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End-to-end 6DoF Pose Estimation from Monocular
RGB Images

Wenbin Zou, Di Wu, Shishun Tian, Canqun Xiang, Xia Li and Lu Zhang

Abstract—We present a conceptually simple framework for
6DoF object pose estimation, especially for autonomous driving
scenarios. Our approach can efficiently detect the traffic partic-
ipants from a monocular RGB image while simultaneously re-
gressing their 3D translation and rotation vectors. The proposed
method 6D-VNet, extends the Mask R-CNN by adding customised
heads for predicting vehicle’s finer class, rotation and translation.
It is trained end-to-end compared to previous methods. Further-
more, we show that the inclusion of translational regression in
the joint losses is crucial for the 6DoF pose estimation task, where
object translation distance along longitudinal axis varies signif-
icantly, e.g. in autonomous driving scenarios. Additionally, we
incorporate the mutual information between traffic participants
via a modified non-local block to capture the spatial dependencies
among the detected objects. As opposed to the original non-local
block implementation, the proposed weighting modification takes
the spatial neighbouring information into consideration whilst
counteracting the effect of extreme gradient values. We evaluate
our method on the challenging real-world Pascal3D+ dataset and
our 6D-VNet reaches the 1st place in ApolloScape challenge 3D
Car Instance task [1], [2].

I. INTRODUCTION

The increase in consumer demand for safer vehicles greatly
promote the development of the advanced driver-assistance
systems (ADASs) and autonomous driving. Recently, vision-
based systems [3] have been drawn extensive attention in
autonomous driving and ADASs due to their great potential in
roadway-environment understanding [4], such as traffic light
detection [5], road semantic segmentation [6] etc., of which
one crucial component is to detect, estimate and reconstruct
the 3D shape of vehicles directly from the captured RGB video
cf. Fig. 1.

The 2D object detection has gained significant improvement
in recent years thanks to the development of deep learning,
while the estimation of object shape and pose in 3D remains
a challenging problem. The current state-of-the-art RGB-based
6DoF pose estimation methods [7], [8], [9] are two-staged: the
first stage is to detect the object with 3D rotation via a trained
network, the second stage is to estimate the full 3D translation
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Fig. 1: 6D-VNet is trained end-to-end to estimate vehicles’
six degree of freedom poses from a single monocular image.
The output will precisely estimates the vehicle’s voxels in 3D
occupancy.

via projective distance estimation. The aforementioned two-
staged systems primarily focus on the industry-relevant bin-
picking tasks. Typically, a robot needs to grasp a single
arbitrary instance of the required object, e.g. a component
such as a bolt or nut, and operate with it. In such scenario,
the surface alignment in the Z dimension, i.e. the optical axis
of the camera, is less important than the alignment in the X
and Y dimensions. Such industrial setting requires accurate
estimation of rotation, whereas the translation tolerance can be
relaxed. However, in autonomous driving, translation distance
of traffic participants along longitudinal axis varies signifi-
cantly. The translation estimation is thus more challenging and
the estimation of vehicle’s translation is more critical than that
of orientation.

Traditional methods usually leave the translational estima-
tion as a separate procedure after the object class predic-
tion and rotation estimation by using a geometric projection
method. However, the geometric projection method assumes
that: (i) the object centre in 3D will be projected to the object
bounding box centre in the 2D image; (ii) the predicted object
class and rotation vector is correctly estimated. Therefore, by
using geometric projection as a post-processing step, the error
from object class estimation and rotation regression will be
aggregated in the following projective distance estimation.
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Fig. 2: The core component of the proposed network: follow-
ing the detection head in 2D space, the 6D-VNet regresses
the 6DoF rotation and translation vector simultaneously in 3D
space.

To accommodate the requirement for accurate translation
estimation in autonomous driving, we propose a framework,
termed 6D-VNet, aiming at regressing the vehicle’s rotation
and translation simultaneously cf. Fig. 2. 6D-VNet streamlines
the vehicle’s 6DoF via the intermediate outputs from the
Region Proposal Network (RPN) [10]. The detection part of
the network is the canonical 2D object detection network
(Mask R-CNN). The 6DoF estimation part of the network
takes the intermediate output from the detection head. The
challenging aspect of learning 6DoF vehicle pose is to design
a loss function which is able to learn both rotation and
translation. The model learns a complementary representation
when supervised by both translation and orientation signals.
Moreover, traffic participants exert mutual influence among
their neighbours. Therefore, we introduce a weighted non-
local block, which is a modified version of [11], to capture
the collective information between traffic participants with
interpretable self-attention map.

Specifically, the network is trained end-to-end by joint
losses designed with solid geometric ground. Experimental
results show that the proposed method outperforms the state-
of-the-art two-staged systems. We list our contributions as
follows:

• To our best knowledge, this is the first work which
successfully regresses the rotation and translation si-
multaneously for deep learning-based object 6DoF pose
estimation. And we show the effectiveness of the trans-
lation head inclusion into end-to-end training scheme
(Sec. III-A).

