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From strategies to derivations and back.
An easy completeness proof for first order intuitionistic dialogical

logic

Davide Catta

LIRMM, Université de Montpellier, CNRS
davide.catta@lirmm.fr

Abstract

In this paper we give a new proof of the correspondence between the
existence of a winning strategy for intuitionistic E-games and Intuistionis-
tic validity for first order logic. The proof is obtained by a direct mapping
between formal E-strategies and derivations in a cut-free complete sequent
calculus for first order intuitionistic logic. Our approach builds on the one
developed by Herbelin in his PhD dissertation and greatly simplifies the
proof of correspondence given by Felscher in his classic paper.

1 Introduction

The art of persuasive debate, dialectics, and the science of valid inference, logic,
have been intrinsically linked since their beginnings (Castelnérac & Marion,
2009, 2013; Marion & Rückert, 2016; Novaes, 2005). At the dawn of the modern
age the connection between the two disciplines seemed so clear that one of the
first sentences pronounced by Doctor Faustus in Marlowe’s work goes as follows

Is, to dispute well, logic’s chiefest end? Affords this art no greater
miracle?

Despite this ancient connection between the two disciplines, mathematical logic
had to wait until the 50s of the last century to determine that the logical con-
cept of validity could be expressed through the use of dialogical concepts and
techniques. The German mathematician and philosopher Lorenzen (Lorenzen,
1958) proposed to analyze the concept of validity of a formula A through the
concept of winning strategy in a particular type of two-player game. This type of
game is nothing more than an argumentative dialogue between a player, called
Proponent, who affirms the validity of a certain formula A, and another player,
called Opponent, who contends its validity. The argumentative dialogue starts
by the Proponent affirming a certain formula. The Opponent takes his turn
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and attacks the claim made by the Proponent according to its logical form. The
Proponent can, depending on the form of the attack made by the Opponent,
either defend his previous claim or counter attack. The debate evolves following
this pattern. The Proponent wins the debate if he has the last word, i.e., the
defence against one of the attacks made by the Opponent is a formula that the
Opponent cannot attack without violating the debate rules.

Dialogical logic was initially conceived by Lorenzen as a foundation for in-
tuitionistic logic (IL). Lorenzen’s idea was the following: it is possible to define
a natural class of dialogue games in which given a formula A, the Proponent
can always win a game on A, no matter how the Opponent chooses to act in
the debate, if and only if A is IL-valid. This intuition was formalized by saying
that, given a certain class of dialogue games, and a formula A

A is IL valid if and only if there is a winning strategy for the proponent for
the formula A in the class of games under consideration.

Unfortunately almost 40 years of work were needed to get a first correct
proof of the completeness theorem (Felscher, 1985). Felscher’s proof makes use
of various intermediate notions that allow a winning strategy to be transformed
into a proof in the sequent calculus LJ and vice versa. First, Felscher defines two
types of dialogue games, called D-dialogues and E-dialogues. Second, he gives an
algorithm that converts D-strategies into formal E-strategies (strategies that re-
spect the eigenvariable condition). Third, algorithms are given which transform
derivations of the sequent calculus LJ into what Felscher calls IC-protableau.
Felscher concludes his proof by providing an algorithm to transform an IC-
protableaux into an E-strategy. As one can see merely from this description
Felscher’s proof is a big nut to crack.

An improvement of Felscher’s work was produced by Herbelin in his PhD
dissertation (Herbelin, 1995).1. Herbelin presents a variant of the LJ sequent
calculus, called LJQ, and proves that, given a formula A, derivations for A in the
sequent calculus LJQ correspond to winning E-strategies for A and viceversa.
Herbelin’s proofs is considerably simpler then Felscher’s but, unfortunately, it
is limited to propositional logic. The objective of our paper is thus simple: we
extend the work of Herbelin to first-order intuitionistic logic. We present a
sequent calculus, LJs, that is complete for first-order intuitionistic logic and we
show that derivations in the sequent calculus LJs corresponds to formal winning
E-strategies and viceversa.

Overview

The rest of the paper is structured as follows: Sect. 2 introduces dialogical
logic for intuitionistic logic: we define E-games — that we simply call games —

1A natural correspondence between a variant of E-strategies for intermediate propositional
logics and derivations in an hyper-sequent calculus is provided in (Fermüller, 2003) Building
on the work of Fermüller (Alama, Knoks, & Uckelman, 2011) provides a natural correspon-
dence between a variant of E-strategies and derivations in a complete sequent calculus for
propositional classical logic. For a correspondence between strategies and tableaux proofs for
first order classical logic one can consult (Clerbout, 2014)
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formal E-strategies — that we simply call strategies — and prove some results
about games and strategies. Sect. 3 introduces the sequent calculus LJs: we
prove some results about LJs -in particular, that LJs is sound and complete for
intuitionistic firts-order logic. In Sect. 4 we show how to transform a winning
strategy for a formula A into a derivation of A in the calculus LJs; In Sect. 5
we show how to transform a derivation of A in the calculus LJs into a winning
strategy for A. The paper will be as much self contained as possible.

2 Dialogical Logic

2.1 First order language

In this paper we will consider a standard first order language L over a signature
(R,F). R is a countable set of predicate variables (P,Q,R, S, etc. vary over
predicate variables) and F is a countable set of function symbols (f, g, h, etc.
vary over function symbols). The two sets are disjoint and there is an arity
function a : R∪F → N. Function symbols with arity 0 will be called constants
and a, b, c, d, . . . etc. will range over them. Predicate variables with arity 0 will
be called propositional variables and X,Y, Z,W, . . . etc. will range over them.

Let V be a countable set of variable symbols (variables will be ranged over
by x, y, z, w, etc.) Terms are defined by the following grammar

t := x | f(t1, . . . tn)

where f is a function symbol with arity n. Let ∧,∨,⇒,∀,∃ be the symbols for
the usual connective and quantifiers of first order logic. And let ⊥ (falsehood)
be a predicate constant.

Formulas are specified by the following grammar

F := P (t1, . . . tn)| ⊥ | F ∧ F | F ∨ F | F ⇒ F | ∀xF | ∃xF
The predicate constant ⊥ and formulas of the form P (t1, . . . tn), where P is

a predicate variable, will be called atomic formulas. The negation of a formula
is defined as ¬F ≡ F ⇒ ⊥. We will use capital roman letter from the beginning
of the alphabet (A,B,C,D, etc.) to denote arbitrary formulas. The notion of
free (resp. bound) variables of a term (resp. formula) will be the usual ones,
as well as the notion of subformula, Gentzen-subformula and positive/negative
subformula of a formula. The depth |A| of a formula A its the maximum length
of a branch in its construction tree.

