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Estimation of the potential in a 1D wave equation via exponential observers

Constantinos Kitsos, Mathieu Bajodek, and Lucie Baudouin

Abstract— The problem of estimation of the unknown po-
tential in a 1-dimensional wave equation via state observers is
considered in this work. The potential is supposed to depend
on the space variable only and be polynomial. The main
observation information is the value of the solution of the wave
equation in a subinterval of the domain, including also some of
its higher-order spatial derivatives. The method we propose to
estimate the potential includes turning it into a new state as in
finite-dimensional parameter estimation approaches. However,
in this infinite dimensions setting, this requires an indirect
approach that is introduced, including an infinite-dimensional
state transformation. Sufficient conditions allow the design of
an internal semilinear observer for the resulting cascade system,
corresponding to the observed subinterval, which estimates the
potential everywhere in an exponentially fast manner.

Keywords: 1-d wave equation, nonlinear inverse problem,
reconstruction of the potential in the wave equation, nonlin-
ear observer design, infinite-dimensional observers

I. INTRODUCTION

Coefficient inverse problems for partial differential
equtions (PDEs) [10] have gained significant interest during
the last decades. More particularly, the inverse problem of
reconstructing the unknown potential in a wave equation, has
been addressed in several works. It is a nonlinear inverse
problem and some of its applications come from the need to
recover properties of the medium described by the potential
and include acoustic waves, ocean and seismic prospection,
medical imaging, and geophysics [8], [12], [16], [24].

The main approach to deal with the solvability of an
inverse problem is a uniqueness [19] and a stability property
[26] to ensure the identifiability of the coefficient of interest.
Carleman estimates more recently lead to the algorithmic
reconstruction of the potential of the wave equation [4], [5]
and are based on particular boundary measurements. Obser-
vation and observer design results for the wave equation have
already been obtained for instance in [3], [20], [23]. In [13]
and references therein the problem of reconstruction of initial
data using observers is considered.

The present paper deals with a different problem than the
aforementioned classical reconstruction approaches, namely
the online estimation of the potential of the 1-dimensional
wave equation via state observers. This work proposes an
approach, which is based on a classical trick for constant
parameter estimation in finite dimensions, where the state
of the system is extended with the unknown parameter,
in order to write it as a nonlinear cascade system in a
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“canonical” form, for which observer methodology can be
easily applied [7]. In the present case, where the role of
the parameter is played by the space-varying potential, a
similar approach turns out not to be so direct due to the
properties of differential operator of the extended coupled
hyperbolic system. This indirect approach eventually leads to
the asymptotic estimation in time of the potential. In [15], an
in-domain constant parameter is estimated for a hyperbolic
system via adaptive observer, however, similarly as in the
finite dimensions [25], the estimation is not necessarily
exponential. Contrary to this approach, in this work the
estimation of the potential is exponential.

The main contribution here is a novel observer-based
approach for the reconstruction of the potential of the wave
equation. A proposed indirect methodology includes the
introduction of an infinite-dimensional transformation that
maps the wave equation into a semilinear system of three
coupled PDEs, whose differential operator is decomposed
into a part with the same elements on the diagonal and a
part acting on the observation of the solution (considered
as known). To this end, we assume that the potential is
an even polynomial in space and that observations include
the solution and its higher order spatial derivatives in a
subinterval of the domain, coming from appropriately strong
regularity assumptions. An internal observer is designed
in the observed subinterval that provides the estimation of
the potential arbitrarily fast. The main idea of the current
approach relies on a recently introduced methodology in
[17], [18] to deal with the observer design of under-observed
systems of coupled PDEs. It eventually results in an exten-
sion of the classical finite-dimensional parameter estimation
approach to the infinite-dimensional problem of the potential
estimation for the wave equation.

The paper is organized as follows. In Section II, we
introduce the estimation problem and we present the observer
design approach that leads to solvability of the main observer
problem. In Section III, we present the proof of our main
theorem, along with an illustrative simulation. Finally, in
Section IV, we include some conclusions and perspectives.