• With a grounding in geometry, we investigate several joint
losses that function synergistically (Sec. III-B).

• We capture the densely spatial dependencies by intro-
ducing a weighted non-local operation with interpretable
self-attention map (Sec. III-C).

A Preliminary version of this manuscript was published
previously [12]. Since then, we have conducted experiments
on the Pascal3D+ dataset and extensive ablation studies.

II. RELATED WORK

Monocular-based 3D object detection were helped by the
early work on face detection to popularise bounding box
object detection. Later, PASCAL VOC [13], MS-COCO [14],
[15] datasets pushed the detection towards a more diverse,
challenging task. A tracking and estimation integrated model
is proposed in [16] to determine spatial configuration of
body parts in each frame. 3D convolutional neural network is
presented in [17] for real-time 3D hand pose estimation, and
more relevant works are given in [18] and [19], [20]. 3D head
pose estimation [21], [22] is also a challenge. 3D head pose
and facial actions in monocular video sequences that can be
provided by low quality cameras are initialized and tracked by
a 3-D pose estimator and 2-D face detector [23]. Recognizing
the visual focus of attention of meeting participants based on
their head pose is addressed in [24] using a Gaussian mixture
model. Studies of human pose can be referred from [25].
KITTI dataset [26], [27] propelled the research for traffic
participants under autonomous driving scenario. However, the
3D object detection task in the KITTI dataset primarily focuses
on using point clouds data from Velodyne laser scanner, which
is an expensive apparatus. In addition, the KITTI 3D object
detection task only has half degree of freedom for rotation
overlooking vehicle’s heading direction.
Camera pose estimation is the problem of determining the
position and orientation of a calibrated camera, which is to
infer where you are and is key to the applications of mobile
robotics, navigation and augmented reality, where localization
is crucial for performance. [28] propose a robust and real-time
monocular 6DoF relocalization framework, called PoseNet. It
trains a convolutional neural network to regress the 6DoF
camera pose from a single RGB image in an end-to-end
manner with no requirement of additional engineering or
graph optimisation. It is robust to difficult lighting, motion
blur and unknown camera intrinsics, where point based SIFT
registration fails. However, it was trained using a naive loss
function, with hyper-parameters which require expensive tun-
ing. To address this issue, a more fundamental theoretical
treatment is given in [29] by exploring a number of loss
functions based on geometry and scene re-projection error.
[30] proposes a unified framework to tackle self-localisation
and camera pose estimation simultaneously. Instead of using
a single RGB image, it integrates the signals from multiple
sensors to achieve high efficiency and robustness. The problem
of camera pose estimation is egocentric, in other words, a
single vector of 6 dimensions will suffice to relocalise the
camera pose.
6DoF object detection [7] is also essential for robotic
manipulation [31] and augmented reality applications [32].
The BOP benchmark [33] consists of eight datasets in a
unified format that cover different practical scenarios and
shows that the methods based on point-pair features currently
outperform the methods based on template matching, learning-
based and 3D local features. Encouraging results have been
shown in recent researches [7], [8], [9] which either RGB
or RGB-D images are used to detect 3D model instances
and estimate their 6DoF poses. Especially, [7] proposes a
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two-staged 6DoF object detection pipeline: firstly, a Single
Shot Multibox Detector (SSD) [34] is applied to provide
object bounding boxes and identifiers. Then, an Augmented
Autoencoder (AAE) is applied to estimate the object rotation
using a Domain Randomisation [35] Strategy. However, the
aforementioned methods focuses on the industry-relevant ob-
jects with neither significant texture nor discriminative colour
or reflectance properties. Moreover, objects of interests are
lying on a uniform ground plane (e.g., in T-LESS dataset [36],
the range of object distance is from 650mm to 940mm). Hence,
the tolerance of rotation needs to stay low, whereas translation
can be relaxed.

III. MODEL

6D-VNet is conceptually intuitive and structurally heredi-
tary: Faster R-CNN has two outputs for each candidate object,
a class label and a bounding-box offset, Mask R-CNN adds a
third branch that outputs the object mask. Likewise, 6D-VNet
streamlines the objects 6DoF prediction via the intermediate
outputs from the Region Proposal Network (RPN). However,
in order not to break already learnt functionality of the pre-
trained network, careful design choices must be customised
for the end-to-end training. Next, we present the overall ar-
chitecture in Sec. III-A. Particularly, we introduce the end-to-
end training paradigm with translation estimation integration
which greatly outperforms other two staged frameworks in
terms of translation estimation accuracy. The design choices
for the joint losses are presented in Sec. III-B. Lastly we
show the spatial relationship between traffic participants can
be incorporated via a modified weighted non-local block in
Sec. III-C.

A. Network Architecture

6D-VNet is built upon the canonical object detection net-
work as shown in Fig. 3. The system is a two-staged network
which is trained end-to-end to estimate the 6DoF pose infor-
mation for object of interest. The first stage of the network
is a typical 2D object detection network (Mask R-CNN).
The second stage of the network is the customised heads to
estimate the object 6DoF pose information.

