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From strategies to derivations and back
An easy completeness proof for first order intuitionistic dialogical

logic

Davide Catta

LIRMM, Université de Montpellier, CNRS
davide.catta@lirmm.fr

Abstract

In this paper we give a new proof of the correspondence between the
existence of a winning strategies for intuitionistic E-games and Intuistion-
istic validity for first order logic. The proof is obtained by a direct mapping
between formal E-strategy and derivations in a cut-free complete sequent
calculus for first order intuitionistic logic. Our approach builds on the one
developed by Herbelin in his PhD dissertation and greatly simplifies the
proof of correspondence given by Felscher in his classic paper

1 Introduction

The art of persuasive debate, dialectics, and the science of valid inference, logic,
have been intrinsically linked since their beginnings (Castelnérac & Marion,
2009, 2013; Marion & Rückert, 2016; Novaes, 2005). At the dawn of the modern
age the connection between the two disciplines seemed so clear that one of the
first sentences pronounced by Doctor Faustus in Marlowe’s work goes as follows

Is, to dispute well, logic’s chiefest end? Affords this art no greater
miracle?

Despite this ancient connection between the two disciplines, mathematical logic
had to wait until the 50s of the last century to determine that the logical
concept of validity could be expressed through the use of dialogical concepts
and techniques. Inspired by the Philosophical Investigations of Wittgenstein
(Wittgenstein, 1953), the German mathematician and philosopher Lorenzen
(Lorenzen, 1958) proposed to analyze the concept of validity of a formula A
through the concept of winning strategy in a particular type of two-player game.
This type of game is nothing more than an argumentative dialogue between a
player, called Proponent, who affirms the validity of a certain formula A and
another player, called Opponent, who contends its validity. The argumentative

1

mailto:davide.catta@lirmm.fr


dialogue starts by the Proponent affirming a certain formula. The Opponent
takes his turn and attacks the claim made by the Proponent according to its
logical form. The Proponent can, depending on the form of the attack made by
the Opponent, either defend his previous claim or counter attack. The debate
evolves following this pattern. The Proponent wins the debate if he has the
last word, i.e., the defence against one of the attacks made by the Opponent
is a proposition that the Opponent cannot attack without violating the debate
rules.

Dialogical logic was initially conceived by Lorenzen as a foundation for in-
tuitionistic logic (IL). Lorenzen’s idea was the following: it is possible to define
a natural class of dialogue games in which given a formula A, the Proponent
can always win a game on A, no matter how the opponent choose to act in the
debate, if and only if A is IL-valid. This intuition was formalized by saying that,
given a certain class of dialogue games, and a formula A

A is IL valid if and only if, there is a winning strategy for the proponent for
the formula A in the class of games under consideration.

Unfortunately almost 40 years of work were needed to get a first correct
proof of the completeness theorem (Felscher, 1985). Felscher’s proof makes
use of various intermediate notions that allow a winning strategy to be trans-
formed into a proof in the sequent calculus LJ and vice versa. First, Felscher
defines two types of dialogue games, called D-dialogues and E-dialogues. Sec-
ond he gives an algorithm that converts D-strategies into formal E-strategies
(strategies that respect the eigen-variable condition). Third, algorithms are
given which transform derivations of the sequent calculus LJ into what Felscher
calls IC-protableaux. Felscher concludes his proof by providing an algorithm to
transform an IC-protableaux into an E-strategy. As one can see merely from
this description Felscher’s proof is a big nut to crack.

An improvement of Felscher’s work was produced by Herbelin in his PhD
dissertation (Herbelin, 1995)1. Herbelin presents a variant of the LJ sequent
calculus, called LJQ, and proves that, given a formula A, derivations for A in the
sequent calculus LJQ corresponds to winning E-strategies for A and viceversa.
Herbelin’s proofs is considerably simpler then Felscher’s but, unfortunately, it
is limited to propositional logic. The objective of our paper is thus simple: we
extend the work of Herbelin to first order intuitionistic logic. We present a
sequent calculus, LJs, that is complete for first order intuitionistic logic and we
show that derivations in the sequent calculus LJs corresponds to formal winning
E-strategies and viceversa.

1A natural correspondence between a variant of E-strategies for intermediate propositional
logics and derivations in an hyper-sequent calculus is provided in (Fermüller, 2003). Building
on the work of Fermüller (Alama, Knoks, & Uckelman, 2011) provides a natural correspon-
dence between a variant of E-strategies and derivations in a complete sequent calculus for
propositional classical logic.
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Overview

The rest of the paper is structured as follows: Sect. 2 introduces dialogical
logic for intuitionistic logic: we define E-games — that we simply call games —
formal E-strategies — that we simply call strategies — and prove some results
about games and strategies. Sect. 3 introduces the sequent calculus LJs: we
prove some results about LJs, in particular, that LJs is sound and complete for
intuitionistic firts order logic. In Sect. 4 we show how to transform a winning
strategy for a formula A into a derivation of A in the calculus LJs; In Sect. 5
we show how to transform a derivation of A in the calculus LJs into a winning
strategy for A. The paper will be as much self contained as possible.

2 Dialogical Logic

2.1 First order language

In this paper we will consider a standard first order language L over a signature
(R,F). R is a countable set of predicate variables (P,Q,R, S, etc. varies over
predicate variables) and F is a countable set of function symbols (f, g, h, etc.
varies over function symbols). The two set are disjoint and there is an arity
function a : R∪F → N. Function symbols with arity 0 will be called constants
and ranged over by a, b, c, d, ecc. Predicate variables with arity 0 will be called
propositional variables and ranged over by X,Y, Z,W, ecc.

