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Wigner negativity, as a well-known indicator of nonclassicality, plays an essential role in quantum computing
and simulation using continuous-variable systems. Recently, it has been proven that Einstein-Podolsky-
Rosen steering is a prerequisite to generate Wigner negativity between two remote modes. Motivated by the
demand of real-world quantum network, here we investigate the shareability of generated Wigner negativity
in the multipartite scenario from a quantitative perspective. By establishing a monogamy relation akin to the
generalized Coffman-Kundu-Wootters inequality, we show that the amount of Wigner negativity cannot be freely
distributed among different modes. Moreover, for photon subtraction—one of the main experimentally realized
non-Gaussian operations—we provide a general method to quantify the remotely generated Wigner negativity.
With this method, we find that there is no direct quantitative relation between the Gaussian steerability and the
amount of generated Wigner negativity. Our results pave the way for exploiting Wigner negativity as a valuable
resource for numerous quantum information protocols based on non-Gaussian scenario.

Continuous-variable (CV) systems have attained
impressive success in quantum information processing [1].
As an important platform that has been widely studied,
Gaussian systems and operations are extensively used in
quantum teleportation [2], quantum key distribution [3], and
quantum enhanced sensing [4, 5]. These protocols come with
the advantage of deterministically producing resource states
and being analytically tractable due to the Gaussian properties
of the states. However, non-Gaussian states and operations
have irreplaceable advantages in several CV protocols [6],
such as entanglement distillation [7, 8], error correction [9],
secure quantum communication [10], and the verification of
Bell nonlocality [11]. Considerable progresses in controllable
generation of multimode non-Gaussian states have been made
in recent experiments [12, 13], which also provide support for
the implementation of universal CV quantum computation in
the long term [14].

For some non-Gaussian states the Wigner function can
reach negative values. This Wigner negativity has been seen
as a necessary ingredient in CV quantum computating and
simulation to outperform classical devices [15–17]. In the
pursuit of networked quantum technologies it is crucial to
develop efficient methods to produce Wigner negativity in
the distant nodes. Recently, a scheme to remotely generate
Wigner negativity was proposed through Einstein-Podolsky-
Rosen (EPR) steering [18, 19]—a particular type of quantum
correlation where local measurements performed on one party
can adjust (steer), instantaneously, the state of the other
remote party [20–22]. Based on this kind of nonlocal effect,
one can induce negativity in the steering mode by applying a
set of appropriate operations on the steered mode.

In consideration of the real-world quantum network in
the multipartite scenario, it is a worthwhile objective to
deeply explore the remote generation and distribution of
Wigner negativity over many nodes in an entanglement-based

network. As an intermediate type of quantum correlations
between entanglement and Bell nonlocality, multipartite
quantum steering [23] has received extensive attention in
recent developments of quantum information theory [24,
25]. It has been successfully implementated in CV optical
network [26–29], photonic network [30–32], and atomic
ensembles [33]. Inspired by the shareability of EPR steering,
known as monogamy [34–40], it is interesting to explore how
can the remotely generated Wigner negativity be distributed
over different modes? Is there any monogamy relations
imposing quantitative constraints on that negativity? And
does stronger steerability generate more negativity?

In this work we present a quantitative investigation of
Wigner negativity that is remotely created via multipartite
EPR steering, in which non-Gaussian operations performed
on one steered node of quantum network produce Wigner
negativity in different distant nodes, as shown in Fig. 1. We
first investigate to what extent Wigner negativity can be shared
by establishing a monogamy relation. This constraints the
degree of distributed negativity akin to the Coffman-Kundu-
Wootters (CKW) monogamy inequality for steerability [36].
Then we focus on photon subtraction, a commonly used
non-Gaussian operation, and find a general measure for
the amount of induced Wigner negativity in the steering
modes. This allows us to disprove the conjecture that stronger
steerability creates more negativity. Specifically, considering
the major experimentally realized CV EPR resources such
as the two-mode EPR states with phase-insensitive losses
and the two-mode squeezed thermal states, we show that the
procedure for remote generation of Wigner negativity can be
significantly simplified when the covariance matrix (CM) is
transformed into its standard form. This provides a more
insightful approach than previously proposed procedures [18],
and makes such states particularly resourceful for remotely
producing Wigner negativity.
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FIG. 1: Scheme of the remote generation of Wigner negativity
through EPR steering in a multipartite scenario. (a) The initial
Gaussian steerable system; (b) After some appropriate local
operations on the steered mode hold by Alice, the steering subsystem
hold by Bob becomes non-Gaussian with Wigner negativity.