In the present work we will often talk about sequences. A sequence, formally,
is a mapping whose domain is a subset of the set N of natural numbers. Infor-
mally a sequence is a set of objects listed according to a certain specific order.
The length of a sequence is the number of elements in it. Given two sequences
t and t′, t is a prefix (resp. suffix) of t′ if and only if there is a sequence r such
that t′ = tr (resp t′r = t). If r is not the empty sequence ε then t is said to be a
proper prefix (resp. proper suffix) of t′. Given a set of sequences S, a sequence
t ∈ S is said to be maximal in S whenever there is no proper suffix of t in S.
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2.2 Argumentative dialogues: informal overview

Before entering into the formal matter of dialogical logic, let us give an informal
example of an argumentative dialogue about the validity of a formula. Let A
and B stand for two arbitrary formulas.

0. P: I affirm that A ∧B ⇒ B.

1. O: Let me assume, for the sake of the proof, that A ∧ B holds, can you
show that B holds?

2. P: You admitted that A ∧B holds, can you admit that B holds?

3. O: Indeed, I must admit that B holds.

4. P: Then I have nothing more to prove, you have admitted that B holds,
if A ∧B holds.

We can see that the Proponent and the Opponent alternate in the dialogue.
The dialogue is a sequence of interventions. Each intervention but the first con-
sists in either an attack against a preceding intervention of the other player or
a defence against an attack of the other player. For example O in intervention
1 attacks intervention 0 by asking P to show that B holds provided that A∧B
holds. P’s defence against 1 is the intervention 4. What counts as a question
against an asserted formula A and what counts as an answer to such a question
depends upon the logical form of A. For example in 2, P attacks the formula
asserted in 1 by asking O to assert B. This is because if one admits that a
conjunction holds one must be ready to concede that both members of the con-
junction holds. Summing up, an argumentative dialogue will be a sequence of
alternated interventions made by the Proponent and the Opponent. Each inter-
vention in the dialogue is an attack or a defence against a preceding intervention,
the dialogue ends whenever the Opponent cannot produce a new intervention
without falling in contradiction with what he already conceded. The content
of the next subsection will be devoted to give a formal content to this intuitive
discussion. In subsection 2.3 we define what a question on a formula is and what
counts as an answer to such a question. In subsection 2.4 we formally define
what it means for an intervention in a dialogue to refer to another preceding
intervention in the same dialogue (definitions 1 and 2). Finally in subsection 2.5
we define (definition 3) the class of argumentative dialogues we are interested
in (the we call games) and the conditions in which P wins in an argumentative
dialogue.

2.3 Argumentation forms

The set of auxiliary symbols Aux is the smallest set containing the symbols
∧1,∧2,∨,∃ and the expressions ∀[t/x] for all terms in T and variables x in L.

Following the terminology of Felscher (Felscher, 2002), an argumentation
form Arg is a function assigning to each non atomic formula A a set of pairs
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consisting of one question and one answer with questions being either formulas
or symbols in Aux and answers being formulas.2

Arg(A⇒ B) = {(A,B)}
Arg(A ∧B) = {(∧1, A), (∧2, B)}
Arg(A ∨B) = {(∨, A), (∨, B)}

Arg(∀xA) = {(∀[t/x], A[t/x]) | t ∈ T }
Arg(∃xA) = {(∃, A[t/x]) | t ∈ T }

Given a formula A, a question q that belongs to a couple (q, a) ∈ Arg(A) is
called a question on A. Given a formula A and a question q on A, a formula
B is called an answer to the question q on the formula A whenever the couple
(q,B) is an element of Arg(A). So, for example, if A is B ∧ C, both ∧1 and ∧2
are questions on A but only B is an answer to ∧1 and only C is an answer to
∧2. If A is B ∨C, the symbol ∨ is a question on A, and both B,C are answers
to ∨. Consider the case where A is B ⇒ C. In this case B is a question on A
and C is an answer to B.

2.4 Augmented sequence

A defence move is a couple (!, A) where A is a formula. An attack move is a
couple (?, s) where s is either a formula or an auxiliary symbol. A move is either
an attack move or a defence move. A move (?,A) where A is a formula and
? ∈ {?, !}, is called assertion move. We will also say that the move asserts the
formula A or that A is the asserted formula of the move. Attack moves of the
form (?,∃) are called existential attacks. Attack moves of the form (?,∨) are
called disjunctive attacks. Let ρ = m0,m1, . . .mn . . . be a sequence of moves.
We denote by ρi the ith move of the sequence. The parity of ρi is the parity of
i. An assertion move ρj = (?,A) is called a reprise if and only if there is move
ρk ∈ ρ with k < j such that ρk = (?′, A) and ρj , ρk have different parities.

Definition 1. An augmented sequence is a non empty sequence of moves ρ
together with a function φ that is defined on each ρi with i > 1 and such that,
for all i, φ(ρi) = ρj for a j < i. The move φ(ρi) is called the enabler of ρi.

Definition 2. Let (ρ, φ) be an augmented sequence.

• An attack move ρi = (?, s) is justified whenever φ(ρi) is of the form (?,A)
and s is a question on A.

• A defence move ρi = (!, B) is justified whenever φ(ρi) is of the form (?, s),
φ(ρi) is justified, φ(φ(ρi)) = (?,A) and B is an answer to the question s
on A

2The words “question” and “answer” are called “attack” and “defence” by Felscher
in (Felscher, 2002); we deviate from this terminology because we will use the terms “attack”
and “defence” exclusively for the moves in a game, avoiding possible confusion.
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2.5 Games

Let (ρ, φ) be an augmented sequence, we say that a formula A appears in the
augmented sequence if and only if there is a move m ∈ ρ that asserts A. We say
that a variable v appears in ρ whenever v occurs free in some asserted formula
or there is a move m = (?,∀[v/x]) in ρ. If ρi is an attack move and ρi is not the
enabler of some defence move ρj then we will say that ρi is unanswered.

