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Abstract

In this paper, we address the decision-making problem of a virtual power plant (VPP) involving
a self-scheduling and market involvement problem under uncertainty in the wind speed and
electricity prices. The problem is modeled using a risk-neutral and two risk-averse two-stage
stochastic programming formulations, where the conditional value at risk is used to represent
risk. A sample average approximation methodology is integrated with an adapted L-Shaped
solution method, which can solve risk-neutral and specific risk-averse problems. This method-
ology provides a framework to understand and quantify the impact of the sample size on the
variability of the results. The numerical results include an analysis of the computational perfor-
mance of the methodology for two case studies, estimators for the bounds of the true optimal
solutions of the problems, and an assessment of the quality of the solutions obtained. In par-
ticular, numerical experiences indicate that when an adequate sample size is used, the solution
obtained is close to the optimal one.

Keywords: Sample average approximation, risk-averse stochastic programming, virtual power
plant

1. Introduction

The optimal operation and electricity market involvement of virtual power plants (VPPs)
is currently an active field of research. VPP refers to an aggregation of distributed energy
resources (DER) that interacts with the electricity market as a single entity [1, 2]. These DERs
involve generators with small capacities or that face significant trading risks if operating by
themselves. For example, a wind farm trading in an electricity market is subject to uncertain
wind speeds, electricity prices, and imbalance costs, which may involve high risk. Aggregating
multiple and diverse generators into a VPP creates an entity with a single power generation
profile and a larger power capacity than the constituting units. A VPP has flexibility due to
the complementarity of its diverse resources, and capacity to develop market intelligence to
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optimize its participation in the electricity market (through offers in the pool and by signing
forwards contracts). However, to define a single power output profile, a self-scheduling problem
considering all constituting generators, their interactions, and their generation constraints needs
to be solved, which is more difficult than solving individual generator problems. The VPP
concept is particularly relevant for the integration of distributed renewable energy resources in
power systems to mitigate flexibility limitation and power output uncertainty. Additional details
on the technical and commercial functions of VPPs can be found in [2–4]. In Section 1.1, a
review on VPP optimization is presented. Within the different aspects of a VPP operation,
we are concerned with the optimal scheduling of the generation units and the interaction with
the electricity market. In the present work, we propose a sample average approximation (SAA)
methodology [5, 6] to solve the risk-averse stochastic programming problem that describes the
operation of a VPP. Three important aspects in the implementation of the SAA are studied: 1)
the development of an efficient solution methodology; 2) the impact of the sample size on the
performance of the methodology; and 3) the determination of point estimates and confidence
intervals for the solutions.

1.1. Literature review: optimization of VPPs
In the literature, VPP models with distinct portfolios of generation units, different inter-

actions with the electricity market, and, consequently, various sources of uncertainty can be
found. In terms of interactions with the electricity market, the main features captured by VPP
models include:

1. forward contracts [7–9];
2. offers to the day-ahead market [10–18];
3. offers/bids to the balancing market [10, 11, 14];
4. offers to spinning reserves [10]; and
5. strategic offering considering the market clearing and other market players’ strategies [11].

The operational decision-making problem of VPPs involves decisions under uncertainty due
to the nature of the renewable energy sources and electricity prices. Therefore, stochastic
optimization approaches constitute a natural framework to address this type of problems. The
most used approaches are based on stochastic programming and robust optimization. Some
examples include the application of risk-neutral stochastic programming models [8, 13, 19],
risk-averse stochastic programming [10–12, 14, 19, 20], robust optimization [7, 21, 22], and
recently, a hybrid approach based on stochastic programming and robust optimization [16].

When risk-neutral or risk-averse stochastic programming models are used, the problem is
solved for a random uncertainty sample. The main assumption is that the sample used is
representative of the full distribution of the uncertainties in the problem. In the works above,
the sample size ranges from less than 100 elements to a maximum of 400, except in the work [19]
where samples of up to 25,000 elements were used. In some works, a reduced sample size was
obtained using a scenario-reduction method [23]. Typically, the size of the sample is limited by
the capability to solve the problems using the corresponding extensive form and a branch and
cut solver for mixed-integer linear programming (MILP) problems. Compared with the works
cited above, our VPP model considers a time horizon of one week divided into periods of one
hour, whereas most works above consider the 24 hours of the next day. The time horizon of
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one week avoids the myopic view of a single-day horizon, which neglects the temporal coupling
of some VPP constraints that condition next day operations. Therefore, this extended horizon
enables considering constraints of thermal units, e.g., minimum up-time and minimum down-
time, and water mass balances in the reservoir of hydro units across consecutive days, at the
cost of a larger model.

We emphasize that risk-averse stochastic programming models are more complex to solve
than risk-neutral stochastic programming; therefore, the impact of the sample size and the
length of the time horizon on the computing time of risk-averse problems are comparatively
more critical. Some works propose an out-of-sample analysis that provides an additional char-
acterization of the solution resulting from the stochastic programming model [16]. Compared
to an out-of-sample analysis that performs a study for a single solution, the SAA methodology
includes a first stage with multiple optimization replications using different samples to generate
alternative solutions and to provide a point estimate of the upper bound on the true objective
function value (for a maximization problem). The work in [19] does not use an SAA approach,
but rather focuses on risk-averse problems and their solutions using the L-Shaped method [24].
In that work, 14 variants of the L-Shaped method using combinations of single and multiple
optimality cuts and efficient parallel implementations are discussed, without considering SAA.

In this work, we propose a more elaborate approach that efficiently relies on multiple samples
to assess solutions and determine confidence intervals on the relevant performance indices of the
VPP operation. No such work is available for VPP applications.

1.2. Literature review: Sample Average Approximation

The term sample average approximation is used in the literature to refer to a problem that
approximates a stochastic optimization one [6], but it is also used to indicate a methodology
where the solution of that approximate problem is performed multiple times and increasingly
accurate solutions are obtained [5]. The repetition enables the calculation of confidence intervals
of the optimal objective function value, and also the assessment of the solution.

The detailed characterization and statistical properties of the SAA methodology, namely
consistency and rates of convergence to optimal objective function values and solution, have
been studied by [5, 6, 25], and reviewed in detail in [26, 27]. In these works, expressions
for the convergence to the optimal value and solution are developed and expressions relating
the probability of an optimal solution x∗N to be equal to the true solution x∗ with the sample
size are established. However, as stated in [5, 28], it is impractical to determine some of the
constants in those expressions. Furthermore, the expressions do not provide an estimate of
the computing time required to obtain the approximated solutions and point estimates of the
bounds. Therefore, computational experiments are essential to determine the trade-off between
the computational resources and the accuracy obtained from the sample size. This type of
analysis was performed, for example, in [28, 29].

Wang and Ahmed [30, 31] were the first to propose SAA methods for risk-averse stochastic
programming problems. They focused on min-max problems with expected value objectives and
problems with constraints involving expected values. For these problems, they proved that the
results of their SAA problems converge exponentially fast to the true results of the stochastic
problems as the sample size increases.
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A related method to this work, which has been extended to integrate an SAA methodology
with risk measures, is stochastic dual dynamic programming (SDDP) [32]. In [33, 34] are de-
veloped risk-averse SDDP methods to address multistage linear stochastic programming models
describing power systems planning problems. In risk-averse SDDP, the upper bound estimators
are known to be weak [35], and in this regard, importance sampling was proposed in [36] to
improve the quality of those estimators (for a minimization problem).

Regardless of the approach used, it is generally essential to develop an efficient SAA method-
ology that can handle a large number of replications as well as large sample sizes to calculate
tight confidence intervals. Furthermore, an efficient methodology is paramount to study the
impact of the sample size on the computational performance of the methodology. This is a
central theme of the present work.

1.3. SAA applied to a risk-averse VPP optimization model

The application of SAA methodologies to the scheduling problems of VPPs has not been
reported in the literature. To fill the gap, we propose an SAA methodology to solve these
problems that is based on methods from [28]. Specifically, a distinct class of risk-averse problems
from those considered in [28] is addressed, and thus, insights that are not found in [28, 29] are
analyzed and discussed.

In this work, new avenues to solve the VPP problem are explored, focusing on the ap-
plication of an SAA methodology that leads to comprehensive results for the VPP, including
point estimates, confidence intervals, and the assessment of the solution obtained. The main
contributions of this work are twofold: 1) providing new and efficient strategies to improve
the performance of the SAA methodology; and 2) carrying out a comprehensive computational
study applied to a VPP risk-averse two-stage stochastic programming problem. Specifically,
an efficient initialization strategy to handle multiple optimization replications that reduces the
computing time is proposed. In addition, a new method to reduce the number of times the
bound estimation stage is ran is discussed. As a result, a detailed analysis of the effect of the
sample size shows that, unexpectedly, increasing the sample size for the optimization leads to a
reduction of the overall computing time in one of the procedures implemented. This reduction
occurs because savings in the bound estimation stage compensate the additional time spent on
the optimization with larger samples.

The paper is organized as follows. In Section 2, the problem statement and a description of
the VPP studied are presented. The stochastic models with a focus on the objective functions
are described in Section 3. The SAA approach and the implementation of two solution proce-
dures are presented in Section 4, while the sampling techniques are shown in Section 5. The
computational results are discussed in Section 6 and conclusions are summarized in Section 7.
In a supplementary document, appendices with the deterministic model of the VPP, flow dia-
grams of the solution procedures used, and additional extensive computational results are made
available.

2. Problem statement

In this work, we revisit the problem considered in [19] but using an SAA methodology.
The problem addresses the optimal operation and electricity market involvement of a VPP
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that consists of a thermal unit, a wind power farm, and a pumped-storage hydroelectric plant.
This configuration provides the flexibility of two dispatchable units, two renewable sources, and
storage to manage the energy available and to respond to the market. The VPP participates in
the electricity market as a single entity by selling and buying electricity in the market pool and
through weekly contracts. The time horizon is one week, divided into 168 hourly periods.

The VPP generates electricity through the three units and may consume electricity to pump
back water to the upper reservoir of the hydro plant. Uncertainty in the wind speed and the
electricity prices is considered, with a constant value for each hourly period.

The decision sequence of the VPP involves a two-stage framework. In the first-stage, the
decisions are made before the beginning of the time horizon, where the VPP has to decide on the
self-scheduling of the thermal unit and the electricity to buy or sell through forward contracts.
The self-scheduling of the thermal unit involves only the commitment, defined as the periods
where it is up or down. The VPP can choose to buy or sell electricity from two different weekly
contracts, each one involving fixed prices and quantities. In the second-stage, the decisions for
the full week are aggregated into one stage. These decisions are related to the dispatching of the
thermal and hydro plants and to the additional electricity to buy or sell in the electricity pool
(short-term electricity market). The dispatch involves the hourly determination of the power
to generate by the thermal unit when it is up and the power generation or consumption by the
pumped-storage hydro plant.

The objective of the VPP is to maximize the operational profit by determining an optimal
solution concerning: a) the commitment, dispatch, and coordination between units in each
period; b) the electricity bought and sold in each period; and c) the electricity bought or sold
through contracts. From the decision-maker perspective, the optimal first-stage variables are
the most relevant. These decisions are implemented and fixed during the time horizon, whereas
the optimal second-stage variables for the 168 periods represent recourse actions based on the
realizations of the uncertain parameters. In practice, during the week, the VPP needs to solve
additional decision problems to define the bidding strategy for the specific electricity market
pool (day-ahead market, intra-day market, balancing market). These problems have a shorter
horizon and use updated information for wind speed and electricity prices.

The thermal unit has lower and upper bounds on the power generation, minimum up-
time and down-time, start-up and shutdown and power-up and power-down ramp rate limits.
Regarding costs, this unit has fixed and variable generation costs, hot and cold start costs. The
state of the thermal unit before the beginning of the time horizon is known. The hydro plant
has lower and upper limits on the volume of water of the upper reservoir, and an upper bound
on the pumped flow of water.

3. Risk-averse stochastic models

In this section, the main characteristics of the risk-averse stochastic programming formula-
tions for the VPP problem are described. The deterministic version of the VPP optimization
problem is described in Appendix A, where the objective function, constraints, variables, and
input data are presented. Below, we focus on building a general risk-averse stochastic program-
ming formulation that will be used in the SAA methodology outlined in Section 4.
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3.1. VPP general stochastic programming formulation

The stochastic programming formulation of the VPP problem is an extension of the deter-
ministic VPP problem, which results from considering the electricity prices and the wind power
output as random variables. In the deterministic VPP problem, the aim is to maximize the
profit defined as the difference between the revenues from selling electricity and the costs of
operation and buying electricity. In the stochastic version, the profit is a random function, and
thus the aim is to maximize a functional of the profit. We start by denoting the profit function
f as

f(x+, x−, u, y+(ξ), y−(ξ), s(ξ), ξ) := (c+)>x++(c−)>x−+c0>u+c̃0>(ξ)y+(ξ)−c̃0>(ξ)y−(ξ)+c>s(ξ)

(1)

where ξ : Ω → Rr is a random vector defined on the probability space (Ω,F , P ), with Ω being
the set of all possible outcomes, F a σ-algebra and P a probability measure. The vectors c+,
c−, c0, and c ∈ Rn1 denote deterministic vectors with known parameters, whereas, c̃0(ξ) is a
random vector. The vectors x+, x−, u, y+(ξ), y−(ξ), s(ξ) ∈ Rn1 represent the variables of the
VPP model.

The vectors x+, x−, and u correspond to the first-stage decisions. x+, x− capture the
power to sell and buy through the contracts, respectively. The revenues related to the contracts
are represented by (c+)>x+, while the costs by (c−)>x−. The vector u encapsulates the binary
variables that define the operation mode of the thermal unit. Therefore, the term c0>u represents
the startup costs, shutdown costs, and fixed costs of operation of the thermal unit.

The second-stage decisions are represented by the vectors y+(ξ), y−(ξ), s(ξ), and r(ξ). Note
that r(ξ) is not part of the objective function. The vectors y+(ξ), y−(ξ) denote the energy to
sell or buy to the market, and the vector c̃0(ξ) denotes the uncertain hourly electricity prices.
The vector s(ξ) is the electricity generated by the thermal unit. Finally, the vector r(ξ) captures
the energy generated or consumed by the pumped-storage hydro unit and the volumes of water
associated with this unit.