Let V be a countable set of variable symbols (variables will be ranged over
by x, y, z, w, etc.) The set of terms is defined by the following grammar

t := x | f(t1, . . . tn)

where f is a function symbol with arity n. Let ∧,∨,⇒,∀,∃ be the symbols
for the usual connective and quantifiers of first order logic. And let⊥ (falsehood)
be a predicate constant

Formulas are specified by the following grammar

F ::= P (t1, . . . tn)| ⊥ | F ∧ F | F ∨ F | F ⇒ F | ∀xF | ∃xF

The predicate constant ⊥ and formulas of the form P (t1, . . . tn), where P is
a predicate variable, will be called atomic formulas. The negation of a formula
is defined as ¬F ≡ F ⇒ ⊥, We will use capital roman letter from the beginning
of the alphabet (A,B,C,D, ecc.) to denote arbitrary formulas. The notion of
free (resp. bound) variables of a term (resp. formula) will be the usual ones,
as well as the notion of subformula, Gentzen-subformula and positive/negative
subformula of a formula. The depth |A| of a formula A its the maximum length
of a branch in its construction tree.

In the present work we will often talk about sequences. A sequence, formally,
is a mapping whose domain is a subset of the set N of natural numbers. Infor-
mally a sequence is a set of objects listed according to a certain specific order.
The length of a sequence is the number of element in it. Given two sequences
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t, t′ t is a prefix (resp. suffix) of t′ if and only if, there is a sequence r such that
t′ = tr (resp t′r = t). If r is not the empty sequence ε then t is said to be a
proper prefix (resp. proper suffix) of t′. Given a set of sequence S, a sequence
t ∈ S is said to be maximal in S whenever there is no proper suffix of t in S.

2.2 Argumentative dialogues: informal overview

Before entering into the formal matter of dialogical logic let us give an informal
example of an argumentative dialogue about the validity of a formula. Let A
and B stand for two arbitrary formulas.

0. P: I affirm that A ∧B ⇒ B

1. O: Let me assume, for the sake of the proof, that A ∧ B holds, can you
show that B holds?

2. P: You admitted that A ∧B holds, can you admit that B holds?

3. O: Indeed, I must admit that B holds.

4. P: Then I have nothing more to prove, you have admitted that B holds,
if A ∧B holds.

We can see that the Proponent and the Opponent alternates in the dialogue.
The dialogue is a sequence of interventions. Each intervention but the first con-
sist in either an attack against a preceding intervention of the other player or
a defence against an attack of the other player. For example O in interven-
tion 1 attacks intervention 0 by asking P to show that B holds provided that
A ∧ B holds. P’s defence against 1 is the intervention 4. What counts as a
question against an asserted formula A, and what counts as an answer to such
a question depends upon the logical form of A. For example in 2 P attacks the
formula asserted in 1 by asking O to assert B. This is because if one admit
that a conjunction holds he must be ready to concede that both members of the
conjunction holds. Resuming: An argumentative dialogue will be a sequence of
alternated interventions made by the Proponent and the Opponent. Each inter-
vention in the dialogue is an attack or a defence against a preceding intervention,
the dialogue ends whenever the Opponent cannot produce a new intervention
without falling in contradiction with what he already conceded. The content
of the next subsection will be devoted to give a formal content to this intuitive
discussion. In subsection 2.3 we define what a question on a formula is and what
counts as an answer to such a question. In subsection 2.4 we formally define
what it means for an intervention in a dialogue to refer to another preceding
intervention in the same dialogue (definitions 1 and 2). Finally in subsection 2.5
we define (definition 3) the class of argumentative dialogues we are interested
in (the we call games) and when does P wins in an argumentative dialogue.
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2.3 Argumentation forms

The set of auxiliary symbols Aux is the smallest set containing the symbols
∧1,∧2,∨,∃ and the expressions ∀[t/x] for all terms in T and variables x in L.

Following the terminology of Felscher (Felscher, 2002), an argumentation
form Arg is a function assigning to each non atomic formula A a set of pairs
consisting of one question and one answer with questions being either formulas
or symbols in Aux and answers being formulas2

Arg(A⇒ B) = {(A,B)}
Arg(A ∧B) = {(∧1, A), (∧2, B)}
Arg(A ∨B) = {(∨, A), (∨, B)}

Arg(∀xA) = {(∀[t/x], A[t/x]) | t ∈ T }
Arg(∃xA) = {(∃, A[t/x]) | t ∈ T }

Given a formula A, a question q that belongs to a couple (q, a) ∈ Arg(A) is
called a question on A. Given a formula A and a question q on A, a formula
B is called an answer to the question q on the formula A whenever the couple
(q,B) is an element of Arg(A). So, for example, if A is B ∧ C, both ∧1 and ∧2
are question on A but only B is an answer to ∧1 and only C is an answer to
∧2. If A = B ∨C, the symbol ∨ is a question on A, and both B,C are answers
to ∨. Consider the case where A is B ⇒ C. In this case B is a question on A
and C is an answer to B.

2.4 Augmented sequence

A defence move is a couple (!, A) where A is a formula. An attack move is a
couple (?, s) where s is either a formula or an auxiliary symbol. A move is either
an attack move or a defence move. A move (?,A) where A is a formula and
? ∈ {?, !}, is called assertion move. We will also say that the move asserts the
formula A or that A is the asserted formula of the move. Attack moves of the
form (?,∃) are called existential attacks. Attack moves of the form (?,∨) are
called disjunctive attacks. Let ρ = m0,m1, . . .mn . . . be a sequence of moves.
We denote by ρi the ith move of the sequence. The parity of ρi is the parity of
i. An assertion move ρj = (?,A) is called a reprise if and only if there is move
ρk ∈ ρ with k < j such that ρk = (?′, A) and ρj , ρk have different parities

Definition 1. An augment sequence is a non empty sequence of move ρ together
with a function φ that is defined on each ρi with i > 1 and such that, for all i,
φ(ρi) = ρj for a j < i. The move φ(ρi) is called the enabler of ρi.

Definition 2. Let (ρ, φ) be an augmented sequence.

2The words “question” and “answer” are called “attack” and “defence” by Felscher
in (Felscher, 2002); we deviate from this terminology because we will use the terms “attack”
and “defence” exclusively for the moves in a game, avoiding possible confusion.
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• An attack move ρi = (?, s) is justified whenever φ(ρi) is of the form (?,A)
and s is a question on A.

