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From strategies to derivations and back.
An easy completeness proof for first-order intuitionistic dialogical logic

Davide Catta

LIRMM, Université de Montpellier, CNRS
davide.catta@lirmm.fr

Abstract

In this paper we give a new proof of the correspondence between the existence
of a winning strategy for intuitionistic E-games and Intuistionistic validity for first-
order logic. The proof is obtained by a direct mapping between formal E-strategies
and derivations in a cut-free complete sequent calculus for first-order intuitionistic
logic. Our approach builds on the one developed by Herbelin in his PhD disser-
tation and greatly simplifies the proof of correspondence given by Felscher in his
classic paper.

1 Introduction
The art of persuasive debate, dialectics, and the science of valid inference, logic, have
been intrinsically linked since their beginnings (Castelnérac & Marion, 2009, 2013;
Marion & Rückert, 2016; Crubellier, Marion, McConaughey, & Rahman, 2019; Dutilh
Novaes, 2005; Dutilh Novaes, 2020). At the dawn of the modern age the connection
between the two disciplines seemed so clear that one of the first sentences pronounced
by Doctor Faustus in Marlowe’s work goes as follows

Is, to dispute well, logic’s chiefest end? Affords this art no greater miracle?

Despite this ancient connection between the two disciplines, mathematical logic had to
wait until the 60s of the last century to determine that the logical concept of validity
could be expressed through the use of dialogical concepts and techniques. The Ger-
man mathematician and philosopher Lorenzen (Lorenzen, 1960) proposed to analyze
the meaning of the logical formulas and connectives through the concept of debate.
Lorenzen argued that the meaning of a formula, or proposition, is to be determined by
the way in which the assertion of the formula affects the outcome of a debate (win or
loss) between two players. Lorenzen’s debates can be succinctly presented as follows:
two players participate in the debate: one player, the Proponent, who affirms that a cer-
tain formula holds, and another player, the Opponent, who contends the claim of the
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Proponent. The debate starts by the Proponent affirming a certain formula. The Oppo-
nent takes his turn and attacks the claim made by the Proponent according to its logical
form. The Proponent can, depending on the form of the attack made by the Opponent,
either defend her previous claim or counterattack. The debate evolves following this
pattern. The Proponent wins the debate if she has the last word, i.e., the defense against
one of the attacks made by the Opponent is a formula that the Opponent cannot attack
without violating the debate rules.

Lorenzen conceived dialogical logic as a foundation for the meaning of the in-
tuitionistic logical connective and quantifiers. Subsequently, in his PhD dissertation,
Lorenzen’s student Lorenz introduced into dialogical logic concepts and techniques
from game theory (Lorenz’s PhD dissertation is reproduced in (Lorenz, 2021)). The
study of the meaning of logical connectives in terms of debates, together with the
game-theoretic focus introduced by Lorenz, led to the concept of winning strategies
for debates (or dialogue-games). In particular, Proponent’s winning strategies for cer-
tain particular classes of dialogue-games were connected to validity in intuitionistic
logic:

Given a first-order formula A, A is IL valid if and only if there is a Propo-
nent winning strategy for A.

Unfortunately almost 30 years of work were needed to get a first correct proof of
this particular form of completeness theorem (Felscher, 1985). Felscher’s approach to
dialogical logic, an approach that will be followed in the rest of this paper, is proof-
theoretically oriented: Felscher takes strategies as the primary concept of dialogical
logic and shows that Proponent winning strategies can be algorithmically transformed
into formal sequent calculus proofs. We briefly describe Felscher’s proof of the com-
pleteness (or correspondence) theorem. Felscher’s proof makes use of various interme-
diate notions that allow a winning strategy to be transformed into a proof in the sequent
calculus LJ and vice versa. First, Felscher defines two types of dialogue games, called
D-dialogues and E-dialogues. In the latter dialogues, the Opponent must react upon the
last intervention of the Proponent, while in the former he is free to react against any pre-
ceding intervention of the Proponent. Second, Felscher gives an algorithm that converts
D-dialogues into E-dialogues and, consequently, D-strategies into E-strategies. As a
consequence, Felscher focuses on E-strategies. Winning strategies for E-dialogues are
infinitely branching trees, in which each branch is an E-dialogue won by the Proponent
(thus finite). The strategies are infinitely branching for the following reasons:

1. after any Proponent assertion of a universally quantified formula ∀xA, the Oppo-
nent can ask her to instantiate the formula A[t/x] for any term t;

2. after any Proponent attack against an existentially quantified formula ∃xA, the
Opponent can defend against the attack by instantiating A[t/x] for any term t.

On the contrary, proofs in the sequent calculus are finite trees. To prove the corre-
spondence between strategies and proofs in the sequent calculus, Felscher considers
a finitary canonical part of a strategy: its skeleton. Felscher obtains the skeleton of a
strategy by considering only certain branches of the strategy, e.g., branches in which
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the Opponent attacks a universally quantified formula ∀xA by asking the Proponent
to instantiate A[w/x] with w the first variable (according to a fixed enumeration) that
does not appear before the assertion of ∀xA. Although strategies skeletons are finite,
they are not proof-like: in particular, they do not respect the eigenvariable condition of
sequent calculus proofs1. Felscher is thus forced to consider the formal E-skeleton of a
strategy. Given a Strategy, Felscher obtains its formal E-skeleton by forcing the Propo-
nent to immediately defend from an attack against an existentially quantified formula.
To complete his proof, Felscher provides different algorithms: an algorithm that trans-
forms a proof in the sequent calculus LJ into what Felscher calls IC-protableaux, and
another algorithm that transforms an IC-protableaux into a formal E-skeleton. Since
Felscher has already shown that any formal E-skeleton can be converted into an E-
strategy, this concludes the proof. As one can appreciate merely from this description,
Felscher’s proof is a big nut to crack. In fact, as the authors of (Alama, Knoks, &
Uckelman, 2011) argue, “Felscher’s proof, though correct, is both complicated, with
its introduction of the notion of protableaux, and difficult to understand.”

An improvement of Felscher’s work was produced by Herbelin in his PhD disser-
tation (Herbelin, 1995)2. Herbelin presents a variant of the LJ sequent calculus, called
LGQ, and proves that given a formula A, derivations of ` A in the sequent calculus
LGQ correspond to winning E-strategies for A and vice versa. Herbelin’s proofs is
considerably simpler than Felscher’s but, unfortunately, it is limited to propositional
logic. The objective of our paper is thus simple: we extend the work of Herbelin to
first-order intuitionistic logic. We present a sequent calculus, SLJ , that is complete for
first-order intuitionistic logic and we show that derivations in the sequent calculus SLJ
corresponds to the formal skeleton of winning E-strategies and vice versa.

Overview

The rest of the paper is structured as follows: Sect. 2 introduces dialogical logic for
intuitionistic logic: we define E-games (that we simply call games), formal E-strategies
(that we simply call strategies) and prove some results about games and strategies.
Sect. 3 introduces the sequent calculus SLJ: we prove some results about SLJ, in
particular, that SLJ is sound and complete for intuitionistic firts-order logic. In Sect. 4
we show how to transform a winning strategy for a formula A into a derivation of ` A
in the calculus SLJ. In Sect. 5 we show how to transform a derivation of ` A in the
calculus SLJ into a winning strategy for A. The paper will be as much self-contained
as possible.