The stochastic model of the VPP aims at maximizing a functional of the profit subject to
the constraints that define the region of operation of the thermal unit, pumped-storage hydro
plant, and the two contracts that are offered to the VPP:

max
x+,x−,v,u,y+(ξ),y−(ξ),s(ξ),r(ξ)

ψ
[
f(x+, x−, u, y+(ξ), y−(ξ), s(ξ), ξ)

]
s.t. A+x+ +A−x− +Bv ≤ b

Eu ≤ g

Cu+Ds(ξ) ≤ d, a.s.

s(ξ)− y+(ξ) + y−(ξ) + r(ξ)− x+ + x− + h(ξ) = 0, a.s.

Jr(ξ) ≤ j, a.s.

x+, x− ∈ Rn1
+ , v, u ∈ Bn1 , y+(ξ), y−(ξ), s(ξ) ∈ Rn1

+ , r(ξ) ∈ Rn1 ,

(2)

where B := {0, 1}, v are the binary variables associated with the choice of blocks in the contracts,
h(ξ) ∈ Rn1 defines the uncertain wind power, A+, A− ∈ Rm1×n1 , B ∈ Rm1×n1 , C ∈ Rm2×n1 ,
D ∈ Rm2×n1 , E ∈ Rm3×n1 , J ∈ Rm4×n1 are matrices with known parameters, and b ∈ Rm1 ,
d ∈ Rm2 , g ∈ Rm3 , j ∈ Rm4 are vectors with known parameters.
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In Problem (2), the first constraint covers the contracts. The second constraint represents
the relationships among the binary variables associated with the commitment of the thermal
unit. The third constraint captures the region of operation of the thermal unit, including
minimum up and down times, and power generation limits. The fourth constraint represents
the energy balance to the VPP. Finally, the last constraint captures the region of operation of
the pumped-storage hydro plant. See Appendix A for details.

For the sake of clarity on the exposition of the SAA methodology, a compact formula-
tion of the model with a simplified notation is introduced. We set x := (x+, x−), y :=
(y+(ξ), y−(ξ), s(ξ), r(ξ)), z := (u, v), c := (c+, c−), c := c0, c̃ := c̃0 with proper dimensions:

max
x,z,y(ξ)

ψ
[
f (x, z, y(ξ), ξ) := c>x+ c>z + c̃>(ξ)y(ξ)

]
s.t. Ax+Bz ≤ b

Cz +Dy(ξ) ≤ d, a.s.

y(ξ) + x = h(ξ), a.s.

x ∈ Rn1
+ , z ∈ Bn1 , y(ξ) ∈ Rn1

+ ,

(3)

where x, z denote first-stage variables and y(ξ) second-stage variables, h(ξ) ∈ Rn1 and c̃(ξ) ∈ Rn1

are random vectors, c, c, and c̃ are deterministic vectors with known parameters, A ∈ Rm1×n1 ,
B ∈ Rm1×n1 , C ∈ Rm2×n1 , and D ∈ Rm2×n1 are matrices with known parameters, and b ∈ Rm1

and d ∈ Rm2 are vectors with known parameters.

3.2. Risk-averse VPP stochastic models

Based on (3), we consider a risk-averse formulation that involves the CVaR of the profit
in the objective function. The CVaR is a coherent risk measure with relevant properties in
terms of convexity [37–39]. Therefore, it has clear advantages over non-convex risk measures.
Note that CVaR is not the only possibility to measure the risk; other measures have been
suggested including the variance, value at risk, drawdown, or buffered probability of exceedance;
see [40, 41]. Also note that many works in the literature apply the CVaR to a loss function,
whereas in this work the CVaR is applied to a profit one, which leads to different definitions
below as compared with the works cited. The terms “average value at risk” and “expected
shortfall” are also used to refer to the CVaR [42].

The CVaR for the (1−α) quantile of random variable f is defined as the conditional expec-
tation of f for f ≤ VaR1−α[f] [39]:

CVaR1−α [f ] = E [f |f ≤ VaR1−α[f ]] , (4)

where VaR1−α[f ] is the value at risk defined as

VaR1−α[f ] = max{w|Ff (w) ≤ 1− α}, (5)

and Ff is the cumulative distribution of f , Ff (w) = P{f ≤ w}.
From an optimization perspective, there are two additional definitions that are relevant.

The first is due to [38], which defines the CVaR through the optimization problem

CVaR1−α [f ] = max
η

{
η −

1
1− αE

[
(η − f)+

]}
, (6)
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where (·)+ = max{·, 0}. In [38], it is shown that the optimal value of η in (6) is the VaR1−α[f ].
The second definition shows that the function that defines the CVaR of losses is a convex
function [39], which in our specific case leads to the equality

max
x,z,y(ξ)

{CVaR1−α [f(x, z, y(ξ), ξ)]} = max
x,z,y(ξ),η

{
η −

1
1− αE

{
[η − f(x, z, y(ξ), ξ)]+

}}
. (7)

Based on the properties of the CVaR, we define an objective function representing the
maximization of a combination of the expected profit and CVaR:

max
x,z,y(ξ)

ψ [f (x, z, y(ξ), ξ)] := max
x,z,y(ξ),η

{
E
[
(1− β)f (x, z, y(ξ), ξ) + β

(
η −

1
1− α [η − f(x, z, y(ξ), ξ)]+

)]}
,

(8)

where β ∈ [0, 1] is a parameter that defines the weights of the expectation and CVaR of f . We
are particularly interested in the solution of Problem (3) with (8) defined with β = (0, 1) and
β = 1 (maximization of the CVaR of the profit) using an SAA approach.

Detailed analyses on the properties of the CVaR and VaR metrics and their integration into
stochastic programming can be found in [38, 39, 42, 43]. Risk metrics for multi-stage stochastic
programming, such as the expected CVaR can be found in [44–46]. Also, the work in [47]
provides extensive comparisons on multi-period risk metrics.

4. Sample average approximation

For the generic problem formulation

w∗ = max
x,y(ξ),z∈W

{Eξ [φ(x, y(ξ), z, ξ)]}, (9)

whereW := {x, y(ξ), z|Ax+Bz ≤ b;Cz+Dy(ξ) ≤ d, a.s.;Fy(ξ)+Gx = h(ξ), a.s.; x ∈ Rn1
+ , z ∈

Bn1 , y(ξ) ∈ Rn1
+ }, we define the sample average approximation problem as [5, 6]:

w∗N = max
x,y,z∈WN

{
1
N

N∑
n=1

φ(x, y, z, ξn)
}
, (10)

for a sample with independent and identically distributed elements ξn from the distribution of
ξ, and where WN := {x, y(ξn), z|Ax + Bz ≤ b;Cz + Dy(ξn) ≤ d, ∀ξn ∈ Ξ;Fy(ξn) + Gx =
h(ξn), ∀ξn ∈ Ξ;x ∈ Rn1

+ , z ∈ Bn2 , y(ξn) ∈ Rn3
+ , n = 1, ..., N}, and φ stands for φβ.

The optimal value and solution of Problem (9) are w∗ and x∗, y∗, z∗, respectively, which are
approximated by w∗N and x∗N , y∗N , z∗N obtained from (10). Note that w∗N is a random variable
that depends on the sample of ξn.

The objective function (8) involve the CVaR measure, which may not resemble the generic
formulation in (9). However, note that (8) is reformulated as a function of the expectation
operator.

Using the SAA methodology, two types of inference statistics for the solutions are calculated:
1) point estimates and confidence intervals for the upper and lower bounds on the optimal
objective function value w∗; 2) a point estimates of the upper bound on the gap between w∗ and
w∗N . Besides, for the specific application, the solutions are complemented with the corresponding
point estimates and confidence intervals for the expected profit and the CVaR of the profit.
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To evaluate the inference statistics on the bounds of the optimal objective function value
w∗, the following notation is used: a) for the upper bound, N denotes the sample size, n is the
index of an element of the sample, M is the number of replications, and m is the replication
index; b) for the lower bound, N ′ denotes the sample size, n′ is the index of an element of the
sample, T and T ′ are the number of replications, and t and t′ are replication indices. For the
upper bound on the gap between w∗ and w∗N , N , n, M , and m are used with the same purpose
as in a). Note that the symbols t, t′, and T are not related to the symbols t and T used in
Appendix A to refer to time periods and time horizon.

4.1. Motivating example

In this section, we illustrate the variance of the optimal objective function values and first-
stage solutions obtained using different samples having the same size. The samples and results
used in this example are part of the computational experiments described in Section 6. Table 1
outlines the results of 30 optimization replications, each with a sample of size N = 10, for the
maximization of the expected profit. The variability of these results can be highlighted with

Table 1: Case 1. Optimization results for the formulation with β = 0. The results are ordered by the optimal
objective function value (ŵN,m). M = 30, N = 10. Bold - set of distinct first-stage solutions.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

23 2,437,900 2 0.0000 1 100 0 0 155 0
22 2,754,781 2 0.0000 1 100 0 0 50 55
27 2,791,618 2 0.0000 1 100 0 0 50 55
18 2,807,663 2 0.0000 1 100 0 0 50 55
17 2,808,236 2 0.0000 1 100 0 0 50 55
2 2,828,660 2 0.0000 1 100 0 0 50 55
19 2,881,600 2 0.0000 1 100 0 0 50 110
20 2,950,385 2 0.0000 1 100 0 0 50 110
3 2,987,171 2 0.0000 1 100 0 0 0 160
9 3,051,161 2 0.0000 1 100 0 0 0 160
21 3,075,317 2 0.0000 1 100 0 0 0 160
28 3,086,196 2 0.0000 1 100 0 0 0 160
26 3,098,970 2 0.0000 1 100 0 0 0 160
13 3,112,520 2 0.0000 1 100 0 0 0 160
7 3,141,942 2 0.0000 1 100 0 0 0 160
4 3,182,338 2 0.0000 1 100 0 0 0 160
14 3,225,259 2 0.0000 1 100 0 0 0 160
12 3,241,059 2 0.0000 1 100 0 0 0 160
15 3,245,519 2 0.0000 1 100 0 0 0 160
25 3,251,400 2 0.0000 1 100 0 0 0 160
10 3,273,009 2 0.0000 1 100 0 0 0 160
8 3,311,875 2 0.0000 1 100 0 0 0 160
16 3,326,421 2 0.0000 1 100 0 0 0 160
29 3,331,775 2 0.0000 1 100 0 0 0 160
11 3,371,868 2 0.0000 1 100 0 0 0 215
6 3,525,814 2 0.0000 1 100 0 0 0 265
30 3,543,351 2 0.0000 1 100 0 0 0 265
5 3,682,847 2 0.0000 1 100 0 0 0 265
1 3,738,467 2 0.0000 1 100 0 0 0 265
24 3,743,889 2 0.0000 1 100 0 0 0 265

m - Optimization replication index, ŵN,m - optimal objective function value for optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the L-Shaped
method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP/SD - number of
startups/shutdowns of the thermal unit, SELLC/BUYC - power sold/bought through contracts.
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the results of two samples. The first sample (m = 1) has optimal objective function value of
3, 738, 467 and first-stage solution {100, 0, 0, 0, 265}, whereas for m = 2, the optimal objective
function value is 2, 828, 660 with first-stage solution {100, 0, 0, 50, 55}. This table also shows
that the first-stage solution {100, 0, 0, 0, 265} corresponds to the higher profits, and the solution
with {100, 0, 0, 0, 160} has the higher number of occurrences. These results do not support a
clear-cut decision on the best solution to choose. Obviously, the variance of these results is
due to the size of the sample used for the optimization. However, with a small sample and the
methodologies presented in this work, it is possible to provide a set of inference statistics and
to assess the solutions. This information can help the selection of first-stage solutions.

The impact of the sample size N and the number of replications M on the probability of
obtaining an optimal solution to the true problem from the SAA problem is discussed in [5]. In
that work, it is claimed that the relation between N and this probability is problem specific,
and that beyond a given M , it would be better to increase N .

4.2. Upper bound on the optimal objective function value w∗

The approximation of w∗ is done by calculating point estimates of lower and upper bounds
on w∗. An upper bound on w∗ is defined by the well-known relation E[w∗N ] ≥ w∗ [25]. The value
of the E[w∗N ] is estimated by the statistical estimator UBN,M that is determined by solving M
optimization problems (10)

ŵN,m = max
x,y,z∈WN,m

{
1
N

N∑
n=1

φ(x, y, z, ξn,m)
}
, ∀m ∈M, (11)

and by using ŵN,m to estimate the UBN,M through

UBN,M =
1
M

M∑
m=1

ŵN,m. (12)

The sample variance estimator is

(s1
N,M )2 =

1
M(M − 1)

M∑
m=1

(ŵN,m − UBN,M )2. (13)

Thus, UBN,M is a statistical estimator of E[ŵN ] with the 100(1− α′)% confidence interval

[LUBN,M , UUBN,M ] :=
[
UBN,M − tM−1,α′sN,M , UBN,M + tM−1,αsN,M

]
, (14)

where tM−1,α′ is the critical value from the t-distribution.