The 6DoF pose estimation branch is the main novelty of
the model and is split into two parts: the first part only
takes RoIAlign [37] from each candidate box if the candidate
is of the vehicle class and performs sub-class categorisation
and rotation estimation. Since in-plane rotation is unique for
a given vehicle class, all vehicles share similar rotational
features for the same yaw, pitch, and roll angles. Therefore,
the fixed-size visual cue from RoIAlign layer is sufficient for
estimating the candidate sub-category and rotation.

The second part takes both RoIAlign feature and bounding
box information (in world unit as described in Sec. III-B)
into consideration via a concatenation operation to estimate
the 3 dimensional translational vector. To our knowledge,
this novel formulation is the first of its kind to regress the
translational vector directly. The joint feature combination
scheme implicitly encodes the object class and rotation in-
formation via the concatenation operation (⊕ in Fig. 3). The

translation regression head functions in synergy when it is
combined with the joint loss from sub-category classification
and quaternion regression. We show in the experiment that our
novel formulation for translation regression produces much
more accurate position estimation comparing to the methods
that treat the translation estimation as a post-processing step.
This accurate estimation of translational vector is particularly
crucial for the applications where the distance of the objects
are of primary importance (e.g., in the autonomous driving
scenario).

B. Joint Losses

We minimise the following loss L to train our network
in an end-to-end fashion: L = Ldet + Linst, where Ldet
denotes the multi-task loss as in a canonical detection network:
Ldet = Lcls + Lbox + Lmask. The classification loss Lcls,
2D bounding box loss Lbox and 2D mask loss Lmask are
identical as those defined in [37]. In order to accelerate the
network training and keep the functionality of the pre-trained
multi-task module (e.g., mask head for instance segmenta-
tion), we can freeze these heads and their corresponding
child nodes, i.e., the convolutional backbone and set the
Ldet to zero during back propagation phase. Linst denotes
the individual instance loss for 6DoF estimation with sub-
class categorisation. Specifically, it is defined as a triple-loss:
Linst = λsub clsLsub cls + λrotLrot + λtransLtrans, where
λsub cls, λrot, λtrans are hyper-parameters used to balance
their corresponding loss. Next we explain the design choices
for the above triple losses.
Sub-category classification loss Lsub cls. Sub-category de-
notes the finer class of the vehicle corpus: e.g., Audi-A6, BMW-
530, Benze-ML500, etc. In order to balance the rare cases for
infrequently appearing cars in the training images, weighted
cross entropy is used for sub-category classification loss.
Rotation loss Lrot. There are generally three representations
for providing orientation information: Euler angles, SO(3)
rotation matrices and Quaternions. Euler angles are easily un-
derstandable and interpretable parametrisation of 3D rotation.
However, there are two issues when directly regressing the
Euler angles: (1) non-injectivity: the same angle could be
represented by multiple values due to the wrapping around
2π radians, which make the regression a non uni-modal task;
(2) Gimbal lock: possible loss of one degree of freedom does
not make Euler angles invalid but makes them unsuited for
practical applications. Given 3D models of the objects, one
way to work around the problem is to rotate each view at
fixed intervals to cover the whole SO(3) and then find the
nearest neighbour [7] or closest viewpoint [9], which treat
the rotation estimation problem as a classification problem.
But this requires a complete CAD model of the object and a
discretisation step of orientation angles. To estimate rotation
matrix directly, [8] propose a LieNet to regress a Lie algebra
based on rotation representation. However, a 3× 3 orthogonal
matrix is over-parameterised and enforcing the orthogonality
is non-trivial.

Quaternions are favourable due to the universality mapping
from 4 dimensional values to legitimate rotations. This is
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Fig. 3: System pipeline: 6D-VNet takes a monocular image as input and performs the vehicles’ 6DoF estimation. The grey
box represents a canonical instance segmentation network and the dark blue branch is for estimating object 6DoF pose and its
sub-category.

a simpler process than the orthonormalisation of rotation
matrices. Quaternions are continuous and smooth, lying in a
unit manifold, which can be easily enforced through back-
propagation. Therefore, the rotation head in our network
focuses on the regression of quaternion representation. How-
ever, the main problem with quaternions is that they are
not injective: the quaternion q and −q represent the same
rotation because two unique values (from each hemisphere)
map to a single rotation. To address the issue, we constrain
all quaternions to one hemisphere such that there is a unique
value for each rotation as follows:

Enforcement of Quaternions to one hemisphere: Let Q repre-
sents the set of quaternions, in which each quaternion, q ∈ Q,
is represented as q = a + bi + cj + dk, and a, b, c, d ∈ R.
A quaternion can be considered as a four-dimensional vector.
The symbols i, j, and k are used to denote three “imaginary”
components of the quaternion. The following relationships are
defined: i2 = j2 = k2 = ijk = −1, from which it follows
that ij = k, jk = i, and ki = j.