1see section 2.8 for a discussion
2A natural correspondence between a variant of E-strategies for intermediate propositional logics and

derivations in an hyper-sequent calculus is provided in (Fermüller, 2003). Building on the work of
Fermüller (Alama et al., 2011) provides a natural correspondence between a variant of E-strategies and
derivations in a complete sequent calculus for propositional classical logic. For a correspondence between
strategies and tableaux proofs for first-order classical logic one can consult (Clerbout, 2014).
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2 Dialogical Logic

2.1 First-order language, sequences
In this paper we will consider a standard first-order languageL over a signature (R,F ).
R is a countable set of predicate variables (P,Q,R, S , etc. vary over predicate variables)
and F is a countable set of function symbols ( f , g, h, etc. vary over function symbols).
The two sets are disjoint and there is an arity function α : R ∪ F → N. Function
symbols with arity 0 will be called constants and a, b, c, d, etc. will range over them.
Predicate variables with arity 0 will be called propositional variables and X,Y,Z,W, etc.
will range over them.

Let V be a countable set of variable symbols (variables will be ranged over by
x, y, z,w, etc.), terms are defined by the following grammar:

t := x | f (t1, . . . , tn)

where f is a function symbol with arity n. Let ∧,∨,⇒,∀,∃ be the symbols for the usual
connective and quantifiers of first-order logic. And let ⊥ (falsehood) be a predicate
constant. Formulas are specified by the following grammar:

F := P(t1, . . . , tn)| ⊥ | F ∧ F | F ∨ F | F ⇒ F | ∀xF | ∃xF

the predicate constant ⊥ and formulas of the form P(t1, . . . , tn), where P is a predicate
variable, will be called atomic formulas. The negation of a formula is defined as ¬F ≡
F ⇒ ⊥. We will use capital roman letter from the beginning of the alphabet (A, B,C,D,
etc.) to denote arbitrary formulas. The notion of free (resp. bound) variables of a term
(resp. formula) will be the standard ones, as well as the notion of subformula, Gentzen-
subformula and positive/negative subformula of a formula. If A is a formula and t a
term, we denote by A[t/x] the result of the capture avoiding substitution of the term t
for each occurrence of the variable x in A. The depth |A| of a formula A is the maximum
length of a branch in its construction tree minus one.

In the present work, we will often talk about sequences. Informally, a sequence is
a set of objects listed according to a certain specific order. Formally, a sequence is a
mapping whose domain is a subset of the set N of natural numbers. Every element of
a sequence is thus a pair (n, x) where n is a natural number and x an element of some
set. We will denote an element (n, x) as xn and call n an index. We will consider that
if A is a subset of natural numbers that index a set S and n ∈ A then m ∈ A for every
m < n. Thus, the first element of a sequence will be indexed by 0 the second by 1
the third by 2 and so on. Sequences will be denoted by small case letters of the Greek
alphabet σ, ρ, τ, etc. The length of a sequence is the number of elements in it. If ρ is a
sequence, we write ρi to denote the element of ρ indexed by i. The parity of ρi is the
parity of i, e.g., if σ = M O T H E R then ρ0 = M and has parity 0, ρ3 = H and has
parity 1. We will denote the empty sequence by ε. If σ = x0x1 . . . xn is a sequence
and ρ = y0y1 · · · ym is another sequence, the expression σρ will denote the sequence
x0x1 · · · xnyn+1 · · · yn+m. Given a sequence τ and a sequence ρ, τ is a prefix of ρ (written
τ v ρ) iff there is a sequence σ such that ρ = τσ. If σ , ε then τ is a proper prefix of
ρ. Given a sequence τ and a sequence ρ, τ is a suffix of ρ if there is a sequence σ such
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that ρ = στ. If τ , ε then τ is a proper suffix of ρ. Let X be a set of sequences. The set
X is said to be prefix closed whenever ρ ∈ X implies σ ∈ X for every σ v ρ.

2.2 Argumentative dialogues: informal overview
Before entering into the formal matter of dialogical logic, let us give an informal ex-
ample of an argumentative dialogue about the validity of a formula. Let A and B stand
for two arbitrary atomic formulas.

0. P: I affirm that A ∧ B⇒ B.

1. O: Let me assume, for the sake of the proof, that A∧ B holds, can you show that
B holds?

2. P: You admitted that A ∧ B holds, can you admit that B holds?

3. O: Indeed, I must admit that B holds.

4. P: Then I have nothing more to prove, you have admitted that B holds, if A ∧ B
holds.

We can see that the Proponent and the Opponent alternate in the dialogue. The dia-
logue is a sequence of interventions. Each intervention but the first consists in either an
attack against a preceding intervention of the other player or a defense against an attack
of the other player. For example O in intervention 1 attacks intervention 0 by asking P
to show that B holds provided that A∧B holds. P’s defense against 1 is the intervention
4. What counts as a question against an asserted formula A depends on its form. An
answer to such a question is likewise dependent on the logical form of A. For example,
in 2, P attacks the formula asserted in 1 by asking O to assert B. This is because if one
admits that a conjunction holds, one must be ready to concede that both members of
the conjunction hold. Summing up, an argumentative dialogue will be a sequence of
alternated interventions made by the Proponent and the Opponent. Each intervention
in the dialogue is an attack or a defense against a preceding intervention, the dialogue
ends whenever the Opponent cannot produce a new intervention without falling in con-
tradiction with what he already conceded. The content of the next subsection will be
devoted to giving a formal content to this intuitive discussion. In subsection 2.3 we de-
fine what a question on a formula is and what counts as an answer to such a question.
In subsection 2.4 we formally define what it means for an intervention in a dialogue
to refer to another preceding intervention in the same dialogue (definitions 1 and 2).
Finally, in subsection 2.5 we define (definition 3) the class of argumentative dialogues
we are interested in (that we call games) and the conditions in which P wins in an
argumentative dialogue.

2.3 Argumentation forms
The set of auxiliary symbols Aux is the smallest set containing the symbols ∧1,∧2,∨,∃
and the expressions ∀[t/x] for all terms in T and variables x of L.
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Following the terminology of Felscher (Felscher, 2002), an argumentation form
Arg is a function assigning to each non-atomic formula A a set of pairs consisting of
one question and one answer with questions being either formulas or symbols in Aux
and answers being formulas.3

Arg(A⇒ B) = {(A, B)}
Arg(A ∧ B) = {(∧1, A), (∧2, B)}
Arg(A ∨ B) = {(∨, A), (∨, B)}

Arg(∀xA) = {(∀[t/x], A[t/x]) | t ∈ T }
Arg(∃xA) = {(∃, A[t/x]) | t ∈ T }

Given a pair (q, a) ∈ Arg(A), q is called a question on A. Given (q, B) ∈ Arg(A), the
formula B is called an answer to the question q on A. So, for example, if A is B ∧ C,
both ∧1 and ∧2 are questions on A but only B is an answer to ∧1 and only C is an
answer to ∧2. If A is B∨C, the symbol ∨ is a question on A, and both B,C are answers
to ∨. Consider the case where A is B ⇒ C. In this case B is a question on A and C is
an answer to B.

2.4 Augmented sequence
A defense move is a pair (!, A) where A is a formula. An attack move is a pair (?, s)
where s is either a formula or an auxiliary symbol. A move is either an attack move or
a defense move. A move (?, A) where A is a formula and ? ∈ {?, !}, is called assertion
move. We will also say that the move asserts the formula A, or that A is the asserted
formula of the move. Attack moves of the form (?,∃) are called existential attacks.
Attack moves of the form (?,∨) are called disjunctive attacks. Let ρ = m0m1 . . .mn . . .
be a sequence of moves. An assertion move ρ j = (?, A) ∈ ρ is called a reprise if and
only if there is move ρk ∈ ρ with k < j such that ρk = (?′, A) and ρ j, ρk have different
parities.

Definition 1. An augmented sequence is a non-empty sequence of moves ρ together
with a function φ that is defined on each ρi with i ≥ 1 and such that, for all i ≥ 1,
φ(ρi) = ρ j for a j < i. The move φ(ρi) is called the enabler of ρi.