Notation: We adopt the notation R+ := [0,+∞). For
a given w in Rn, |w| denotes its usual Euclidean norm.
For a given constant matrix A in Rn×n, A> denotes its
transpose, |A| := sup {|Aw| , |w| = 1} is its induced norm
and Sym(A) = A+A>

2 stands for its symmetric part. By
eig(A) we denote the minimum eigenvalue of a symmet-
ric matrix A. By In we denote the identity matrix of
dimension n. By diag{ai}i=1,...,k we denote the diagonal
matrix with elements a1, . . . , ak on its diagonal and by
antidiagk(Ai)i=1,...,k the block-antidiagonal matrix consist-



ing of k matrices Ai placed on antidiagonal block-row i.
For given u : R+ × [0, L] → Rn and time t ≥ 0 we
use the notation u(t)(x) := u(t, x), for all x in [0, L] to
refer to the profile at certain time and with ∂itu (resp. ∂ixu)
we refer to its partial derivative with respect to t (resp.
x) of order i. For a q - times continuously differentiable
mapping u : [0, L] → R (in Cq), we adopt the nota-
tion ‖u‖Cq [0,L] :=

∑q
i=0 max{

∣∣∂ixu(x)
∣∣ , x ∈ [0, L]} for

the q-norm. L2 (0, L;Rn) denotes the space of equivalence
classes of measurable functions u : [0, L] → Rn, for

which ‖u‖L2(0,L;Rn) :=
(∫ L

0
|u(x)|2dx

)1/2

< +∞. By
Hq (0, L;Rn) we denote the Sobolev space of functions in
L2 (0, L;Rn) with all their weak derivatives up to order q
in L2 (0, L;Rn), equipped with the norm ‖u‖Hq(0,L;Rn) :=(∫ L

0

∑q
i=0 |∂ixu(x)|2dx

)1/2

. By 1[a,b] we denote the char-
acteristic function of the set [a, b]. By B(X ) we denote the
space of bounded linear operators from X to X .

II. PROBLEM STATEMENT AND REQUIREMENTS

Let us consider the following wave equation ∂2
t z(t, x) = ∂2

xz(t, x)−q(x)z(t, x), (t, x) ∈ R+×(0, L)
z(t, 0) = h1(t), z(t, L) = h2(t), t ∈ R+,
z(0, x) = z0(x), ∂tz(0, x) = z1(x), x ∈ (0, L),

(1)

assuming that potential q and initial datum (z0, z1) are
unknown. The problem we wish to solve here is summarized
as follows.

Problem: Under which assumptions and observa-
tions, can we design a state observer system, which
estimates the unknown wave potential function q,
exponentially in time t?

To the best of our knowledge, this problem has not been
given solutions yet. In this paper, we avoid a standard
approach as in parameter identification problems for finite
dimensions, see for instance [27]. In [15], an in-domain
constant uncertainty is estimated for a class of hyperbolic
systems via an adaptive observer with a measurement of
the state in the entire domain. Such approaches might lead
to asymptotic convergence of the observer scheme to the
unknown parameters, but not necessarily exponentially, as
we plan here. Additionally, the problem of estimation of
a spatially varying parameter, as the potential q = q(x)
here, is even more complicated. To solve this problem and
force the observer to asymptotic convergence, we make some
assumptions, including the polynomial nature of q and some
strong regularity of the solution. Dropping these assumptions
is still an open problem.

Let us first assume that the potential is an unknown
polynomial in the space variable, i.e.,

q(x) =

N∑
i=0

qix
i, ∀x ∈ [0, L], (2)

with a priori known degree N ∈ {0, 2, 4, . . .} and unknown
coefficients qi ∈ R. Note that the case of polynomial-type

potential is not uncommon in physical realizations, especially
in quantum mechanics, see for instance [9], where the use of
a decatic potential is justified in the Schrödinger equation.

Consider now a given δ ∈ (0, L]. We assume that initial
condition localized on [0, δ] has some additional regular-
ity than the usual one assumed for the wave equation.
This will induce existence of solutions in [0, δ] of suffi-
ciently strong regularity. More precisely, let us assume that
1[0,δ]z

0 ∈ H3N+3(0, δ),1[0,δ]z
1 ∈ H3N+2(0, δ), while in

the rest of the domain we assume more commonly z0 ∈
H1(0, L), z1 ∈ L2(0, L). We also suppose that h1 and
z(·, δ) are of class C3N+3 (R+) and on the {x = L}
boundary we have h2 ∈ C1 (R+). Assuming also some
compatibility conditions of order 3N+3 for initial condition
restricted in [0, δ], namely for 1[0,δ]z

0,1[0,δ]z
1, we may

invoke well-known existence/ uniqueness arguments (see for
instance [21], following also a transposition method, since
we have inhomogeneous boundary conditions), along with
the extra regularity and, thus, we can easily deduce the
existence of solutions 1[0,δ]z ∈ C3N+1

(
R+;H3N+3(0, δ)

)
∩C3N+2

(
R+;H3N+2(0, δ)

)
∩C3N+3

(
R+;H3N+1(0, δ)

)
,

z ∈ C0
(
R+, H

1(0, L)
)
∩ C1

(
R+, L

2(0, L)
)
.