• A defence move ρi = (!, B) is justified whenever φ(ρi) is of the form (?, s),
φ(ρi) is justified, φ(φ(ρi)) = (?,A) and B is an answer to the question s
on A

2.5 Games

Let (ρ, φ) be an augmented sequence, we say that a formula A appears in the
augmented sequence if and only if there is a move m ∈ ρ that asserts A. We say
that a variable v appears in ρ whenever v occurs free in some asserted formula
or there is a move m = (?,∀[v/x]) in ρ. If ρi is an attack move and ρi is not the
enabler of some defence move ρj then we will say that ρi is unanswered.

Fix an enumeration (vi)i∈I of the variables of L

Definition 3 (Game). A game G for a formula A is an augmented sequence
(ρ, φ) such that

1. ρ0 = (!, A) and for all i > 0 the move ρi is justified.

2. φ(ρi) = ρi−1 if i is odd, φ(ρi) = ρj with j odd if i is even.

3. if ρi = (?,B) with B atomic formula and i even then ρi is a reprise and
B 6= ⊥

4. if ρi is an attack move of the form (?,∀[vk/x]) and i is odd then vk is the
first variable in the enumeration (vi)i∈I that does not appear in the prefix
of ρ ending with ρi−1

5. if ρi = (!, B[vk/x]) is a defence move, i is odd and ρi−1 is of the form
(?,∃) then vk is the first variable in the enumeration (vi)i∈I that does not
appear in the prefix of ρ ending with ρi−1

6. If ρk is a defence move and k is even then σ(ρk) = ρj is the unanswered
attack move having greatest odd index in the prefix of ρ ending with ρk−1

In a game G moves ρi with i even are called P-moves. They are called O-
moves otherwise. If Gm is a game and m is P-move we will write GmP. We will
write GmO otherwise.

Let G = (ρ, φ) be a finite game and m be a move. The move m is legal for
G if and only if the augmented sequence (ρm, σ) is a game, where σ|ρ = φ and
σ(m) ∈ ρ

Definition 4. A game G is won by P if and only if it is finite and either

• the game is of the form G′mP and there is no move m′ legal for G

• the game is of the form G′mO and m asserts ⊥

In what follows we will often identify a game with the sequence of its moves
by an abuse of notation.
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2.6 Some examples

We give some examples of games. A game will be represented as a table with
two columns and as many rows as there are moves in the game. In the first
column of the table we will write down the moves of the game. In the second
column we will write the value of the function φ for the move in the first column.
Let X,Y, Z be propositional variables, and R a binary predicate variable

m0 = (!, X ⇒ Y ⇒ ((Y ⇒ Z)⇒ (X ⇒ Z)))
m1 = (?, X ⇒ Y ) m0

m2 = (!, (Y ⇒ Z)⇒ (X ⇒ Z)) m1

m3 = (?, Y ⇒ Z) m2

m4 = (!, X ⇒ Z) m3

m5 = (?, X) m4

m6 = (?, X) m1

m7 = (!, Y ) m6

m8 = (?, Y ) m3

m9 = (!, Z) m8

m10 = (!, Z) m5

m0 = (!, X ∨ Y ⇒ Y ∨X)
m1 = (?, X ∨ Y ) m0

m2 = (?,∨) m1

m3 = (!, X) m2

m4 = (!, Y ∨X) m1

m5 = (?,∨) m4

m6 = (!, X) m5

m0 = (!, X ∨ Y ⇒ Y ∨X)
m1 = (?, X ∨ Y ) m0

m2 = (?,∨) m1

m3 = (!, Y ) m2

m4 = (!, Y ∨X) m1

m5 = (?,∨) m4

m6 = (!, Y ) m5

m0 = (!, X ⇒ ¬¬X)
m1 = (?, X) m0

m2 = (!,¬¬X) m1

m3 = (!,¬X) m2

m4 = (!, X) m3

m5 = (?,⊥) m4

m0 = (!,¬¬X ⇒ X)
m1 = (?,¬¬X) m0

m2 = (?,¬X) m1

m3 = (?, X) m2

m0 = (!, (X ∧ ¬X)⇒ Z)
m1 = (?, X ∧ ¬X) m0

m2 = (?,∧1) m1

m3 = (!, X) m2

m4 = (?,∧2) m1

m5 = (!,¬X) m4

m6 = (?, X) m5

m7 = (!,⊥) m6

m0 = (!, X ∨ Y ⇒ X)
m1 = (?, X ∨ Y ) m0

m2 = (?,∨) m1

m3 = (!, X) m2

m4 = (!, X) m1
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m0 = (!,∃y∀xR(x, y)⇒ ∀x∃yR(x, y))
m1 = (?,∃y∀xR(x, y)) m0

m2 = (!,∀x∃yR(x, y)) m1

m3 = (?,∀[w/x]) m2

m4 = (!,∃yR(w, y)) m3

m5 = (?,∃) m4

m6 = (?,∃) m1

m7 = (!,∀xR(x, z)) m6

m8 = (?,∀[w/z]) m7

m9 = (!, R(w, z)) m8

m10 = (!, R(w, z)) m5

Remark 1. All the games except the one for the formula ¬¬X ⇒ X are
won by the Proponent: they either do not admit further Opponent’s moves
or they end with an Opponent’s assertion of ⊥. Remark that the last move
of all games won by the Proponent ending in a Proponent’s move are defence
moves and assertions of an atomic formula. In all games formulas asserted by
the Proponent are positive sub-formulas of the formula about which the game
is played. Formulas asserted by the Opponent are negative sub-formulas of the
formula about which the game is played. In each game atomic formulas asserted
by the Proponent are both positives and negatives sub-formulas of the formula
about which the game is played.