Definition 2. Let (ρ, φ) be an augmented sequence.

• An attack move ρi = (?, s) is justified whenever φ(ρi) is of the form (?, A) and s
is a question on A;

• a defense move ρi = (!, B) is justified whenever φ(ρi) is of the form (?, s), φ(ρi)
is justified, φ(φ(ρi)) = (?, A) and B is an answer to the question s on A.

3The words “question” and “answer” are called “attack” and “defense” by Felscher in (Felscher, 2002);
we deviate from this terminology because we will use the terms “attack” and “defense” exclusively for the
moves in a game, avoiding possible confusion.
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2.5 Games
Let (ρ, φ) be an augmented sequence, we say that a formula A appears in the augmented
sequence if and only if there is a move m ∈ ρ that asserts A. We say that a variable v
appears in ρ whenever v occurs free in some asserted formula or there is a move m =

(?,∀[v/x]) in ρ. If ρi is an attack move and ρi is not the enabler of some defense move
ρ j then we will say that ρi is unanswered. Let us fix once and for all an enumeration
(vi)i∈I of the variables of L.

Definition 3 (Game). A game G for a formula A is an augmented sequence (ρ, φ) such
that

1. ρ0 = (!, A) and for all i > 0 the move ρi is justified;

2. φ(ρi) = ρi−1 if i is odd, φ(ρi) = ρ j with j odd if i is even;

3. if ρi = (?, B) with B atomic formula and i even, then ρi is a reprise and B , ⊥;

4. if ρi is an attack move of the form (?,∀[t/x]) and i is odd then t = vk and vk is
the first variable in the enumeration (vi)i∈I that does not appear in the prefix of ρ
ending with ρi−1;

5. if ρi = (!, B[t/x]) is a defense move, i is odd and ρi−1 is of the form (?,∃) then
t = vk and vk is the first variable in the enumeration (vi)i∈I that does not appear
in the prefix of ρ ending with ρi−1;

6. If ρk is a defense move and k is even then φ(ρk) = ρ j is the unanswered attack
move having the greatest odd index in the prefix of ρ ending with ρk−1.

In a game G, moves ρi with i even are called P-moves. They are called O-moves
otherwise. If Gm is a game and m is a P-move we will write GmP. We will write GmO

otherwise. The length of a game G = (ρ, φ) is the length of ρ.
Let G = (ρ, φ) be a finite game and m be a move. The move m is legal for G if and

only if the augmented sequence (ρm, ψ) is a game, where ψ|ρ = φ and ψ(m) ∈ ρ. ψ|ρ
being the restriction of the function ψ to the sequence of moves ρ.

Definition 4. A game G is won by P if and only if it is finite and either:

• the game is of the form G′mP and there is no move m′ legal for G;

• the game is of the form G′mO and m asserts ⊥.

In what follows we will often identify a game with the sequence of its moves by an
abuse of notation.

Remark 1. The games of definition 3 are E-games according to the Felscher’s nomen-
clature. In fact, condition 2 ensures that each O-move m is a reaction to the imme-
diately preceding P-move n. Moreover, conditions 4 and 5 ensures that the strategies
defined below will be skeletons according to Felscher’s nomenclature. By including
such conditions directly in the definition of game, we can skip many steps in the corre-
spondence proof between sequent calculus derivations and winning strategies.
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2.6 Some examples
We give some examples of games. A game will be represented as a table with two
columns and as many rows as there are moves in the game. In the first column of the
table we will write down the moves of the game. In the second column we will write
the value of the function φ for the move in the first column. Let X,Y,Z be propositional
variables, and R a binary predicate variable

m0 = (!, X ⇒ Y ⇒ ((Y ⇒ Z)⇒ (X ⇒ Z)))
m1 = (?, X ⇒ Y) m0

m2 = (!, (Y ⇒ Z)⇒ (X ⇒ Z)) m1

m3 = (?,Y ⇒ Z) m2

m4 = (!, X ⇒ Z) m3

m5 = (?, X) m4

m6 = (?, X) m1

m7 = (!,Y) m6

m8 = (?,Y) m3

m9 = (!,Z) m8

m10 = (!,Z) m5

m0 = (!, X ∨ Y ⇒ Y ∨ X)
m1 = (?, X ∨ Y) m0

m2 = (?,∨) m1

m3 = (!, X) m2

m4 = (!,Y ∨ X) m1

m5 = (?,∨) m4

m6 = (!, X) m5

m0 = (!, X ∨ Y ⇒ Y ∨ X)
m1 = (?, X ∨ Y) m0

m2 = (?,∨) m1

m3 = (!,Y) m2

m4 = (!,Y ∨ X) m1

m5 = (?,∨) m4

m6 = (!,Y) m5

m0 = (!, X ⇒ ¬¬X)
m1 = (?, X) m0

m2 = (!,¬¬X) m1

m3 = (?,¬X) m2

m4 = (?, X) m3

m5 = (?,⊥) m4

m0 = (!,¬¬X ⇒ X)
m1 = (?,¬¬X) m0

m2 = (?,¬X) m1

m3 = (?, X) m2

m0 = (!, (X ∧ ¬X)⇒ Z)
m1 = (?, X ∧ ¬X) m0

m2 = (?,∧1) m1

m3 = (!, X) m2

m4 = (?,∧2) m1

m5 = (!,¬X) m4

m6 = (?, X) m5

m7 = (!,⊥) m6

m0 = (!, X ∨ Y ⇒ X)
m1 = (?, X ∨ Y) m0

m2 = (?,∨) m1

m3 = (!, X) m2

m4 = (!, X) m1
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m0 = (!,∃y∀xR(x, y)⇒ ∀x∃yR(x, y))
m1 = (?,∃y∀xR(x, y)) m0

m2 = (!,∀x∃yR(x, y)) m1

m3 = (?,∀[w/x]) m2

m4 = (!,∃yR(w, y)) m3

m5 = (?,∃) m4

m6 = (?,∃) m1

m7 = (!,∀xR(x, z)) m6

m8 = (?,∀[w/z]) m7

m9 = (!,R(w, z)) m8

m10 = (!,R(w, z)) m5

Remark 2. All the games except the one for the formula ¬¬X ⇒ X are won by the
Proponent: they either do not admit further Opponent’s moves or they end with the
Opponent asserting ⊥. Remark that the last move of all games won by the Proponent
ending in a Proponent’s move are defense moves and assertions of an atomic formula.
In all games formulas asserted by the Proponent are positive sub-formulas of the for-
mula about which the game is played. Formulas asserted by the Opponent are negative
sub-formulas of the formula about which the game is played. In each game atomic
formulas asserted by the Proponent are both positives and negatives sub-formulas of
the formula about which the game is played.

The Proponent cannot extend the game for the formula ¬¬X ⇒ X by the defense-
move m4 = (!, X) with φ(m4) = m1 because of condition 6 in the definition of game
(definition 3). The two games for the formula X∨Y ⇒ X∨Y have a common prefix, and
they first differ on an Opponent’s move. In one game the Opponent chooses to assert X
in the defense move m4 while in the other game the Opponent chooses to assert Y . In
any case the Proponent wins.

The Proponent wins the game for the formula X ∨ Y ⇒ X even if this latter
formula is not a tautology of first-order intuitionistic logic. Note that if the Oppo-
nent had chosen to assert the formula Y instead of the formula X on move 3 then
the Proponent would have had no chance of winning. In the game for the formula
∃y∀xR(x, y) ⇒ ∀x∃yR(x, y) the player does not defend immediately against the attack
move m5. Instead, she delays her defense until the last move.

We systematize the observations on the games just made with some simple propo-
sitions.

Proposition 1. Let A be an arbitrary formula and G and arbitrary game for A. If
(?, B) is an assertion move in G then B is a Gentzen-subformula of A.