4.3. Lower bound on the optimal objective function value w∗

We define LBN ′,m,T as an estimator of a lower bound on w∗, which is associated with a first-
stage solution from the optimization replication m denoted by (x̂N,m, ẑN,m). The calculation of
LBN ′,m,T is done using T independent samples of size N ′, as follows

ŵN ′,m,t = max
y∈WN′,m,t

{
1
N ′

N ′∑
n′=1

φ(x̂N,m, y, ẑN,m, ξn
′,t)
}
, ∀m ∈M, ∀t ∈ T, (15)

LBN ′,m,T =
1
T

T∑
t=1

ŵN ′,m,t, ∀m ∈M. (16)
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Note that the estimator LBN ′,m,T is associated with the solution of the optimization replication
with indexm. To generate a single estimator of the lower bound (from theM bounds LBN ′,m,T ),
the first-stage solution that corresponds to the maximum value of LBN ′,m,T is selected and for
this solution a new estimator is calculated using T ′ independent samples of size N ′:

ŵN ′,t′ = max
y∈WN′,t

{
1
N ′

N ′∑
n′=1

φ(x̂N , y, ẑN , ξn
′,t)
}
, ∀t′ ∈ T ′, (17)

where (x̂N , y, ẑN ) is the first-stage solution selected. For this first-stage solution, the estimator
of the lower bound is given by

LBN ′,T ′ =
1
T ′

T ′∑
t′=1

ŵN ′,t′ , (18)

and the sample variance of LBN ′,T ′ through

(s2
N ′,T ′)2 =

1
T (T − 1)

M∑
m=1

(
ŵN ′,t′ − LBN ′,T ′

)2
, (19)

with the confidence interval defined as[
LLBN ′,T ′ , ULBN ′,T ′

]
:=
[
LBN ′,T ′ − tT−1,α′sN ′,T ′ , LBN ′,T ′ + tT−1,α′sN ′,T ′

]
. (20)

This approach to calculate the point estimate of the lower bound is based on [28].

4.4. Upper bound on the gap between w∗ and Eξ [φ(x̂N , y, ẑN , ξ)]

In [25], it is derived a method for assessing the quality of a solution (x̂N , ẑN ), which defines
an estimator of an upper bound on the following gap:

gap(x̂N , ẑN ) := w∗ − Eξ [φ(x̂N , y, ẑN , ξ)] . (21)

This gap represents the difference between the true optimal solution w∗ and the true optimal
solution Eξ [φ(x̂N , y, ẑN , ξ)] for (x̂N , ẑN ). The upper bound, G, on the gap(x̂N , ẑN ) is defined
as [25]:

G := E
[

max
x,y,z∈WN

{
1
N

N∑
n=1

φ(x, y, z, ξn)
}
−

1
N

N∑
n=1

φ(x̂N , y, ẑN , ξn)
]
≥ gap(x̂N , ẑN ). (22)

G is calculated using E[w∗N ] as a valid statistical upper bound on w∗, E[w∗N ] ≥ w∗, and E[ŵN ]
as an estimator of Eξ [φ(x̂N , y, ẑN , ξ)]. In [25], it is proposed to use the upper limit of the
confidence interval of the estimator of G as an upper bound on the gap(x̂N , zN ). This upper
limit calculation is presented in Procedure 2. Note that this procedure uses the same sample to
calculate the two terms on the left hand side of the inequality in (22), and the upper bound on
the gap is always positive. Additional details regarding variants of evaluation procedures and
convergence analysis of the gap estimator can be found in [25, 48].

4.5. Implementation

The practical computation of the statistical point estimates and confidence intervals de-
scribed in Sections 4.2 to 4.4 is presented in Procedures 1 and 2, and the corresponding dia-
grams in Appendix B. These two procedures involve two stages denoted as optimization stage
and bound estimation stage. In line 3 of Procedures 1 and 2, a risk-neutral or a risk-averse
stochastic programming problem is solved. Each of these problems can be solved directly using
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an MILP solver or by decomposition. We adopt the latter and use the L-Shaped method pro-
posed in the seminal work of Van Slyke and Wets [24]. This choice is supported by a previous
successful application of this method in solving large scale problems [19]. The L-Shaped method
is an extension of Benders decomposition [49] for two-stage stochastic programming problems,
which is straightforward to describe using problem (23):

max
x,z,η

c>x+ c>z + (1− β)
N∑
n=1

[pnQ(x, z, ξn)] + β

{
η −

1
1− α

N∑
n=1

[
pn (η −Q(x, z, ξn))+

]}
s.t. Ax+Bz ≤ b

x ∈ Rn1
+ , z ∈ Bn2 , η ∈ R,

(23)

where Q(x, z, ξn) is defined as

Q(x, z, ξn) := max
yn

c̃>n yn

s.t. Dyn ≤ d− Cz

yn = hn − x

yn ∈ Rn3
+


∀n = 1, ..., N, (24)

where the first problem is an MILP problem followed by a collection of LP subproblems that
constitutes a sample element-wise decomposition, meaning one subproblem for each element
n = 1, ..., N of the sample. This formulation moves the variable yn to the subproblems. The L-
Shaped method is an iterative method, where in each iteration the following steps are performed:

1. A relaxation of problem (23), called master problem, is solved. This master problem is
constructed by outer-approximating the terms involving Q(x, z, ξn), and thus, its objective
function value provides an upper bound on the objective function value of problem (23).
The solution of this master problem is the first-stage variables: (x, z).

2. The subproblems (24) are solved independently for fixed values of the first-stage variables
obtained from the master problem.

3. The VaR and CVaR of the second stage profit are evaluated based on the distribution of
the second stage profits (the objective function values of the subproblems), and they are
used in the next step.

4. The upper and lower bounds are calculated and the method terminates if the gap between
these bounds reaches a specified threshold.

5. The dual variables solution of the subproblems are used to build the outer-approximations
to be added to the master problem in the next iteration. In the next iteration, these outer-
approximations “cut” the solution of the master problem obtained in step 1.

The outer-approximations are known as optimality cuts. These cuts require that all subproblems
in step 2 are feasible, otherwise, a feasibility subproblem needs to be solved for each infeasible
subproblem. The optimal values of the dual variables of these feasibility subproblems are then
used to build cuts, known as feasibility cuts, to be added to the master problem in the next
iteration. In the problems studied in this work, the subproblems are always feasible for all
values of the first-stage variables. This is due to the possibility to buy electricity from the pool,
which is implemented in the subproblems to satisfy contracts decided in the master problem.
An algorithmic description, specific problem formulations, expressions for bounds, and details
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on handling the variable η and the CVaR calculation can be found in [19], and the outer-
approximations derivations and convergence analysis in [24, 50, 51].

Procedure 1 Proposed implementation of an SAA method.
Input: M samples of size N : ξn,m, n = 1, ..., N, m = 1, ...,M ; T samples of size N ′: ξn′,t, n′ =
1, ..., N ′, t = 1, ..., T ; T ′ samples of size N ′: ξn′,t′ , n′ = 1, ..., N ′, t′ = 1, ..., T ′; and confidence
level.
Output: first-stage solution, point estimates of bounds on the optimal objective function value
w∗, and confidence intervals.
1: for m = 1 to M do
2: Initialize the L-Shaped method with (x̂bestN,m, ẑ

best
N,m), if this solution is available

3: Solve using the L-Shaped method each MILP problem with the sample with size N of
i.i.d. ξn,m:

ŵN,m = max
x,y,z∈WN,m

{
1
N

N∑
n=1

φ(x, y, z, ξn,m)
}

(25)

4: Let (x̂N,m, ŷnN,m, ẑN,m) be the optimal solution from (25)
5: if ŵN,m > ŵN,m−1 then
6: (x̂bestN,m, ẑ

best
N,m)← (x̂N,m, ẑN,m)

7: end if
8: if (x̂N,m, ẑN,m) is a new solution then
9: for t = 1 to T do {Lower bound estimation}
10: Solve each LP subproblem with the sample with size N ′ of i.i.d. ξn′,t:

ŵN ′,m,t = max
y∈WN′,m,t

{
1
N ′

N ′∑
n′=1

φ(x̂N,m, y, ẑN,m, ξn
′,t)
}

(26)

11: end for
12: Evaluate LBN ′,m,T using (16)
13: if m = 1 then
14: (x̂N , ẑN )← (x̂N,m, ẑN,m)
15: else if m > 1 and LBN ′,m,T > LBN ′,m−1,T then
16: (x̂N , ẑN )← (x̂N,m, ẑN,m)
17: end if
18: end if
19: end for
20: Evaluate UBN,M using (12) and the confidence interval using (14)
21: for t′ = 1 to T ′ do {Lower bound estimation}
22: Solve each LP subproblem with the sample with size N ′ of i.i.d. ξn′,t′ :

ŵN ′,t′ = max
y∈WN′,t′

{
1
N ′

N ′∑
n′=1

φ(x̂N , y, ẑN , ξn
′,t′)
}

(27)

23: end for
24: Evaluate LBN ′,T ′ using (18) and the confidence interval using (20)
25: return (x̂N , ẑN ), UBN,M , LBN ′,T ′ , and confidence intervals

Clearly, the solution of multiple replications of risk-averse problems in Procedures 1 and 2 is a
computationally demanding process, especially for MILP problems. Therefore, implementations
of Procedures 1 and 2 should include strategies to reduce their overall computing time. An
attractive approach is to parallelize the implementation of these procedures taking advantage of
the modeling and hardware capabilities available. In this work, the parallelization is exploited in
the solution of the independent LP subproblems in two places: 1) within the L-Shaped method;
and 2) at the lower bound estimation, where for each first-stage solution, N ′ LP subproblems
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Procedure 2 Proposed implementation of the upper bound on the gap between w∗ and
Eξ [φ(x̂N , y, ẑN , ξ)] [25, 48].
Input: (x̂N , ẑN ) from Procedure 1; M samples of size N : ξn,m, n = 1, ..., N, m = 1, ...,M ; and
confidence level.
Output: upper bound on the gap(x̂N , ẑN ) = w∗ − Eξ[φ(x̂N , y, ẑN , ξ]
1: for m = 1 to M do
2: Initialize the L-Shaped method with (x̂N , ẑN ) or if available, with (x̂bestN,m, ẑ

best
N,m)

3: Solve using the L-Shaped method each MILP problem with the sample with size N of
i.i.d. ξn,m:

ŵN,m = max
x,y,z∈WN,m

{
1
N

N∑
n=1

φ(x, y, z, ξn,m)
}

(28)

4: Let (x̂N,m, ŷnN,m, ẑN,m) be the optimal solution of (28)
5: if ŵN,m > ŵN,m−1 then
6: (x̂bestN,m, ẑ

best
N,m)← (x̂N,m, ẑN,m)

7: end if
8: Solve each LP subproblem with the sample with size N of i.i.d. ξn,m:

max
y∈WN,m

{
1
N

N∑
n=1

φ(x̂N , y, ẑN , ξn,m)
}

(29)

9: Evaluate

GN,m =
1
N

N∑
n=1

[
φ(x̂N,m, ŷnN,m, ẑN,m, ξn,m)− φ(x̂N , ŷnN , ẑN , ξn,m)

]
(30)

10: end for
11: Evaluate the statistical point estimate for the expected gap and sample variance

GN,M =
1
M

M∑
m=1
GN,m (31)

(sM )2 =
1

M(M − 1)

M∑
m=1

(
GN,m − GN,M

)2
(32)

12: return upper bound UGN,M = GN,M + tM−1,αsM

are solved.
In Procedures 1 and 2, we implement an initialization step that uses the best first-stage

solution obtained in a replication m′ < m to initialize the L-Shaped method in replication m.
This initialization is indicated in line 2 of Procedure 1, where (x̂bestN,m, ẑ

best
N,m) is the best first-

stage solution. We note that this first-stage solution is not available in the first optimization
replication (m = 1). In contrast, in Procedure 2, by construction, the solution (x̂N , ẑN ) is
available at the beginning of the procedure, thus, the initialization mentioned in line 2 is active
from the first replication. The initialization step entails that in the first iteration of the L-Shaped
method, the best first-stage solution is assigned to the first-stage solution, instead of finding
a solution using the master problem. With this initialization step, the initial lower bound of
the L-Shaped method, calculated after solving the LP subproblems, is generally better than the
one calculated using the solution of the master problem in the first iteration. Note that the
corresponding computational gain is multiplied by the number of optimization replications.

In the bound estimation stage, the bounds described in Sections 4.2 to 4.4 are evaluated
using the first-stage solutions and the objective function values obtained from the optimization
stage. In Procedure 1, the lower bound estimation is computationally more demanding than
the upper bound estimation. Therefore, we implement another important time saving strategy:
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the lower bound estimation is only carried out for new distinct first-stage solutions. Note that
an alternative would be to perform the lower bound estimation only for ε-different first-stage
solutions. This alternative would avoid the computing time for the lower bound estimation for
slightly different first-stage solutions. In the discussion of the results, the impact of avoiding the
lower bound estimation for repeated solutions on the computing time is analyzed and situations
where it is relevant are identified.

The risk-averse formulations involving the CVaR measure add an extra burden to the L-
Shaped method and lower bound estimation. The evaluation of the CVaR measure requires
the calculation of the conditional average of the Q(x, z, ξn) (defined in (24)). To reduce this
evaluation time, an efficient approach in the lower bound estimation is implemented, where the
evaluation of the CVaR for α > α′ re-uses the information of the distribution of the previous
CVaR evaluation for α′.

With this overall approach, we provide a full characterization of the solution of our problem,
which encompasses the following information:

1. approximation of the optimal solution, in terms of the first-stage variables;
2. point estimate and confidence interval for the upper bound on the true optimal objective

function value;
3. point estimate and confidence interval for the lower bound on the true optimal objective

function value;
4. point estimate on the upper bound on the gap between the true optimal objective func-

tion value and the expected optimal objective function value associated with a first-stage
solution;

Therefore, this information provides inference statistics on the solutions that are more informa-
tive than the single optimal objective function value and corresponding first-stage variables of
a deterministic problem.

In the next section, we describe the sampling procedure to generate the samples of the wind
and electricity prices.

5. Sampling

5.1. Sampling the electricity prices

We generate the samples for the electricity prices from an ARIMA model that is fitted to
an electricity price time series. Specifically, the samples are drawn by sampling the error term
of the ARIMA model; see [52] for a discussion on this type of approach. Specific details for the
data used are given in Section 6.1.1.

5.2. Sampling the wind speed with a truncated Karhunen-Loève expansion

In this section, we briefly introduce the KLE, and in Section 6, we provide additional infor-
mation regarding the wind data used. See [53, Section 2.1] for a presentation on KLE.
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5.2.1. Wind speed model.
Assuming that the wind speed h(t) is always strictly positive, we adopt here a log-normal

model where X(t) = log(h(t)) is a Gaussian process with mean function µ(t) and covariance
function C(t, t′), which are approximated in our application using a sample (xi(t))Ni=1 and the
empirical estimation

µ(t) ≈ 1
N

N∑
i=1

xi(t) (33)

and C(t, t′) ≈ 1
N − 1

N∑
i=1

(xi(t)− µ(t))(xi(t′)− µ(t′)). (34)

Given a time interval uniformly discretized (ti)ni=1 with a resolution ∆t = 1 h, the rest of
Section 5.2 is dedicated to the KLE-based approximation of the wind speed model under the
form

h(ti) ≈ exp
(
µ(ti) +

r∑
i=j

√
λjWjiξj

)
, (35)

where (ξi)ri=1 are independent random variables drawn according to the standard normal distri-
bution.