The proponent cannot extend the game for the formula ¬¬X ⇒ X by the
defence-move m4 = (!, X) with φ(m4) = m1 because of condition 6 in the
definition of game (definition 3). The two games for the formula X∨Y ⇒ X∨Y
have a common prefix and they first differ on an Opponent’s move. In one game
the Opponent chooses to assert X in the defence move m4 while in the other
game the Opponent chooses to assert Y . In any case the Proponent wins.

The Proponent wins the game for the formula X ∨Y ⇒ X even if this latter
formula is not a tautology of first order intuitionistic logic. Note that if the
Opponent had chosen to assert the formula Y instead of the formula X on move
3 then the Proponent would have had no chance of winning. In the game for
the formula ∃y∀xR(x, y)⇒ ∀x∃yR(x, y) the player does not defend immediately
against the attack move m5. Instead he delays his defence until the last move.

We systematize the observations on the games just made with some simple
propositions

Proposition 1. Let A be an arbitrary formula and G and arbitrary game for
A. If (i, B) is an assertion move in G then B is a Gentzen subformula of A

Proof. By induction on the length of G

Proposition 2. Let A be an arbitrary formula and G = G′mP be a finite game
for A. if G is won by P then m asserts an atomic Gentzen subformula B of A.
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Proof. Suppose, to reach a contradiction that the last move m of G is not a
defence move. Then it is an attack move of the form (?, s). By definition of
game there is a preceding O-move mk that asserts some formula C, φ(mn) = mk

and s is a question on C. Then the augmented sequence Gm where m = (!, D),
φ(m) = mn and D is an answer to the question s on the formula B, is a game.
This contradicts the fact that G is won by P . Thus mn must be a defence move
(!, B). If B is not atomic we reach again a contradiction: in fact by adding a
move m = (?, s) to G where s is a question on B we obtain a game. Thus we
must conclude that B is an atomic formula

Proposition 3. Let A be an arbitrary formula and G an arbitrary game for A.
If (?,B) is an assertion move in G that is a P-move (resp. an O-move) then B
is a positive (resp. negative) gentzen-subformula of A.

Proof. By induction on the lenght of G

Proposition 4. Let A be an arbitrary formula and G an arbitrary game for A.
If (?,B) is an assertion move made by P and B is an atomic formula then B
is both a negative and positive gentzen subformula of A.

Proof. Direct consequence of Proposition 3 and of the condition 3 in the defini-
tion of game.

2.7 Strategies

As we have discussed in remark 1 the game for the formula X ∨ Y ⇒ X is
won by the Proponent but by mere accident: If the Opponent had chosen to
assert Y instead of X the Proponent would not have had a chance to win. This
means that the Proponent cannot win a game on that formula no matter how
the Opponent choose to act in the game. On the contrary the Proponent can
win a game on the formula X∨Y ⇒ Y ∨X no matter how the Opponent choose
to act in the Game. This means that there is a Proponent winning strategy for
the formula X∨Y ⇒ Y ∨X and no winning strategy for the formula X∨Y ⇒ X

Intuitively speaking a strategy for a game G is a function. A function that
specifies, at each moment of the game, which move a player must play according
to the moves previously played (the history of the game). A strategy is winning
when the player that follows the strategy wins whatever the history of the game
is. As long as each move of the player that follows the strategy is determined
by the strategy itself, it can be concluded that the game history varies only
according to the moves of his opponent. We informally describe how a strategy
should operate and then formalize this notion. Imagine being engaged in a game
G, that the last move of G was played according to the strategy, and that it is
now your opponent’s turn to play. Your opponent could extend the game in
different ways: for example if you are playing chess, you are white and you just
made your first move by moving a pawn to a certain position of the chessboard,
black can in turn move a pawn or move a horse. If you are playing according
to the strategy, the strategy should tell you how to react against either type of
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move. If black moves a pawn to C6 and you just moved your pawn to C3 then
move the horse to H3. If black moves a horse to H6 and you just moved your
pawn to C3 then move your pawn in B4. Therefore, a strategy can be viewed
as tree in which each node is a move in the game, the moves of my opponent
have at most one daughter, and my moves have as many daughters as there are
available moves for my opponent. A tree can be seen as a prefix-closed set of
sequence over an alphabet. Since our games are sequences over the alphabet of
moves we can define stragies in the following manner:

Definition 5. A strategy S for a formula A is a non empty prefix-closed set of
games for A such that

1. if GmP and GnP belongs to S then m = n

2. if G = G′mP ∈ S then GnO ∈ S for all moves n legal for G

3. if G = G′mO ∈ S and m = (?,∃) or m = (?,∨) then GnP ∈ S and n is
enabled by m

A strategy S is winning if and only if every maximal sequence of the
strategy is a game won by P.

Condition 3 in the definition above precludes the Proponent to delay a de-
fence against an existential attack. As a consequence a game like the one for the
formula ∃y∀xR(x, y)⇒ ∀x∃yR(x, y) presented in subsection 2.6 cannot belong
to a strategy.

Proposition 5. Let S be an arbitrary strategy and let G be a game in S that
ends in P-move. The family of moves (mki)(i∈I) such that Gmki ∈ S, is a finite
family

Corollary 1. For all strategy S, if S is winning then S is a finite tree.

2.8 Some examples of strategies

Let X,Y, Z,W be propositional variables and R be a binary predicate variable.
A strategy will be represented as a tree of games.

