis decompositions and derandomization of linear algebra algorithms over K[x][END_REF][START_REF] Storjohann | High-order lifting and integrality certi cation[END_REF]. The total cost depends on .

Case 1:

= -2 -2 +4 -2 . We set = 1 -1 so that = -2
and the term ( 9) is dominated by [START_REF] Jeannerod | Fast computation of approximant bases in canonical form[END_REF]. For the chosen value of the terms (8) (decreasing in ) and (10) (increasing in ) are equal, leading to a full cost of ˜ 2-1 ( -1) 2 operations in K.

Case

2: = Ω -2 -2 +4 -2 . We set = 1 2 -2 2 
so that = Ω -2 . In this case the term (10) is dominated by [START_REF] Heinig | New fast algorithms for Toeplitz-plus-Hankel matrices[END_REF] and for this value of we have equality between the terms (8) and ( 9), leading to a full cost of ˜ 3 2 2 operations in K.

The Algorithm for Hankel-like Matrices

In this section we are interested in adapting the previous algorithm to Hankel-like matrices. If is Hankel-like then ( ) = -is Toeplitz+Hankel-like.

We will thus generalize and consider that is a Toeplitz+ Hankellike matrix. We are interested in computing the rst 2⌈ / ⌉ + 1 terms of the series T ( ) -1 . We are going to adapt the Toeplitz algorithm and use Pan's Divide-and-Conquer algorithm for inversion [START_REF] Victor | Structured Matrices and Polynomials: Uni ed Superfast Algorithms[END_REF]Chapter 5]. Computing the characteristic polynomial from there does not depend on the structure of or .

The strategy consists in computing generators for the truncated matrix from which we can recover a dense representation. Algorithm 3 details the steps. The generators and irregularity set of the inverse in Line 1 are computed with Pan's Divide and Conquer algorithm [START_REF] Victor | Structured Matrices and Polynomials: Uni ed Superfast Algorithms[END_REF], as well as the solution to the linear system. The following lines are dedicated to the reconstruction of the dense representation of ( ) ( ) from the generators. The correctness of Algorithm 3 is proved by Proposition 2.9. The complexity in is the same as in the Toeplitz-like case but there is a stronger dependence in as there is no known algorithm to compute the inverse of a Toeplitz+Hankel-like matrix in ( -1 ), the best one depending on 2 .

P

. The family of Hankel matrices presented in Section 6.2 now proves that for all generic Hankel-like matrix , the matrix H ( ) is non-singular. The rest of the proof is similar to the Toeplitzlike case in Corollary 5.2.

Again the overall cost is that for computing the denominator and its determinant in ˜ -1 operations in K plus the cost of computing the sequence . We distinguish two cases: 

L 2. 6 . 1 =0(

 61 ( ) T is the Toeplitz upper-triangular matrix with T as its rst row. ) where 0 ( ) = 1, 1 ( ) = and +1 ( ) = ( ) --1 ( ).

T 4 . 1 .

 41 Algorithm 1 runs in ˜ in K for well chosen , and .

  and set = = 2 / . Note that ≤ ≤

C 4 . 2 .

 42 The minimal polynomial of an × Toeplitz-like or Hankel-like matrix with displacement rank can be computed by a Monte Carlo algorithm in ˜ eld operations with a probability of success of at least 1 -( 2 + 3 )/| |.

T 5 . 1 .

 51 ( ) : Toeplitz-like caseInput: ( , ) generators of ∈ K[ ] × , a Toeplitz-like matrix of displacement rank Output: Dense representation of ( ) = T -1 mod 2 ⌈ / ⌉+1 1: ( , ) ← generators for -1 mod 2 ⌈ / ⌉+1 2: ′ ← T ; ′ ← 3: ( ) ← -1 =0 ( ′ * , ) ( ′ * , ) T mod 2 ⌈ / ⌉+1Algorithm 2 is correct for = and generic and uses

C 5 . 2 . 2 - 2 +4

 5222 The characteristic polynomial of a generic × Toeplitz-like matrix with displacement rank can be computed in ˜ 2-1 ( -1) 2 operations in K when = -

Algorithm 3 6 :T 5 . 3 . 2 +C 5 . 4 .