The quaternion q and −q represent the same rotation
because a rotation of θ in the direction v is equivalent to a
rotation of 2π − θ in the direction −v. One way to force
uniqueness of rotations is to require staying in the “upper
half” of S3. For example, require that a ≥ 0, as long as
the boundary case of a = 0 is handled properly because of
antipodal points at the equator of S3. If a = 0, then require
that b ≥ 0. However, if a = b = 0, then require that c ≥ 0
because points such as (0, 0,−1, 0) and (0, 0, 1, 0) are the
same rotation. Finally, if a = b = c = 0, then only d = 1
is allowed.

Hence, for the rotation head, given the ground truth unique
quaternion q and the predicted q̂, the rotation loss is defined

as:
Lrot(q, q̂) = ‖q−

q̂
‖q̂‖
‖γ (1)

An important choice for regressing in Euclidean space is the
regression norm ‖‖γ . Typically, deep learning models use
L1 = ‖‖1 or L2 = ‖‖2. With the datasets used in this paper,
we found the L1 norm performs better: the error does not
increase quadratically with magnitude nor over-attenuate large
residuals.
Translation loss Ltrans. Regressing translation vector in
world unit instead of pixel unit stabilises the loss. The transfor-
mation of the detected object takes 2D bounding box centre,
height and width up, vp, hp, wp in pixel space and then outputs
their corresponding uw, vw, hw, ww in world unit as:

uw =
(up − cx)zs

fx
, vw =

(vp − cx)zs
fy

, hw =
hp
fx
, ww =

wp
fy

where the matrix [fx, 0, cx; 0, fy, cy; 0, 0, 1] is the camera
intrinsic calibration matrix.

Huber loss is adopted to describe the penalty in translation
estimation: give ground truth 3 dimensional translation vector
t and the prediction t̂, the translation loss is:

Ltrans(t, t̂) =

{
1
2 (t− t̂)2/δ if |t− t̂| < δ,

|t− t̂| − 1
2δ otherwise.

(2)

where the hyperparamter δ controls the boundary of outliers.
If δ is set to 1, then it becomes the smooth-L1 loss used in [10].
In this paper, δ is set as 2.8 which is the cut off threshold for
translational evaluation as described in Sec. IV-B.

C. Weighted Non-local neighbour embedding
In order to capture spatial dependencies among detected

objects of interest, we introduce a non-local block with a
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weighted operation. We reason that the dependencies among
neighbouring objects will assist the network to regularise the
6DoF pose estimation collectively better than treating them
individually. For example, neighbouring cars on the same lane
will follow almost the same orientation and maintain certain
distance. There are several advantages of using a weighted
non-local operations comparing with other social embedding
schemes (i) non-local operations capture long-range depen-
dencies directly by computing interactions between any two
positions, regardless of their positional distance; (ii) non-local
operations maintain the variable input sizes and can be easily
combined with other operations; (iii) our proposed weighted
operation renders it possible to associate the output maps with
self-attention mechanisms for better interpretability.

The non-local means (NL-means) is first introduced in [38],
based on a non-local averaging of all pixels in the image.
Later [11] introduced the non-local operations as an efficient
and generic component for capturing long-range dependencies
with deep neural networks. The non-local operations maintain
the variable input sizes. Intuitively, a non-local operation
computed the response at a position as a weighted sum of
the features at all positions in the input feature maps. The
generic non-local operation in deep neural network is defined
as:

yi =
1

C(x)
∑
∀j

f(xi, xj)g(xj) (3)

where i is the index of an output position (here in space)
whose response is to be computed and j is the index that
enumerates all possible positions. x is the input signal and
y is the output signal of the same size as x. A pairwise
function f computes a scalar (representing relationship such
as affinity) between i and j. The unary function g computes
a representation of the input signal at the position j. The
response is normalised by a factor C(x). The non-local models
are not sensitive to the design choices of f and g. For
simplicity and fast computation, we consider g in the form
of a linear embedding: g(xj) =Wgxj , where Wg is a weight
matrix to be learnt. The pairwise function f is implemented in
the form of embedding Gaussian as: f(xi, xj) = eθ(xi)

Tφ(xj),
where θ(xi) =Wθxi and φ(xj) =Wφxj are two embeddings.
And C(x) =

∑
∀j f(xi, xj). The recently proposed self-

attention module [39] is a special case of non-local opera-
tions in the embedding Gaussian version: when, for a given
i, 1
C(x)

∑
f(xi, xj) becomes softmax computation along the

dimension j. So we have y = softmax(xTWT
θ Wφx)g(x).