5.2.2. Continuous formulation
Let (Ω,F ,P) be a probability space, with Ω being the sample space, F a σ-algebra and P

a probability measure. Let I = [a, b] be an interval of R. X is a square-integrable stochastic
process that is assumed to be defined on I. The Karhunen-Loève decomposition of the process
can be expressed as

X(t) = µ(t) +
∞∑
i=1

√
λiVi(t)ξi, (36)

where (Vi)∞i=1 is a Hilbert basis of L2(I), the random variables (ξi)∞i=1 are mutually independent,
with zero mean and unit variance, and (λi)∞i=1 are positive constants in a decreasing order
(λ1 ≥ λ2 ≥ . . . ≥ 0). Under sufficient regularity of the covariance C, the pairs (λi, Vi)∞i=1 are
solutions of the following Fredholm integral equation of the second kind∫

t′∈I
C(t, t′)Vi(t′)dt′ = λiVi(t). (37)

The random variable ξi is defined by

ξi = 1√
λi

∫
t∈I

Vi(t) (X(t)− µ(t)) dt. (38)

Note that if X is a Gaussian process, then the random variables (ξi)∞i=1 follow the standard
Gaussian distribution.
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5.2.3. Discretization
Let (si)ni=0 be a regular discretization of the interval I such that

a = s0 ≤ s1 ≤ . . . ≤ sn = b, and si+1 − si = ∆t, (39)

and let (ti)ni=1 be the midpoints (si − si−1)/2. Evaluating the integral in Equation (37) with a
midpoint-quadrature formula at every tj yields

n∑
j=1

C(ti, tj)Vi(tj)∆t = λiVi(ti). (40)

Let the matrix K ∈ Rn×n and the vector Wi ∈ Rn be defined by

Kij = ∆tC(ti, tj), and Wij = Vi(tj). (41)

The discretized Fredholm integral equation leads to the following algebraic eigenvalue problem

KWi = λiWi. (42)

The time discretization followed by a truncation of the sum yield therefore the approximations

X(ti) ≈ µ(ti) +
n∑
j=1

√
λjWjiξj ≈ µ(ti) +

r∑
j=1

√
λjWjiξj . (43)

Given a tolerance ε, the constant r is chosen such that

(∑n
i=r+1 λi∑n
i=1 λi

) 1
2
≤ ε, (44)

ensuring that the relative L2 error between the n-terms and the r-terms approximations is less
than ε.

6. Numerical experiments

The results presented in this section demonstrate the new features implemented in the
proposed procedures and provide a complete set of statistical results to better support the
decision-maker. The objectives of the experiments are fourfold:

1. to demonstrate the positive impact of the proposed strategies on the computing time;
2. to analyze the performance of the optimization stage for risk-averse approaches;
3. to compute high-quality solutions for the VPP problem;
4. to assess those solutions using statistic estimators and confidence intervals.

The first and second objectives above are related to the first contribution of this work and
the third and fourth objectives to the second contribution. In terms of the organization of
the results, we discuss the computational performance of Procedure 1 in Subsection in 6.2, the
objective function values in Subsection 6.3, the first-stage solutions in Subsection 6.4, and the
maximum gaps obtained in Subsection 6.5.
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More specifically, in Procedure 1, we analyze the impact of a) the sample size N on the
computing time of the L-Shaped method and the variance of the solutions; b) the sample size
N ′ on the computing time and variance of the solutions; c) the number of replications T and
T ′ on the lower bound estimation. In Procedure 2, we study the influence of the sample size N
on the upper bound estimation.

In a supplementary document, detailed experimental results that support the ones presented
in this section are provided.

6.1. Description of the case studies

We consider two cases pertaining to the VPP described in Section 2, which we refer to as
Case 1 and Case 2. In both cases a similar wind farm and a similar pumped-storage hydro
unit are considered. However, the specifications of the thermal unit in each case are different
in terms of initial state, operational constraints, and costs. Table 2 specifies the differences in
terms of capacity and costs between the thermal unit in Case 1 and 2. For the same samples

Table 2: Summary of the specifications of the thermal unit in Case 1 and Case 2.

Thermal unit specifications Case 1 Case 2

Initial state On Off
Maximum power (MW) 455 55
Fixed generation cost (e/h) 1000 660
Variable generation cost (e/MWh) 16.19 25.92
Minimum up-time (h) 8 1
Minimum down-time (h) 8 1

of the wind speed and electricity prices, these differences induce a distinct reaction of the VPP.
Furthermore, the higher generation cost of the thermal unit in Case 2 leads to a situation where
the gap between the electricity price and generation costs is smaller than the gap in Case 1.
The results presented in this section show that the two cases are sufficiently distinct to give a
broad view on the performance of the methods used in this work.

The solutions of interest for the VPP problem are the optimal first-stage solutions and the
performance indices expected profit and the CVaR of the profit for different quantiles. Given
the number of elements in each sample, and the fact that in practice, the second-stage variables
have to be adjusted to the future realization of the random variables, these variables are less
meaningful and thus their values are not reported.

6.1.1. Wind speed and electricity prices data
We consider a time horizon of 168 hours, which corresponds to the week of August 25-31,

2014. The ARIMA model uses the same structure and fit of the model proposed in [19]. The
electricity price time series has 12 weeks before the week studied, from the Iberian Peninsula
electricity market [54].

The raw data for the wind speed for a specific wind farm location consists of a wind speed
ensemble with 51 members obtained from the European Centre for Medium Range Weather
Forecasts (ECMWF). We use the wind speed ensemble and the KLE to generate additional
samples of the wind speed for the SAA methodology. The electricity prices are considered
independent of the wind speed available at the location of the considered VPP, due to the small

18



capacity of the VPP in each case study, which has no market power to influence the electricity
prices.

6.1.2. Setup of the parameters of the procedures
The risk-neutral and risk-averse stochastic programming problems are solved with an L-

Shaped based method with single optimality cuts. For this method, the stop criteria are a
maximum wall-clock time of 10,800 s, a maximum gap between the bounds of 1×10−4%, and
a maximum number of iterations of 5,000. Note that this gap is related to the bounds on the
objective function value within the L-Shaped method for a given sample. These bounds are not
related to the bounds described in Sections 4.2 and 4.3.

We perform a sensitivity analysis with Procedure 1 combining the following parametersM =
30 (number of optimization replications), N ∈ {10, 50, 100, 500, 5, 000} (size of the samples
used in each optimization replication), T ∈ {10, 30}, T ′ ∈ {10, 30} (number of replications in
the lower bound estimation), N ′ ∈ {5, 000, 25, 000} (size of the samples used in the lower bound
estimation).

We consider four combinations of (β, α) ∈ {(0, −), (0.5, 0.9), (1, 0.9), (1, (N − 1)/N)} for
the optimization replication. The case with α = (N − 1)/N corresponds to the maximization
of the worst profit consistently with the definition of the CVaR. In the lower bound estimation,
for each first-stage solution we evaluate point estimates and confidence intervals of the CVaR
of the profit for α ∈ {0.9, 0.95, (N ′ − 1)/N ′}.

For Procedure 2, we set M = 30 (number of replications of the optimization) and N ∈
{500, 5, 000} (size of the samples). All confidence intervals presented correspond to 95%.

A workstation with 40 Intel Xeon CPU E5-2680 v2 @ 2.80 GHz processors, and 125.8 Gb of
RAM was used and the solution of the LP subproblems was distributed among the 40 CPUs.
The MILP and LP problems were solved with CPLEX 12.7.1.0 using the GAMS/GRID/GUSS
capabilities to distribute the solution of the LP subproblems.

6.2. Computational performance

In this subsection, we first present the dimensions of the problems considered and discuss
the choice of the L-Shaped method over the direct solution of the extensive form. Next, the
benefits of the proposed initialization of the L-Shaped method are shown and then analysis on
the overall performance of Procedure 1 is provided.

In Table 3, we show that the size of the extensive form reaches millions of constraints and
variables for samples with N = 5, 000, and that the L-Shaped method decomposes the extensive
form into one smaller master problem and N smaller subproblems.

We adopt the L-Shaped variant that provided the best performance in [19], i.e., Algorithm
1, which corresponds to using a single optimality cut for each of the expectation and CVaR
operators and calculating VaR based on the solution of the subproblems, rather than using VaR
as a first-stage variable. In that work it is shown that for β = 0, the L-Shaped method with an
efficient parallelization solution of the subproblems is one order of magnitude faster than the
direct solution of the extensive form. Whereas for β ∈ {0.1, 0.5, 0.9, 1.0}, α = 0.9, sample sizes
of 5,100 elements, and maximum wall clock time of 7,200 s, the MILP solver applied to the
extensive form did not find a feasible solution for four case studies similar to the two considered
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Table 3: Size of the extensive form and problems within the L-Shaped method.

Problem N β NCNST NVAR 0-1 NVAR

Extensive 10 0.0 21,346 14,298 508
Extensive 5,000 0.0 10,081,186 6,720,858 508
Extensive 5,000 1.0 10,086,186 6,725,859 508
Master† 10 0.0 1,187 859 508
Master† 5,000 0.0 1,187 859 508
Master† 5,000 0.5 6,188 5,861 508
Master† 5,000 1.0 6,187 5,860 508
Subproblem? - - 1,345 2,353 -

† - Sizes refer to the second iteration of the L-Shaped method. ? - Size refers to the dual of
(24). NCNST - number of constraints plus objective function; NVAR - number of total
variables; 0-1 NVAR - number of binary variables.

in this work. We refer the reader to that work for detailed computational results showing the
superior performance of the L-Shaped method over solving directly the extensive form.

6.2.1. Initialization of the optimization stage
Table 4 shows the ratios between the total wall-clock time with and without initialization for

30 optimization replications. These results cover four combinations of risk parameters using two
sample sizes–500 and 5,000 elements–over 30 replications. A ratio smaller than one means that
the initialization is effective in reducing the total computing time. Overall, the results suggest
that the initialization reduces the required computing time. The exception is the formulation
with β = 1 and α = (N − 1)/N , (last row of Table 4). This peculiar behavior occurs because
convergence is not reached for the first-stage solution over the replications, and thus, one solution
from one replication is not necessarily a good initial solution for another replication. For the
remaining risk metrics, there is convergence for the first-stage variables, and therefore, the
initialization has a positive impact on computing time. This is further discussed in Section 6.2.4.

6.2.2. Performance of the optimization stage
Figures 1a and 1b show for Cases 1 and 2, respectively, the average wall-clock time for 30

optimization replications as a function of the risk parameters and size of the sample. These
results show that with a sample with 10 elements, the average wall-clock time for Case 1 is

Table 4: Ratio between the total wall-clock time for 30 optimization replications using an initial solution (Tinit)
and without using an initial solution (T0) in the L-Shaped method. M = 30.

N = 500 N = 5, 000

Case 1 Case 2 Case 1 Case 2

β α Tinit/T0 Tinit/T0 Tinit/T0 Tinit/T0

0 - 0.68 0.82 0.63 0.82
0.5 0.9 0.52 0.75 0.56 0.80
1 0.9 0.56 0.78 0.61 0.81
1 (N − 1)/N 0.96 1.19 1.06 1.09
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approximately 1 s, independently of the risk parameters. However, this computing time increases
with the sample size, with the formulation with β = 1, α = (N − 1)/N exhibiting a steeper
increase for an average of 3,146 s. For Case 2 the average wall-clock time for the formulations
with the CVaR is independent of the size of the sample. The next sub-section focuses on the
results of the formulations with β = 1, α = (N − 1)/N .

6.2.3. Performance of the optimization stage for β = 1, α = (N − 1)/N
The formulation with β = 1, α = (N − 1)/N exhibits some relevant results that are worth

discussing. First of all, for the formulations with the CVaR, the L-Shaped method evaluates
the CVaR in each iteration, which requires resources, however, for β = 1, α = (N − 1)/N this
evaluation is straightforward. In general, comparing the formulations with β = 0 and β > 0,
α < (N − 1)/N in terms of computing time, we can see that the CVaR specific calculation
is not computationally the most demanding. For example, in Figure 1a for N = 500, the
computing times for β = 0 and β > 0, α < (N − 1)/N are similar. On the other hand, for
β = 1, α = (N − 1)/N the average number of iterations is 5.7, whereas for β = 1, α = 0.9 it is
2.0. Therefore, the higher computing times obtained with β = 1, α = (N − 1)/N do not arise
from the CVaR evaluation, but rather from the number of iterations executed by the L-Shaped
method, as discussed below.

For Case 1, for N = 10, the L-Shaped method requires on average 2.1 iterations to meet the
stopping criteria, while for N = 5, 000 it requires on average 8.6 iterations. Figure 2 presents
the profiles of the bounds in the L-Shaped method for the optimization replications with the
lower and higher number of iterations within each optimization replication with N = 10 and
N = 5, 000. The figures for Case 1 show that for N = 10 the number of iterations ranges from
2 to 4, while for N = 5, 000 it ranges from 2 to 21 iterations. However, it is not the size of the
sample that demands extra iterations, since for β = 0 and N = 5, 000, the L-Shaped method
requires on average 2.0 iterations to meet the stopping criteria. It is rather the elements within
large samples that have an impact on the performance of the L-Shaped method if applied to
the maximization of the CVaR of the profit with α = (N − 1)/N .