Proof. By induction on the length of G. �

Proposition 2. Let A be an arbitrary formula and G = G′mP be a finite game for A. if
G is won by P then m asserts an atomic Gentzen-subformula B of A.

Proof. Suppose to reach a contradiction that the last move m of G is not a defense
move. Then it is an attack move of the form (?, s). By definition of game, there is a
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preceding O-move mk that asserts some formula C, φ(m) = mk and s is a question on
C. Then the augmented sequence Gn, where n = (!,D), φ(n) = m and D is an answer
to the question s on the formula B, is a game. This contradicts the fact that G is won
by P. Thus m must be a defense move (!, B). If B is not atomic we reach again a
contradiction: in fact by adding a move n = (?, s) to G where s is a question on B we
obtain a game. Thus we must conclude that B is an atomic formula. �

Proposition 3. Let A be an arbitrary formula and G an arbitrary game for A. If (?, B)
is an assertion move in G that is a P-move (resp. an O-move) then B is a positive (resp.
negative) Gentzen-subformula of A.

Proof. By induction on the length of G. �

Proposition 4. Let A be an arbitrary formula and G an arbitrary game for A. If (?, B)
is an assertion move made by P and B is an atomic formula, then B is both a negative
and positive Gentzen-subformula of A.

Proof. Direct consequence of Proposition 3 and of the condition 3 in the definition of
game. �

2.7 Strategies
As we have discussed in remark 2 the game for the formula X ∨ Y ⇒ X is won by
the Proponent but by mere accident: if the Opponent had chosen to assert Y instead of
X the Proponent would not have had a chance to win. This means that the Proponent
cannot win a game on that formula no matter how the Opponent choose to act in the
game. On the contrary the Proponent can win a game on the formula X ∨ Y ⇒ Y ∨ X
no matter how the Opponent chooses to act in the game. This means that there is a
Proponent winning strategy for the formula X ∨ Y ⇒ Y ∨ X and no winning strategy
for the formula X ∨ Y ⇒ X.

Intuitively speaking, a strategy for a game G is a function. A function that specifies,
at each moment of the game, which move a player must play according to the moves
previously played (the history of the game). A strategy is winning when the player
who is following the strategy wins whatever the history of the game is. As long as each
move of the player following the strategy is determined by the strategy itself, it can be
concluded that the game history varies only according to the moves of his Opponent.
We informally describe how a strategy should operate and then formalize this notion.
Imagine being engaged in a gameG, that the last move ofGwas played according to the
strategy, and that it is now your Opponent’s turn to play. Your Opponent could extend
the game in different ways: for example if you are playing chess, you are white and you
just made your first move by moving a pawn to a certain position of the chessboard,
black can in turn move a pawn or move a horse. If you are playing according to the
strategy, the strategy should tell you how to react against either type of move. If black
moves a pawn to C6 and you just moved your pawn to C3, then you move the horse to
H3. If black moves a horse to H6 and you just moved your pawn to C3, then you move
your pawn in B4. Therefore, a strategy can be viewed as a tree in which each node is
a move in the game, the moves of my Opponent have at most one daughter, and my
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moves have as many daughters as there are available moves for my Opponent. A tree
can be seen as a prefix-closed set of sequence over an alphabet. Since our games are
sequences over the alphabet of moves we can define strategies in the following manner:

Definition 5. A strategy S for a formula A is a non empty prefix-closed set of games
for A in which the following conditions are satisfied:

P-determinism: if GmP and GnP belongs to S then m = n;

O-completeness: if GmP ∈ S then GmPnO ∈ S for all moves n legal for GmP;

no delayed choices: if GmO ∈ S and m = (?,∃) or m = (?,∨) then there is a
move n such that GmOnP ∈ S and n is enabled by m.

A strategy S is winning if and only if every maximal, with respect to the prefix order,
sequence of the strategy is a game won by P.

Proposition 5. Let S be an arbitrary strategy and let G be a game in S that ends in a
P-move. The family of moves (mki )(i∈I) such that Gmki ∈ S is finite.

Corollary 1. For any strategy S, if S is winning then S is a finite tree.

2.8 On the “no delayed choices” condition
We would like to explain the intuition behind the no delayed choices condition in the
definition 5 of strategy. As remarked by Felscher, without this condition the following
counts as winning strategies for the formulas X ∨ Y ⇒ X ∨ Y and ∃xP(x)⇒ ∃xP(x):

m0 = (!, X ∨ Y ⇒ X ∨ Y)
m1 = (?, X ∨ Y) m0

m2 = (!, X ∨ Y) m1

m3 = (?,∨) m2

m4 = (?,∨) m1

m5 = (!, X) m4

m6 = (!, X) m3

m5 = (!,Y) m4

m6 = (!,Y) m3

m0 = (!,∃xP(x)⇒ ∃xP(x))
m1 = (?,∃xP(x)) m0

m2 = (!,∃xP(x)) m1

m3 = (?,∃) m2

m4 = (?,∃) m1

m5 = (!, P(w)) m4

m6 = (!, P(w)) m3

the “problem” with these two strategies is that they are not proof-like: they don’t corre-
spond naturally to proofs in a standard intuitionistic sequent calculus like LJ or GKi4.
In particular, the right-hand strategy would correspond to an incorrect proof in the se-
quent calculus, that is,

IdP(w) ` P(w)
6 ∃L

∃xP(x) ` P(w)
∃R

∃xP(x) ` ∃xP(x)
4The left-hand strategy is indeed proof-like if one considers an intuitionistic sequent-calculus in which

multiple formulas can appear on the right of the ` symbol and a multiplicative version of the disjunction
right-rule is adopted. This is the solution adopted by Herbelin in his PhD-dissertation. This kind of solution
does not solve the eigenvariable problem. By this reason, we chose to deviate from Herbelin’s treatment.
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we encounter this problem because P can indefinitely delay a defense move against an
existential or a disjunctive attack. It is not easy to estimate the right dose of delay that
should be conceded to P. In some cases, strategies with delayed defenses against exis-
tential or disjunctive attacks corresponds to proofs. In some other cases —as above—
they do not. We settle things once and for all; P must immediately state a defense
against an existential or disjunctive attack.

2.9 Some examples of strategies
Let X,Y,Z,W be propositional variables, P a unary predicate variable and R a binary
predicate variable. A strategy will be represented as a tree of games.