Assumption 1 (Observations): As a main observation,
we consider the solution of the wave equation in [0, δ]

1[0,δ]z(t, ·), t ∈ R+, (3a)

for some δ ∈ (0, L]. Given the extra regularity of the system,
we consider first the following derivatives (in the weak sense)
of higher order as measurements on the boundaries. That is

∂ix∂tz(t, l), i ∈ {0, . . . , 2N + 1}, l = 0, δ, (3b)

∂ixz(t, l), i ∈ {0, . . . , 3N + 2}, l = 0, δ, (3c)

Second, we need also the internal spatial derivatives (in the
weak sense) of order up to N + 1 of the solution localized
on [0, δ], meaning

1[0,δ]∂
i
xz(t, ·), i ∈ {1, . . . , N + 1}. (3d)

Notice that in Assumption 1 we avoid observations of
noncausal nature, namely, time derivatives of the solution,
except for the first time derivative (3b) on the boundaries,
which is natural as it is a part of the state (z, ∂tz) of
the wave. Time derivatives are not in general available
as measurements in observer designs. However, the spatial
derivatives of the solution in a part of the domain, which are
assumed known, can be measured causally and one can use
them as observations in conjunction with the extra regularity.
Note also that to solve (offline) the inverse problems for
the potential of the wave equation as in [4], we only need
the first spatial derivative of the solution on the boundaries
as observation. However, this online estimation problem via
observers appears to be more demanding.

We now make the following assumption.
Assumption 2: We have

inf
(t,x)∈R+×[0,δ]

z(t, x) > 0, (4)



and the initial condition z0 is compatible with (4). Moreover,
there exists c > 0, such that

‖z(t, ·)‖HN+1(0,δ) ≤ c, ∀t ≥ 0. (5)

In the sequel, the lower bound coming from (4), as well as
the upper bound c in (5) are considered a priori known.

The nature of the above assumption is revealed in classical
works on the solvability of inverse problems for the potential
of the wave equation, where some slightly weaker conditions
are assumed [4], [5], i.e. that the infimum of the initial
condition only is strictly positive. It turns out that the stronger
Assumption 2 is a sufficient condition for the observer design
that we will present hereafter.

A convenient approach in the parameter identification, in
order to design an observer, is to write (1) as a cascade
system. We are indeed trying to recover the trick followed
in finite dimension, where the system’s state is extended
by ∂tq = 0, see [7], which leads to the design of an
exponential observer for the extended system. However, this
is not standard for the infinite dimension as it is shown next.

In the first step, let us rewrite (1) as a first-order hyperbolic
system as follows: ∂tu1(t, x) = ∂xu1(t, x) + u2(t, x),

∂tu2(t, x) = −∂xu2(t, x)− u3(x)u1(t, x),
∂tu3(x) = 0,

(6)

where

u1 = −z, u2 = ∂xz − ∂tz, u3 = q. (7)

Notice that the above system has a nonlinear cascade form.
Using the abstract realization of (6), the diagonal part of
system’s operator is equal to diag{∂x,−∂x,−∂N+1

x }, where
we added a fictitious element−∂N+1

x , since we automatically
have ∂N+1

x q = 0, due to the polynomial nature of q. Observe
that this operator has three distinct elements on its diagonal.
Our goal is to design an observer for the system written
in this above cascade form, but it turns out that we need a
second step for this, as we explain next.