However, we found out that when the input dimension d
(for a feature map of H ×W × C where C is the channel
number, d = H×W ) gets large, the dot products grow large in
magnitude, pushing the softmax function into regions where it
has extreme gradients. As a result, y will have extreme value as
well.1 To counteract the effect, we propose to use a weighted
non-local operation for calculating the self-attention map A

1To illustrate why the dot products get large, assume that the components of
x are random variables with mean 0 and variance 1. Then its self dot product,
xT · x =

∑d
i x

2
i , has mean 0 and variance d (d is the input dimension).

as:

A = softmax(
xTWT

θ Wφx√
d

) (4)

So that y = A · g(x). The weighted non-local operation
scales the dot-product attention variance to unit 1, which
consequently does not push the softmax operation to extreme,
saturated values. Intuitively, the weighted operation has the
same form of expression. However, the suitable temperature in
softmax is finicky to determine. Alternatively, we scale the dot-
product input variance to unit 1. Consequently, the output map
after softmax operation will provide a justifiable interpretation
in the form of a self-attention formulation.

IV. EXPERIMENTS

We benchmark our method on the challenging PAS-
CAL3D+ [40] dataset and perform comprehensive studies on
the challenging Apolloscape dataset [2]. For both Pascal3D+
and Apolloscape dataset, we focus our experiments on the
“Car” category in urban scene.
Implementation Details: ResNet-101 is adopted as the con-
volutional body with Feature Pyramid Networks (FPN) as
the detection backbone. The instance segmentation head is
pre-trained using the Apolloscape scene dataset2 with “car,
motorcycle, bicycle, pedestrian, truck, bus, and tricycle” as 8
instance-level annotations.

The hyperparameters λsub cls, λrot, λtrans in Eqn. III-B are
set to 1.0, 1.0, 0.1 to scale the loss accordingly. To decrease the
translational outlier penalty and stabilise the network training,
the hyperparameter δ in Eqn.III-B is set to 2.8 metres as the
loose end of the translational metric in Sec. IV-B. The base
learning rate starts from 0.01 with warm start-up scheme and
the models are trained up to 5 × 104 iterations with learning
rate divided by 10 at 1.5×104th and 3×104th iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. The
RoIAlign takes a feature map of 7 × 7 from each RoI. The
weighted non-local block is plugged into the last layer (5th) of
the convolutional body with a receptive field of 32×32. During
training, the images are resized with the largest side randomly
in [2000, 2300]. Due to memory limitation, batch size is set
as one image per single GPU. The incorporation of non-local
block will increase the memory requirement, hence the training
images are resized with the largest side randomly in [1500,
2000] when non-local block is plugged in. Top 1000 regions
are chosen as per FPN level with 100 batch size per image.
During testing phase, 0.1 is chosen as the detection threshold
in the Faster R-CNN head with multi-scale augmentation.

A. Analysis on Pascal3D+ dataset

We first evaluate our method on the task of joint detection
and viewpoint estimation. The object orientation is represented
in terms of viewpoint: azimuth, elevation and tilt angles. The
results are reported using Average Viewpoint Precision(AVP)
under different quantisation of angles, as proposed by [40].
The results are shown in Tab. I. Our proposed framework
improves almost all previous methods apart from the recent

2http://apolloscape.auto/scene.html
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Method Car
AV P4 AV P8 AV P16 AV P24

Pepik et al. [41] 36.9 36.6 29.6 24.6
Viewpoints & KeyPoints [42] 55.2 51.5 42.8 40.0
RenderForCNN [43] 41.8 36.6 29.7 25.5
Poirson et al. [44] 51.4 45.2 35.4 35.7
Massa et al. [45] 58.3 55.7 46.3 44.2
Xiang et al. [46] 48.7 37.2 31.4 24.6
3D-RCNN [47] 71.8 65.5 55.6 52.1
6D-VNet 72.2 63.0 54.8 48.7

TABLE I: Joint detection and viewpoint evaluation on Pas-
cal3D+ dataset for “Car” category.

Method Accπ
6
↑ MedErr ↓

Viewpoints & KeyPoints(TNET) [42] 0.89 8.8◦

Viewpoints & KeyPoints [42] 0.90 9.1◦

RenderForCNN [43] 0.88 6.0◦

Deep3DBox [48] 0.90 5.8◦

3D-RCNN(VGG16) [47] 0.94 3.4◦

3D-RCNN(ResNet50) [47] 0.96 3.0◦

6D-VNet 0.95 3.3◦

TABLE II: Evaluation of viewpoint estimation with ground-
truth detections on Pascal3D+ for “Car” category.

3D-RCNN [47] where a differentiable Render-and-Compare
loss is introduced. This loss is complementary to our frame-
work and we believe the inclusion of the loss that allows 3D
shape and pose to be learned with 2D supervision can further
improve the accuracy of the pose estimation.

We follow [47] [46] to evaluate viewpoint on ground-truth
boxes in Tab. II which provides an upper-bound of viewpoint
accuracy independent of the object detector adopted. The
viewpoint estimation error is measured as geodesic distance
over the rotation group SO(3). The Accπ/6 that estimates
accuracy at π

6 and the median angular error MedErr which
was used in [46]. Our method performs on par with the state-
of-the-art on both the π

6 and median angular error metrics.