Fix an enumeration (vi)i∈I of the variables of L

Definition 3 (Game). A game G for a formula A is an augmented sequence
(ρ, φ) such that

1. ρ0 = (!, A) and for all i > 0 the move ρi is justified;

2. φ(ρi) = ρi−1 if i is odd, φ(ρi) = ρj with j odd if i is even;

3. if ρi = (?,B) with B atomic formula and i even, then ρi is a reprise and
B 6= ⊥

4. if ρi is an attack move of the form (?,∀[vk/x]) and i is odd then vk is the
first variable in the enumeration (vi)i∈I that does not appear in the prefix
of ρ ending with ρi−1;

5. if ρi = (!, B[vk/x]) is a defence move, i is odd and ρi−1 is of the form
(?,∃) then vk is the first variable in the enumeration (vi)i∈I that does not
appear in the prefix of ρ ending with ρi−1;

6. If ρk is a defence move and k is even then σ(ρk) = ρj is the unanswered
attack move having greatest odd index in the prefix of ρ ending with ρk−1.

In a game G moves ρi with i even are called P-moves. They are called O-
moves otherwise. If Gm is a game and m is P-move we will write GmP. We will
write GmO otherwise.

Let G = (ρ, φ) be a finite game and m be a move. The move m is legal for
G if and only if the augmented sequence (ρm, σ) is a game, where σ|ρ = φ and
σ(m) ∈ ρ

Definition 4. A game G is won by P if and only if it is finite and either

• the game is of the form G′mP and there is no move m′ legal for G

• the game is of the form G′mO and m asserts ⊥

In what follows we will often identify a game with the sequence of its moves
by an abuse of notation.
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2.6 Some examples

We give some examples of games. A game will be represented as a table with
two columns and as many rows as there are moves in the game. In the first
column of the table we will write down the moves of the game. In the second
column we will write the value of the function φ for the move in the first column.
Let X,Y, Z be propositional variables, and R a binary predicate variable

m0 = (!, X ⇒ Y ⇒ ((Y ⇒ Z)⇒ (X ⇒ Z)))
m1 = (?, X ⇒ Y ) m0

m2 = (!, (Y ⇒ Z)⇒ (X ⇒ Z)) m1

m3 = (?, Y ⇒ Z) m2

m4 = (!, X ⇒ Z) m3

m5 = (?, X) m4

m6 = (?, X) m1

m7 = (!, Y ) m6

m8 = (?, Y ) m3

m9 = (!, Z) m8

m10 = (!, Z) m5

m0 = (!, X ∨ Y ⇒ Y ∨X)
m1 = (?, X ∨ Y ) m0

m2 = (?,∨) m1

m3 = (!, X) m2

m4 = (!, Y ∨X) m1

m5 = (?,∨) m4

m6 = (!, X) m5

m0 = (!, X ∨ Y ⇒ Y ∨X)
m1 = (?, X ∨ Y ) m0

m2 = (?,∨) m1

m3 = (!, Y ) m2

m4 = (!, Y ∨X) m1

m5 = (?,∨) m4

m6 = (!, Y ) m5

m0 = (!, X ⇒ ¬¬X)
m1 = (?, X) m0

m2 = (!,¬¬X) m1

m3 = (?,¬X) m2

m4 = (?, X) m3

m5 = (?,⊥) m4

m0 = (!,¬¬X ⇒ X)
m1 = (?,¬¬X) m0

m2 = (?,¬X) m1

m3 = (?, X) m2

m0 = (!, (X ∧ ¬X)⇒ Z)
m1 = (?, X ∧ ¬X) m0

m2 = (?,∧1) m1

m3 = (!, X) m2

m4 = (?,∧2) m1

m5 = (!,¬X) m4

m6 = (?, X) m5

m7 = (!,⊥) m6

m0 = (!, X ∨ Y ⇒ X)
m1 = (?, X ∨ Y ) m0

m2 = (?,∨) m1

m3 = (!, X) m2

m4 = (!, X) m1
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m0 = (!,∃y∀xR(x, y)⇒ ∀x∃yR(x, y))
m1 = (?,∃y∀xR(x, y)) m0

m2 = (!,∀x∃yR(x, y)) m1

m3 = (?,∀[w/x]) m2

m4 = (!,∃yR(w, y)) m3

m5 = (?,∃) m4

m6 = (?,∃) m1

m7 = (!,∀xR(x, z)) m6

m8 = (?,∀[w/z]) m7

m9 = (!, R(w, z)) m8

m10 = (!, R(w, z)) m5

Remark 1. All the games except the one for the formula ¬¬X ⇒ X are won
by the Proponent: they either do not admit further Opponent’s moves or they
end with Opponent asserting ⊥. Remark that the last move of all games won by
the Proponent ending in a Proponent’s move are defence moves and assertions
of an atomic formula. In all games formulas asserted by the Proponent are
positive sub-formulas of the formula about which the game is played. Formulas
asserted by the Opponent are negative sub-formulas of the formula about which
the game is played. In each game atomic formulas asserted by the Proponent
are both positives and negatives sub-formulas of the formula about which the
game is played.

The proponent cannot extend the game for the formula ¬¬X ⇒ X by the
defence-move m4 = (!, X) with φ(m4) = m1 because of condition 6 in the
definition of game (definition 3). The two games for the formula X∨Y ⇒ X∨Y
have a common prefix and they first differ on an Opponent’s move. In one game
the Opponent chooses to assert X in the defence move m4 while in the other
game the Opponent chooses to assert Y . In any case the Proponent wins.

The Proponent wins the game for the formula X ∨Y ⇒ X even if this latter
formula is not a tautology of first order intuitionistic logic. Note that if the
Opponent had chosen to assert the formula Y instead of the formula X on move
3 then the Proponent would have had no chance of winning. In the game for
the formula ∃y∀xR(x, y)⇒ ∀x∃yR(x, y) the player does not defend immediately
against the attack move m5. Instead he delays his defence until the last move.

We systematize the observations on the games just made with some simple
propositions.

Proposition 1. Let A be an arbitrary formula and G and arbitrary game for
A. If (?,B) is an assertion move in G then B is a Gentzen subformula of A.

Proof. By induction on the length of G.