Internal observability of under-observed linear cascade
systems has been studied for instance in [2], [22]. In these
works, it is shown that the presence of distinct elements on
the diagonal of the main differential operator adds difficulty.
This observability problem reveals the difficulty that may
subsequently appear in observer designs for such systems,
taking also into account the nonlinearity of (6). Besides
this, solutions to the problem of observer design of under-
observed cascade nonlinear infinite-dimensional systems has
been given in [17]. Here, we get inspired by this work and
we employ an analogous strategy, noting that (6) is under-
observed, since we only measure the first state in [0, δ]. The
goal is to write system (6) in a form where its differential
operator is decomposed into a part with the same elements
on the diagonal plus an operator acting only on the first
state, which is the observation z. By this modification in the
dynamics, as it was shown in [17], [18] for coupled systems
of PDEs, the problem of observer design can be solved.

Following the previous reasoning, in order to write a sys-
tem in an appropriate form for observer design, let us apply
a lower triangular infinite-dimensional state transformation
T ∈ B(X ), invertible, with inverse T −1 ∈ B(X ), where
X = H3N+3(0, δ) × H2N+2(0, δ) × H2N+2(0, δ). Trans-
formation T : 1[0,δ]u → v (with u =

(
u1 u2 u3

)>
, v =(

v1 v2 v3

)>
) satisfies

T =

 1 0 0
∂x − ∂N+1

x 1 0
0 0 1

 . (8)

Notice that for N = 0, we have T = I3, implying that we
keep the original variables unchanged. This transformation
is inspired by previous works [17], [18], applied to systems
of coupled PDEs, in order to be written in a suitable form
for observer design purposes. System writes in the new state
variable v as a cascade system of PDEs of order 2N + 2,
locally in [0, δ], as follows:

∂tv(t, x)=− ∂N+1
x v(t, x) +A(−Cv(t, x))v(t, x)

+KCv(t)(x), (t, x) ∈ R+ × (0, δ) (9)

where

A(Cv) :=

0 1 0
0 0 Cv
0 0 0

 , K :=

 2∂N+1
x

∂2
x − ∂2N+2

x

0

 ,

C :=
(
1 0 0

)
. (10)

As we mentioned earlier, differential operator associated to
system (9) consists of a part −∂N+1

x (same elements on
the diagonal), which is desired for the observer convergence
proof, plus an undesired operator K acting on the first state
v1 = −z only. This second part will be copied in the
observer dynamics, but acting on the measurement 1[0,δ]z,
in order to get rid of it in the observer error dynamics. This
decomposition of the differential operator into the previous
two parts and the subsequent elimination of KCv reveals the
reason why we assumed in Assumption 1 knowledge of z
and of its spatial derivatives in [0, δ]. It is worth also noting
that qi = 1

i!∂
i
xv3(0), which is our target in the reconstruction

of the potential q : x 7→
∑N
i=0 qix

i.
We also associate to system (9) the following boundary

conditions for t ≥ 0, which result from boundary conditions
of (1), in conjunction with transformations (7)-(8), viz.

∂jxv1(t, l) = −∂jxz(t, l),∀j∈{0, . . . , 2N + 1},l = 0, δ; (11a)

∂jxv2(t, l) = ∂N+1+j
x z(t, l)− ∂t∂jxz(t, l),

∀j∈{0, . . . , 2N + 1}, l = 0, δ; (11b)

∂jxv3(0) =
N∑
k=j

σjk∂
k
xv3(δ), ∀j ∈ {0, . . . , N},

∂jxv3(l) = 0, ∀j ∈ {N + 1, . . . , 2N + 1}, l = 0, δ, (11c)

where σjk :=
(−δ)k−j

(k − j)!
, ∀j ≤ k ≤ N, (11d)

while (11c) is in view of the polynomial properties of
v3 = q, invoking its Taylor representation. Notice, that



boundary conditions (11a), (11b) come naturally by the
transformation (8), in conjunction with the strong system
regularity. These boundary conditions involve mappings that
have been considered as measurements and are, thus, known.
Furthermore, they are selected to be more numerous than the
order N + 1 of the PDE system (9), as we require solutions
of (9) and of the corresponding observer coming afterwards,
belonging to H2N+2

(
0, δ;R3

)
.