Multimode CV systems.– We begin by briefly introducing
the theoretical framework of multimode CV quantum optics.
The noninteracting quantized electromagnetic field can be
treated as a number N of optical modes that behave as
quantum harmonic oscillators with different frequencies
described by Ĥ =

∑N
k=1 2ωk(â†k âk + 1

2 ). Here, âk and â†k are
the annihilation and creation operators of a photon in mode
k, satisfying the bosonic commutation relation [âk, â

†

k′ ] = δkk′ .
The corresponding quadrature phase operators for each mode
are defined as x̂k = âk + â†k and p̂k = (âk − â†k)/i. Collecting
the quadrature operators for all the modes into a vector ξ̂ ≡
(x̂1, p̂1, ..., x̂N , p̂N)>, the CM σ is given with elements σi j =

〈ξ̂iξ̂ j+ξ̂ jξ̂i〉/2−〈ξ̂i〉〈ξ̂ j〉. If the system is prepared in a Gaussian
state, the properties can be completely determined by its CM.
Otherwise, the first and second-order statistical moments are
not enough to characterize the non-Gaussian system, and we
must resort to a more complete description. Here we choose
the Wigner function as a preferred phase space representation
for an arbitrary state with density matrix ρ̂,

W(ξ) =

∫
R2N

d2Nα

(2π)2N exp
(
−iξ>Ωα

)
χ(α), (1)

where Ω =
⊕N

1

(
0 1
−1 0

)
is the symplectic form and the

Wigner characteristic function χ(α) = Tr[ρ̂ exp(iξ̂
>
Ωα)]. A

particular attribute of non-Gaussian states is the possibility
for this Wigner function to attain negative values that can be
quantified as N ≡

∫
|W(ξ)|dξ − 1 [41].

Remote generation of Wigner negativity through
multipartite EPR steering.– In order to effectively generate
and distribute Wigner negativity, an indirect scheme was
proposed based on EPR steering [18]. In a two-mode
Gaussian system, when there exists steering from Bob to
Alice, then an appropriate local Gaussian transformation
together with photon subtraction on the steered mode A can
remotely generate Wigner negativity in the steering mode
B, i.e. NB > 0. The bipartite Gaussian steerability can be

quantified by the parameter GB→A = max{0, 1
2 ln Det σB

Det σAB
},

where σB and σAB denote the CM for mode B, and the group
(AB), respectively [42]. This formalism was developed for
arbitrary conditional operations on an arbitrary number of
modes, showing that EPR steering is still necessary to prepare
a Wigner-negative state in the steering modes [19]. The
remotely generated Wigner negativity was not quantified,
nor are its multimode properties such as the shareability of
the negativity among steering modes understood. Especially,
since EPR steering is a prerequisite for remote preparation of
Wigner negativity, one may intuitively expect that stronger
steerability in the initial Gaussian states creates more Wigner
negativity. With our quantitative investigation, we show that
conjecture is not the case.

Monogamy of remotely generated Wigner negativity.– First,
we study the multimode character of the remotely generated
Wigner negativity by deriving constraints on the distribution
of this negativity among various modes in the steering party
(B1B2 . . . Bn) for a (1 + n)-mode Gaussian state σAB1B2...Bn .
As a fundamental property of EPR steering, the CKW-
type monogamy relation reveals that the sum of Gaussian
steerability between any two modes cannot exceed their
intergroup steerability, i.e., GB1B2...Bn→A ≥

∑n
i=1 G

Bi→A, which
bounds the key rate in quantum secret sharing [36]. In analogy
with the steering constraint, we establish a monogamy relation
for the amount of the generated Wigner negativity,

NB1B2...Bn (LA|B1B2...Bn ) ≥
n∑

i=1

NBi (LA|Bi ), (2)

where NB j...Bk denotes the Wigner negativity created in the
set of modes (B j . . . Bk) by performing some appropriate
operations LA|B j...Bk on subsystem A. Note that generating
negativities in different set of modes requires different optimal
operations on the steered mode A. For instance, inducing
Wigner negativity in the steering mode B j, or Bk, or their joint
(B jBk), requires different local Gaussian transformations prior
to a non-Gaussian operation.