 3653254 Compute ( ) : Toeplitz+Hankel-like case Input: ( , , ) generators and irregularity set of ∈ K[ ] × , a Toeplitz+Hankel-like matrix of displacement rank . Output: Dense representation of ( ) ( ) = T -1 ( ) mod 2 ⌈ / ⌉+1 1: ( , , ), ← generators and irregularity set of the inverse of , ( ) ( ) = ( 0 || • • • || -1 ) Algorithm 3 is correct for = and generic and uses ˜ 2 operations in K. P . Line 1 can be done in ˜ ( 2 ) operations in the base ring, so ˜ 2 2 operations on K [19, Corollary 5.3.3]. Each step of the for loop consists of a number of polynomial operations modulo 2 ⌈ / ⌉+1 linear in as has only two non-zero entries on each row. Lines 2 to 5 can be done in ˜ ( 2 ) operations in the base ring, so ˜ ( ) operations on K.The minimal polynomial is then obtained the same way as in Section 4 which leads to Corollary 5.4. The characteristic polynomial of a generic × Toeplitz+Hankel-like matrix with displacement rank can be computed in ˜ 2-1 2( -1) eld operations when =

where 1 and 2 are lower triangular with ones on the diagonal. As T is symmetric, de ned as the rst rows of 0T | . . . | ( ⌈ / ⌉-1)T T is also non-singular, as well as H ( ) = .

SPECIAL MATRICES FOR GENERICITY

The generic matrices for which our algorithms output the characteristic polynomial are matrices such that H ( ) = H 1.. ,1.. is non-singular (Corollaries 5.2 and 5.4), where

The rst algorithm is Monte Carlo with matrices and sampled at random. In the second algorithm, however = = are xed, and det H ( ) is a polynomial in the coe cients of . Toeplitz and Hankel matrices have 2 -1 independant coe cients. The coecients of a Toeplitz-like or Hankel-like matrix of displacement rank are themselves polynomials in the coe cients of its generators, so det H ( ) is by composition a polynomial on the 2 coe cients of the × generators of .

In this section, we show that det H ( ) is not uniformly zero on the space of Toeplitz (resp. Hankel) matrices by nding one Toeplitz (resp. Hankel) matrix for which H ( ) is non-singular. This shows the algorithm is correct for all matrices of each class except for those with coe cients in a certain variety of K 2 -1 . As the displacement rank of the matrices we show is 2 or less, they are Toeplitz-like (resp. Hankel-like) and can be represented with larger generators (padded with zeros). The algortihm is thus also correct for matrices with displacement rank ≥ 2 whose generators' coe cients are not in a certain variety of 2 . Both matrices are also Toeplitz+Hankel and Toeplitz+Hankel-like so the same reasoning shows the algorithm is correct for all Toeplitz+Hankel matrices except for those with coe cients in a certain hypersurface of K 4 -2 and all Toeplitz+Hankel-like matrices with displacement rank ≥ 4 except for those on a certain hypersurface of K 2 . -

A Toeplitz Point

. From there we have

That is T -1 ( ) = ( ) -1 ( ) with ( ) = ( ) -. As ( ) -( ) = , the fraction -1 is irreducible and det = ± ⌊ / ⌋ ( mod )+( ⌊ / ⌋-1) (-mod ) -1 from which we get deg det = . By [START_REF] Villard | On computing the resultant of generic bivariate polynomials[END_REF]Lemma 2.4], the matrix H ( ) is therefore non-singular.

A Hankel Point

and the following rows are 0. This can be seen by recursively applying the band matrix 2 = + + T + T to . By applying to 2 we get that the rows -( + 1) to --1 of 2 +1 are , and the preceding rows are 0. Let be the rst columns of 0 | . . . | ⌈ / ⌉-1 . is non-singular, as its columns can be permuted to get a matrix of the form T 1 0 0