For Case 2, Figure 1b shows that the average wall-clock times for the formulations with the
CVaR are independent of the size of the sample. In the specific case of β = 1, α = (N − 1)/N ,
for N = 10, the L-Shaped method requires on average 101.2 iterations to meet the stopping
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Figure 1: Average wall-clock time for 30 optimization replications for the combinations of sample sizes and risk
parameters studied.
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(a) Case 1, N = 10.
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Figure 2: Upper and lower bounds (continuous lines) from the L-Shaped method. The dashed line is the objective
function for the first-stage solution. In each sub-figure, there are the two optimization replications with the lower
and higher number of iterations. For M = 30, β = 1, and α = (N − 1)/N .

criteria, whereas for N = 5, 000 it requires on average 11.4 iterations. These results combined
with the results in Figure 1b indicate that 1) Case 2 forces the L-Shaped method to perform
more iterations than Case 1, for the same samples, which is explained by the higher generation
costs of the thermal unit in Case 2; and 2) consequently, for the formulations that maximize
the worst profit observation, the L-Shaped method requires additional iterations than the other
formulations. Figures 2c and 2d show the profiles of the optimization replications with the
lower and higher number of iterations obtained with N = 10 and N = 5, 000. From these
figures, it is also clear that in some replications the L-Shaped method requires few iterations.
For example, 10 and 6 for N = 10 and N = 5, 000, respectively, while in others it may require
a large number–417 and 25 for N = 10 and N = 5, 000, respectively.

Overall, these results show that:
1. the maximization of the CVaR of the profit with α = (N − 1)/N forces the L-Shaped

method to perform more iterations, by comparison with β = 0. The reason is that in
the former problem, the search is driven by the worst profit, which forces the L-Shaped
method to search for the optimal commitment of the thermal unit or contract selection
to respond to the low electricity prices that induce the worst case profit. By contrast,
the problem with β = 0 is driven by the maximization of the expected profit that is less
sensitive to low electricity price observations;

2. the size of the samples have an impact on the performance of the L-Shaped method because
increasing the sample size increases the likelihood of observations with lower electricity
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(a) β = 0, N ′ = 5, 000, {T, T ′} = 10.
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(b) β = 1, α = (N − 1)/N , N ′ = 5, 000, {T, T ′} = 10.
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(c) β = 0, N ′ = 25, 000, {T, T ′} = 30.
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(d) β = 1, α = (N − 1)/N , N ′ = 25, 000, {T, T ′} = 30.

Figure 3: Case 1. Wall-clock time as a function of the size of the sample for the optimization. M = 30.

prices;
3. the thermal plant with higher generation costs induces more iterations of the L-Shaped

method by comparison with the thermal plant with lower generation costs; and
4. the variability in the number of iterations required by the L-Shaped method in each

optimization replication is induced by the different characteristics of the observations
with lower electricity prices among the samples. By different characteristics, we mean
that across the samples, the lower electricity prices occur on different hours of the week
and distinct minimum values.

6.2.4. Combined performance of the optimization and bound estimation stages
Figure 3 presents the total wall-clock time required by Procedure 1 and by its two main

stages: optimization and bound estimation. This figure compares the computational perfor-
mance obtained with β = 0 and β = 1, α = (N − 1)/N . It also shows the impact on the
computing time of increasing the number of replications and the sample size in the lower bound
estimation, from {T, T ′} = 10 and N ′ = 5, 000 to {T, T ′} = 30 and N ′ = 25, 000. Using
N ′ = 25, 000 and {T, T ′} = 30 the overall time increases, by comparison with N ′ = 5, 000 and
{T, T ′} = 10, but there is no influence on the optimization time.

These results provide relevant insights regarding the trade-off between the sample size and
the overall time required. We can observe that increasing the sample size in the optimization,
the overall time does not monotonically increase. In fact, for β = 0, there is a minimum overall
time for N = 500, instead of N = 10; see Figures 3a and 3c. This behavior is explained by
noting that: 1) the lower bound estimation is only performed when a new solution is obtained
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from an optimization replication; and 2) for N = 10, multiple distinct solutions are obtained,
whereas for N = 500, only one distinct solution is obtained. In Figure 3, as N increases the
time required by the optimization stage increases, but not the lower bound estimation time. For
β = 1, α = (N−1)/N , there is also a minimum time that corresponds to N = 10 for N ′ = 5, 000
and {T, T ′} = 10, and N = 50 for N ′ = 25, 000 and {T, T ′} = 30; see Figures 3b and 3d.

We complement these results by presenting in Table 5 the number of distinct solutions
obtained as a function of N and the risk parameters for Case 1. This table shows that increasing

Table 5: Case 1. Number of successful optimization replications and distinct solutions. M = 30.

β = 0 β = 0.5, α = 0.9 β = 1, α = 0.9 β = 1, α = (N − 1)/N

N SR DS SR DS SR DS SR DS

10 30 6 30 6 30 3 30 3
50 30 4 30 4 30 2 30 3
100 30 3 30 3 30 2 30 3
500 30 1 30 1 30 2 30 10
5,000 30 1 30 1 30 1 25 18

SR - number of successful optimization replications that meet the stop criteria (out of 30); DS
- number of distinct solutions.

the sample size, the problem converges to one distinct solution for all combinations of risk
parameters; except for β = 1, α = (N − 1)/N . For β = 1, α = (N − 1)/N , increasing
the sample size increases the number of distinct solutions. In this specific situation, β = 1,
α = (N − 1)/N , the objective is to maximize the single worst observation of the profit. The
primary difference among the first-stage solutions for β = 1, α = (N − 1)/N is the hourly
commitment of the thermal plant; see also additional results available in the supplementary
document. This difference suggests that the thermal plant is prone to shutdown and startup to
follow the lowest electricity price observation. The samples with more elements have a higher
likelihood of lower electricity prices, which from one sample to the other may occur at different
hours of the week. Therefore, distinct first-stage solutions emerge among the optimization
replications.

The number of distinct solutions obtained with β = 1, α = (N − 1)/N for N = 500
also justifies the worst performance of the initialization implemented in the L-Shaped method.
Thus, one solution from one optimization replication may not be a good starting point for an
optimization replication with a different sample.

For Case 2 with β = 0, the results show that increasing the sample size for the optimization,
the number of distinct solutions decreases, which means a decrease in the time for the lower
bound estimation; see Figures 4a and 4c. However, for β = 1 with α ∈ {0.9, (N − 1)/N}, the
number of distinct solutions is equal to the number of optimization replications, which means
that there is no convergence to a distinct solution; see Table 6. Therefore, the computing
time for the lower bound estimation is independent of the sample size for the optimization; see
Figures 4b and 4d.

6.3. Objective function values and its bounds
This section presents the bounds on the optimal objective function value w∗ for the different

formulations as a function of the samples size and the number of replications. Figures 5 and 6
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(a) β = 0, N ′ = 5, 000, {T, T ′} = 10.
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(b) β = 1, α = (N − 1)/N , N ′ = 5, 000, {T, T ′} = 10.
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(c) β = 0, N ′ = 25, 000, {T, T ′} = 30.
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(d) β = 1, α = (N − 1)/N , N ′ = 25, 000, {T, T ′} = 30.

Figure 4: Case 2. Wall-clock time as a function of the size of the sample for the optimization. M = 30.

Table 6: Case 2. Number of successful optimization replications and distinct solutions. M = 30.

β = 0 β = 0.5, α = 0.9 β = 1, α = 0.9 β = 1, α = (N − 1)/N

N SR DS SR DS SR DS SR DS

10 30 26 30 17 28 30 28 30
50 30 10 30 30 30 30 30 30
100 30 8 30 30 30 30 30 30
500 30 1 30 23 30 30 30 30
5,000 30 1 30 30 30 30 27 30

SR - number of successful optimization replications that meet the stop criteria (out of 30); DS
- number of distinct solutions.

show the limits of the confidence intervals for the upper and lower bounds on the true optimal
objective function value w∗ obtained for Case 1 and Case 2, respectively. These figures illustrate
the impact of the sample size and number of replications used in the lower bound estimation
on the confidence intervals for β = 0 and β = 1, α = (N − 1)/N . In the supplementary results
document, the bounds for additional risk parameters are presented.

A relevant result shows that for the formulation that maximizes the expected profit (β = 0),
the point estimate of the upper bound on the true optimal objective function value w∗ falls
within the confidence interval of the upper bound for all N tested. Increasing the sample
size reduces the confidence interval, converging approximately to the center of the confidence
intervals. For the formulation with β = 1, α = (N − 1)/N , the point estimate of the upper
bound overestimates the true optimal objective function value, and the point estimate is not
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(a) β = 0, N ′ = 5, 000, {T, T ′} = 10.
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Figure 5: Case 1. Limits of the confidence intervals on the point estimate of the lower and upper bounds (LBN′,T ′

and UBN,M ) on the true optimal objective function value (w∗) as a function of risk parameters, N ′, T , and T ′.
M = 30.

included in all the confidence intervals (for different N). Thereby, increasing the sample size for
the optimization decreases the value of the point estimate and range of the confidence intervals.

Figures 5 and 6 indicate that the confidence interval for the lower bound on the true optimal
objective function value is underestimated with the samples with N ′ = 5, 000, {T, T ′} = 10. For
example, this can be seen comparing in Figure 5a and 5b the confidence interval for the lower
bound represented by the dashed lines. These results indicate that for T ′ = 10 there is a bias in
the estimation of the lower bound on the true optimal objective function value. However, as N ′

is increased to 25,000 and {T, T ′} to 30, the confidence interval of the lower bound converges
with the confidence interval of the upper bound.

Note that for the optimization replications where the L-Shaped method did not meet the
stopping criteria, the upper bound from the L-Shaped method is used to evaluate the point
estimate on the upper bound on the true optimal solution. This replacement justifies the larger
range of the confidence interval for the upper bound for Case 1 with β = 1, α = (N − 1)/N ,
N = 5, 000 in Figures 5c and 5d, and for Case 2 with β = 1, α = (N − 1)/N , N ∈ {10, 5, 000}
in Figures 6c and 6d.

Overall, the convergence of the bounds for N ′ = 25, 000, {T, T ′} = 30 indicate that high-
quality solutions are obtained, which are further assessed in the next sub-section.
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Chart	#1		-		27/11/17 CHRT-BOUNDS-SAA-CASE	2,0,0.9	TS

/Users/delimarm/KAUST/RESEARCH/Papers/Results_SP_Ensembles_Part_II/Papers/Paper_SP_SAA/Results_v15_new_charts.xlsx

350,000

370,000

390,000

410,000

430,000

450,000

470,000

10 50 100 500 5,000

O
bj
ec
tiv

e	
fu
nc
tio

n	
va
lu
e

Size	of	the	sample	(N)

Upper	limit	- UB
Lower	limit	- UB
Upper	limit	- LB
Lower	limit	- LB

(b) β = 0, N ′ = 25, 000, {T, T ′} = 30.
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(c) β = 1, α = (N − 1)/N , N ′ = 5, 000, {T, T ′} = 10.
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(d) β = 1, α = (N − 1)/N , N ′ = 25, 000, {T, T ′} = 30.

Figure 6: Case 2. Limits of the confidence intervals on the point estimate of the lower and upper bounds (LBN′,T ′

and UBN,M ) on the true optimal objective function value (w∗) as a function of risk parameters, N ′, T , and T ′.
M = 30.

6.4. First-stage solutions

Tables 7 and 8 provide the best first-stage solution and inference statistics resulting from
each set of risk parameters and sample size.

The first stage solutions are given in aggregated form to simplify their presentation. There-
fore, to distinguish between equal aggregated solutions that correspond to distinct disaggregated
solutions, the point estimates of their lower bounds are provided.

For Case 1, for each set of risk parameters (β, α) ∈ {(0, −), (0.5, 0.9), (1, 0.9)} there is only
one distinct solution, independently of the sample size for the optimization. However, β = 1,
α = (N − 1)/N has three distinct solutions, which are identified by the three distinct values of
LBN ′,T ′ , see Table 7.

For Case 2 with β = 0, the same first-stage solution is obtained independently of the sample
size for optimization, while for the other set of risk parameters, within each set there are slight
variations on the power bought through contracts. The slight variations in this variable lead to
small variations in the lower bound and confidence interval for the point estimate of the lower
bound on the true optimal objective function value.

These results explain why the confidence interval on the point estimate for the lower bounds
in Figures 5 and 6 are represented by (almost) horizontal dashed lines.
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Table 7: Case 1. First-stage solutions and point estimates of the lower bound on the true optimal objective
function value (LBN′,T ′) with confidence intervals. N ′ = 25, 000, {M,T, T ′} = 30.

First-stage solutions (aggregated) CI, [LLB,ULB]

β α N UT (%) SUP SD SELLC (MW) BUYC (MW) LBN′,T ′ (e) LLB (e) ULB (e)

0 - 10 100 0 0 0 160 3,188,599 3,185,869 3,191,329
0 - 50 100 0 0 0 160 3,188,599 3,185,869 3,191,329
0 - 100 100 0 0 0 160 3,188,599 3,185,869 3,191,329
0 - 500 100 0 0 0 160 3,188,599 3,185,869 3,191,329
0 - 5000 100 0 0 0 160 3,188,599 3,185,869 3,191,329

0.5 0.9 10 100 0 0 155 0 2,454,870 2,453,669 2,456,071
0.5 0.9 50 100 0 0 155 0 2,454,870 2,453,669 2,456,071
0.5 0.9 100 100 0 0 155 0 2,454,870 2,453,669 2,456,071
0.5 0.9 500 100 0 0 155 0 2,454,870 2,453,669 2,456,071
0.5 0.9 5000 100 0 0 155 0 2,454,870 2,453,669 2,456,071

1 0.9 10 100 0 0 315 0 2,100,859 2,100,156 2,101,562
1 0.9 50 100 0 0 315 0 2,100,859 2,100,156 2,101,562
1 0.9 100 100 0 0 315 0 2,100,859 2,100,156 2,101,562
1 0.9 500 100 0 0 315 0 2,100,859 2,100,156 2,101,562
1 0.9 5000 100 0 0 315 0 2,100,859 2,100,156 2,101,562

1 (N − 1)/N 10 100 0 0 315 0 1,768,962 1,759,967 1,777,956
1 (N − 1)/N 50 100 0 0 315 0 1,768,962 1,759,967 1,777,956
1 (N − 1)/N 100 100 0 0 315 0 1,768,962 1,759,967 1,777,956
1 (N − 1)/N 500 95.2 1 1 315 0 1,764,836 1,755,568 1,774,104
1 (N − 1)/N 5000 95.2 1 1 315 0 1,764,554 1,755,197 1,773,911

CI - Confidence interval, LLB and ULB as in (20), UT - percentage of up-time of the thermal unit, SUP/SD -
number of startups/shutdowns of the thermal unit, SELLC/BUYC - power sold/bought through contracts.