B. Analysis on Apolloscape 3D Car Instance dataset

The Apolloscape 3D Car Instance challenge contains a
diverse set of stereo video sequences recorded in the street
scenes from different cities. There are 3941/208/1041 high
quality annotated images in the training/validation/test set.3

The monocular RGB images are of pixel size 2710 × 3384.
It is worth noticing the high resolution of the images: the
total number of pixels of a single image is 100 times than
those of other canonical image datasets (e.g., MS-COCO,
Mapillary Vistas, ImageNet). The camera intrinsic parameters
are provided in the form of camera focal lengths (fx, fy) and
optical centres expressed in pixels coordinates (cx, cy). Car
models are provided in the form of triangle meshes. The mesh
models have around 4000 vertices and 5000 triangle faces. One
example mesh model is shown as in Fig. 2. There are total
79 car models (Fig. 4) in three categories (sedan1, sedan2,
SUV) with only 34 car models appearing in the training set. In
addition, ignored marks are provided as unlabelled regions and

3After manual examination, we have deleted visually distinguishable
wrongly labelled images, leaving us with 3888/206 images for train-
ing/validation.

we only use the ignored masks to filter out detected regions
during test.

Fig. 4: 79 car model meshes for the Apolloscape 3D Car
Instance dataset.

AP AP50 AP75 APS APM APL APXL

Single Scale 0.57 0.87 0.62 0.34 0.50 0.65 0.73
Multiple Scale 0.59 0.89 0.64 0.34 0.51 0.68 0.84

TABLE III: 2D bounding box detection mAP from the Faster
R-CNN head. It is the upperbound for 3D detection result.
Subscripts of AP represent squared object one side size in
pixels as: S:28-56, M:56-112, L: 112-512, XL:512+.

Evaluation Metrics: The evaluation metrics follow similar
instance mean AP as the MS-COCO [14]. However, due
to 3D nature, the 3D car instance evaluation has its own
idiosyncrasies: instead of using 2D mask IoU to judge a
true positive, the 3D metric used in this dataset contains the
perspective of shape (s), 3D translation (t) and 3D rotation
(r). The shape similarity score is provided by an Ncar ∗Ncar
matrix where Ncar denotes the number of car models. For 3D
translation and 3D rotation, the Euclidean distance and arccos
distance are used for measuring the position and orientation
difference respectively.

Specifically, given an estimated 3D car model in an image
Ci = {si, ti, ri} and ground truth model C∗i = {s∗i , t∗i , r∗i },
the evaluation for these three estimates are as follows: for
3D shape, reprojection similarity is considered by putting the
model at a fix location and rendering 10 views (v) by rotating
the object. Mean IoU is computed between the two poses (P )
rendered from each view. Formally, the metric is defined as:
cshape = 1

|V |
∑
v∈V IoU(P (si), P (s

∗
i ))v , where V is a set
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of camera views. For 3D translation and rotation, the eval-
uation metric follows that of the canonical self-localisation:
ctrans =‖ ti − t∗i ‖2 and crot = arccos(|q(ri) � q(r∗i )|). Then,
a set of 10 thresholds from loose criterion to strict criterion
(c0, c1, . . . , c9) is defined as:

shapeThrs− [.5 : .05 : .95]

rotThrs− [50 : 5 : 5]

transThrs− [2.8 : .3 : 0.1]

where the most loose metric c0: 0.5, 50, 2.8 means shape
similarity > 0.5, rotation distance < 50◦ and translation
distance < 2.8 metres, and stricter metrics can be interpreted
correspondingly: all three criterion must be satisfied simulta-
neously so as to be counted as a true positive.

It is worth noting the strict translation distance threshold of
2.8 metres: it requires that the detected vehicle’s distance from
the camera centre needs to be correctly estimated within a 2.8
metres threshold even if the vehicle is hundreds metres away
from the camera, otherwise the detection will be counted as a
false positive. The precise translational estimation requirement
is the major factor for the network to produce incorrect false
positive, which is a challenging task from a human perspective
as well.

1) Main Results & Ablation Studies: We present the results
of the proposed 6D-VNet which reaches the 1st place in
Apolloscape challenge 3D Car Instance task. Furthermore, we
perform comprehensive evaluations to analyse the “bells and
whistles” in 6D-VNet, which further improve state-of-the-art
cf. Tab. VII. Our ablation studies gradually incorporated all
components and are detailed as follows.
Effect of End-to-End Training. We first provide the 2D
bounding box mAP from Faster R-CNN head to serve as the
upper bound by 2D object detection as in Tab. III. We can
find that small objects are more challenging to detect. Small
object also indicates the object longitudinal axis distance is
typically far away from the camera. The accurate estimation
of large translational distance value is thus more challenging.

In Tab. IV we show that the translational head is crucial
for improving the mAP in our end-to-end training scheme.
The projective distance estimation was the defacto approach in
previous state-of-the-art methods [7], [9], [8] as a second stage
to measure the translational distance as described as follows:

Fig. 5: Projective Distance Estimation.