m0 = (!, X ∨ Y ⇒ Y ∨X)
m1 = (?, X ∨ Y ) m0

m2 = (?,∨) m1

m3 = (!, Y ) m2

m4 = (!, X ∨ Y ) m1

m5 = (?,∨) m4

m6 = (!, Y ) m5

m3 = (!, X) m2

m4 = (!, Y ∨X) m1

m5 = (?,∨) m4

m6 = (!, X) m5
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m0 = (!, X ∨ Y ⇒ X)
m1 = (?, X ∨ Y ) m0

m2 = (?,∨) m1

m3 = (!, X) m2

m4 = (!, X) m1
m3 = (!, Y ) m2

m0 = (!, ((X ⇒ (Y ⇒W ))⇒ (((Y ⇒W )⇒ Z)⇒ (X ⇒ Z))
m1 = (?, X ⇒ (Y ⇒W )) m0

m2 = (!, ((Y ⇒W )⇒ Z)⇒ (X ⇒ Z) m1

m3 = (?, (Y ⇒W )⇒ Z) m2

m4 = (!, X ⇒ Z) m3

m5 = (?, X) m4

m6 = (?, Y ⇒W ) m3

m7 = (?, Y ) m6

m8 = (?, X) m1

m9 = (!, Y ⇒W ) m8

m10 = (?, Y ) m9

m11 = (!,W ) m10

m12 = (!,W ) m7

m7 = (!, Z) m6

m8 = (!, Z) m5

m0 = (!,∃y∀xR(x, y)⇒ ∀x∃yR(x, y)
m1 = (?,∃y∀xR(x, y)) m0

m2 = (!,∀x∃yR(x, y)) m1

m3 = (?,∀[w/x]) m2

m4 = (?,∃) m1

m5 = (!,∀xR(x, z)) m4

m6 = (?,∀[w/x])) m5

m7 = (!, R(w, z)) m6

m8 = (!,∃yR(w, y)) m3

m9 = (?,∃) m8

m10 = (!, R(w, z)) m9

3 The sequent calculus LJs

We now present the sequent calculus LJs. (Strategic LJ). LJs is a first order ver-
sion of the calculus LJQ studied by Herbelin in his Phd dissertation (Herbelin,
1995). LJQ is a Kleene style sequent calculus: the active formula of a left
introduction rule is present in the premises of the rule. LJQ differs from a
Kleene-style calculus like GKi (Troelstra & Schwichtenberg, 1996) because of a
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Table 1: The LJs sequent calculus.

Id
Γ, A ` A

⊥L⊥,Γ ` C

Γ, A ` B
⇒ R

Γ ` A⇒ B
Γ, A⇒ B ` A Γ, A⇒ B,B ` C

⇒ L
Γ,A⇒ B ` C

Γ ` A Γ ` B,
∧R

Γ ` A ∧B

Γ, Ai, A1 ∧A2 ` C ∧LiΓ,A1 ∧A2 ` C

Γ ` Ai ∨RiΓ ` A1 ∨A2

Γ, A ∨B,A ` C Γ, A ∨B,B ` C
∨L

Γ,A ∨B ` C

Γ ` A[t/x]
∃R

Γ ` ∃xA

Γ, A[y/x],∃xA ` C
∃L

Γ,∃xA ` C

Γ ` A[y/x]
∀R

Γ ` ∀xA

ΓA[t/x],∀xA ` C
∀L

Γ,∀xA ` C

restriction on the use of the left introduction rule for the implication connec-
tive. LJs is obtained from LJQ by adding the quantifier rules and imposing a
restriction on the use of the right introduction rule for the disjunction and the
existential quantifier connectives.

Definition 6. The sequent calculus LJs is defined by the rules in Table 1. A
sequent is an expression Γ ` C where Γ is a finite (possibly empty) multiset
of formulas and C is a formula. Greek upper-case letters Γ,∆, . . . stand for
multisets of formulas. In the Id-rule A is of the form P (t1, . . . , tn) where P is
a predicate variable with arity n ≥ 0 and the ti are terms. In the ∀R and ∃L
rules the variable y does not occur in the conclusion sequent. In the ⇒ L rule
the left-side premise of the rule is obtained by an Id-rule or a right introduction
rule. In the ∃R-rule as well as in the ∨R-rule the premise of the rule is obtained
by an Id-rule or a right introduction rule. The bold formulas are called active
formulas.

A derivation (or a proof) π of a sequent Γ ` C in LJs is a tree of sequents
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constructed according to the rules of LJS in which leaves are instances of Id-
rules or ⊥L-rules and whose root, also called conclusion, is Γ ` C. The height
of a derivation π is the number of nodes in its maximal branch minus 1.

A sequent Γ ` C is said to be derivable or provable in the sequent calculus
LJs whenever there exists a proof with conclusion Γ ` C.

We now state some propositions that are true about the sequent calculus
LJs. Whereas the proof of one of the proposition is ”standard” we will omit the
detail of the proof.

Proposition 6 (Inversion). For all formula A,B for all multiset of formulas Γ

1. If there is a derivation π of Γ ` A ∧ B then there are derivation π1 of
Γ ` A and π2 of Γ ` B. Moreover the derivations π, π1, π2 have the same
height

2. If there is a derivation π of Γ ` A ⇒ B then there is a derivation π1 of
Γ, A ` B. Moreover π, π1 have the same height

3. If there is a derivation π of Γ ` ∀xA then there is a derivation π1 of
Γ ` A[y/x] where y is a variable that does not appear in Γ. Moreover
π, π1 have the same height

4. If there is a derivation π of Γ, A ∨ B ` C then there are derivation π1
of Γ, A ∨ B,A ` C and π2 of Γ, A ∨ B,B ` C. Moreover the derivations
π, π1, π2 have the same height

5. If there is a derivation π of Γ,∃xA ` C then there is a derivation π1 of
Γ,∃xA,A[y/x] ` C where y is a variable that does not appear in Γ nor in
C. Moreover π, π1 have the same height

Proof. By induction on the height of π

Corollary 2. For all formulas A for all multiset of formula Γ if the main
connective of A is either ∧,⇒ or ∀ and the sequent Γ ` A is provable then there
is a derivation π of Γ ` A in which A is active.

Proposition 7. Contraction and weakening are height preserving admissible in
LJs, i.e., for all formula A,C for all multiset of formulas Γ

• if there a derivation π of Γ, A,A ` C and π has height n then there is a
derivation ρ of Γ, A ` C and the height of ρ is n

• if there is a derivation π of Γ ` C and π has height n then there is a
derivation ρ of Γ, A ` C and the height of ρ is n

Proof. By induction on the height of the derivation π of Γ, A,A ` C (resp
Γ ` C)
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Proposition 8. For all formula A and all multiset of formulas Γ there is a
derivation π of the sequent Γ, A ` A. Moreover in the derivation π either the
occurrence of A on the left of ` is active or the occurrence of A on the right of
` is active.