Table 8: Case 2. First-stage solutions and point estimates of the lower bound on the true optimal objective
function value (LBN′,T ′) with confidence intervals. N ′ = 25, 000, {M,T, T ′} = 30.

First-stage solutions (aggregated) CI, [LLB,ULB]

β α N UT (%) SUP SD SELLC (MW) BUYC (MW) LBN′,T ′ (e) LLB (e) ULB (e)

0 - 10 100 1 0 0 160 418,652 417,656 419,648
0 - 50 100 1 0 0 160 418,652 417,656 419,648
0 - 100 100 1 0 0 160 418,652 417,656 419,648
0 - 500 100 1 0 0 160 418,652 417,656 419,648
0 - 5000 100 1 0 0 160 418,652 417,656 419,648

0.5 0.9 10 100 1 0 100 50.89 260,050 259,967 260,132
0.5 0.9 50 100 1 0 100 50.81 260,048 259,966 260,130
0.5 0.9 100 100 1 0 100 51.15 260,055 259,971 260,138
0.5 0.9 500 100 1 0 100 52.00 260,061 259,975 260,146
0.5 0.9 5000 100 1 0 100 50.99 260,052 259,969 260,134

1 0.9 10 100 1 0 100 38.24 239,852 239,795 239,910
1 0.9 50 100 1 0 100 38.68 239,869 239,811 239,927
1 0.9 100 100 1 0 100 38.84 239,865 239,807 239,923
1 0.9 500 100 1 0 100 38.64 239,869 239,811 239,927
1 0.9 5000 100 1 0 100 38.64 239,869 239,811 239,927

1 (N − 1)/N 10 100 1 0 100 38.22 217,371 216,616 218,127
1 (N − 1)/N 50 100 1 0 100 38.31 217,361 216,610 218,113
1 (N − 1)/N 100 100 1 0 100 38.00 217,389 216,617 218,161
1 (N − 1)/N 500 100 1 0 100 38.04 217,387 216,619 218,156
1 (N − 1)/N 5000 100 1 0 100 38.05 217,387 216,619 218,155

CI - Confidence interval, LLB and ULB as in (20), UT - percentage of up-time of the thermal unit, SUP/SD -
number of startups/shutdowns of the thermal unit, SELLC/BUYC - power sold/bought through contracts.
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6.5. Gap between w∗ and Eξ [φ(x̂N , y, ẑN , ξ)]

We further evaluate each distinct solution using a point estimate on the upper bound on the
gap between w∗ and Eξ [φ(x̂N , y, ẑN , ξ)], as described in Section 4.4. Tables 9 and 10 show this
point estimate for N = 500 and N = 5, 000, for Cases 1 and 2, respectively.

Table 9: Case 1. Distinct first-stage solutions and the upper bound on the absolute gap (UGN,M ) obtained from
Procedure 2. M = 30.

First-stage variables (aggregated) N = 500 N = 5, 000

β α UT (%) SUP SD SELLC (MW) BUYC (MW) UGN,M Time (s) UGN,M Time (s)

0 - 100 0 0 0 160 0 254 0 3,304

0.5 0.9 100 0 0 155 0 0 277 0 3,312

1 0.9 100 0 0 315 0 563 268 0 3,312

1 (N − 1)/N 100 0 0 315 0 4,921 1,665 10,618 93,279
1 (N − 1)/N 95.2 1 1 315 0 27,188 1,680 16,127 92,788
1 (N − 1)/N 95.2 1 1 315 0 27,977 1,667 16,646 92,012

UT - percentage of up-time of the thermal unit, SUP/SD - number of startups/shutdowns of the
thermal unit, SELLC/BUYC - power sold/bought through contracts.

For Case 1, a gap of zero is obtained for the solutions with β = 0 and β = 0.5, independently
of N , and for N = 5, 000 for β = 1, α = 0.9. For the other risk parameters, the maximum
relative gap is 1.5%.

For Case 2, the solution obtained for β = 0 has a gap of zero for both values of N . The
remaining gaps are relatively small, as the maximum relative gap is 1.1%.

We also present the wall-clock time required, which consists of the time for the optimization
and lower bound estimation. It is clear that the formulations with β = 1, α = (N − 1)/N
are more demanding, in particular for N = 5, 000. The limiting step in this procedure is the
optimization stage, which in Case 1 with β = 1, α = (N − 1)/N and in Case 2 is much more
demanding than the lower bound estimation, as it can be noticed in Figures 3a, 3b, 4a, and 4b.
For example, in Case 2 with N = 500, the optimization stage requires on average 1,216 s and
20,998 s for α < (N − 1)/N and α = (N − 1)/N , respectively, while the lower bound estimation
on average only requires 73 s.

For the assessment of multiple solutions of the same problem, Procedure 2 can be improved
by noting that the optimization stage is independent of the solution to assess. Therefore, to
assess multiple solutions, it is necessary one optimization stage (valid for all solutions) plus
one lower bound estimation stage per solution. In this way, and given the computing times for
the optimization stage mentioned in the previous paragraph, the computing time required by
Procedure 2 could be significantly reduced.

Conceptually, Procedure 1 is oriented to the generation of solutions and specific inference
statistics, whereas the objective of Procedure 2 is to assess the solution quality of a given solution.
The optimization stage is similar in both procedures, however, the lower bound estimation in
Procedure 1 is made for each new solution, whereas in Procedure 2 it is only for the single
input solution of the procedure. The common parts between the procedures suggest that they
can be merged to take advantage of these similarities to reduce the overall computing time. A
merging would require Procedure 1 to be adapted so that during the lower bound estimation,
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Table 10: Case 2. Distinct first-stage solutions and the upper bound on the absolute gap (UGN,M ) obtained from
Procedure 2. M = 30.

First-stage variables (aggregated) N = 500 N = 5, 000

β α UT (%) SUP SD SELLC (MW) BUYC (MW) UGN,M Time (s) UGN,M Time (s)

0 - 100 1 0 0 160 0 784 0 7,488

0.5 0.9 100 1 0 100 50.89 160 1,341 43 15,587
0.5 0.9 100 1 0 100 50.81 160 1,381 45 15,033
0.5 0.9 100 1 0 100 51.15 160 1,365 35 15,165
0.5 0.9 100 1 0 100 52.00 182 1,447 24 15,595
0.5 0.9 100 1 0 100 50.99 160 1,444 40 15,332

1 0.9 100 1 0 100 38.24 79 1,368 35 13,320
1 0.9 100 1 0 100 38.68 56 1,333 13 13,286
1 0.9 100 1 0 100 38.84 64 1,306 18 13,543
1 0.9 100 1 0 100 38.64 55 1,225 13 13,075
1 0.9 100 1 0 100 38.64 55 1,198 13 13,000

1 (N − 1)/N 100 1 0 100 38.22 2,412 20,984 1,365 82,972
1 (N − 1)/N 100 1 0 100 38.31 2,434 21,362 1,351 84,861
1 (N − 1)/N 100 1 0 100 38.00 2,371 21,144 1,422 81,950
1 (N − 1)/N 100 1 0 100 38.04 2,377 20,910 1,407 82,132
1 (N − 1)/N 100 1 0 100 38.05 2,379 20,945 1,403 82,635

UT - percentage of up-time of the thermal unit, SUP/SD - number of startups/shutdowns of the thermal unit,
SELLC/BUYC - power sold/bought through contracts.

the required information can be extracted to evaluate the upper bound on the gap defined in
(22).

7. Conclusions

We presented and applied a methodology based on SAA to generate first-stage solutions
and inference statistics for the optimal operation of a VPP. To cope with the computational
complexity of the problems addressed, new strategies were developed to reduce the computing
time of the optimization replications and innovations on managing the repetition of sampling,
optimization, and evaluation of first-stage solutions.

We performed a detailed characterization of the overall solution by providing point estimates
and confidence intervals for the main quantities of interest, including a) upper and lower bounds
for the true optimal objective function value; and b) an upper bound on the gap between the true
optimal objective function value and the optimal objective function value for a given first-stage
solution. This methodology is applied to formulations involving a parameterized combination
of the expected profit and the CVaR of the profit. The results and discussions focus on the
extremes of the parameterization – the risk-neutral and risk-averse solutions.

For specific conditions, we identified a relevant trade-off between the size of the sample used
in the optimization and the time spent on the lower bound estimation; specifically, increasing
the size of the sample for the optimization reduces the time spent in the lower bound esti-
mation and the overall required time. Two reasons justify this behavior: 1) the lower bound
estimation is only performed for new first-stage solutions; and 2) increasing the sample size for
the optimization reduces the number of distinct first-stage solutions. There is one exception
to this behavior, which occurs for specific instances of the maximization of the CVaR with
α = (N − 1)/N , where each optimization replication provides one distinct first-stage solution.
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For the present setup, computational experiments indicated that with the number of repli-
cations performed, the five sample sizes tested converge to the same solution or a neighboring
solution. These results indicate that the replications with samples of ten elements can generate
first-stage solutions that are the same or close to the best solutions generated from samples
of 500 elements. However, the variance of the solutions obtained with samples of 10 elements
makes it difficult to identify whether the best solution has been obtained.

The inference statistics indicate that some of the optimal first-stage solutions of the SAA
problem are relatively close to the true optimal solution.

Although the definition of the sample size and the number of replications that guarantee
specific bounds or convergence is problem dependent, some practical insights are in order. As
general guidelines, given limited time and computational resources, the first issue to address
is the sample size for the optimization. On the one hand, if the optimization replications are
relatively efficient, then larger samples should be used to reduce the variance of the solutions,
eventually avoiding the lower bound estimation for repeated solutions. On the other hand,
more difficult optimization problems may require smaller samples for the optimization, which
increase the variance. However, our results indicate that among the solutions found, there is
a high probability of identifying an excellent first-stage solution that can be further evaluated
with the lower bound estimation.

Future work can evolve in two directions: 1) a comparison between risk-averse stochastic
programming and robust optimization; and 2) the study of alternative risk metrics. Regarding
the comparison, the first-stage solutions and point estimates of the expected profit and the
CVaR of the profit obtained in this work can be contrasted with the solutions from a robust
optimization approach. Additionally, it would be relevant to explore alternative risk metrics,
such as stochastic dominance [55], and to assess the quality of the solutions and the overall SAA
methodology performance with alternative risk metrics.
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Appendix A. Deterministic model

In this appendix, we described the specific deterministic model addressed in this work. The
goal of the problem is to maximize the operational profit defined as

P = max
∑
f

∑
j

[(
λsellf,j f

sell
f,j − λ

buy
f,j f

buy
f,j

)
Df

]
+
∑
t

[
λt
(
psellt − pbuyt

)]
− cop, (A.1)

∑
i∈TH

pi,t +
∑
i∈HY

ptbi,t + pbuyt +
∑
f

∑
j

f buyf,j + wt =
∑
i∈HY

ppi,t + psellt +
∑
f

∑
j

fsellf,j , ∀t,

(A.2)

f buyf,j ≤ F
buy
f,j ∀f, j, (A.3a)

fsellf,j ≤ F sellf,j ∀f, j, (A.3b)∑
j

f buyf,j ≤
∑
j

F buyf,j y
buy
f ∀f, (A.3c)

∑
j

f sellf,j ≤
∑
j

F sellf,j y
sell
f ∀f, (A.3d)

ysellf + ybuyf ≤ 1 ∀f, (A.3e)∑
tt≥t−UTi+1,tt≤t

uupi,tt ≤ ui,t ∀i, t ≥ LMi + 1, (A.4)

ui,t +
∑

tt≥t−DTi+1,tt≤t
udni,tt ≤ 1 ∀i, t ≥ FMi + 1, (A.5)

P liui,t ≤ pi,t ≤ P ui ui,t ∀i ∈ TH, t, (A.6)

pi,t ≤ P0i +RUiU0i + SUiu
up
i,t ∀i ∈ TH, t = 1, (A.7)

pi,t − pi,t−1 ≤ RUiui,t−1 + SUiu
up
i,t ∀i ∈ TH, t > 1, (A.8)

pi,t−1 − pi,t ≤ RDiui,t + SDiu
dn
i,t ∀i ∈ TH, t > 1, (A.9)

cop =
∑
i∈TH

∑
t

cui,t +Aiui,t +Bipi,t + cdi,t, (A.10)

cdi,t ≥ DCi (1− ui,t) ∀i, t = 1, T Ii > 0, (A.11)

cdi,t ≥ udni,tDCi ∀i, t ≥ 2, (A.12)

cui,t ≥ uupi,tHSi, ∀i, t, (A.13)

cui,t ≥

ui,t − t−1∑
tt≥t−(DTi+T c

i +1)
ui,tt

CSi ∀i, t > TDi + T ci , (A.14)

cui,t ≥
(
ui,t −

∑
tt<t

ui,tt

)
CSi, ∀i, T Ii < 0,

(
TDi + T ci + T Ii + 1

)
< t ≤ (TDi + T ci ) ,

(A.15)

1− ui,t + uupi,t − u
dn
i,t = 0, ∀i, t = 1, T I > 0, (A.16)

−ui,t + uupi,t − u
dn
i,t = 0, ∀i, t = 1, T I < 0, (A.17)

ui,t−1 − ui,t + uupi,t − u
dn
i,t = 0, ∀i, t > 1, (A.18)

vi,t −G(−qi,t + qpi,t) = V 0i +GQini ∀i ∈ HY, t = 1, (A.19)

vi,t − vi,t−1 −G(−qi,t + qpi,t) = GQini ∀i ∈ HY, t > 1, (A.20)

ptbi,t −Kt
iqi,tHi = 0 ∀i ∈ HY, t, (A.21)

ppi,t −Kp
i qpi,tHi = 0 ∀i ∈ HY, t, (A.22)
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qi,t ≤ Qui ∀i ∈ HY, t, (A.23)

qpi,t ≤ Qui ∀i ∈ HY, t, (A.24)