Proposition 2. Let A be an arbitrary formula and G = G′mP be a finite game
for A. if G is won by P then m asserts an atomic Gentzen subformula B of A.
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Proof. Suppose, to reach a contradiction that the last move m of G is not a
defence move. Then it is an attack move of the form (?, s). By definition of
game there is a preceding O-move mk that asserts some formula C, φ(mn) = mk

and s is a question on C. Then the augmented sequence Gm where m = (!, D),
φ(m) = mn and D is an answer to the question s on the formula B, is a game.
This contradicts the fact that G is won by P . Thus mn must be a defence move
(!, B). If B is not atomic we reach again a contradiction: in fact by adding a
move m = (?, s) to G where s is a question on B we obtain a game. Thus we
must conclude that B is an atomic formula.

Proposition 3. Let A be an arbitrary formula and G an arbitrary game for A.
If (?,B) is an assertion move in G that is a P-move (resp. an O-move) then B
is a positive (resp. negative) gentzen-subformula of A.

Proof. By induction on the lenght of G

Proposition 4. Let A be an arbitrary formula and G an arbitrary game for A.
If (?,B) is an assertion move made by P and B is an atomic formula then B
is both a negative and positive gentzen subformula of A.

Proof. Direct consequence of Proposition 3 and of the condition 3 in the defini-
tion of game.

2.7 Strategies

As we have discussed in remark 1 the game for the formula X ∨ Y ⇒ X is won
by the Proponent but by mere accident: if the Opponent had chosen to assert
Y instead of X the Proponent would not have had a chance to win. This means
that the Proponent cannot win a game on that formula no matter how the
Opponent choose to act in the game. On the contrary the Proponent can win a
game on the formula X ∨ Y ⇒ Y ∨X no matter how the Opponent chooses to
act in the game. This means that there is a Proponent winning strategy for the
formula X ∨ Y ⇒ Y ∨X and no winning strategy for the formula X ∨ Y ⇒ X

Intuitively speaking a strategy for a game G is a function. A function that
specifies, at each moment of the game, which move a player must play according
to the moves previously played (the history of the game). A strategy is winning
when the player that follows the strategy wins whatever the history of the game
is. As long as each move of the player following the strategy is determined by the
strategy itself, it can be concluded that the game history varies only according
to the moves of his opponent. We informally describe how a strategy should
operate and then formalize this notion. Imagine being engaged in a game G,
that the last move of G was played according to the strategy, and that it is
now your opponent’s turn to play. Your opponent could extend the game in
different ways: for example if you are playing chess, you are white and you just
made your first move by moving a pawn to a certain position of the chessboard,
black can in turn move a pawn or move a horse. If you are playing according
to the strategy, the strategy should tell you how to react against either type of
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move. If black moves a pawn to C6 and you just moved your pawn to C3 then
move the horse to H3. If black moves a horse to H6 and you just moved your
pawn to C3 then move your pawn in B4. Therefore, a strategy can be viewed
as a tree in which each node is a move in the game, the moves of my opponent
have at most one daughter, and my moves have as many daughters as there are
available moves for my opponent. A tree can be seen as a prefix-closed set of
sequence over an alphabet. Since our games are sequences over the alphabet of
moves we can define stragies in the following manner:

Definition 5. A strategy S for a formula A is a non empty prefix-closed set of
games for A such that

1. if GmP and GnP belongs to S then m = n;

2. if G = G′mP ∈ S then GnO ∈ S for all moves n legal for G;

3. if G = G′mO ∈ S and m = (?,∃) or m = (?,∨) then GnP ∈ S and n is
enabled by m.

A strategy S is winning if and only if every maximal sequence of the
strategy is a game won by P.

Condition 3 in the definition above precludes the Proponent to delay a de-
fence against an existential attack. As a consequence a game like the one for the
formula ∃y∀xR(x, y)⇒ ∀x∃yR(x, y) presented in subsection 2.6 cannot belong
to a strategy.

Proposition 5. Let S be an arbitrary strategy and let G be a game in S that
ends in P-move. The family of moves (mki)(i∈I) such that Gmki ∈ S, is a finite
family.

Corollary 1. For any strategy S, if S is winning then S is a finite tree.

2.8 Some examples of strategies

Let X,Y, Z,W be propositional variables and R be a binary predicate variable.
A strategy will be represented as a tree of games.

m0 = (!, X ∨ Y ⇒ Y ∨X)
m1 = (?, X ∨ Y ) m0

m2 = (?,∨) m1

m3 = (!, Y ) m2

m4 = (!, X ∨ Y ) m1

m5 = (?,∨) m4

m6 = (!, Y ) m5

m3 = (!, X) m2

m4 = (!, Y ∨X) m1

m5 = (?,∨) m4

m6 = (!, X) m5
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m0 = (!, X ∨ Y ⇒ X)
m1 = (?, X ∨ Y ) m0

m2 = (?,∨) m1

m3 = (!, X) m2

m4 = (!, X) m1
m3 = (!, Y ) m2

m0 = (!, ((X ⇒ (Y ⇒W ))⇒ (((Y ⇒W )⇒ Z)⇒ (X ⇒ Z))
m1 = (?, X ⇒ (Y ⇒W )) m0

m2 = (!, ((Y ⇒W )⇒ Z)⇒ (X ⇒ Z) m1

m3 = (?, (Y ⇒W )⇒ Z) m2

m4 = (!, X ⇒ Z) m3

m5 = (?, X) m4

m6 = (?, Y ⇒W ) m3

m7 = (?, Y ) m6

m8 = (?, X) m1

m9 = (!, Y ⇒W ) m8

m10 = (?, Y ) m9

m11 = (!,W ) m10

m12 = (!,W ) m7

m7 = (!, Z) m6

m8 = (!, Z) m5

m0 = (!,∃y∀xR(x, y)⇒ ∀x∃yR(x, y)
m1 = (?,∃y∀xR(x, y)) m0

m2 = (!,∀x∃yR(x, y)) m1

m3 = (?,∀[w/x]) m2

m4 = (?,∃) m1

m5 = (!,∀xR(x, z)) m4

m6 = (?,∀[w/x])) m5

m7 = (!, R(w, z)) m6

m8 = (!,∃yR(w, y)) m3

m9 = (?,∃) m8

m10 = (!, R(w, z)) m9

3 The sequent calculus LJs

We now present the sequent calculus LJs (strategic LJ). LJs is a first order ver-
sion of the calculus LJQ studied by Herbelin in his Phd dissertation (Herbelin,
1995). LJQ is a Kleene style sequent calculus: the active formula of a left
introduction rule is present in the premises of the rule. LJQ differs from a
Kleene-style calculus like GKi (Troelstra & Schwichtenberg, 1996) because of a
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Table 1: The LJs sequent calculus.