Now, for system (9), written in such an appropriate form,
we are in a position to propose the following observer:

∂tv̂(t, x) = −∂N+1
x v̂(t, x) +A(z(t, x))v̂(t, x)−Kz(t)(x)

−ΘP−1C> (z(t, x) + Cv̂(t, x)) in R+ × (0, δ). (12)

In the above dynamics of the observer, we introduced a gain
matrix Θ := diag

{
θ, θ2, θ3

}
(as in the “high-gain observers”

in finite dimension), with θ > 0 a tuning parameter, and P
positive definite symmetric, satisfying a Lyapunov inequality
for (t, x) ∈ R+ × [0, δ] of the form

Sym (PA(z(t, x)))− C>C ≤ −η
2
I3, (13)

for some constant η > 0. Such an inequality is always
feasible for A(z) and C given by (10) (structured as an
observability canonical form of a finite-dimensional system)
and under Assumption 2. The reader can refer to [14] for
the feasibility of inequalities of such a type in the finite-
dimensional case.

We now associate to the observer state v̂ its spatial
derivatives ∂ixv̂ up to order i = N + 1. Overall, the observer
state v̂[N+1] :=

(
v̂, ∂xv̂, · · · , ∂N+1

x v̂
)>

satisfies the
following dynamics, coming from differentiation of (12) and
incorporating also the case i = 0 corresponding to (12):

∂t∂
i
xv̂ = −∂N+1+i

x v̂ +

i∑
k=0

(
i
k

)
A
(
∂i−kx z

)
∂kx v̂ −K∂ixz

−ΘP−1C>
(
∂ixz + C∂ixv̂

)
, i ∈ {0, . . . , N + 1}, (14)

with boundary conditions (l being 0 or δ)

∂jxv̂1(t, 0) = −∂jxz(t, 0) +
N∑
k=j

σjk∂
k
x (v̂1(t, δ) + z(t, δ)) ,

∀j ∈ {2i, . . . , N},
∂jxv̂1(t, l) = −∂jxz(t, l), ∀j ∈ {N + 1, . . . , N + i};
∂jxv̂2(t, 0) = ∂N+1+j

x z(t, 0)− ∂t∂jxz(t, 0)

+
N∑
k=j

σjk∂
k
x

[
v̂2(t, δ)−

(
∂N+1
x − ∂t

)
z(t, δ)

]
,∀j∈{2i, . . . ,N},

∂jxv̂2(t, l)=∂N+1+j
x z(t, l)− ∂t∂jxz(t, l),∀j∈{N+1, . . . ,N+i};

∂jxv̂3(t, 0) =
N∑
k=j

σjk∂
k
x v̂3(t, δ), ∀j ∈ {2i, . . . , N},

∂jxv̂3(t, l) = 0, ∀j ∈ {N + 1, . . . , N + i}.
(15)

Remark 1: Solutions to (13) require a priori knowledge
of upper and lower bounds of the solutions to the wave
equation coming from Assumption 2. This assumption will

be relaxed in our future works, in conjunction with results
known from finite dimension, as for instance in [6]. Addition-
ally, we note that solvability of (13) requires from (4) that
the solution is strictly positive and lower bounded in [0, δ].
In case we had a strictly negative solution instead, we would
make a change of coordinates (v1, v2, v3) 7→ (−v1,−v2, v3),
in order to follow a similar observer design.

We are now in a position to state our main result.
Theorem 1: Consider wave equation (1) with an un-

known polynomial potential q(·) of known even degree N ,
as in (2). Assume that observations in Assumption 1 are
available and that Assumption 2 holds. Let P � 0 satisfying

(13) for some η > 0. Denote also v0 =

 −z0

∂N+1
x z0 − z1

q

.

Then, the following result holds about the unique solutions
v̂ to observer (14)-(15), assuming also that initial condition
v̂0(·) := v̂(0, ·) belongs to HN+1

(
0, δ;R3

)
and satisfies

compatibility conditions of order N+1: For θ > 0, observer
(14) provides an estimation for the potential q via v̂3, as there
exist `, κ > 0, such that

|qi−
1

i!
∂ixv̂3(t, 0)| ≤ `θ2e−θκt‖v0 − v̂0‖HN+1(0,δ;R3), (16)

for i in {0, . . . , N}. In other words, q̂(t, x) =∑N
i=0

∂ixv̂3(t,0)
i! xi approaches the unknown polynomial po-

tential q on [0, L] as time grows to infinity.

III. PROOF OF THEOREM 1
In this Section, we first prove Theorem 1 and then we

provide an illustrative simulation.
Proof: Consider observer (14)-(15) localized on (0, δ).