To prove the above inequality we use the fact that
NB j (LA|B j ) > 0 and NBk (LA|Bk ) > 0 ( j , k)
cannot be true simultaneously, which is a consequence
of another type of Gaussian steering monogamy relation:
modes B j and Bk cannot simultaneously steer mode A
under Gaussian measurements [34, 35]. Assuming that
mode B1 can steer mode A, negativity can be generated
only in the Wigner function of mode B1 under Alice’s
local operation LA|B1 . We then just need to prove that
NB1B2...Bn (LA|B1B2...Bn ) ≥ NB1 (LA|B1 ). The detailed proof is
deferred to the Supplemental Material [43]. An example is
given in Fig. 2. Here the local non-Gaussian operation we
chose for Alice is single-photon subtraction S, which can be
effectively realized in experiments [12, 44]. In this system,
a pure three-mode entangled Gaussian state can be generated
by the linear optical network with three squeezed inputs, as
illustrated in Fig. 2(a). When the first beam splitter is fixed
at R1 : (1 − R1) = 50 : 50 and the second beam splitter
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FIG. 2: (a) Scheme of a pure three-mode Gaussian state generated
by the linear optical network. (b) Fixing R1 : (1 − R1) = 50 :
50 and input squeezing levels r = 1 (corresponding to −8.7dB
quadrature noise), the initial Gaussian steerability changes with a
variable R2. (c) After a single-photon subtraction on mode A, the
remotely generated Wigner negativity of mode B, mode C and the
group (BC), respectively.

is adjustable, the steerability distributed among three modes
in the initial Gaussian state and the corresponding Wigner
negativities remotely created through photon subtraction on
mode A are shown in Figs. 2(b) and (c), respectively. It is
clear that the two-mode and three-mode Gaussian steering
GB1→A, GB2→A and GB1B2→A are necessary to induce Wigner
negativity for individual mode B1, B2, and for the group
(B1B2), respectively. In addition, we observe that, even
thoughNB1 (SA|B1 ) > 0 andNB2 (SA|B2 ) > 0 cannot be satisfied
at the same time, the joint Wigner negativity created on the
group (B1B2) is significantly higher than the negativity in
either individual mode.

Quantification of the generated Wigner negativity.– Since
remotely generated Wigner negativity is both enabled and
constrained by Gaussian steering, one may intuitively expect
that stronger steerability induces more Wigner negativity. To
show that –unexpectedly– this is not the case, we quantify
the amount of Wigner negativity in the steering modes, via
the purities of initial Gaussian states. We present an explicit
study for some experimentally prominent two-mode Gaussian
states and show that purity, rather than steerability, governs
the amount of Wigner negativity that can be created.

It is well known that any two-mode Gaussian state can be
transformed into a standard form [45] through local linear
unitary Bogoliubov operations (LLUBOs), so that the CM
σAB reads

σAB,s f =

(
σA γAB

γ>AB σB

)
=


a 0 c1 0
0 a 0 c2
c1 0 b 0
0 c2 0 b

 (3)

with a, b ≥ 1 and ab − c2
1(2) ≥ 0. The two local purities

µA(B) ≡ 1/
√

Det σA(B) = 1/a(b) and the global purity µAB ≡

1/
√

Det σAB = 1/[(ab − c2
1)(ab − c2

2)], are invariant under
LLUBOs [46]. Furthermore, because LLUBOs are local, the
standard form σAB,s f manifests equal quantity of Gaussian
steerability possessed in the initial states.

We now restrict our scope to two-mode Gaussian states c1 =

−c2 = c, which include states generated by parametric down-
conversion. By focusing on the experimentally relevant case
where a photon subtracted from the steered mode, we derive
that the amount of remotely generated Wigner negativity NB

is determined by the purities of initial Gaussian state µA, µB

and µAB:

NB(SA|B) = 2

e
µAµB−µABµA
µAB−µAµB (µAµB − µAB)

µAB(µA − 1)
− 1

 . (4)

Exchanging µA ↔ µB we can obtain the result for the other
direction NA(SB|A). The derivation of the above relation is
detailed in the Supplemental Material [43]. EPR steering and
remotely induced Wigner negativity are both determined by
the local and global purities, but their dependence on these
purities is very different. EPR steering provides a necessary
bridge to induce Wigner negativity, but it is insufficient to
unambiguously quantify the created Wigner negativity.