Projective Distance Estimation: Fig. 5 illustrates the projective
distance estimation via geometric method which were adopted
in previous state-of-the-art methods [7], [9], [8]. For each
object we precomputed the 2D bounding box and centroid.

To this end, the object is rendered at a canonical centroid
distance zr (zr should be set larger than the object length
in longitudinal axis so that the entire object can be projected
onto the image plane). Subsequently, the object distance zs can
be inferred from the projective ratio according to zs = lr

ls
zr,

where lr denotes diagonal length of the precomputed bounding
box and ls denotes the diagonal length of the predicted bound-
ing box on the image plane. Given its depth component zs, the
complete translational vector can be recovered geometrically
as:

xs =
(u− cx)zs

fx
, ys =

(v − cx)zs
fy

where [u, v] is the bounding box centre, and the matrix
[fx, 0, cx; 0, fy, cy; 0, 0, 1] is the camera intrinsic calibration
matrix. The formulation assumes that: (i) the object centre in
3D will be projected to the object bounding box in the 2D
image; (ii) the predicted object class and rotation vector is
correctly estimated.

The depth component estimation is treated as an entirely
independent process given the rotation pose estimation. Hence,
the geometric post-processing method achieves around only
3.8%mAP due to the crude translation estimation. We show
that using the same bounding box information (in world unit)
to train a translation regression head improves the mAP to
8.8%.

Fig. 6: Losses w/o & w/ weighted non-local block (NL).

Effect of Joint Losses. We then investigate the synergistic
training of using visual information to regress translational
vector as the concatenation operation ⊕ in Fig. 3. The w/o
⊕ row in Tab. IV represents the translation head using only
normalised world unit bounding box information, the ⊕ row
represents the translation head that combines the intermediate
visual information from RoIAlign with the bounding box
information. The overall mAP is further improved by 2%
using the RoIAlign intermediate feature. It is worth noting the
synergy of the joint losses reflecting through the intermediate
training value columns in Tab. IV: the shape similarity,
rotation and translational score improve by 0.01, 1.4◦ and
2.3 metres respectively. By connecting the translation head
with intermediate RoIAlign branch, the translational losses
are jointly back propagated with the losses from the sub-
categorisation and rotation. The improvement of translational
estimation synergistically boost the accuracy for shape and
rotation estimation. It shows that the network is able to learn
the implicit information that is shared amongst the object class,
rotation and translation.
Effect of Weighted Non-local Block. The weighed non-
local block is inserted into the last layer of the ResNet to
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Method Intermediate training value val mAP test mAP
shape sim rot dist trans dist

projective distance 0.84 13.5◦ - 0.038 0.0371
w/o ⊕ 0.86 11.9◦ 4.6 0.088 0.0882
⊕ 0.87 10.5◦ 2.3 0.108 0.1049

⊕ (fine-tune) 0.90 8.8◦ 1.3 0.128 0.1223

TABLE IV: Effect of end-to-end training and joint losses. The projective distance is the most commonly adopted approach
in previous state-of-the-art methods [7], [9], [8] as a second stage to measure the translational distance. w/o ⊕ denotes the
network without the concatenation operation in Fig. 3. ⊕ represents the branch trained with joint losses. ⊕ (fine-tune) denotes,
when training the network, the learnt parameters in convolutional body and Faster R-CNN head are unfreezed.

Method Inference Time (second) val mAP test mAP
Det Head Triple Head Misc Total

w/o Weighted Non-local (Single Scale) 0.966 1.322 0.002 2.40 0.128 0.1223
w/o Weighted Non-local (Multi-Scale) 5.535 1.381 0.004 6.86 0.143 0.1412
Weighted Non-local (Multi-Scale) 5.810 1.473 0.003 7.29 0.146 0.1435

TABLE V: Effect of Weighted Non-local Block and runtime analysis.

Fig. 7: Examples of the behaviours of a weighted non-local block. These two examples are from held-out validation images.
On the left images, the starting point (pink square) represents one xi. Since we insert the weighted non-local block in res5
layer, one pink square denotes a receptive field of pixel size 32×32. We position the starting points on one of the vehicles. The
end points of arrows represent xj . The 10 highest weighted arrows for each xi are visualised. The arrows clearly indicate that
the weighted non-local block attends to the neighbouring traffic participants. Note that in the second illustration, end points are
able to locate neighbouring vehicles’ wheels and rear-view mirrors which are critical clues to position and orient the vehicle.
The right images are the visualisations of self-attention map A of xi from Eqn. 4. These visualisations show how the weighted
non-local block finds interpretable, relevant indications of neighbouring vehicles to adjust the pose estimation.