Id
Γ, A ` A

⊥L⊥,Γ ` C

Γ, A ` B
⇒ R

Γ ` A⇒ B
Γ, A⇒ B ` A Γ, A⇒ B,B ` C

⇒ L
Γ,A⇒ B ` C

Γ ` A Γ ` B,
∧R

Γ ` A ∧B

Γ, Ai, A1 ∧A2 ` C ∧LiΓ,A1 ∧A2 ` C

Γ ` Ai ∨RiΓ ` A1 ∨A2

Γ, A ∨B,A ` C Γ, A ∨B,B ` C
∨L

Γ,A ∨B ` C

Γ ` A[t/x]
∃R

Γ ` ∃xA

Γ, A[y/x],∃xA ` C
∃L

Γ,∃xA ` C

Γ ` A[y/x]
∀R

Γ ` ∀xA

ΓA[t/x],∀xA ` C
∀L

Γ,∀xA ` C

restriction on the use of the left introduction rule for the implication connec-
tive. LJs is obtained from LJQ by adding the quantifier rules and imposing a
restriction on the use of the right introduction rule for the disjunction and the
existential quantifier connectives.

Definition 6. The sequent calculus LJs is defined by the rules in Table 1. A
sequent is an expression Γ ` C where Γ is a finite (possibly empty) multiset
of formulas and C is a formula. Greek upper-case letters Γ,∆, . . . stand for
multisets of formulas. In the Id-rule A is of the form P (t1, . . . , tn) where P is
a predicate variable with arity n ≥ 0 and the ti are terms. In the ∀R and ∃L
rules the variable y does not occur in the conclusion sequent. In the ⇒ L rule
the left-side premise of the rule is obtained by an Id-rule or a right introduction
rule. In the ∃R-rule as well as in the ∨R-rule the premise of the rule is obtained
by an Id-rule or a right introduction rule. The bold formulas are called active
formulas.

A derivation (or a proof) π of a sequent Γ ` C in LJs is a tree of sequents

12



constructed according to the rules of LJs in which leaves are instances of Id-rules
or ⊥L-rules, all sequents of the form ∆,⊥ ` D are leaves and whose root, also
called conclusion, is Γ ` C. The height of a derivation π is the number of nodes
in its maximal branch minus 1.

A sequent Γ ` C is said to be derivable or provable in the sequent calculus
LJs whenever there exists a proof with conclusion Γ ` C.

We now state some propositions that are true about the sequent calculus
LJs. Whereas the proof of one of the proposition is standard we will omit the
detail of the proof.

Proposition 6 (Inversion). For any formula A,B, for any multiset of formulas
Γ

1. if there is a derivation π of Γ ` A ∧ B then there are derivation π1 of
Γ ` A and π2 of Γ ` B. Moreover the derivations π, π1, π2 have the same
height;

2. if there is a derivation π of Γ ` A ⇒ B then there is a derivation π1 of
Γ, A ` B. Moreover π, π1 have the same height;

3. if there is a derivation π of Γ ` ∀xA then there is a derivation π1 of
Γ ` A[y/x] where y is a variable that does not appear in Γ. Moreover
π, π1 have the same height;

4. if there is a derivation π of Γ, A ∨ B ` C then there are derivation π1
of Γ, A ∨ B,A ` C and π2 of Γ, A ∨ B,B ` C. Moreover the derivations
π, π1, π2 have the same height;

5. if there is a derivation π of Γ,∃xA ` C then there is a derivation π1 of
Γ,∃xA,A[y/x] ` C where y is a variable that neither appears in Γ nor in
C. Moreover π, π1 have the same height.

Proof. By induction on the height of π

Corollary 2. For any formulas A for any multiset of formula Γ and ∆ if the
main connective of A is either ∧,⇒ or ∀ and the sequent Γ ` A,∆ is provable
then there is a derivation π of Γ ` A,∆ in which A is active.

Proposition 7. Contraction and weakening are height preserving admissible in
LJs, i.e., for any formula A,C, for any multiset of formulas Γ

• if there a derivation π of Γ, A,A ` C and π has height n then there is a
derivation ρ of Γ, A ` C and the height of ρ is n;

• if there is a derivation π of Γ ` C and π has height n then there is a
derivation ρ of Γ, A ` C and the height of ρ is n.

Proof. By induction on the height of the derivation π of Γ, A,A ` C (resp
Γ ` C).
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Proposition 8. For any formula A and any multiset of formulas Γ and ∆ there
is a derivation π of the sequent Γ, A ` A,∆. Moreover in the derivation π either
the occurrence of A on the left of ` is active or the occurrence of A on the right
of ` is active.

Proof. Suppose that the proposition holds for all formulas B having height
smaller then n and let A be a formula of height n. We will detail the proof only
for the case in which A := C ⇒ D. By induction hypothesis there are proofs
of ρ1 of Γ, C ⇒ D,C ` C and ρ2 of Γ, C ⇒ D,D ` D. We have a problem
if in the derivation ρ1 the active occurrence of C is the one on the left of the
turnstile, i.e. ρ1 ends in a left introduction rule. If the main connective of C is
∀,∧ or ⇒ then by corollary 2 we can conclude that there is a derivation ρ′1 of
Γ, C ⇒ D,C ` C in which the occurence of C on the right of the turnstile is
active. Thus we can apply⇒ L on ρ′1 and ρ2 to obtain the wanted result. If the
main connective of C is ∃ or ∨ then C has, respectively, the form ∃xC1 or C1∨C2.
Let us consider the second case. By induction hypothesis there are derivations
of Γ′, C1 ∨ C2, C1 ` C1 and Γ′, C1 ∨ C2, C2 ` C2 where Γ′ = Γ, C1 ∨ C2 ⇒ D.
First of all we construct the two following derivations.

...

Γ′, C1 ∨ C2, C1 ` C1
πA

{
Γ′, C1 ∨ C2, C1 ` C1 ∨ C2

...ρ′2

Γ, C1 ∨ C2 ⇒ D,D,C1 ` D
Γ, C1 ∨ C2 ⇒ D,C1 ` D

...