V l
i,t ≤ vi,t ≤ V u

i,t ∀i ∈ HY, t, (A.25)

vi,t ≥ V E
i ∀i ∈ HY, t = tf, (A.26)

f buyf,j , f
sell
f,j ≥ 0, ∀f, j, (A.27)

ysellf , ybuyf ∈ {0, 1}, ∀f, (A.28)

ui,t, u
up
i,t , u

dn
i,t ∈ {0, 1}, ∀i ∈ TH, t, (A.29)

pi,t ≥ 0, ∀i ∈ TH, t, (A.30)

psellt , pbuyt ≥ 0, ∀t, (A.31)

ptbi,t, ppi,t, qi,t, qpi,t, vi,t ≥ 0, ∀i ∈ HY, t. (A.32)

Note that the symbols t and T used here to refer to time periods and time horizon are not related
with the symbols t, t′, and T adopted in Section 4.The modeling of the contracts in (A.3a) to
(A.3e) is based on the framework developed in [56]. The model for the thermal unit includes: a)
minimum up and down-time limits, (A.4) and (A.5); see [57]; b) bounds on the power output,
(A.6) to (A.9); see [58]; c) modeling of costs related to operation, startups, and shutdowns,
(A.10) to (A.15); see [59, 60]; and d) logical relations between the binary variables that define
the states of the unit, (A.16) to (A.18). LMi = min{|T |, Ui}, Ui is the number of hours generator
i needs to be on at the beginning of the time horizon, FMi = min{|T |, DMi}, DMi denotes the
number of hours the generator needs to be off at the beginning of the time horizon. The model
of the pumped-storage hydro unit involves: a) water mass balances for the reservoir at the end
of each period, (A.19), and (A.20); and b) power generation and consumption functions, (A.21),
and (A.22). [61] has shown that in specific circumstances with systems with similar generators,
this MILP model can be very tight. All the values of the parameters of the thermal and hydro
units, and contracts are presented in the Tables A.11, A.12, and A.13.

Table A.11: Base data for the thermal generators.

PL PU UT DT T c T I SU/SD RU/RD Ai Bi HSi CSi

Case (MW) (MW) (h) (h) (h) (h) (MW/h) (MW/h) (e/h) (e/MWh) (e/h) (e/h)

1 150 455 8 8 5 8 150 91 1000 16.19 4500 9000
2 10 55 1 1 0 -1 10 11 660 25.92 30 60

Table A.12: Data for the hydro plant.

Case Hi Kp
i Kt

i Qin
i Qu

i V 0i V u
i V l

i

(m) (MWs/m3) (MWs/m3) (m3/s) (m3/s) (Hm3) (Hm3) (Hm3)

1 and 2 113 0.99 1 0.1 46.5 84 560 10
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Table A.13: Price of the energy (e/MWh) for two contracts for each week.

Sell blocks Buy blocks

Week Contract Block Size 3 2 1 1 2 3

1 1 50 64.77 59.77 54.77 54.77 49.77 44.77
1 2 55 58.29 53.79 49.29 49.29 44.79 40.29

Appendix A.1. Nomenclature

Sets
F Forward contracts
HY Hydro pumped-storage generation units
J Blocks of the forward contracts
I Generating units
T Time periods
TH Thermal generation units
Parameters
Ai, Bi Production cost function coefficients for unit i (e/h)
CSi Cold start-up cost of unit i (e/h)
DMi Number of periods unit i must be off at the beginning of the time horizon
Df Time periods spanned by contract f
DCi Shut-down cost (e)
DTi Minimum down-time of unit i (h)
FMi Minimum number of periods a unit i must be off at the beginning of the time horizon
HSi Hot start cost of unit i (e/h)
LMi Minimum number of periods a unit i must be on at the beginning of the time horizon
P li Minimum power output of unit i (MW)
P ui Maximum power output of unit i (MW)
P0i Power produced at t=0 by unit i (MW)
RDi Maximum ramp-down rate of unit i (MW)
RUi Maximum ramp-up rate of unit i (MW)
SDi Maximum shutdown rate of unit i (MW)
SRt Spinning reserve for period t (MW)
SUi Maximum start-up rate of unit i (MW)
Ui Number of periods unit i must be on at the beginning of the time horizon
U0i Initial state of unit i {on,off}={1,0}
UTi Minimum up-time of unit i (h)
T ci Cold start hours of unit i (h)
T Ii Initial status of unit i (h)
G Conversion factor between Hm3 and m3/s in one hour
Hi Water head in plant i (m)
Kp
i Power consumption factor

Kt
i Power generation factor

Qini Natural inflow of water for plant i (m3/s)
Qui Maximum pumped flow of water for plant i (m3/s)
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V u
i Maximum volume of water in the reservoir of plant i (Hm3)
V l
i Minimum volume of water in the reservoir of plant i (Hm3)
V E
i Minimum volume of water in the reservoir of plant i at the of the horizon (Hm3)
λbuyf,j Energy price of buying block j of forward contract f (e/MWh)
λsellf,j Energy price of selling block j of forward contract f (e/MWh)
Continuous variables
cdi,t Shut-down cost of unit i in period t (e)
cop Total startup, shutdown, production, and online cost of unit i (e)
cp Total startup, shutdown and online cost of unit i (e)
cui,t Startup cost of unit i in period t (e)
f buyf,j Power bought through block j of forward contract f (MW)
f sellf,j Power sold through block j of forward contract f (MW)
P Operational profit of the producer per week (e)
pi,t Power output of unit i in period t (MW)
pbuyi,t Power bought in the pool in period t (MW)
psellt Power sold in the pool in period t (MW)
ptbi,t Power output of the pumped-storage hydro unit i in period t (MW)
ppi,t Power consumption of the pumped-storage hydro unit i in period t (MW)
qi,t Flow of water in plant i in period t (m3/s)
qpi,t Pumped flow of water in plant i in period t (m3/s)
vi,t Volume of water stored in the reservoir of plant i (Hm3)
Binary variables
ui,t On/off status of unit i in period t
uupi,t Startup status of unit i in period t
udni,t Shutdown status of unit i in period t
ybuyf Selection of forward contract f to buy energy
ysellf Selection of forward contract f to sell energy
Random variables
wt Wind power output in period t (MW)
λt Pool price in period t (e/MWh)
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Appendix B. Diagrams of Procedures 1 and 2

Figures B.7 and B.8 present the diagrams of Procedures 1 and 2, respectively.
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Figure B.7: Diagram of Procedure 1.
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N , ẑN , ξ

n,m).

42



Appendix C. Supplementary results - optimization stage

In this appendix, we show the optimization results of each replication for all the combinations
of risk parameters, for Cases 1 and 2.

Table C.15: Case 1. Optimization results for the formulation with β = 0. The results are ordered by the value
of the objective function. M = 30, N = 10.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

23 2,437,900 2 0.00 1 100 0 0 155.00 0.00
22 2,754,781 2 0.00 1 100 0 0 50.00 55.00
27 2,791,618 2 0.00 1 100 0 0 50.00 55.00
18 2,807,663 2 0.00 1 100 0 0 50.00 55.00
17 2,808,236 2 0.00 1 100 0 0 50.00 55.00
2 2,828,660 2 0.00 1 100 0 0 50.00 55.00
19 2,881,600 2 0.00 1 100 0 0 50.00 110.00
20 2,950,385 2 0.00 1 100 0 0 50.00 110.00
3 2,987,171 2 0.00 1 100 0 0 0.00 160.00
9 3,051,161 2 0.00 1 100 0 0 0.00 160.00
21 3,075,317 2 0.00 1 100 0 0 0.00 160.00
28 3,086,196 2 0.00 1 100 0 0 0.00 160.00
26 3,098,970 2 0.00 1 100 0 0 0.00 160.00
13 3,112,520 2 0.00 1 100 0 0 0.00 160.00
7 3,141,942 2 0.00 1 100 0 0 0.00 160.00
4 3,182,338 2 0.00 1 100 0 0 0.00 160.00
14 3,225,259 2 0.00 1 100 0 0 0.00 160.00
12 3,241,059 2 0.00 1 100 0 0 0.00 160.00
15 3,245,519 2 0.00 1 100 0 0 0.00 160.00
25 3,251,400 2 0.00 1 100 0 0 0.00 160.00
10 3,273,009 2 0.00 1 100 0 0 0.00 160.00
8 3,311,875 2 0.00 1 100 0 0 0.00 160.00
16 3,326,421 2 0.00 1 100 0 0 0.00 160.00
29 3,331,775 2 0.00 1 100 0 0 0.00 160.00
11 3,371,868 2 0.00 1 100 0 0 0.00 215.00
6 3,525,814 2 0.00 1 100 0 0 0.00 265.00
30 3,543,351 2 0.00 1 100 0 0 0.00 265.00
5 3,682,847 2 0.00 1 100 0 0 0.00 265.00
1 3,738,467 2 0.00 1 100 0 0 0.00 265.00
24 3,743,889 2 0.00 1 100 0 0 0.00 265.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.16: Case 1. Optimization results for the formulation with β = 0.5, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 10.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

23 2,157,706 2 0.00 1 100 0 0 260.00 0.00
20 2,292,055 2 0.00 1 100 0 0 260.00 0.00
27 2,331,642 2 0.00 1 100 0 0 155.00 0.00
19 2,348,064 2 0.00 1 100 0 0 155.00 0.00
17 2,382,796 2 0.00 1 100 0 0 155.00 0.00
4 2,390,636 2 0.00 1 100 0 0 155.00 0.00
2 2,399,033 2 0.00 1 100 0 0 155.00 0.00
21 2,411,505 2 0.00 1 100 0 0 155.00 0.00
15 2,419,853 2 0.00 1 100 0 0 155.00 0.00
9 2,444,261 2 0.00 1 100 0 0 155.00 0.00
3 2,457,132 2 0.00 1 100 0 0 155.00 0.00
25 2,476,184 2 0.00 1 100 0 0 155.00 0.00
22 2,494,027 2 0.00 1 100 0 0 155.00 0.00
7 2,495,082 2 0.00 1 100 0 0 155.00 0.00
18 2,566,309 2 0.00 1 100 0 0 100.00 55.00
13 2,572,363 2 0.00 1 100 0 0 50.00 55.00
30 2,579,754 2 0.00 1 100 0 0 50.00 55.00
16 2,601,286 2 0.00 1 100 0 0 50.00 55.00
14 2,601,608 2 0.00 1 100 0 0 50.00 55.00
28 2,607,397 2 0.00 1 100 0 0 50.00 55.00
8 2,625,594 2 0.00 1 100 0 0 50.00 55.00
29 2,629,220 2 0.00 1 100 0 0 50.00 55.00
26 2,646,982 2 0.00 1 100 0 0 50.00 55.00
10 2,655,356 2 0.00 1 100 0 0 50.00 55.00
12 2,673,731 2 0.00 1 100 0 0 50.00 55.00
1 2,687,822 2 0.00 1 100 0 0 50.00 55.00
11 2,718,611 2 0.00 1 100 0 0 50.00 55.00
24 2,749,224 2 0.00 1 100 0 0 50.00 55.00
6 2,931,857 2 0.00 1 100 0 0 50.00 110.00
5 2,989,518 2 0.00 1 100 0 0 0.00 160.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.17: Case 1. Optimization results for the formulation with β = 1, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 10.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

23 1,986,535 2 0.00 1 100 0 0 315.00 0.00
20 2,006,017 2 0.00 1 100 0 0 315.00 0.00
4 2,044,318 2 0.00 1 100 0 0 315.00 0.00
15 2,060,097 4 0.00 2 100 0 0 315.00 0.00
19 2,067,059 2 0.00 1 100 0 0 315.00 0.00
27 2,082,507 2 0.00 1 100 0 0 315.00 0.00
21 2,092,376 2 0.00 1 100 0 0 315.00 0.00
25 2,106,030 2 0.00 1 100 0 0 315.00 0.00
30 2,115,028 2 0.00 1 100 0 0 315.00 0.00
9 2,129,912 2 0.00 1 100 0 0 315.00 0.00
2 2,146,273 2 0.00 1 100 0 0 260.00 0.00
7 2,151,137 2 0.00 1 100 0 0 260.00 0.00
3 2,157,064 2 0.00 1 100 0 0 260.00 0.00
17 2,158,964 2 0.00 1 100 0 0 315.00 0.00
1 2,165,851 2 0.00 1 100 0 0 260.00 0.00
24 2,209,969 2 0.00 1 100 0 0 260.00 0.00
29 2,219,256 2 0.00 1 100 0 0 260.00 0.00
16 2,223,583 2 0.00 1 100 0 0 260.00 0.00
8 2,231,353 2 0.00 1 100 0 0 260.00 0.00
14 2,235,202 2 0.00 1 100 0 0 260.00 0.00
10 2,265,710 2 0.00 1 100 0 0 260.00 0.00
13 2,271,125 2 0.00 1 100 0 0 260.00 0.00
28 2,291,828 2 0.00 1 100 0 0 155.00 0.00
11 2,295,343 2 0.00 1 100 0 0 155.00 0.00
12 2,305,308 2 0.00 1 100 0 0 155.00 0.00
22 2,309,828 2 0.00 1 100 0 0 155.00 0.00
26 2,339,931 2 0.00 1 100 0 0 155.00 0.00
18 2,401,348 2 0.00 1 100 0 0 155.00 0.00
5 2,488,182 2 0.00 1 100 0 0 155.00 0.00
6 2,501,995 2 0.00 1 100 0 0 155.00 0.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.18: Case 1. Optimization results for the formulation with β = 1, α = (N−1)/N . The results are ordered
by the value of the objective function. M = 30, N = 10.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