Fig. 8: 3D renderings of predicted vehicles with camera coordinate axis. The bottom renderings framed by silver plate represent
the results from the model with weighted non-local block. The vehicles in colour silver, green, red represent ground truth, true
positive and false positive respectively. Due to the strictly fixed 2.8-metre translation criterion, vehicles that are farther way
from the cameras are more difficult to measure. The pink arrows highlight the predictions that have been adjusted according
to their neighbouring vehicles when weighted non-local block is plugged in.

encode dense spatial dependencies. Fig. 6 shows that by
plugging in the weighted non-local block, both the rotational

and translational training losses further decrease comparing
with the previously converged model, which greatly boost up
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Module number of parameters
mask rcnn r101 242MB

triplet head 54MB
non local block 518kb

TABLE VI: Number of parameters of each component of the
proposed method.

the training procedure. Tab. V shows that the incorporation
of weighted non-local block consistently improves mAP on
both validation and test set with marginally increased inference
runtime. According to Tab. VI, the backbone Mask RCNN and
the triplet heads contain most parameters (242Mb+54Mb), the
additional parameters are caused by the proposed weighted
non-local block only achieve 518kb which is extremely low
compared to the backbone. Thus, similar conclusion can be
drawn that the proposed method can improve the performance
with marginally increased number of parameters.

We visualize the self-attention map A of Eqn. 4 in the
weighted non-local block in Fig. 7. The heat maps on the right
exhibit meaningful attention positions (without the weighted
operation, the heat map will exhibit extreme high temperature
with hard to interpret positions on the attention map), which
demonstrates that the weighted non-local block can learn to
find meaningful relational clues regardless of the distance
in space. In Fig. 8, we visualise the predicted vehicles in
3D space. When incorporated with weighted non-local block,
the model is able to capture the spatial dependencies so
that it adjusts the predictions according to the distance and
orientation of neighbouring vehicles.

V. CONCLUSIONS

We proposed an end-to-end network 6D-VNet for 6DoF
pose estimation of vehicles from monocular RGB images. It
can not only detect the traffic participants, but also generate
their translations and rotations. To the best of our knowledge,
the incorporation of translation regression into the network is
the first of its kind and greatly improve the pose estimation ac-
curacy compared to those methods which treat the translation
estimation as a post-processing step. In addition, we design
the joint losses according to solid grounding in geometry,
which are crucial to achieve accurate pose estimation. The
experiments show that the proposed method reaches the first
place in Apolloscape challenge 3D Car Instance task and
achieves the performance of current state-of-the-art framework
on the PASCAL3D+ dataset. Particularly, a large improvement
for position estimation is observed when the translation head
is trained from both visual clues and bounding box informa-
tion. Furthermore, we demonstrate that the spatial dependen-
cies among neighbouring vehicles can be incorporated via a
weighted non-local block and an interpretable self-attention
map. It can help regularise the 6DoF object pose estimation
collectively which is better than treating them individually.
In this paper, the 6DoF pose is directly generated from the
network, post-refinement is not considered. In the future work
we will try to further improve the 6DoF pose estimation by
using post-processing techniques such as iterative closet point
based algorithms or iterative refinement network.
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PD TH TV FT MS NL IM QS mAP c0 c5 APS APM APL AR1 AR10 AR100 ARS ARM ARL

" 0.037 0.125 0.042 0.072 0.042 0.076 0.016 0.091 0.128 0.072 0.133 0.245
" 0.067 0.190 0.089 0.069 0.057 0.194 0.026 0.116 0.139 0.069 0.138 0.305
" " 0.088 0.237 0.122 0.100 0.077 0.246 0.030 0.141 0.174 0.100 0.169 0.360
" " " 0.121 0.331 0.164 0.126 0.115 0.297 0.035 0.162 0.231 0.126 0.246 0.424
" " " " 0.141 0.351 0.198 0.128 0.131 0.357 0.040 0.179 0.243 0.128 0.253 0.477
" " " " " 0.144 0.352 0.199 0.131 0.133 0.360 0.040 0.187 0.249 0.131 0.261 0.481
" " " " " " 0.147 0.357 0.206 0.117 0.137 0.366 0.041 0.190 0.246 0.117 0.262 0.489
" " " " " " " 0.148 0.353 0.209 0.115 0.138 0.371 0.042 0.191 0.244 0.115 0.259 0.490

TABLE VII: Performance on test set in terms of mAP. c0 is the most loose criterion for evaluating AP and c5 is in the middle
of criterion. Superscript S,M,L of average precision (AP s) and average recall (ARs) represent the object sizes. Superscript
number 1, 10, 100 represent the total number of detections for calculating recalls. Projective distance (PD) [8] estimation
is adopted in the state-of-the-art methods [8], [9], [7]. Triple head (TH) is the baseline 6D-VNet. Translation head is then
concatenated with visual branch (TV), represented by ⊕ operation in Fig. 3. Fine-tuning (FT) the convolutional body and
detection head gives the task specific network a 3% boost in mAP. Multi-scale testing (MS) further increases the accuracy.
The incorporation of weighted non-local block (NL) improves both precision and recall. Using ignore mask (IM) to filter
2D detection bounding box with 0.5 IoU as threshold improves the precision, however, slightly degrades the recall. Finally,
enforcing the quaternions to one hemisphere (QS) achieves the current state-of-the-art.
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