We explicitly show this point in Fig. 3, where we consider a
two-mode EPR state with one lossy channel on mode A, which
is often used to demonstrate one-way steering [26, 27, 47].
This state is already in the standard form (3), with a =

ηA(cosh 2r − 1) + 1, b = cosh 2r, and c1 = −c2 =
√
ηA sinh 2r,

where r is the squeezing parameter and ηA is the transmission
efficiency. The asymmetric Gaussian steerabilities in two
directions are indicated in Fig. 3(b). We find that the Gaussian
steerability GA→B > 0 with a threshold level of efficiency
ηA > 0.5 and becomes stronger with a higher squeezing
level. Thus, by performing a single-photon subtraction on
the steered mode B, the Wigner negativity NA(SB|A) can be
generated when ηA > 0.5 as well and becomes larger with
increasing efficiency ηA, as shown in Fig. 3(c). The Gaussian
steerability in the other direction GB→A > 0 happens for
any ηA > 0 and enhances with a higher squeezing level.
Interestingly, for this direction, by performing a single-photon
subtraction on the steered mode A, the generated negativity
NB(SA|B) does not vary with ηA. From Eq. (4), we can obtain
that NB(SA|B) = 2e−µB/(µB+1)(µB + 1) − 2, which is solely
determined by the local purity µB. It is unchanged since no
loss is considered in mode B. While the value of NA(SB|A)
depends on µA, B, AB and thus varies with ηA, as shown in
Fig. 3(d). This highlights the asymmetry of the induced
Wigner negativity and suggests a way to remotely generate
negativity that is robust to channel loss. Although the states
produced by a higher squeezing level (blue lines) possess
stronger Gaussian steerability, their purities are more sensitive
to the loss [48]. Therefore, the created Wigner negativity in
the steering mode is larger when the initial squeezing level is
lower.

Moreover, for any globally pure state, i.e., µAB = 1, with
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FIG. 3: (a) Scheme of a two-mode squeezed vacuum state with one
lossy channel on mode A, where R1 is a balanced beam splitter. (b)
The initial asymmetric Gaussian steerability with different squeezing
levels r = 1 (blue) and r = 0.85 (red), corresponding to a quadrature
noise reduction of −8.7dB and −7.4dB, respectively. Loss has a
more significant effect on the steering mode. (c) After the single-
photon subtraction on the steered mode, the amount of induced
Wigner negativity on the steering mode corresponding to Gaussian
steerability given in (b). (d) The local and global purities of the initial
Gaussian states with different squeezing levels.

µA = µB = µ, Eq. (4) is simplified to be

NB(SA|B) = NA(SB|A) = 2
[
e−

µ
1+µ (1 + µ) − 1

]
. (5)

We show that Eq. 5 bounds the remotely created Wigner
negativity for arbitrary mixed two-mode states. In Fig. 4,
we plot 250000 dots which present the Wigner negativities
of randomly generated by photon subtraction from two-mode
Gaussian states. All dots are located below the red curve
described by Eq. 5. Furthermore, the CM for an arbitrary
three-mode pure state σ

pure
A−(B1B2) with respect to A − (B1B2)

splitting is locally equivalent to

σ
pure
A−(B1B2),s f =



a 0 c1 0 0 0
0 a 0 −c1 0 0
c1 0 a 0 0 0
0 −c1 0 a 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(6)

through Williamson decomposition [49], where c1 =
√

a2 − 1.
We can then see that the system is expressed by a product
of a two-mode squeezed vacuum state tensor an uncorrelated
vacuum mode, such that steering property between mode A
and modes (B1B2) can be unitarily reduced to the two-mode
case. Thus, the generated Wigner negativity of the joint
group (B1B2) is equivalently indicated by the red curve in
Fig. 4, which is always higher than the negativity induced in
the individual mode. Besides the examples discussed above,
we also analyze the asymmetric Gaussian steerability and the

properties of induced Wigner negativity for another important
CV EPR resource–two-mode squeezed thermal states [50],
which are detailed in the Supplemental Material [43].

Finally, we stress that when the CM of a bipartite system is
transformed in the standard form and satisfies c1 = −c2 = c,
photon subtraction on mode A can always generate Wigner
negativity in mode B as long as GB→A > 0. The proof is
deferred in the Supplemental Material [43]. Thus producing
EPR resource with CM in a standard form significantly
simplifies the procedure for remote generation of Wigner
negativity and makes the resulting non-Gaussian state readily
available for further applications. This complements the
results of Ref. [18], where it was shown that an additional
local Gaussian transformation prior to photon subtraction
is necessary to make EPR steering sufficient for remotely
generating Wigner negativity. This Gaussian transformation
requires inline squeezing and is experimentally challenging.
Our results can be used as a recipe to prepare resourceful
Gaussian states for the remote generation of Wigner negativity
without the need for inline squeezing.