Proof. Suppose that the proposition holds for all formulas B having height
smaller then n and let A be a formula of height n. We will detail the proof only
for the case in which A := C ⇒ D. By induction hypothesis there are proofs
of ρ1 of Γ, C ⇒ D,C ` C and ρ2 of Γ, C ⇒ D,D ` D. We have a problem
if in the derivation ρ1 the active occurrence of C is the one on the left of the
turnstile, i.e. ρ1 ends in a left introduction rule. If the main connective of C is
∀,∧ or ⇒ then by corollary 2 we can conclude that there is a derivation ρ′1 of
Γ, C ⇒ D,C ` C in which the occurence of C on the right of the turnstile is
active. Thus we can apply⇒ L on ρ′1 and ρ2 to obtain the wanted result. If the
main connective of C is ∃ or ∨ then C has, respectively, the form ∃xC1 or C1∨C2.
Let us consider the second case. By induction hypothesis there are derivations
of Γ′, C1 ∨ C2, C1 ` C1 and Γ′, C1 ∨ C2, C2 ` C2 where Γ′ = Γ, C1 ∨ C2 ⇒ D.
First of all we construct the two following derivations.

...

Γ′, C1 ∨ C2, C1 ` C1
πA

{
Γ′, C1 ∨ C2, C1 ` C1 ∨ C2

...ρ′2

Γ, C1 ∨ C2 ⇒ D,D,C1 ` D
Γ, C1 ∨ C2 ⇒ D,C1 ` D

...

Γ′, C1 ∨ C2, C2 ` C2
πB

{
Γ′, C1 ∨ C2, C1 ` C1 ∨ C2

...ρ′′2

Γ, C1 ∨ C2 ⇒ D,D,C2 ` D
Γ, C1 ∨ C2 ⇒ D,C2 ` D

Where ρ′2 and ρ′′2 are obtained from ρ be weakening admissibility. We can
now construct a derivation of Γ, C1 ∨ C2 ⇒ D ` C1 ∨ C2 ⇒ D

...πA

Γ, C1 ∨ C2 ⇒ D,C1 ` D

...πB

Γ, C1 ∨ C2 ⇒ D,C2 ` D
Γ, C1 ∨ C2 ⇒ D,C1 ∨ C2 ` D

Γ, C1 ∨ C2 ⇒ D ` C1 ∨ C2 ⇒ D

Proposition 9. For all formula A,B for all multiset of formulas, Γ, the se-
quents

1. Γ, A,A⇒ B ` B

2. Γ, A ` A ∨B
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3. Γ, B,` A ∨B

4. Γ, A[y/x] ` ∃xA

Are derivable in LJs. In (4) y is a variable that does not appears in Γ,∃xA

Proof. It is an immediate consequence of propositions 8 and 6.

Proposition 10. For all formulas A,C for all multiset of formulas Γ the cut
rule

Γ ` A Γ, A ` C
cut

Γ ` C

is admissible in LJs i.e.,

• If Γ ` A is provable and Γ, A ` C is provable then Γ ` C is provable

Proof. By nested inductions on the depth of A, (the cut formula) the height of
the derivation π of Γ ` A and the height of the derivation ρ of Γ, A ` C. More
precisely, we appeal to the induction hypothesis either with a strictly smaller
cut formula, or with an identical cut formula and two derivations, one of which
is strictly smaller while the other stays the same; the cut admissibility proof
follows the usual path of case analysis on the active formula of π and ρ. If the
active formula of one of the two derivations (or both) is not the cut formula the
depth preserving admissibility of the structural rules is used.

We now prove tha LJs is sound and complete for intuitionistic logic. In
order to prove this fact we show that a sequent Γ ` C is provable in LJs if
and only if, it is provable in the sequent calculus system GKi (Troelstra &
Schwichtenberg, 1996). GKi is sound and complete for intuititionistic logic, and
it is obtained from LJs by dropping the restriction on the left introduction rule
for the implication, right introduction rule for disjunction and right introduction
rule for existential quantification of LJs.

Proposition 11. For all formula C, for all multiset of formulas Γ, the sequent
Γ ` C is provable in LJs if and only if it is provable in GKi

Proof. Each derivation in LJs is a derivation in GKi, thus one side of the proof
is for free.

For the other side, suppose that for each derivation ρ in GKi with height n
and conclusion Γ′ ` C ′ there is a derivation ρ′ in LJs having the same conclusion.
Let π be a derivation of Γ ` C in GKi having height n+ 1 and let R be the last
rule application of π. If R is not ⇒ L,∃R nor ∨R we have just to apply the
induction hypothesis on the premises of R.

If R is ⇒ L then the conclusion of π is Γ, A ⇒ B ` C and, by induction
hypothesis we have an LJs derivation ρ1 with conclusion Γ, A ⇒ B ` A and
another LJs derivation ρ2 with conclusion B,Γ, A⇒ B ` C. We can construct
a LJs derivation of the sequent Γ, A⇒ B ` C as follows
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...ρ1

Γ, A⇒ B ` A

...π

A,Γ, A⇒ B ` B

...ρ′2

B,Γ, A,A⇒ B ` C
cut

A,Γ, A⇒ B ` C
cut

Γ, A⇒ B ` C

Where the derivation π exists by proposition 9, and ρ′2 is obtained from ρ2
by admissibility of weakening

If R is ∃R or ∨R then, the conclusion of π is of the form Γ ` ∃xA or,
respectively, Γ ` A1 ∨A2. By induction hypothesis, we have a LJs derivation ρ
of its premise Γ ` C. Where C is either A[t/x] for some term t, or Ai (i ∈ {1, 2}).
We treat only the ∃ case.