Γ′, C1 ∨ C2, C2 ` C2
πB

{
Γ′, C1 ∨ C2, C1 ` C1 ∨ C2

...ρ′′2

Γ, C1 ∨ C2 ⇒ D,D,C2 ` D
Γ, C1 ∨ C2 ⇒ D,C2 ` D

Where ρ′2 and ρ′′2 are obtained from ρ be weakening admissibility. We can
now construct a derivation of Γ, C1 ∨ C2 ⇒ D ` C1 ∨ C2 ⇒ D

...πA

Γ, C1 ∨ C2 ⇒ D,C1 ` D

...πB

Γ, C1 ∨ C2 ⇒ D,C2 ` D
Γ, C1 ∨ C2 ⇒ D,C1 ∨ C2 ` D

Γ, C1 ∨ C2 ⇒ D ` C1 ∨ C2 ⇒ D

Proposition 9. For any formula A,B for any multiset of formulas, Γ, the
sequents

1. Γ, A,A⇒ B ` B

2. Γ, A ` A ∨B
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3. Γ, B,` A ∨B

4. Γ, A[y/x] ` ∃xA

are derivable in LJs. In (4) y is a variable that does not appears in Γ,∃xA.

Proof. It is an immediate consequence of propositions 8. and 6.

Proposition 10. For any formula A,C, for any multiset of formulas Γ the cut
rule

Γ ` A Γ, A ` C
cut

Γ ` C

is admissible in LJs i.e.,

• if Γ ` A is provable and Γ, A ` C is provable then Γ ` C is provable.

Proof. By nested inductions on the depth of A, (the cut formula) the height of
the derivation π of Γ ` A and the height of the derivation ρ of Γ, A ` C. More
precisely, we appeal to the induction hypothesis either with a strictly smaller
cut formula, or with an identical cut formula and two derivations, one of which
is strictly smaller while the other stays the same; the cut admissibility proof
follows the usual path of case analysis on the active formula of π and ρ.

We detail two cases. Suppose that the cut-fomula A is B ⇒ C. We have
a derivation π of Γ, B ⇒ C ` F and a derivation ρ of Γ ` B ⇒ C. Moreover
suppose that in both derivation the cut formula B ⇒ C is active. This means
that π and ρ have the form

...π1

Γ, B ⇒ C ` B

...π2

C,B ⇒ C,Γ ` F
Γ, B ⇒ C ` F

...ρ1

Γ, B ` C,∆
Γ ` B ⇒ C,

We obtain a derivation of Γ ` F as follows: we first construct a derivation
σ1 of Γ ` C, and a derivation σ2 of C,Γ ` F , using the admissibility of the cut
rule either on derivations that are smaller then ρ or π or on formulas that are
smaller then B ⇒ C. In what follows ρ′ is obtained from ρ by height preserving
admissibility of the weakening rule. For the sake of clarity we underline the
cut-formula of each cut-rule instance.

...π1

Γ, B ⇒ C ` B,

...ρ

Γ ` B ⇒ C,

Γ ` B

...ρ1

Γ, B ` C
}
σ1

Γ ` C
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...π2

C,Γ, B ⇒ C ` F

...ρ′

C,Γ ` B ⇒ C
}
σ2

C,Γ ` F

We then put together σ1 and σ2 by using an instance of the cut rule with
cut-formula C. Since C is a formula strictly smaller then B ⇒ C this application
of the cut-rule is allowed by the induction hypothesis.

...σ1

Γ ` C

...σ2

Γ, C ` F
Γ ` F

Now suppose that B ⇒ C is not active in one of the two derivations π and
ρ. Suppose it is not active in ρ e.g., Γ = Γ′, D ∨ E and ρ has the form

...ρ1

Γ′, D ∨ E,D ` B ⇒ C

...ρ2

Γ′, D ∨ E,E ` B ⇒ C

Γ′, D ∨ E ` B ⇒ C

We want to obtain a derivation of the sequent Γ′, D ∨ E ` F . A derivation
of this sequent can be constructed as follows. We first construct two derivations
σ1 and σ2 of the sequents Γ′, D ` F and Γ′, E ` F . In what follows π′ and π′′

are obtained from π by height-preserving admissibility of weakening

...π′

Γ′, D,D ∨ E,B ⇒ C ` F

...ρ′1

Γ′, D,D ∨ E ` B ⇒ C
}
σ1

Γ′, D,D ∨ E ` F

...π′′

Γ′, E,D ∨ E,B ⇒ C ` F

...ρ′2

Γ′, E,D ∨ E ` B ⇒ C
}
σ2

Γ′, E,D ∨ E ` F

We put togheter the two derivations σ1 and σ2 using a ∨L rule and we obtain
the wanted derivation of the sequent Γ′, D ∨ E ` F

...σ1

Γ′, D,D ∨ E ` F

...σ2

Γ′, E,D ∨ E ` F
∨L

Γ′, D ∨ E ` F
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We now prove that LJs is sound and complete for intuitionistic logic. In
order to prove this fact we show that a sequent Γ ` C is provable in LJs if
and only if, it is provable in the sequent calculus system GKi (Troelstra &
Schwichtenberg, 1996). GKi is sound and complete for intuititionistic logic, and
it is obtained from LJs by dropping the restriction on the left introduction rule
for the implication, right introduction rule for disjunction and right introduction
rule for existential quantification of LJs.

Proposition 11. For all formula C, for all multiset of formulas Γ, the sequent
Γ ` C is provable in LJs if and only if it is provable in GKi

Proof. Each derivation in LJs is a derivation in GKi, thus one side of the proof
is for free.

For the other side, suppose that for each derivation ρ in GKi with height n
and conclusion Γ′ ` C ′ there is a derivation ρ′ in LJs having the same conclusion.
Let π be a derivation of Γ ` C in GKi having height n+ 1 and let R be the last
rule application of π. If R is not ⇒ L,∃R nor ∨R we have just to apply the
induction hypothesis on the premises of R.

If R is ⇒ L then the conclusion of π is Γ, A ⇒ B ` C and, by induction
hypothesis we have an LJs derivation ρ1 with conclusion Γ, A ⇒ B ` A and
another LJs derivation ρ2 with conclusion B,Γ, A⇒ B ` C. We can construct
an LJs derivation of the sequent Γ, A⇒ B ` C as follows

...ρ1

Γ, A⇒ B ` A

...π

A,Γ, A⇒ B ` B

...ρ′2

B,Γ, A,A⇒ B ` C
cut

A,Γ, A⇒ B ` C
cut

Γ, A⇒ B ` C

where the derivation π exists by proposition 9, and ρ′2 is obtained from ρ2 by
admissibility of weakening.