Conclusion.– We develop the scheme for remote generation
of Wigner negativity through EPR steering to multimode
scenario, and show the presence of constraints for distributing
Wigner negativity over different modes. So far, multipartite
steering has been demonstrated in various Gaussian systems,
e.g., linear optical networks [26, 27], quantum frequency
comb [29], and Bose-Einstein condensates [33]. These
experimental developments lay a favorable foundation to
implement remote generation of multipartite non-Gaussian
states through photon subtraction or other appropriate
operations. Furthermore, we present an intuitive and
computable quantification of the generated Wigner negativity
for bipartite system in terms of the local and global purities of
initial Gaussian state. Our results deepen the understanding
of Wigner negativity as a resource and provide an important
framework of non-Gaussian quantum information theory.

Our work also triggers several new questions to stimulate
further research. For instance, as Gaussian steerability

FIG. 4: The induced Wigner negativity NB(SA|B) for ∼ 250000
randomly mixed two-mode Gaussian states (dots) are bounded by
Eq. (5) (red curve).
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GA→B1 > 0 and GA→B2 > 0 can happen simultaneously,
then by performing a single-photon subtraction on each mode
B1, B2, can we achieve more significant increase of the
negativity in mode A? In addition, for this direction the
Gaussian steerability still follows the CKW-type monogamy
constraint, however, this constraint does not hold any more
for the generated negativity. We have observed a violation in
a pure three-mode state [43], i.e., NA(LB1B2 |A) < NA(LB1 |A) +

NA(LB2 |A). Moreover, after non-Gaussian operations on the
steered mode, the resulting system cannot be fully captured
by the second-order correlations given in CM. To this day,
relatively little is known about the characteristics of non-
Gaussian steering [51].
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Appendix A: Monogamy of Wigner negativity remotely created
through EPR steering

Monogamy is known as a fundamental property of
multipartite quantum correlations, which has profound
applications in quantum communication. In this Section,
we prove that the remotely created Wigner negativity cannot
be freely shared among different parties by establishing a
monogamy relation in direct analogy with the Coffman-
Kundu-Wootters (CKW) inequality for EPR steering [36], as
given by Eq. (2) in the main text.

Without loss of generality, let us focus on a tripartite
scenario, in which the steering party B contains two modes B1
and B2, such that the monogamy inequality takes the simpler
form,

NB1B2 (LA|B1B2 ) > NB1 (LA|B1 ) +NB2 (LA|B2 ), (A.7)

when the subsystem A can be steered by the group
(B1B2). By taking A being a single mode and B1, B2
comprising an arbitrary number of modes, one can then
apply iteratively above inequality to obtain the corresponding
general multipartite inequality (2) in the main text.

To do so, recall the Gaussian steering monogamy relations
from Refs. [34, 35] that it is impossible for modes B1
and B2 to simultaneously steer the mode A under Gaussian
measurements, i.e., NB1 (LA|B1 ) > 0 and NB2 (LA|B2 ) > 0
cannot be true simultaneously. Granted that B1 can steer mode
A, the monogamy relation (A.7) reduces to NB1B2 (LA|B1B2 ) >
NB1 (LA|B1 ) (or the analogous expression with swapped B1 ↔

B2). Because the Wigner negativity is nonincreasing under
partial trace on the steering party (B1B2) [16], we have

NB1B2 (LA|B1 ) > NB1 (LA|B1 ). (A.8)

Note that the left and right sides of above inequality are given
by the same resulting state ρB1B2 after a local operation LA|B1

on the steered mode A. The proof is straightforward [16], as
given by

NB1 (LA|B1 ) = N[TrB2 ρB1B2 ]

=

∫
drB1

∣∣∣W[TrB2 [ρB1B2 ]](rB1 )
∣∣∣ − 1

=

∫
drB1

∣∣∣∣∣∫ drB2 W[ρB1B2 ](rB1 , rB2 )
∣∣∣∣∣ − 1

6

∫
drB1

∫
drB2

∣∣∣W[ρB1B2 ](rB1 , rB2 )
∣∣∣ − 1

= N[ρB1B2 ] = NB1B2 (LA|B1 ),

(A.9)

where W[ρB1B2 ](r) represents the Wigner distribution of
state ρB1B2 . Afterwards it is promptly verified that there
always exists an optimized local operation LA|B1B2 can
generated the largest Wigner negativity NB1B2 (LA|B1B2 ) to
make NB1B2 (LA|B1B2 ) ≥ NB1B2 (LA|B1 ) ≥ NB1 (LA|B1 ).