...ρ

Γ ` A[t/x]

...π

Γ, A[t/x] ` ∃xA
cut

Γ ` ∃xA

Where π = π′[t/y], and π′ is a proof of Γ, A[y/x] ` ∃xA in which y does not
appear in Γ,∃xA; the derivation π′ exists in virtue of proposition 9

4 From strategies to derivations

Let S be a strategy for a formula F and let G be a game in S. We define the
O-sequence G|O of G to be the subsequence of G obtained by forgetting all its
P-moves, i.e, if G = m0,m1, . . .mn the O-sequence of G is m1, . . .mn−1. We
define the O-tree S|O of a strategy S to be the prefix closed set of sequence

S|O = {G|O |G ∈ S}

Let S be a strategy. We define a function Φ from S|O to a tree of sequent
τ . The function Φ associate a sequent ΓG|O ` CG|O to each G|O in S|O. Let us
denote the empty sequence by ε

• if G|O = ε then ΓG|O = ∅ and CG|O = F

• if G|O = G′|O(!, A) then ΓG|O = ΓG′|O , A and CG|O = CG′|O

• if G|O = G′|O(?, A) then ΓG|O = ΓG′|O , A and CG′|O have the form A⇒ B
we put CG|O = B

• if G|O = G′|O(?,∧1) then ΓG|O = ΓG′|O and CG′|O have the form A∧B we
put CG|O = A

• if G|O = G′|O(?,∧2) then ΓG|O = ΓG′|O and CG′|O have the form A∧B we
put CG|O = B

• if G|O = G′|O(?,∀[w/x]) then ΓG|O = ΓG′|O and CG′|O have the form ∀xA
we put CG|O = A[w/x]
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• if G|O = G′|O(?,∨) then ΓG|O = ΓG′|O and CG′|O have the form A1 ∨ A2

we put CG|O = Ai where Ai is the formula asserted by the move m ∈ G,
G in S such that φ(m) = (?,∨).

• if G|O = G′|O(?,∃) then ΓG|O = ΓG′|O and CG′|O have the form ∃xA we put
CG|O = A[t/x] where A[t/x] is the formula asserted by the move m ∈ G,
G in S such that φ(m) = (?,∃).

We now prove that given a winning strategy S, Φ(S|O) is almost a derivation
in LJs; all leaves of Φ(S|O) are instances of Id rules or ⊥L rules (proposition 13)
and that Φ(S|O) respect the variable condition of the ∀R and ∃L rules of LJs
(proposition 14)

Proposition 12. Let S be an arbitrary winning strategy and G be an arbitrary
game in S. If G ends in a P defence move that asserts a formula A then the
sequent ΓG|O ` CG|O associated to the O-restriction G|O of G by the function Φ
is of the form Γ ` A

Proof. By induction on the length of G

Proposition 13. Let S, be an arbitrary winning strategy for a formula A and
G an arbitrary maximal branch in S.

1. If G = G′mO then m asserts ⊥ and the sequent ΓG|O ` CG|O associated to
the O-restriction G|O of G by the function Φ is of the form Γ,⊥ ` B with
B gentzen-subformula of A

2. if G = G′mP then m = (!, C) with C atomic gentzen subformula of A and
the sequent ΓG|O ` CG|O associated to the O-restriction G|O of G by the
function Φ is of the form Γ′, B ` B

Proof. (1) is a direct consequence of definition 4 and of the definition of the
function Φ. (2) derives from condition 3 in definition 3 and proposition 12

Proposition 14. let S be an arbitrary winning strategy and G be a game in S.
Suppose that G ends in O-move that is either

1. an attack against a universal quantifier (?,∀[w/x])

2. or a defence against an existential attack (!, A[w/x]).

Then the variable w does not appear in the sequent associated by the function Φ
to the O-restriction G′|O of the proper prefix G′ of G

Proof. Both (1) and (2) are granted by the conditions 4 and 5 in definition 3
and by condition 3 in definition 5
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We are now ready to prove the main result of this section. We have just
shown that we can associate a tree of sequents with each winning strategy. In
addition, we have shown that the above mentioned sequent tree is ”almost” a
proof in LJs: all its leaves are instance of id rules or ⊥ rules of LJs and it
respects the variable restriction on the ∀R and ∃L rules of LJs.

Theorem 1. Let S an arbitrary winning strategy and let S|O by its O-tree. To
each sequence of O-moves G|O in S|O we can associate a derivation πG|O of
ΓG|O ` CG|O , where ΓG|O ` CG|O is the sequent associated by the function Φ to
G|O

Proof. Let G|O be an arbitrary element of S|O. Suppose that the induction
hypothesis holds for each suffix G′|O of G|O in S|O. We consider the last move
P-move m2n of the game G ∈ S such that the O-restriction of G is G|O.

We only prove some of the cases that are not straightforward

1. if m2n is a defence move (!,∃xA) then there are many cases, depending
on the form of A. We treat only two cases

• if A is atomic then G|O(?,∃) is maximal in S|O; we associate with
G|O the following derivation in which A is active.

Id
Γ, A ` A

Γ, A ` ∃xA

• if A = B∨C then G|O′ = G|O(?,∃)(?,∨) ∈ S|O because of condition 3
in definition 5. This means in particular that the formula (B∨C)[t/x]
is active in the derivation that we associate with G|O

...πG|O′

Γ ` (A ∨B)[t/x]

Γ ` ∃x(A ∨B)

2. if m2n is an attack (?, A) on the assertion A ⇒ C, then there are many
cases depending on the form of A. We again only treat two cases

• if A is atomic then the immediate suffix of G|O is G|O(!, C) for which
the proposition hold by hypothesis. We associate it with the following
derivation.