If R is ∃R or ∨R then, the conclusion of π is of the form Γ ` ∃xA or,
respectively, Γ ` A1 ∨A2. By induction hypothesis, we have a LJs derivation ρ
of its premise Γ ` C. Where C is either A[t/x] for some term t, or Ai (i ∈ {1, 2}).
We treat only the ∃ case.

...ρ

Γ ` A[t/x]

...π

Γ, A[t/x] ` ∃xA
cut

Γ ` ∃xA

Here π = π′[t/y], and π′ is a proof of Γ, A[y/x] ` ∃xA in which y does not
appear in Γ,∃xA; the derivation π′ exists in virtue of proposition 9.
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4 From strategies to derivations

Let S be a strategy for a formula F and let G be a game in S. We define the
O-sequence G|O of G to be the subsequence of G obtained by forgetting all its
P-moves -i.e, if G = m0,m1, . . .mn the O-sequence of G is m1, . . .mn−1. We
define the O-tree S|O of a strategy S to be the prefix-closed set of sequences

S|O = {G|O |G ∈ S}

Let S be a strategy. We define a function Φ from S|O to a tree of sequent
τ . The function Φ associates a sequent ΓG|O ` CG|O to each G|O in S|O. Let us
denote the empty sequence by ε

• if G|O = ε then ΓG|O = ∅ and CG|O = F ;

• if G|O = G′|O(!, A) then ΓG|O = ΓG′|O , A and CG|O = CG′|O ;

• if G|O = G′|O(?, A) then ΓG|O = ΓG′|O , A and CG′|O have the form A⇒ B
we put CG|O = B;

• if G|O = G′|O(?,∧1) then ΓG|O = ΓG′|O and CG′|O have the form A∧B we
put CG|O = A;

• if G|O = G′|O(?,∧2) then ΓG|O = ΓG′|O and CG′|O have the form A∧B we
put CG|O = B;

• if G|O = G′|O(?,∀[w/x]) then ΓG|O = ΓG′|O and CG′|O have the form ∀xA
we put CG|O = A[w/x];

• if G|O = G′|O(?,∨) then ΓG|O = ΓG′|O and CG′|O have the form A1 ∨ A2

we put CG|O = Ai where Ai is the formula asserted by the move m ∈ G,
G in S such that φ(m) = (?,∨);

• if G|O = G′|O(?,∃) then ΓG|O = ΓG′|O and CG′|O have the form ∃xA we put
CG|O = A[t/x] where A[t/x] is the formula asserted by the move m ∈ G,
G in S such that φ(m) = (?,∃).

We now prove that given a winning strategy S, Φ(S|O) is almost a derivation
in LJs; all leaves of Φ(S|O) are instances of Id rules or ⊥L rules (proposition 13)
and that Φ(S|O) respect the variable condition of the ∀R and ∃L rules of LJs
(proposition 14)

Proposition 12. Let S be an arbitrary winning strategy and G be an arbitrary
game in S. If G ends in a P defence move that asserts a formula A then the
sequent ΓG|O ` CG|O associated to the O-restriction G|O of G by the function Φ
is of the form Γ ` A.

Proof. By induction on the length of G.

Proposition 13. Let S be an arbitrary winning strategy for a formula A and
G an arbitrary maximal branch in S.
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1. If G = G′mO then m asserts ⊥ and the sequent ΓG|O ` CG|O associated to
the O-restriction G|O of G by the function Φ is of the form Γ,⊥ ` B with
B Gentzen-subformula of A

2. if G = G′mP then m = (!, C) with C atomic Gentzen-subformula of A and
the sequent ΓG|O ` CG|O associated to the O-restriction G|O of G by the
function Φ is of the form Γ′, C ` C

Proof. (1) is a direct consequence of definition 4 and of the definition of the
function Φ. (2) derives from condition 3 in definition 3 and proposition 12

Proposition 14. let S be an arbitrary winning strategy and G be a game in S.
Suppose that G ends in O-move that is either

1. an attack against a universal quantifier (?,∀[w/x])

2. or a defence against an existential attack (!, A[w/x]).

Then the variable w does not appear in the sequent associated by the function Φ
to the O-restriction G′|O of the proper prefix G′ of G

Proof. Both (1) and (2) are granted by the conditions 4 and 5 in definition 3
and by condition 3 in definition 5

We are now ready to prove the main result of this section. We have just
shown that we can associate a tree of sequents with each winning strategy. In
addition, we have shown that the above mentioned sequent tree is ”almost” a
proof in LJs: all its leaves are instance of id rules or ⊥ rules of LJs and it
respects the variable restriction on the ∀R and ∃L rules of LJs.

Theorem 1. Let S an arbitrary winning strategy and let S|O by its O-tree. To
each sequence of O-moves G|O in S|O we can associate a derivation πG|O of
ΓG|O ` CG|O , where ΓG|O ` CG|O is the sequent associated by the function Φ to
G|O

Proof. Let G|O be an arbitrary element of S|O. Suppose that the induction
hypothesis holds for each suffix G′|O of G|O in S|O. We consider the last P-
move m2n of the game G ∈ S such that the O-restriction of G is G|O.

We only prove some of the cases that are not straightforward:

1. if m2n is a defence move (!,∃xA) then there are many cases, depending
on the form of A. We treat only two cases:

• if A is atomic then G|O(?,∃) is maximal in S|O; we associate with
G|O the following derivation in which A is active.

Id
Γ, A ` A

Γ, A ` ∃xA
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• if A = B∨C then G|O′ = G|O(?,∃)(?,∨) ∈ S|O because of condition 3
in definition 5. This means in particular that the formula (B∨C)[t/x]
is active in the derivation that we associate with G|O

...πG|O′

Γ ` (A ∨B)[t/x]

Γ ` ∃x(A ∨B)

2. if m2n is an attack (?, A) on the assertion A ⇒ C, then there are many
cases depending on the form of A. We again only treat two cases:

• if A is atomic then the immediate suffix of G|O is G|O(!, C) for which
the proposition hold by hypothesis. We associate it with the following
derivation.