m0 = (!, X ∨ Y ⇒ Y ∨ X)
m1 = (?, X ∨ Y) m0

m2 = (?,∨) m1

m3 = (!,Y) m2

m4 = (!, X ∨ Y) m1

m5 = (?,∨) m4

m6 = (!,Y) m5

m3 = (!, X) m2

m4 = (!,Y ∨ X) m1

m5 = (?,∨) m4

m6 = (!, X) m5

m0 = (!,∃xP(x)⇒ ∃xP(x))
m1 = (?,∃xP(x)) m0

m2 = (?,∃) m1

m3 = (!, P(w)) m2

m4 = (!,∃xP(x)) m1

m5 = (?,∃) m4

m6 = (!, P(w)) m5

m0 = (!, ((X ⇒ (Y ⇒ W))⇒ (((Y ⇒ W)⇒ Z)⇒ (X ⇒ Z))))
m1 = (?, X ⇒ (Y ⇒ W)) m0

m2 = (!, ((Y ⇒ W)⇒ Z)⇒ (X ⇒ Z)) m1

m3 = (?, (Y ⇒ W)⇒ Z) m2

m4 = (!, X ⇒ Z) m3

m5 = (?, X) m4

m6 = (?,Y ⇒ W) m3

m7 = (?,Y) m6

m8 = (?, X) m1

m9 = (!,Y ⇒ W) m8

m10 = (?,Y) m9

m11 = (!,W) m10

m12 = (!,W) m7

m7 = (!,Z) m6

m8 = (!,Z) m5

12



m0 = (!,∃y∀xR(x, y)⇒ ∀x∃yR(x, y))
m1 = (?,∃y∀xR(x, y)) m0

m2 = (!,∀x∃yR(x, y)) m1

m3 = (?,∀[w/x]) m2

m4 = (?,∃) m1

m5 = (!,∀xR(x, z)) m4

m6 = (?,∀[w/x])) m5

m7 = (!,R(w, z)) m6

m8 = (!,∃yR(w, y)) m3

m9 = (?,∃) m8

m10 = (!,R(w, z)) m9

3 The sequent calculus SLJ
We now present the sequent calculus SLJ (strategic LJ). SLJ is a first-order version of
the calculus LGQ studied by Herbelin in his Phd dissertation (Herbelin, 1995). LGQ
is a Kleene style sequent calculus: the active formula of a left introduction rule is
present in the premises of the rule. LGQ differs from a Kleene-style calculus like
GKi (Troelstra & Schwichtenberg, 1996) because of a restriction on the use of the left
introduction rule for the implication connective. SLJ is obtained from LGQ by adding
the quantifier rules and imposing a restriction on the use of the right introduction rule
for the disjunction and the existential quantifier connectives.

Definition 6. The sequent calculus SLJ is defined by the rules in Table 1. A sequent
is an expression Γ ` C where Γ is a finite (possibly empty) multiset of formulas and C
is a formula. Greek upper-case letters Γ,∆, . . . stand for multisets of formulas. In the
Id-rule A is of the form P(t1, . . . , tn) where P is a predicate variable with arity n ≥ 0 and
the ti are terms. In the ∀R and ∃L-rules, the variable y does not occur in the conclusion
sequent and it is called eigenvariable or proper parameter of the rule. In the⇒L rule,
the left-side premise of the rule is obtained by an Id-rule or a right introduction rule. In
the ∃R-rule as well as in the ∨R-rule, the premise of the rule is obtained by an Id-rule
or a right introduction rule. The bold formulas are called active formulas.

A derivation (also called proof) D of a sequent Γ ` C in SLJ is a finite tree of
sequents constructed according to the rules of SLJ in which leaves are instances of
Id-rules or ⊥L-rules, all sequents of the form ∆,⊥ ` D are leaves and whose root, also
called conclusion, is Γ ` C. The height |D| of a derivation D is the number of nodes in
its maximal branch minus 1. A sequent Γ ` C is said to be derivable or provable in the
sequent calculus SLJ whenever there exists a proof with conclusion Γ ` C.

We give two examples of pairs of derivations with the same root. In each pair, the
left-hand proof-tree is a derivation in both SLJ and GKi while the other proof-tree is a
derivation in GKi that it is not a derivation in SLJ.

Id
∀xP(x), P(y) ` P(y)

∃R
∀xP(x), P(y) ` ∃xP(x)

∀L
∀xP ` ∃xP(x)

Id
∀xP(x), P(y) ` P(y)

∀L
∀xP(x) ` P(y)

∃R
∀xP ` ∃xP(x)
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Table 1: The SLJ sequent calculus.

⊥L
Γ,⊥ ` C Id

Γ, A ` A

Γ, A⇒ B ` A,C Γ, A⇒ B, B ` C
⇒L

Γ,A⇒ B ` C
Γ, A ` B,∆

⇒R
Γ ` A⇒ B

Γ, A, A ∧ B ` ∆
∧L

1Γ,A ∧ B ` C
Γ, B, A ∧ B ` ∆

∧L
2Γ,A ∧ B ` C

Γ ` A Γ ` B
∧R

Γ ` A ∧ B

Γ, A ∨ B, A ` C Γ, A ∨ B, B ` C
∨L

Γ,A ∨ B ` C
Γ ` A

∨R
1Γ ` A ∨ B

Γ ` B
∨R

2Γ ` A ∨ B

Γ, A[y/x],∃xA ` C
∃L

Γ,∃xA ` C
Γ ` A[t/x]

∃R
Γ ` ∃xA

Γ, A[t/x],∀xA ` C
∀L

Γ,∀xA ` C
Γ ` A[y/x]

∀R
Γ ` ∀xA
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⊥L
⊥, X ∨ Y ` P(y) ⊥L

⊥, X ∨ Y,Y ` P(y) ⊥L
⊥, X ∨ Y, X ` P(y)

∨L
⊥, X ∨ Y ` P(y)

3.1 Properties of SLJ
In this section we prove some properties of the sequent calculus SLJ. In particular, we
prove that the sequent calculus SLJ is sound and complete for first-order intuitionistic
logic. If the proof of a proposition is standard, we will omit it.

Proposition 6 (Inversion). For any formula A and B, for any multiset of formulas Γ:

1. if there is a derivation D of Γ ` A∧ B then there are derivations D1 of Γ ` A and
D2 of Γ ` B. Moreover |Di| ≤ |D| for i ∈ {1, 2};

2. if there is a derivation D of Γ ` A⇒ B then there is a derivation D1 of Γ, A ` B.
Moreover |D1| ≤ |D|;

3. if there is a derivation D of Γ ` ∀xA then there is a derivation D1 of Γ ` A[y/x]
where y is a variable that does not appear in Γ. Moreover |D1| ≤ |D|;

4. if there is a derivation D of Γ, A ∨ B ` C then there are derivations D1 of Γ, A ∨
B, A ` C and D2 of Γ, A ∨ B, B ` C. Moreover |Di| ≤ |D| for i ∈ {1, 2};

5. if there is a derivation D of Γ,∃xA ` C then there is a derivation D1 of
Γ,∃xA, A[y/x] ` C where y is a variable that neither appears in Γ nor in C.
Moreover |D1| ≤ |D|.

Proof. By induction on the height of |D| of D. �

Corollary 2. For any formula A for any multiset of formulas Γ, if the main connective
of A is either ∧,⇒ or ∀ and the sequent Γ ` A is provable then there is a derivation D
of Γ ` A in which A is active.

Proposition 7. Contraction and weakening are height preserving admissible in SLJ ,
i.e., for any formula A and C, for any multiset of formulas Γ:

• if there a derivation D of Γ, A, A ` C then there is a derivation D1 of Γ, A ` C
and |D1| ≤ |D|;

• if there is a derivation D of Γ ` C then there is a derivation D1 of Γ, A ` C and
|D1| ≤ |D|.

Proof. By induction on the height of the derivation D of Γ, A, A ` C (resp Γ ` C). �

Proposition 8. For any formula A and any multiset of formulas Γ there is a derivation
D of the sequent Γ, A ` A. Moreover, in the derivation D, either the occurrence of A on
the left of ` is active or the occurrence of A on the right of ` is active.
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Proof. Suppose that the proposition holds for all formulas B having height smaller
than n, and let A be a formula of height n. We will detail the proof only for the case in
which A = C ⇒ D. By induction hypothesis, there are proofs D1 of Γ,C ⇒ D,C ` C
and D2 of Γ,C ⇒ D,D ` D. We have a problem if in the derivation D1 the active
occurrence of C is the one on the left of the turnstile, i.e. D1 ends in a left introduction
rule. If the main connective of C is ∀,∧ or⇒ then by corollary 2 we can conclude that
there is a derivation D′1 of Γ,C ⇒ D,C ` C in which the occurrence of C on the right
of the turnstile is active. Thus we can apply ⇒L on D′1 and D2 to obtain the wanted
result. If the main connective of C is ∃ or ∨ then C has, respectively, the form ∃xC1 or
C1∨C2. Let us consider the second case. By induction hypothesis there are derivations
of Γ′,C1 ∨C2,C1 ` C1 and Γ′,C1 ∨C2,C2 ` C2 where Γ′ = Γ,C1 ∨C2 ⇒ D. First we
construct the two following derivations

...