Id
Γ, A⇒ C,A ` A

...πG|O(!,C)

Γ, A⇒ C,C ` F
⇒ L

Γ, A⇒ C ` F

• if A = (A1⇒A2) then G|O has two immediate suffixes: G|O, (?, A1)
and G|O, (!, C), for which the proposition holds by hypothesis. We
associate the following derivation to G|O.
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...πG|O,(?,A1)

Γ, (A1 ⇒ A2) ⇒ C,A1 ` A2
⇒ R

Γ, (A1 ⇒ A2) ⇒ C ` A1 ⇒ A2

...πG|O,(!,C)

Γ, (A1 ⇒ A2) ⇒ C,C ` F
⇒ L

Γ, (A1 ⇒ A2) ⇒ C ` F

5 From derivations to strategies

Turning a derivation π of a formula F into a winning strategy S for F is easier.
To do so we describe a procedure, that we call p2s (from a Proof in LJs to
a strategy). The procedure p2s explore the proofs π starting from the root
and proceeding by level order traversal. The order of traversal of daughters is
irrelevant. The procedure associate to π a prefix closed set of games for the
formula F .

Theorem 2. Let F be an arbitrary formula and π be an arbitrary derivation of
F in LJs. There is a function p2s such that p2s(π) is a winning strategy S for
F

Proof. Let x be an arbitrary node the proof π of the formula F having depth
n, and let Γ ` C be the sequent that decorates x. Suppose that

1. the branch r = xo, . . . xn = x of the derivation from the root r of π to x
is already associated with a prefix closed set Sx of games for the formula
F . Each G in Sx in which the last move of P is the assertion of a complex
formula or an attack move ends in a O-move

2. For each formula B in Γ there is an assertion O-assertion move (?,B) in
some game G in Sx

3. The prefix closed set Sx is a strategy for F

The prefix closed set of games Sa1 associated with a1 where a1 is any daugh-
ter of x is defined as follows:

1. if a1 is obtained by an identity rule Γ, A ` A then Sa1 = Sx ∪ {G(!, A)}
where A is the active formula of the identity rule and G is a maximal game
in Sx such that (!, A) is legal for G.

2. If a1 is labelled with a sequent obtained from a right introduction rule
with active formula A.

• If A is not a conjunction nor a universal formula then Sa1 = Sx ∪
{G(!, A)(?, s)} where G is a maximal game in Sx such that (!, A) is
legal for G and (?, s) is an attack move such that s is the unique
question on A
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• if A is ∀xA′ then Sa1 is Sx ∪ {G, (!,∀xA), (?,∀[w/x])} where G is a
maximal game in Sa such that (!, A) is legal for G and the variable
w in (?,∀[w/x]) is the variable that appears in the premise of a1 but
not in a1.

• if A is B∧C then Sa1 = Sx∪{G(!, B∧C)(?,∧1)}∪{G(!, B∧C)(?,∧2)}
where G is a maximal game in Sa such that the P-move (!, B ∧C) is
legal for G

3. If a1 is labelled with a sequent obtained from a left introduction rule with
active formula A.

• if A is B1∧B2 then Sa1 = Sx∪ {G(?,∧i)(!, Bi)} where Bi is the direct
sub-formula of B1 ∧B2 that appears in the premise of a1 but not in
a1 and G is a maximal game in Sx such that the P-move (?,∧i) is
legal for G.

• if A is ∀xB then Sa1 = Sx∪ {G(?,∀[t/x])(!, B[t/x])} where B[t/x] is
the formula occurrence that appears in the premise of a1 but not in
a1 and G is a maximal game in Sx such that the P-move (?,∀[t/x])
is legal for G.

• If A is B ∨C then Sa1 = Sx∪ {G(?,∨)(!, B)} ∪ {G(?,∨)(!, C)} where
G is a maximal game in Sx such that the P-move (?,∨) is legal for
G.

• if A is B ⇒ C, Sa1 = Sx∪ {G, (?, B), (?, q1)}∪ . . .∪{G, (?, B), (?, qn)}
∪{(G, (?, B), (!, C)}. Where G is a maximal game in Sx such that the
P-move (?, B) is legal for G each qi is a question on B.

It is easy to check that conditions 1,2 and 3 are respected after the applica-
tion of the procedure.

6 Conclusion and Future Works

We proved that there is a natural correspondence between formal E-strategies
and derivations of a complete sequent calculus for first order intuitionistic logic.
We hope that the simplicity of our approach will help other researchers to ap-
preciate more the dialogical logic approach.

The attentive reader has surely remarked that the sequent calculus LJs obeys
a focusing principle (Andreoli, 1992): whenever we apply (bottom-up) an ∃R
or an ∨R rule over a sequent Γ ` C we are obliged to apply right-rules until an
implication a conjunction or an universally quantified formula is at place of C.
It is quite surprising that formal E-strategies naturally corresponds to this type
of calculus. The fact that Felscher himself did not notice such correspondence
is explained by remarking that focusing was not known at the time he worked
on dialogical logic.
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Concerning the future works: given a winning strategy for A and a winning
strategy for A ⇒ B we can conclude that there is a winning strategy for B.
Simply because the cut-rule is admissible in LJs and we can thus translate the
winning strategies for A,A ⇒ B into two derivations and use the cut rule to
obtain a derivation of B. However it would be much more interesting to define
an analogous of the cut-rule directly on strategies. We think that this could
be obtained by relaxing the definition of game in order to let the proponent
assert, at any point of the game, an arbitrary formula C. After the Proponent
assertion of C, the Opponent can continue the game by either attacking C or
by asserting C in turn. The cut-elimination theorem for strategies would be
obtained by proving that the set of formulas admitting winning strategies that
contains this kind of games is equal to class of formulas admitting ’regular’
winning strategies.

Dialogic logic heavily influenced the game semantics approach (Hyland, 1997;
Abramsky, Jagadeesan, & Malacaria, 2000). Game semantics has been used in
order to give denotational models of many programming languages. In particu-
lar there is a natural correspondence between winning strategies in the Hyland-
Ong setting of game semantics and the simply-typed λ-calculus. Despite the
fact that dialogical logic and game semantics share a lot of point in common no
one, at least to our knowledge, has tried to investigate the question in detail. We
think that shedding light on this subject could be fruitful for the development
of both game semantics and dialogical logic.
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