First, we can easily deduce global existence-uniqueness
of solutions to (14)-(15) for z being uniformly bounded
by Assumption 2. For this, we might invoke classical ar-
guments from the theory of PDEs (Lumers-Philipps the-
orem for instance). More particularly, for initial condi-
tion v̂0 ∈ HN+1

(
0, δ;R3

)
, satisfying compatibility con-

ditions of order N + 1, there exist unique classical solu-
tions v̂ to (14)-(15), belonging to C2N

(
R+;H2N+2

(
0, δ;R3

))
∩C2N+1

(
R+;H2N+1

(
0, δ;R3

))
∩ C2N+2

(
R+;H2N

(
0, δ;R3

))
.

Let us define the scaled observer error by ε :=

Θ−1 (v̂ − v) . Then, E[N+1] :=
(
ε ∂xε · · · ∂N+1

x ε
)>

satisfies the following equations in R+ × (0, δ):

∂ix∂tε = −∂N+1+i
x ε+ θ

i−1∑
k=0

(
i

k

)
A
(
∂i−kx z

)
∂kxε

+ θ
(
A(z)− P−1C>C

)
∂ixε, i ∈ {0, . . . , N + 1}, (17a)

∂jxε(t, 0) =

N∑
k=j

σjk∂
k
xε(t, δ), ∀j ∈ {2i, . . . , N}, (17b)

∂jxε(t, l) = 0, ∀j ∈ {N + 1, . . . , N + i}, l = 0, δ. (17c)

Let us now introduce a Lyapunov functional V :
HN+1(0, δ)→ R+ by

V[ε] =

N+1∑
i=0

ρi

∫ δ

0

∂ixε
>(x)P∂ixε(x)dx, (18)



with ρ0 = 1 and ρi > 0, for i in {1, . . . , N + 1}, to be
chosen appropriately, and matrix P � 0 chosen to satisfy
(13). Taking the time derivative of V (t) := V[ε(t)], t ≥ 0
along the solutions of (17), we obtain

V̇ =−
N+1∑
i=0

ρi

∫ δ

0

2∂N+1+i
x ε>(x)P∂ixε(x)dx

− θ
∫ δ

0

(
E[N+1](x)

)>
M[z](x)E[N+1](x)dx, (19)

where M[z] := (Mij)(N+2)×(N+2) [z], with

Mii[z]=−2ρi−1

(
Sym (PA(z))−C>C

)
,∀i∈{1, . . . , N+2},

Mij [z]=M>ji[z]=−ρi−1

(
i− 1

j − 1

)
PA

(
∂i−jx z

)
,

∀i ∈ {j + 1, . . . , N + 2}, j ∈ {1, . . . , N + 2}.

Note that M contains HN+1(0, δ) functions, satisfying
Assumption 2. Now, by using the Schur complement, (13),
and the uniform boundedness of z in HN+1(0, δ), we can
always choose ρi ∈ (0, 1], for i in {1, . . . , N+1}, such that
M becomes positive for all z in its domain. More precisely,
there exist ρi ∈ (0, 1], such that

γ := inf
‖z‖HN+1(0,δ)≤c

w>M[z]w

|w|2
> 0, ∀w ∈ R3N+6 \ {0}.

Next, by applying repeated integrations by parts in (19) and
by the fact that N is even, one obtains

V̇ ≤
N+1∑
i=0

ρi [Πi(x)]
δ
0 − θ

γ

|P |
V, (20)

where

Πi(x) :=
(
∂ixE

[N ](x)
)>
P
(
∂ixE

[N ](x)
)
,

P :=antidiagN+1

(
(−1)jP

)
j=1,...,N+1

.

Moreover, the boundary conditions (17b)-(17c) lead to

[Πi(x)]
δ
0 =

(
∂ixE

[N ](δ)
)> (
P − Σ>PΣ

) (
∂ixE

[N ](δ)
)
,

for i in {0, . . . , N + 1} and where Σ is the block matrix
Σ := (σjkI3)j,k=0,...,N , while σjk are given by (11d) for
j ≤ k ≤ N and σjk ≡ 0 for k < j ≤ N . After appropriate
calculations and substituting boundary condition (17c), it
turns out that [Πi(x)]

δ
0 = 0, for all i in {0, . . . , N + 1}.