Γ′,C1 ∨C2,C1 ` C1
∨R

1Γ′,C1 ∨C2,C1 ` C1 ∨C2

...D′2

Γ,C1 ∨C2 ⇒ D,D,C1 ` D
⇒L

}
DA

Γ,C1 ∨C2 ⇒ D,C1 ` D

...

Γ′,C1 ∨C2,C2 ` C2
∨R

2Γ′,C1 ∨C2,C1 ` C1 ∨C2

...D′′2

Γ,C1 ∨C2 ⇒ D,D,C2 ` D
⇒L

}
DB

Γ,C1 ∨C2 ⇒ D,C2 ` D

where D′2 and D′′2 are obtained from D2 by weakening admissibility. We can now
construct a derivation of Γ,C1 ∨C2 ⇒ D ` C1 ∨C2 ⇒ D

...DA

Γ,C1 ∨C2 ⇒ D,C1 ` D

...DB

Γ,C1 ∨C2 ⇒ D,C2 ` D
∨L

Γ,C1 ∨C2 ⇒ D,C1 ∨C2 ` D
⇒R

Γ,C1 ∨C2 ⇒ D ` C1 ∨C2 ⇒ D

�

Proposition 9. For any formula A, B for any multiset of formulas, Γ, the sequents

1. Γ, A, A⇒ B ` B

2. Γ, A ` A ∨ B

3. Γ, B ` A ∨ B

4. Γ, A[y/x] ` ∃xA

are derivable in SLJ. In (4) y is a variable that does not appear in Γ,∃xA.

Proof. It is an immediate consequence of propositions 6,7 and 8
�
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Proposition 10. For any formula A and F, for any multiset of formulas Γ, the cut rule

Γ ` A Γ, A ` F
cut

Γ ` F

is admissible in SLJ that is, if Γ ` A and Γ, A ` F are provable then Γ ` F is provable.

Proof. By nested inductions on the depth of A, (the cut-formula) the height of the
derivation D1 of Γ ` A and the height of the derivation D2 of Γ, A ` F. More precisely,
we appeal to the induction hypothesis either with a strictly smaller cut-formula, or with
an identical cut-formula and two derivations, one of which is strictly smaller while the
other stays the same; the cut admissibility proof follows the usual path of case analysis
on the active formula of D1 and D2.

We detail two cases. Suppose that the cut-fomula A is B⇒ C. We have a derivation
D1 of Γ, B⇒ C ` F and a derivationD2 of Γ ` B⇒ C. Moreover, suppose that in both
derivations the cut-formula B⇒ C is active. This means that D1 and D2 have the form

...D1.1

Γ, B⇒ C ` B

...D1.2

C, B⇒ C,Γ ` F
⇒L

Γ, B⇒ C ` F

...D2.1

Γ, B ` C
⇒R

Γ ` B⇒ C,

we obtain a derivation of Γ ` F as follows: we first construct a derivation DA of
Γ ` C, and a derivation DB of C,Γ ` F, using the admissibility of the cut rule either
on derivations that are smaller than D2 or D1 or on formulas that are smaller than
B ⇒ C. In what follows D′2 is obtained from D2 by height preserving admissibility
of the weakening rule. For the sake of clarity, we underline the cut-formula of each
cut-rule instance.

...D1.1

Γ, B⇒ C ` B,

...D2

Γ ` B⇒ C,
cut

Γ ` B

...D2.1

Γ, B ` C
cut

}
DA

Γ ` C

...D1.2

C,Γ, B⇒ C ` F

...D′2

C,Γ ` B⇒ C
cut

}
DBC,Γ ` F

We then put together DA and DB by using an instance of the cut rule with cut-formula
C. C is a formula strictly smaller than B ⇒ C, thus this application of the cut-rule is
allowed by the induction hypothesis.

...DA

Γ ` C

...DB

Γ,C ` F
cut

Γ ` F

17



Suppose that B ⇒ C is not active in one of the two derivations D1 and D2. Suppose,
for example, that it is not active in D2 e.g., Γ = Γ′,D ∨ E and D2 has the form:

...D2.1

Γ′,D ∨ E,D ` B⇒ C

...D2.2

Γ′,D ∨ E, E ` B⇒ C
∨L

Γ′,D ∨ E ` B⇒ C

We want to obtain a derivation of the sequent Γ′,D ∨ E ` F. A proof of it can be
constructed as follows. We first construct two derivations DA and DB of the sequents
Γ′,D ` F and Γ′, E ` F. In what follows D′1 and D′′1 are obtained from D1 by height-
preserving admissibility of weakening.

...D′1

Γ′,D,D ∨ E, B⇒ C ` F

...D2.1

Γ′,D,D ∨ E ` B⇒ C
cut

}
DA

Γ′,D,D ∨ E ` F

...D′′1

Γ′, E,D ∨ E, B⇒ C ` F

...D2.2

Γ′, E,D ∨ E ` B⇒ C
cut

}
DB

Γ′, E,D ∨ E ` F

We put together the two derivations σ1 and σ2 using a ∨L rule and we obtain the
wanted derivation of the sequent Γ′,D ∨ E ` F

...DA

Γ′,D,D ∨ E ` F

...DB

Γ′, E,D ∨ E ` F
∨L

Γ′,D ∨ E ` F
�

We now prove that SLJ is sound and complete for intuitionistic logic. In order to
prove this fact we show that a sequent Γ ` C is provable in SLJ if and only if it is
provable in the sequent calculus system GKi (Troelstra & Schwichtenberg, 1996). GKi
is sound and complete for intuititionistic logic, and it is obtained from SLJ by dropping
the restriction on the left introduction rule for the implication, right introduction rule
for disjunction and right introduction rule for existential quantification of SLJ .

Proposition 11. For any formula C, for any multiset of formulas Γ, the sequent Γ ` C
is provable in SLJ if and only if it is provable in GKi.

Proof. Each derivation in SLJ is a derivation in GKi, thus one side of the proof is for
free.

For the other side, suppose that for each derivation Di in GKi with height n and
conclusion Γ′ ` C′ there is a derivation Ds in SLJ having the same conclusion. Let D
be a derivation of Γ ` C in GKi having height n + 1 and let R be the last rule application

18



of D. If R is not⇒L,∃R nor ∨R we have just to apply the induction hypothesis on the
premises of R.

If R is a ⇒L-rule, then the conclusion of D is Γ, A ⇒ B ` C and, by induction
hypothesis, we have a SLJ derivation D1 with conclusion Γ, A ⇒ B ` A and another
SLJ derivationD2 with conclusion B,Γ, A⇒ B ` C. We can construct a SLJ derivation
of the sequent Γ, A⇒ B ` C as follows

...D1

Γ, A⇒ B ` A

...DA

A,Γ, A⇒ B ` B

...D′2

B,Γ, A, A⇒ B ` C
cut

A,Γ, A⇒ B ` C
cut

Γ, A⇒ B ` C

Where the derivation DA exists by proposition 9, and D′2 is obtained from D2 by ad-
missibility of weakening.

If R is ∃R or ∨R then, the conclusion of D is of the form Γ ` ∃xA or, respectively,
Γ ` A1 ∨ A2. By induction hypothesis, we have a SLJ derivation D1 of its premise
Γ ` C, where C is either A[t/x] for some term t, or Ai (i ∈ {1, 2}). We treat only the ∃
case.