Appendix B: Quantifying the remotely created Wigner
negativity

It is of particular interest to us is whether stronger
steerability in the initial Gaussian states induces more Wigner
negativity, as it is enabled and constrained by Gaussian
steering. To answer this, we need first quantify the amount
of Wigner negativity. In this part, we aim to derive the
qualitative measure of Wigner negativity Eq. (4) in the main
text by focusing on the experimentally relevant case where
a photon subtracted from the steered mode in two-mode
Gaussian states c1 = −c2 = c, which includes the major
experimentally realized CV EPR states such as the two-mode
squeezed vacumm states with phase-insensitive losses and the
two-mode squeezed thermal states (STS).

Let us recall that, any two-mode Gaussian state can be
transformed through LLUBOs to the standard form

σAB,s f =

(
σA γAB

γ>AB σB

)
=


a 0 c1 0
0 a 0 c2
c1 0 b 0
0 c2 0 b

 . (A.10)

Using the formula derived from Ref. [18], we obtain the
reduced Wigner function of the steering mode B after the local
Gaussian transformation RA|B combined with a single-photon
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subtraction applied on the steered mode A,

WB (βB) =
exp

{
− 1

2

(
βB, σ

−1
B βB

)}
2π
√

DetσB

[
Tr

(
R>A|BσARA|B

)
− 2

]×
[
β>Bσ

−1
B
>
γ>ABRA|BR>A|BγABσ

−1
B βB + Tr(R>A|BVA|BRA|B) − 2

]
=

exp
{
− 1

2

(
βB, σ

−1
B βB

)}
2π
√

DetσB

[
Tr

(
νσAV−1

A|B

)
− 2

]×
(
νβ>Bσ

−1
B
>
γ>ABV−1

A|BγABσ
−1
B βB + 2ν − 2

)
,

(A.11)
where ~βB is the coordinate in a multimode phase spaces of
subsystem B, VA|B = σA−γABσ

−1
B γ>AB is the Schur complement

of σB and ν is the corresponding symplectic eigenvalue.
The Schur complement VA|B can be decomposed through
Williamson decomposition via VA|B = νS >A|BS A|B, where S A|B

is the corresponding symplectic matrix and a local Gaussian
transformation RA|B = S −1

A|B. When it comes to our particular
interest subclass c1 = −c2 = c, it is easy to find out that the
Schur complement is a multiple of identity matrix so that there
is no need to perform an additional local Gaussian operation.
Then we get

WB (ρ) =
e−

ρ2

2b

(
2b2(a − 1) − 2bc2 + c2ρ2

)
4πb3(a − 1)

, (A.12)

which is circular symmetric. It is straightforward to calculate
Wigner negativity using integral,

NB(SA|B) =
2c2e

b(a−1)
c2 −1

b(a − 1)
− 2. (A.13)

By expressing NB(SA|B) in terms of purity µAB = 1/(ab −
c2), µA = 1/a, µB = 1/b, Eq. (A.13) becomes

NB(SA|B) = 2

e
µAµB−µABµA
µAB−µAµB (µAµB − µAB)

µAB(µA − 1)
− 1

 . (A.14)

Figure 3 in the main text showed the case of two-mode
squeezed vacuum state with one lossy channel on one mode.
Here, we particularly show the results for the two-mode
squeezed thermal states. The CM elements of these states
are a = (nA + nB + 1) cosh(2r) + (nA − nB), b = (nA + nB +

1) cosh(2r) − (nA − nB), c1 = −c2 = (nA + nB + 1) sinh(2r),
where nA, nB are the average number of thermal photons
for each subsystem [50]. We set the thermal noise only on
mode A and leave nB = 0, as illustrated in Fig. A1(a). The
asymmetric Gaussian steerability in two directions varying
with nA is denoted in Fig. A1(b), and as a consequence the
induced Wigner negativity on the steering mode by applying
single-photon subtraction on the steered mode is quantified in
Fig. A1(c). Note that the effect of thermal noise on the steered
mode is more significant than that on the steering mode, which
is opposite to the effect of losses on two modes in the main
text. As there exists a thermal barrier in the direction GB→A,
and correspondingly, a nonzeroNB(SA|B) can exist only when