Id
Γ, A⇒ C,A ` A

...πG|O(!,C)

Γ, A⇒ C,C ` F
⇒ L

Γ, A⇒ C ` F

• if A = (A1⇒A2) then G|O has two immediate suffixes: G|O, (?, A1)
and G|O, (!, C), for which the proposition holds by hypothesis. We
associate the following derivation to G|O;

...πG|O,(?,A1)

Γ, (A1 ⇒ A2) ⇒ C,A1 ` A2
⇒ R

Γ, (A1 ⇒ A2) ⇒ C ` A1 ⇒ A2

...πG|O,(!,C)

Γ, (A1 ⇒ A2) ⇒ C,C ` F
⇒ L

Γ, (A1 ⇒ A2) ⇒ C ` F

5 From derivations to strategies

Turning a derivation π of a formula F into a winning strategy S for F is easier.
To do so we describe a procedure, that we call p2s (from a Proof in LJs to
a strategy). The procedure p2s explores the proofs π starting from the root
and proceeding by level order traversal. The order of traversal of daughters is
irrelevant. The procedure associates to π a prefix closed set of games for the
formula F .

Theorem 2. Let F be an arbitrary formula and π be an arbitrary derivation of
F in LJs. There is a function p2s such that p2s(π) is a winning strategy S for
F .

Proof. Let x be an arbitrary node in the proof π of the formula F having depth
n, and let Γ ` C be the sequent that decorates x. Suppose that
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1. the branch r = xo, . . . xn = x of the derivation from the root r of π to x
is already associated with a prefix closed set Sx of games for the formula
F . Each G in Sx in which the last move of P is the assertion of a complex
formula or an attack move ends in a O-move.

2. For each formula B in Γ there is an O-assertion move (?,B) in some game
G in Sx.

3. The prefix closed set Sx is a strategy for F .

The prefix closed set of games Sa1 associated with a1 where a1 is any daugh-
ter of x is defined as follows:

1. if a1 is obtained by an identity rule Γ, A ` A then Sa1 = Sx ∪ {G(!, A)}
where A is the active formula of the identity rule and G is a maximal game
in Sx such that (!, A) is legal for G.

2. If a1 is labelled with a sequent obtained from a right introduction rule
with active formula A.

• If A is not a conjunction nor a universal formula then Sa1 = Sx ∪
{G(!, A)(?, s)} where G is a maximal game in Sx such that (!, A) is
legal for G and (?, s) is an attack move such that s is the unique
question on A

• if A is ∀xA′ then Sa1 is Sx ∪ {G, (!,∀xA), (?,∀[w/x])} where G is a
maximal game in Sx such that (!, A) is legal for G and the variable
w in (?,∀[w/x]) is the variable that appears in the premise of a1 but
not in a1.

• if A is B∧C then Sa1 = Sx∪{G(!, B∧C)(?,∧1)}∪{G(!, B∧C)(?,∧2)}
where G is a maximal game in Sx such that the P-move (!, B ∧C) is
legal for G

3. If a1 is labelled with a sequent obtained from a left introduction rule with
active formula A.

• if A is B1∧B2 then Sa1 = Sx∪ {G(?,∧i)(!, Bi)} where Bi is the direct
sub-formula of B1 ∧B2 that appears in the premise of a1 but not in
a1 and G is a maximal game in Sx such that the P-move (?,∧i) is
legal for G.

• if A is ∀xB then Sa1 = Sx∪ {G(?,∀[t/x])(!, B[t/x])} where B[t/x] is
the formula occurrence that appears in the premise of a1 but not in
a1 and G is a maximal game in Sx such that the P-move (?,∀[t/x])
is legal for G.

• If A is B ∨C then Sa1 = Sx∪ {G(?,∨)(!, B)} ∪ {G(?,∨)(!, C)} where
G is a maximal game in Sx such that the P-move (?,∨) is legal for
G.
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• if A is ∃xB, Sa1 = Sx ∪ {G(?,∃)(!, B[w/x])} where G is a maximal
game in Sx such that the P-move (?,∃) is legal for G and B[w/x] is
a formula that appears in the premise of a1 but not in a1.

• if A is B ⇒ C, Sa1 = Sx∪ {G, (?, B), (?, q1)}∪ . . .∪{G, (?, B), (?, qn)}
∪{(G, (?, B), (!, C)}. Where G is a maximal game in Sx such that the
P-move (?, B) is legal for G where each qi is a question on B.

Remark that the procedure jumps from a node v of the proof-tree obtained
by a ⇒ L rule to the daughter of the daughter of v. It is easy to check that
conditions 1,2 and 3 are respected after the application of the procedure.

6 Conclusion and Future Works

We proved that there is a natural correspondence between formal E-strategies
and derivations of a complete sequent calculus for first order intuitionistic logic.
We hope that the simplicity of our approach will help other researchers to better
the dialogical logic approach.

The attentive reader has surely remarked that the sequent calculus LJs obeys
a focusing principle (Andreoli, 1992): whenever we apply (bottom-up) an ∃R
or an ∨R rule over a sequent Γ ` C we are obliged to apply right-rules until
an implication, a conjunction, or an universally quantified formula is at the
place of C. It is quite surprising that formal E-strategies naturally corresponds
to this type of calculus. The fact that Felscher himself did not notice such
correspondence is explained by remarking that focusing was not known at the
time he worked on dialogical logic.

Concerning the future works: given a winning strategy for A and a winning
strategy for A ⇒ B we can conclude that there is a winning strategy for B.
Simply because the cut-rule is admissible in LJs and we can thus translate the
winning strategies for A,A ⇒ B into two derivations and use the cut rule to
obtain a derivation of B. However it would be much more interesting to define
an analogous of the cut-rule directly on strategies. We think that this could
be obtained by relaxing the definition of game in order to let the proponent
assert, at any point of the game, an arbitrary formula C. After Proponent’s
assertion of C, the Opponent can continue the game by either attacking C or
by asserting C in turn. The cut-elimination theorem for strategies would be
obtained by proving that the set of formulas admitting winning strategies that
contains this kind of games is equal to the class of formulas admitting regular
winning strategies.

Dialogic logic heavily influenced the game semantics approach (Hyland, 1997;
Abramsky, Jagadeesan, & Malacaria, 2000). Game semantics has been used in
order to give denotational models of many programming languages. In particu-
lar there is a natural correspondence between winning strategies in the Hyland-
Ong setting of game semantics and the simply-typed λ-calculus. Despite the
fact that dialogical logic and game semantics have a lot in common no one, at
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least to our knowledge, has tried to investigate the question in detail. We think
that shedding light on this subject could be fruitful for the development of both
game semantics and dialogical logic.
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