...D1

Γ ` A[t/x]

...DA

Γ, A[t/x] ` ∃xA
cut

Γ ` ∃xA

Here DA = D′A[t/y], and D′A is a proof of Γ, A[y/x] ` ∃xA in which y does not appear
in Γ,∃xA; the derivation D′A exists in virtue of proposition 9. �

In virtue of the above proposition, we can conclude that the following theorem holds.

Theorem 1. The sequent calculus SLJ is sound and complete for first-order intuition-
istic logic.

4 From strategies to derivations
In this section, we will prove that given a winning strategy S for a formula A, S can
be transformed into a SLJ proof of ` A. In fact, we have designed the calculus SLJ in
such a way that derivations in SLJ have the ‘shape’ of winning strategies. In the two
tables below (tables 2 and 3) we show the correspondence between SLJ-rules and P-
moves. For each P-move, we also show the O attack or defense moves that are justified
by the P-move5. We can see that a P defense move asserting A corresponds to a SLJ
right introduction rule in which A is active. The no delayed choices condition forces P
defending immediately against a disjunctive or existential attack. This restricted way
of playing corresponds to the restrictions on the use of the ∨R and ∃R-rules of SLJ. In
fact, the sequent calculus SLJ obeys a focusing principle (Andreoli, 1992): whenever
we apply (bottom-up) an ∃R or a ∨R rule over a sequent Γ ` ∃xB (resp., Γ ` A ∨ B)
we are obliged to apply right-rules until an implication, a conjunction, or a universally
quantified formula occupies the position of ∃xB (resp. A ∨ B).

5We consider that eigenvariables of the ∀R and ∃L-rules are chosen according to the enumeration (vi)i∈I .
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Rule P-move justified O-move

Id
Γ, A ` A (!, A) None

⊥L
Γ,⊥ ` C None (?,⊥)

Γ, A⇒ B ` A Γ, A⇒ B, B ` C
⇒L

Γ, A⇒ B ` C
(?, A) (!, B) or (?, q)

Γ, A ` B
⇒R

Γ ` A⇒ B
(!, A⇒ B) (?, A)

Γ, A, A ∧ B ` C
∧L

1Γ, A ∧ B ` C
(?,∧1) (!, A)

Γ, B, A ∧ B ` C
∧L

2Γ, A ∧ B ` C
(?,∧2) (!, B)

Γ ` A Γ ` B
∧R

Γ ` A ∧ B
(!, A ∧ B) (?,∧1) or (?,∧2)

Γ, A, A ∨ B ` C Γ, B, A ∨ B ` C
∨L

Γ, A ∨ B ` C
(?,∨) (!, A) or (!, B)

Γ ` A
∨R

1Γ ` A ∨ B
(!, A ∨ B) (?,∨)

Γ ` B
∨R

2Γ ` A ∨ B
(!, A ∨ B) (?,∨)

Table 2: Correspondence between SLJ-rules and P-moves, connectives.
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Γ, A[y/x],∃xA ` C
∃L

Γ,∃xA ` C
(?,∃) (!, A[y/x])

Γ ` A[t/x]
∃R

Γ ` ∃xA
(!,∃xA) (?,∃)

Γ, A[t/x],∀xA ` C
∀L

Γ,∀xA ` C
(?,∀[t/x]) (!, A[t/x])

Γ ` A[y/x]
∀R

Γ ` ∀xA
(!,∀xA) (?,∀[y/x])

Table 3: Correspondence between SLJ-rules and P-moves, quantifiers.

Let S be a strategy for a formula F and let G be a game in S . We define the O-
sequence G|O of G to be the subsequence of G obtained by forgetting all its P-moves,
i.e, if G = m0m1 · · ·m2n the O-sequence of G is m1 · · ·m2n−1. We define the O-tree S|O
of a strategy S to be the prefix-closed set of sequences

S|O = {G|O | G ∈ S}

Let S be a strategy. We define a function Φ from S|O to a tree of sequent τ. The
function Φ associates a sequent ΓG|O ` CG|O to each G|O in S|O. We recall that ε
denotes the empty sequence.

If G|O = ε then ΓG|O = ∅ and CG|O = F;

if G|O = G′|O(!, A) then ΓG|O = ΓG′ |O , A and CG|O = CG′ |O ;

if G|O = G′|O(?, A) then ΓG|O = ΓG′ |O , A and CG′ |O have the form A ⇒ B we put
CG|O = B;

if G|O = G′|O(?,∧1) then ΓG|O = ΓG′ |O and CG′ |O have the form A ∧ B we put
CG|O = A;

if G|O = G′|O(?,∧2) then ΓG|O = ΓG′ |O and CG′ |O have the form A ∧ B we put
CG|O = B;

if G|O = G′|O(?,∀[w/x]) then ΓG|O = ΓG′ |O and CG′ |O have the form ∀xA we put
CG|O = A[w/x];

if G|O = G′|O(?,∨) then ΓG|O = ΓG′ |O and CG′ |O have the form A1 ∨ A2 we put
CG|O = Ai where Ai is the formula asserted by the move m ∈ G, such that φ(m) =

(?,∨);
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if G|O = G′|O(?,∃) then ΓG|O = ΓG′ |O and CG′ |O have the form ∃xA we put CG|O =

A[t/x] where A[t/x] is the formula asserted by the move m ∈ G, φ(m) = (?,∃).

We now prove that given a winning strategy S, Φ(S|O) is almost a derivation in SLJ;
all leaves of Φ(S|O) are instances of Id-rules or ⊥L rules (proposition 13), moreover the
tree of sequents Φ(S|O) respect the variable conditions of the ∀R and ∃L rules of SLJ
(proposition 14).

Proposition 12. Let S be an arbitrary winning strategy and G be an arbitrary game in
S. If G ends in a P defense move that asserts a formula A, then the sequent ΓG|O ` CG|O
associated to the O-restriction G|O of G by the function Φ is of the form Γ ` A.

Proof. By induction on the length of G. �

Proposition 13. Let S be an arbitrary winning strategy for a formula A and G an
arbitrary maximal branch in S:

1. If G = G′mO, then m asserts ⊥ and the sequent ΓG|O ` CG|O associated to the
O-restriction G|O of G by the function Φ is of the form Γ,⊥ ` B with B Gentzen-
subformula of A;

2. if G = G′mP then m = (!,C) with C atomic Gentzen-subformula of A and the
sequent ΓG|O ` CG|O associated to the O-restriction G|O of G by the function Φ is
of the form Γ′,C ` C.

Proof. (1) is a direct consequence of definition 4 and of the definition of the function
Φ. (2) derives from condition 3 in definition 3 and from proposition 12.

�

Proposition 14. let S be an arbitrary winning strategy and G be a game in S. Suppose
that G ends in an O-move that is either:

1. an attack against a universal quantifier (?,∀[w/x]);

2. or a defense against an existential attack (!, A[w/x]).

Then the variable w does not appear in the sequent associated by the function Φ to the
O-restriction G′|O of the proper prefix G′ of G.

Proof. Both (1) and (2) are granted by the conditions 4 and 5 in definition 3 and by the
no delayed choices condition in definition 5 of strategy.

�

We are now ready to prove the main result of this section. We have just shown that
we can associate a tree of sequents with each winning strategy. In addition, we have
shown that the above-mentioned sequent tree is almost a proof in SLJ: all its leaves are
instances of Id-rules or ⊥L-rules, and it respects the variable restriction on the ∀R and
∃L-rules.
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Theorem 2. Let S be an arbitrary winning strategy and S|O by its O-tree. To each
sequence of O-moves G|O in S|O we can associate a derivation DG|O of ΓG|O ` CG|O ,
where ΓG|O ` CG|O is the sequent associated by the function Φ to G|O.

Proof. Let G|O be an arbitrary element of S|O. Suppose that the induction hypothesis
holds for each suffix G′|O of G|O in S|O. We consider the last P-move m2n of the game
G ∈ S such that the O-restriction of G is G|O.