Inequality (20) can then be rewritten as

V̇ ≤ −2θκV ; κ :=
γ

2|P |
. (21)

By use of transformations (7)-(8), and (21), we obtain

‖z(t, ·) + v̂1(t, ·)‖HN+1(0,δ)

+ ‖∂N+1
x z(t, ·)− ∂tz(t, ·)− v̂2(t, ·)‖HN+1(0,δ)

+ ‖q(·)− v̂3(t, ·)‖HN+1(0,δ)

≤ γ1θ
2e−θκt‖v0(·)− v̂0(·)‖HN+1(0,δ;R3), (22)

where γ1 := 1
min{ρi,i=0,...,N+1}

√
3 |P |

eig(P ) .

Fig. 1: Simulation of the solution to (1).

This stability inequality indicates that −v̂1 provides a
time estimation of 1[0,δ]z and v̂3 an estimation of q in
HN+1 spatial norm. We observe that this inequality has
lead to a phenomenon of loss of derivatives. Indeed, in
order to estimate the solution of the wave equation, we
require stronger regularity (3N + 3) than the order of
the convergent derivatives of the observer error (N + 1).
Such phenomena appear when studying the controllability
of underactuated coupled systems [2]. Finally, by invoking
the compact embedding H1(0, δ) ↪→ C0[0, δ] (the Rellich-
Kondrachov theorem [1]), we get from (22)

‖q−v̂3‖CN [0,δ] ≤ c0γ1

√
N+1θ2e−θκt‖v0−v̂0‖HN+1(0,δ;R3)

with c0 > 0 an embedding constant. The latter shows that the
coefficients of q(·), given by qi = q(i)(0)

i! , are approximated
by 1

i!∂
i
xv̂3(t, 0) for all i in {0, . . . , N} in an exponentially

fast manner. By use of (7), (8), we deduce (16), with ` =
1
i!c0γ1

√
N + 1.

Simulation

We illustrate here the solvability of the inverse problem
of reconstruction of the potential via the proposed observer.

Consider a signal z which satisfies the wave equation (1)
with a potential q(x) = x(x − 1), for x ∈ [0, 1]. To satisfy
compatibility conditions and Assumption 2, the boundary
and initial conditions are fixed to h1(t) = h2(t) = 1 and
z0(x) = 1, z1(x) = 0. The solution z is plotted in Fig. 1
on [0, 4]× [0, 1]. From measurements of the wave z and its
three first spacial derivatives on R+ × [0, δ], the objective is
to estimate coefficients q0 = 0, q1 = −1 and q2 = 1.

The observer (14)-(15) with θ = 1 and δ = 0.1 leads to ex-
ponential stabilization of the error ε = v̂−v governed by (17)
on R+ × [0, 0.1]. To find numerically a solution for the
error system, we exhibit an explicit numerical scheme which
is consistent and stable under the Courant–Friedrichs–Lewy
condition with ∆t

∆x3 chosen sufficiently small [11]. Taking

P = 0.1
(

5 −3 −2
−3 6 −4
−2 −4 17

)
satisfying condition (13) with η = 0.2,

Fig. 2 shows that the H3(0, δ) norm of ε3 is exponentially
convergent. Then, Fig. 3 emphasizes that the error on each
coefficients of the potential q̃i = 1

i!∂
i
xε3(t, 0) are converging

towards zero.
In future works, the numerical scheme will be improved

to deal with some implementation issues, mostly for higher
orders N .

IV. CONCLUSION

The problem of estimation of an unknown polynomial
potential of the 1-d wave equation was solved via an internal
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Fig. 2: Simulation of error system (17).
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Fig. 3: Errors of the coefficients of the potential.

exponential observer in an observed subinterval of the do-
main. For this, the wave equation was written as a semilinear
cascade system of PDEs of higher order. The observation
included the solution of the wave and its spatial derivatives
on a subinterval of the domain. In future works, we will
consider the simultaneous estimation of the potential and
solution to the wave equation via a composite observer. We
will also investigate the extension of this approach to the 2-d
wave equation and some links of such an observer approach
with the internal observability of cascade systems.
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[17] C. Kitsos, G. Besançon, and C. Prieur, “High-gain observer design
for some semilinear reaction-diffusion systems: a transformation-based
approach,” IEEE Control Systems Letters (L-CSS), vol. 5(2), pp. 629—
634, 2021.
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