FIG. A1: (a) Scheme of a two-mode squeezed thermal state
with asymmetric thermal noise nA and nB = 0. (b) The initial
asymmetric Gaussian steerability with fixed squeezing level of r =

0.6 (corresponding to 5.2dB quadrature noise), where thermal noise
has a more significant effect on the steered mode. (c) Corresponding
to (b), after the single-photon subtraction on one side, the remotely
generated Wigner negativity of the other side. (d) The local and
global purities of the initial Gaussian states.

nA < 0.6816. In the opposite direction, GA→B > 0 and thus
NA(SB|A) > 0 for arbitrarily large value of thermal noise
nA. The values of remotely created Wigner negativity are
quantitatively determined by the purities of initial states as
given in Eq. A.14 and plotted in Fig. A1(d).

Appendix C: Necessity of the additional local Gaussian
transformation RA|B

Here, we prove that the additional local Gaussian
transformation required prior to photon subtraction in
Ref. [18] to optimize the induced Wigner negativity is no
longer needed if and only if the CM of two-mode Gaussian
states in the standard form σAB,s f satisfies c1 = −c2 = c. This
makes preparation resourceful Gaussian states for the remote
generation of Wigner negativity without the need for inline
squeezing.

From the standard form σAB,s f , the Schur complement of
σB is given by

VA|B =

(
a − c2

1/b 0
0 a − c2

2/b

)
, (A.15)

whose symplectic eigenvalue is v =

√
(a − c2

1/b)(a − c2
2/b).

When there exists Gaussian steering GB→A, the symplectic
eigenvalue v must be smaller than 1 [42]. Without any local
Gaussian transformation RA|B prior to the photon subtraction
on mode A, the condition for WB (βB) < 0 should be tr

[
VA|B

]
<

2. Note that every CM σAB that corresponds to a physical
quantum state has to satisfy the bona fide condition a−c2

1/b >
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0 and a − c2
2/b > 0 [42], then we have

Tr
[
VA|B

]
= (a −

c2
1

b
) + (a −

c2
2

b
) > 2

√
(a −

c2
1

b
)(a −

c2
2

b
) = 2v.

(A.16)
The above inequality can be saturated if and only if c2

1 =

c2
2. With this condition, tr

[
VA|B

]
< 2 is equivalent to

v < 1, i.e., the photon subtraction on mode A can always
generate Wigner negativity in mode B as long as GB→A > 0
without any prior local Gaussian transformation. Otherwise,
if c2

1 , c2
2, then tr

[
VA|B

]
> 2v, which means an additional

local Gaussian transformation RA|B is necessary to make EPR
steering sufficient for remotely generating Wigner negativity.

Appendix D: The CKW-type monogamy constraint to the
distribution of Wigner negativity created in the other direction

Steering is a directional form of nonlocality, related to the
Einstein “spooky” paradox, which is fundamentally defined
differently to entanglement. In previous work [36], we have
derived the CKW-type monogamy inequalities for multipartite
Gaussian steering in two directions. We then wonder whether
the CKW-type monogamy inequality holds for the distribution
of Wigner negativity created in the opposite direction of that
studied in the main text as well as in (S1), i.e., NA(LB1B2 |A) ≥
NA(LB1 |A) +NA(LB2 |A).

We present a three-mode entangled Gaussian state that is
similar to the case shown in Fig. 2(a) in the main text, but
with the first beamsplitter being adjustable R1 : (1 − R1) and
the second fixed as a balanced one. In particular, when the
first beamsplitter is adjusted at R1 = 1/3, the initial Gaussian
state is produced as a GHZ-like state. For the direction where
mode A acts as the steering party to steer the modes B1, B2,
the Gaussian steerability distributed among three modes and
the corresponding Wigner negativities remotely created by
a sing-photon subtraction on the individual or joint modes
B1, B2 are denoted in Figs. A2(a) and (b). It is clear that the
two-mode and three-mode Gaussian steerability GA→B1(B2) >
0 and GA→B1B2 > 0 are necessary to induce negativities
NA(SB1(B2)|A) and NA(SB1B2 |A) in the Wigner functions of the
steering mode A, respectively. Interestingly, we observe that
NA(SB1B2 |A) < NA(SB1 |A) + NA(SB2 |A) when R1 approaches
to 1 (Fig. A2(d)), even though the Gaussian steerability still
follows the monogamy constraint, i.e., GA→B1B2 − GA→B1 −

GA→B2 > 0 presented in Fig. A2(c). This settles an open
question for the shareability of generated Wigner negativity
in this direction.