We only prove some of the cases that are not straightforward:

1. if m2n is a defense move (!,∃xA), then there are many cases, depending on the
form of A. We treat only two cases:

if A is atomic then G|O(?,∃) is maximal in S|O; we associate with G|O the
following derivation in which A is active.

Id
Γ, A ` A

∃R
Γ, A ` ∃xA

If A = B ∨ C then G|O′ = G|O(?,∃)(?,∨) ∈ S|O because of condition 5 in
definition 5. This means in particular that the formula (B∨C)[t/x] is active
in the derivation that we associate with G|O

.

.

.DG|O′

Γ ` (A ∨ B)[t/x]
∃R

Γ ` ∃x(A ∨ B)

2. If m2n is an attack (?, A) on the assertion A ⇒ C, then there are many cases
depending on the form of A. We only treat two cases:

If A is atomic, then the immediate suffix of G|O is G|O(!,C) for which the
proposition hold by hypothesis. We associate it with the following deriva-
tion.

Id
Γ, A⇒ C, A ` A

.

.

.DG|O(!,C)

Γ, A⇒ C,C ` F
⇒L

Γ, A⇒ C ` F

If A = (A1⇒A2), then G|O has two immediate suffixes: G|O, (?, A1) and
G|O, (!,C), for which the proposition holds by hypothesis. We associate the
following derivation to G|O

.

.

.DG|O ,(?,A1)

Γ, (A1 ⇒ A2)⇒ C, A1 ` A2
⇒R

Γ, (A1 ⇒ A2)⇒ C ` A1 ⇒ A2

.

.

.DG|O ,(!,C)

Γ, (A1 ⇒ A2)⇒ C,C ` F
⇒L

Γ, (A1 ⇒ A2)⇒ C ` F

�
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5 From derivations to strategies
Turning a proof D of the sequent ` F into a winning strategy S for F is easier. To
do so we describe a procedure, that we call p2s (from a proof in SLJ to a strategy).
The procedure p2s explores the proofs D starting from the root and proceeding by
level order traversal. The order of traversal of daughters is irrelevant. The procedure
associates to D a prefix closed set of games for the formula F.

Theorem 3. Let F be an arbitrary formula and D be an arbitrary derivation of ` F in
SLJ. There is a function p2s such that p2s(D) is a winning strategy S for F.

Proof. Let x be an arbitrary node in the proof D of the formula F having depth n, and
let Γ ` C be the sequent that decorates x. Suppose that

1. the branch r = xo, . . . xn = x of the derivation from the root r of D to x is already
associated with a prefix closed set S x of games for the formula F. Each G in S x

in which the last move of P is the assertion of a complex formula or an attack
move ends in an O-move.

2. For each formula B in Γ there is an O-assertion move (?, B) in some game G in
S x.

3. The prefix closed set Sx is a strategy for F.

The prefix closed set of games S a1 associated with a1 where a1 is any daughter of
x is defined as follows:

1. if a1 is obtained by an identity rule Γ, A ` A then S a1 = S x ∪ {G(!, A)} where A is
the active formula of the identity rule and G is a maximal game in S x such that
(!, A) is legal for G.

2. If a1 is labelled with a sequent obtained from a right introduction rule with active
formula A:

if A is not a conjunction nor a universally quantified formula then S a1 =

S x ∪ {G(!, A)(?, s)} where G is a maximal game in S x such that (!, A) is
legal for G and (?, s) is an attack move such that s is the unique question on
A;

if A is ∀xA′ then S a1 is S x∪{G, (!,∀xA), (?,∀[w/x])} where G is a maximal
game in S x such that (!, A) is legal for G and the variable w in (?,∀[w/x])
is the variable that appears in the premise of a1 but not in a1;

if A is B ∧ C then S a1 = S x ∪ {G(!, B ∧ C)(?,∧1)} ∪ {G(!, B ∧ C)(?,∧2)}
where G is a maximal game in S x such that the P-move (!, B ∧ C) is legal
for G.

3. If a1 is labelled with a sequent obtained from a left introduction rule with active
formula A:
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if A is B1 ∧ B2 then S a1 = S x∪ {G(?,∧i)(!, Bi)} where Bi is the direct sub-
formula of B1 ∧ B2 that appears in the premise of a1 but not in a1 and G is
a maximal game in S x such that the P-move (?,∧i) is legal for G;

if A is ∀xB then S a1 = S x∪ {G(?,∀[t/x])(!, B[t/x])} where B[t/x] is the
formula occurrence that appears in the premise of a1 but not in a1 and G is
a maximal game in S x such that the P-move (?,∀[t/x]) is legal for G;

if A is B ∨ C then S a1 = S x∪ {G(?,∨)(!, B)} ∪ {G(?,∨)(!,C)} where G is a
maximal game in S x such that the P-move (?,∨) is legal for G;

if A is ∃xB, S a1 = S x ∪ {G(?,∃)(!, B[w/x])} where G is a maximal game in
S x such that the P-move (?,∃) is legal for G and B[w/x] is a formula that
appears in the premise of a1 but not in a1;

if A is B ⇒ C, S a1 = S x∪ {G, (?, B), (?, q1)} ∪ . . . ∪ {G, (?, B), (?, qn)}
∪{(G, (?, B), (!,C)}. Where G is a maximal game in S x such that the P-
move (?, B) is legal for G where each qi is a question on B.

Remark that the procedure jumps from a node v of the proof-tree obtained by a⇒L

rule to the daughter of the daughter of v. It is easy to check that conditions 1,2 and 3
are respected after the application of the procedure.

�

6 Conclusion and Future Works
We have proved that there is a natural correspondence between formal E-strategies and
derivations of a complete sequent calculus for first-order intuitionistic logic. We hope
that the simplicity of our approach will help other researchers to better appreciate the
dialogical logic approach.

As we have previously mentioned, the sequent calculus SLJ obeys a focusing prin-
ciple (Andreoli, 1992): whenever we apply (bottom-up) an ∃L-rule or a ∨R-rule over
a sequent Γ ` C we are obliged to apply right-rules until an implication, a conjunc-
tion, or a universally quantified formula is at the place of C. It is quite surprising that
(skeletons of) formal E-strategies naturally correspond to this type of calculus. The
fact that Felscher himself did not notice such correspondence is explained by noticing
that focusing was not known at the time he worked on dialogical logic.

Concerning future works: given a winning strategy for A and a winning strategy
for A ⇒ B, we can conclude that there is a winning strategy for B. Simply because
the cut-rule is admissible in SLJ and we can thus translate the winning strategies for
A, A⇒ B into two derivations and use the cut rule to obtain a derivation of B. However,
it would be much more interesting to define an analogous of the cut-rule directly on
strategies. We think that this could be obtained by relaxing the definition of game in
order to let the Proponent assert, at any point of the game, an arbitrary formula C. After
Proponent’s assertion of C, the Opponent can continue the game by either attacking C
or by asserting C in turn. The cut-elimination theorem for strategies would be obtained
by proving that the set of formulas admitting winning strategies containing this kind of
games is equal to the set of formulas admitting regular winning strategies.
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Dialogical logic heavily influenced the game semantics approach (Hyland, 1997;
Abramsky, Jagadeesan, & Malacaria, 2000). Game semantics has been used in order
to give denotational models of many programming languages. In particular, there is a
natural correspondence between winning strategies in the Hyland-Ong setting of game
semantics and the simply-typed λ-calculus. Despite the fact that dialogical logic and
game semantics have a lot in common, no one, at least to our knowledge, has tried to
investigate the question in detail. We think that shedding light on this subject could be
fruitful for the development of both game semantics and dialogical logic.
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