∗ Electronic address: qiongyihe@pku.edu.cn
[1] S. L. Braunstein and P. van Loock, Quantum information with

continuous variables, Rev. Mod. Phys. 77, 513–577 (2005).
[2] S. L. Braunstein and H. J. Kimble, Teleportation of continuous

quantum variables, Phys. Rev. Lett. 80, 869 (1998).

FIG. A2: Scheme of a pure three-mode Gaussian state generated
by the linear optical network similar to Fig. 2 in main text but with
varying R1 and fixed R2 : (1 − R2) = 50 : 50. The input squeezing
levels r = 1 corresponding to −8.7dB quadrature noise. (a) The
initial Gaussian steerabilities varying with R1. (b) The corresponding
transferred Wigner negativities in the steering mode A by applying
single-photon subtraction on the individual mode B1(B2), or their
joint (B1B2), respectively. (c) The residual tripartite Gaussian
steering GA→B1 B2 − GA→B1 − GA→B2 ≥ 0 which is stemming from
the reverse CKW-type monogamy. (d) The residual tripartite Wigner
negativity remotely created in mode A, NA(SB1 B2 |A) − NA(SB1 |A) −
NA(SB2 |A), which is not alway larger than zero.

[3] F. Grosshans and P. Grangier, Continuous variable quantum
cryptography using coherent states, Phys. Rev. Lett. 88, 057902
(2002).

[4] S. H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd,
L. Maccone, S. Pirandola, and J. H. Shapiro, Quantum
illumination with Gaussian states, Phys. Rev. Lett. 101, 253601
(2008).

[5] Q. Zhuang, Z. Zhang, and J. H. Shapiro, Optimum mixed-state
discrimination for noisy entanglement-enhanced sensing, Phys.
Rev. Lett. 118, 040801 (2017).

[6] U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A.
Furusawa. Hybrid discrete- and continuous-variable quantum
information, Nat. Phys. 11, 713–719 (2015).

[7] J. Eisert, S. Scheel, and M. B. Plenio, Distilling Gaussian states
with Gaussian operations is impossible, Phys. Rev. Lett. 89,
137903 (2002).

[8] H. Takahashi, J. S. Neergaard-Nielsen, M. Takeuchi, M.
Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki,
Entanglement distillation from Gaussian input states, Nat.
photonics 4, 178-181 (2010).
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Gasenzer, M. Gärttner, M. K. Oberthaler, Spatially distributed

multipartite entanglement enables EPR steering of atomic
clouds, Science 360, 413–416 (2018).

[34] M. D. Reid, Monogamy inequalities for the Einstein-Podolsky-
Rosen paradox and quantum steering, Phys. Rev. A 88, 062108
(2013).

[35] S-W. Ji, M. S. Kim and H. Nha, Quantum steering of multimode
Gaussian states by Gaussian measurements: Monogamy
relations and the Peres conjecture, J. Phys. A: Math. Theor. 48,
135301 (2015).

[36] Y. Xiang, I. Kogias, G. Adesso, and Q. Y. He, Multipartite
Gaussian steering: Monogamy constraints and quantum
cryptography applications, Phys. Rev. A 95, 010101(R) (2017).

[37] G. Adesso and R. Simon, Strong subadditivity for log-
determinant of covariance matrices and its applications, J. Phys.
A: Math. Theor. 49, 34LT02 (2016).

[38] L. Lami, C. Hirche, G. Adesso, and A. Winter, Schur
Complement Inequalities for Covariance Materices and
Monogamy of Quantum Correlations, Phys. Rev. Lett. 117,
220502 (2016).

[39] S. Cheng, A. Milne, M. J. W. Hall, and H. M. Wiseman, Volume
monogamy of quantum steering ellipsoids for multiqubit
systems, Phys. Rev. A 94, 042105 (2016).

[40] C. Zhang, S. Cheng, L. Li, Q.-Y. Liang, B.-H. Liu, Y.-F. Huang,
C.-F. Li, G.-C. Guo, M. J. W. Hall, H. M. Wiseman, and G. J.
Pryde, Experimental validation of quantum steering ellipsoids
and tests of volume monogamy relations, Phys. Rev. Lett. 122,
070402 (2019).
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