23 1,986,535 2 0.00 1 100 0 0 315.00 0.00
20 2,006,017 2 0.00 1 100 0 0 315.00 0.00
4 2,044,318 2 0.00 1 100 0 0 315.00 0.00
15 2,060,097 4 0.00 2 100 0 0 315.00 0.00
19 2,067,059 2 0.00 1 100 0 0 315.00 0.00
27 2,082,507 2 0.00 1 100 0 0 315.00 0.00
21 2,092,376 2 0.00 1 100 0 0 315.00 0.00
25 2,106,030 2 0.00 1 100 0 0 315.00 0.00
30 2,115,028 2 0.00 1 100 0 0 315.00 0.00
9 2,129,912 2 0.00 1 100 0 0 315.00 0.00
2 2,146,273 2 0.00 1 100 0 0 260.00 0.00
7 2,151,137 2 0.00 1 100 0 0 260.00 0.00
3 2,157,064 2 0.00 1 100 0 0 260.00 0.00
17 2,158,964 2 0.00 1 100 0 0 315.00 0.00
1 2,165,851 2 0.00 1 100 0 0 260.00 0.00
24 2,209,969 2 0.00 1 100 0 0 260.00 0.00
29 2,219,256 2 0.00 1 100 0 0 260.00 0.00
16 2,223,583 2 0.00 1 100 0 0 260.00 0.00
8 2,231,353 2 0.00 1 100 0 0 260.00 0.00
14 2,235,202 2 0.00 1 100 0 0 260.00 0.00
10 2,265,710 2 0.00 1 100 0 0 260.00 0.00
13 2,271,125 2 0.00 1 100 0 0 260.00 0.00
28 2,291,828 2 0.00 1 100 0 0 155.00 0.00
11 2,295,343 2 0.00 1 100 0 0 155.00 0.00
12 2,305,308 2 0.00 1 100 0 0 155.00 0.00
22 2,309,828 2 0.00 1 100 0 0 155.00 0.00
26 2,339,931 2 0.00 1 100 0 0 155.00 0.00
18 2,401,348 2 0.00 1 100 0 0 155.00 0.00
5 2,488,182 2 0.00 1 100 0 0 155.00 0.00
6 2,501,995 2 0.00 1 100 0 0 155.00 0.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.19: Case 1. Optimization results for the formulation with β = 0. The results are ordered by the value
of the objective function. M = 30, N = 50.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

5 2,748,557 2 0.00 2 100 0 0 50.00 55.00
6 2,850,767 2 0.00 2 100 0 0 50.00 55.00
21 2,879,228 2 0.00 2 100 0 0 50.00 110.00
9 2,907,624 2 0.00 2 100 0 0 50.00 110.00
4 2,913,857 2 0.00 2 100 0 0 50.00 110.00
1 2,986,348 3 0.00 3 100 0 0 0.00 160.00
27 2,988,487 2 0.00 2 100 0 0 0.00 160.00
28 2,993,042 2 0.00 2 100 0 0 0.00 160.00
12 3,003,562 2 0.00 2 100 0 0 0.00 160.00
13 3,072,585 2 0.00 2 100 0 0 0.00 160.00
11 3,083,971 2 0.00 2 100 0 0 0.00 160.00
23 3,092,925 2 0.00 2 100 0 0 0.00 160.00
30 3,117,787 2 0.00 2 100 0 0 0.00 160.00
15 3,120,880 2 0.00 2 100 0 0 0.00 160.00
8 3,146,058 2 0.00 2 100 0 0 0.00 160.00
17 3,156,477 2 0.00 2 100 0 0 0.00 160.00
19 3,194,082 2 0.00 2 100 0 0 0.00 160.00
25 3,217,843 2 0.00 2 100 0 0 0.00 160.00
22 3,225,135 2 0.00 2 100 0 0 0.00 160.00
14 3,267,358 2 0.00 2 100 0 0 0.00 160.00
7 3,269,066 2 0.00 2 100 0 0 0.00 160.00
26 3,272,718 2 0.00 2 100 0 0 0.00 160.00
10 3,305,550 2 0.00 2 100 0 0 0.00 160.00
2 3,311,269 2 0.00 2 100 0 0 0.00 160.00
18 3,317,796 2 0.00 2 100 0 0 0.00 160.00
16 3,321,487 2 0.00 2 100 0 0 0.00 160.00
3 3,356,575 2 0.00 2 100 0 0 0.00 215.00
24 3,366,833 2 0.00 2 100 0 0 0.00 215.00
20 3,405,264 2 0.00 2 100 0 0 0.00 215.00
29 3,426,214 2 0.00 2 100 0 0 0.00 215.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.

47



Table C.20: Case 1. Optimization results for the formulation with β = 0.5, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 50.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

5 2,275,991 2 0.00 2 100 0 0 260.00 0.00
6 2,301,314 2 0.00 2 100 0 0 155.00 0.00
21 2,349,563 2 0.00 2 100 0 0 155.00 0.00
23 2,361,908 2 0.00 2 100 0 0 155.00 0.00
4 2,362,754 2 0.00 2 100 0 0 155.00 0.00
12 2,362,928 2 0.00 2 100 0 0 155.00 0.00
28 2,374,909 2 0.00 2 100 0 0 155.00 0.00
1 2,376,393 3 0.00 4 100 0 0 155.00 0.00
9 2,399,321 2 0.00 2 100 0 0 155.00 0.00
27 2,400,056 2 0.00 2 100 0 0 155.00 0.00
15 2,432,940 2 0.00 2 100 0 0 155.00 0.00
19 2,446,482 2 0.00 2 100 0 0 155.00 0.00
22 2,448,905 2 0.00 2 100 0 0 155.00 0.00
17 2,455,258 2 0.00 2 100 0 0 155.00 0.00
25 2,463,473 2 0.00 2 100 0 0 155.00 0.00
20 2,468,014 2 0.00 2 100 0 0 155.00 0.00
14 2,478,453 2 0.00 2 100 0 0 155.00 0.00
8 2,484,007 2 0.00 2 100 0 0 155.00 0.00
10 2,484,522 2 0.00 2 100 0 0 155.00 0.00
30 2,489,987 2 0.00 2 100 0 0 155.00 0.00
13 2,503,165 2 0.00 2 100 0 0 155.00 0.00
26 2,508,861 2 0.00 2 100 0 0 155.00 0.00
18 2,533,389 2 0.00 2 100 0 0 100.00 55.00
7 2,551,355 2 0.00 2 100 0 0 100.00 55.00
11 2,557,121 2 0.00 2 100 0 0 50.00 55.00
24 2,566,231 2 0.00 2 100 0 0 50.00 55.00
3 2,569,011 2 0.00 2 100 0 0 50.00 55.00
29 2,612,938 2 0.00 2 100 0 0 50.00 55.00
16 2,625,234 2 0.00 2 100 0 0 50.00 55.00
2 2,628,336 2 0.00 2 100 0 0 50.00 55.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.21: Case 1. Optimization results for the formulation with β = 1, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 50.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

23 2,037,740 2 0.00 3 100 0 0 315.00 0.00
5 2,040,133 2 0.00 3 100 0 0 315.00 0.00
6 2,042,227 2 0.00 3 100 0 0 315.00 0.00
12 2,055,475 2 0.00 2 100 0 0 315.00 0.00
20 2,061,613 2 0.00 2 100 0 0 315.00 0.00
28 2,069,929 2 0.00 2 100 0 0 315.00 0.00
21 2,073,164 2 0.00 3 100 0 0 315.00 0.00
1 2,073,864 3 0.00 3 100 0 0 315.00 0.00
4 2,079,608 2 0.00 3 100 0 0 315.00 0.00
22 2,086,884 2 0.00 3 100 0 0 315.00 0.00
19 2,088,424 2 0.00 2 100 0 0 315.00 0.00
27 2,094,173 2 0.00 3 100 0 0 315.00 0.00
15 2,094,378 2 0.00 3 100 0 0 315.00 0.00
25 2,096,570 2 0.00 3 100 0 0 315.00 0.00
10 2,102,433 2 0.00 2 100 0 0 315.00 0.00
14 2,103,479 2 0.00 2 100 0 0 315.00 0.00
17 2,111,578 2 0.00 3 100 0 0 315.00 0.00
9 2,117,224 2 0.00 3 100 0 0 315.00 0.00
26 2,135,897 2 0.00 2 100 0 0 315.00 0.00
8 2,139,618 2 0.00 3 100 0 0 260.00 0.00
18 2,142,952 2 0.00 3 100 0 0 260.00 0.00
24 2,156,729 2 0.00 2 100 0 0 260.00 0.00
30 2,158,476 2 0.00 2 100 0 0 260.00 0.00
3 2,169,115 2 0.00 2 100 0 0 260.00 0.00
7 2,178,703 2 0.00 2 100 0 0 260.00 0.00
29 2,184,126 2 0.00 3 100 0 0 260.00 0.00
13 2,191,034 2 0.00 2 100 0 0 260.00 0.00
2 2,228,139 2 0.00 3 100 0 0 260.00 0.00
16 2,232,171 2 0.00 3 100 0 0 260.00 0.00
11 2,244,255 2 0.00 3 100 0 0 260.00 0.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.22: Case 1. Optimization results for the formulation with β = 1, α = (N−1)/N . The results are ordered
by the value of the objective function. M = 30, N = 50.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

22 1,803,400 2 0.00 2 100 0 0 315.00 0.00
29 1,872,916 2 0.00 2 100 0 0 315.00 0.00
20 1,906,430 2 0.00 2 100 0 0 315.00 0.00
19 1,941,968 2 0.00 2 100 0 0 315.00 0.00
12 1,942,356 2 0.00 2 100 0 0 315.00 0.00
23 1,946,295 2 0.00 2 100 0 0 315.00 0.00
27 1,949,519 2 0.00 2 100 0 0 315.00 0.00
6 1,953,111 8 0.00 12 95.83 0 1 315.00 0.00
5 1,969,406 2 0.00 2 100 0 0 315.00 0.00
14 1,971,832 3 0.00 4 100 0 0 315.00 0.00
1 1,978,643 2 0.00 2 100 0 0 315.00 0.00
17 1,978,836 2 0.00 2 100 0 0 315.00 0.00
4 1,990,435 2 0.00 2 100 0 0 315.00 0.00
21 1,996,088 2 0.00 2 100 0 0 315.00 0.00
10 1,996,537 2 0.00 2 100 0 0 315.00 0.00
30 2,014,362 2 0.00 2 100 0 0 315.00 0.00
28 2,018,247 2 0.00 2 100 0 0 315.00 0.00
2 2,038,212 2 0.00 2 100 0 0 315.00 0.00
8 2,045,402 2 0.00 2 100 0 0 315.00 0.00
9 2,048,708 2 0.00 2 100 0 0 315.00 0.00
15 2,051,743 2 0.00 2 100 0 0 315.00 0.00
24 2,060,147 2 0.00 2 100 0 0 315.00 0.00
25 2,063,153 2 0.00 2 100 0 0 315.00 0.00
26 2,065,673 2 0.00 2 100 0 0 315.00 0.00
3 2,066,461 3 0.00 4 100 0 0 315.00 0.00
13 2,088,711 2 0.00 2 100 0 0 315.00 0.00
18 2,093,877 2 0.00 2 100 0 0 315.00 0.00
16 2,117,307 2 0.00 2 100 0 0 315.00 0.00
7 2,137,186 3 0.00 4 100 0 0 315.00 0.00
11 2,187,474 2 0.00 2 100 0 0 260.00 0.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.23: Case 1. Optimization results for the formulation with β = 0. The results are ordered by the value
of the objective function. M = 30, N = 100.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

27 2,920,639 2 0.00 4 100 0 0 50.00 110.00
6 2,951,921 2 0.00 4 100 0 0 50.00 110.00
26 3,003,753 2 0.00 4 100 0 0 0.00 160.00
14 3,023,443 2 0.00 4 100 0 0 0.00 160.00
23 3,048,582 2 0.00 4 100 0 0 0.00 160.00
8 3,049,368 2 0.00 4 100 0 0 0.00 160.00
1 3,051,633 3 0.00 6 100 0 0 0.00 160.00
28 3,061,041 2 0.00 4 100 0 0 0.00 160.00
29 3,064,359 2 0.00 4 100 0 0 0.00 160.00
18 3,077,922 2 0.00 4 100 0 0 0.00 160.00
9 3,102,387 2 0.00 4 100 0 0 0.00 160.00
4 3,147,168 2 0.00 4 100 0 0 0.00 160.00
21 3,153,433 2 0.00 4 100 0 0 0.00 160.00
3 3,173,997 2 0.00 4 100 0 0 0.00 160.00
25 3,197,619 2 0.00 4 100 0 0 0.00 160.00
11 3,204,173 2 0.00 4 100 0 0 0.00 160.00
2 3,221,686 2 0.00 4 100 0 0 0.00 160.00
22 3,224,084 2 0.00 3 100 0 0 0.00 160.00
20 3,224,819 2 0.00 4 100 0 0 0.00 160.00
15 3,266,149 2 0.00 4 100 0 0 0.00 160.00
13 3,267,110 2 0.00 4 100 0 0 0.00 160.00
17 3,297,501 2 0.00 4 100 0 0 0.00 160.00
7 3,307,093 2 0.00 4 100 0 0 0.00 160.00
30 3,325,846 2 0.00 4 100 0 0 0.00 160.00
5 3,330,687 2 0.00 4 100 0 0 0.00 160.00
10 3,340,430 2 0.00 4 100 0 0 0.00 215.00
12 3,342,298 2 0.00 4 100 0 0 0.00 215.00
19 3,347,019 2 0.00 4 100 0 0 0.00 215.00
24 3,391,179 2 0.00 4 100 0 0 0.00 215.00
16 3,395,251 2 0.00 4 100 0 0 0.00 215.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.24: Case 1. Optimization results for the formulation with β = 0.5, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 100.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

27 2,338,489 2 0.00 4 100 0 0 155.00 0.00
1 2,349,484 3 0.00 6 100 0 0 155.00 0.00
8 2,369,592 2 0.00 4 100 0 0 155.00 0.00
23 2,377,909 2 0.00 4 100 0 0 155.00 0.00
6 2,378,826 2 0.00 4 100 0 0 155.00 0.00
3 2,388,400 2 0.00 4 100 0 0 155.00 0.00
26 2,401,039 2 0.00 5 100 0 0 155.00 0.00
29 2,417,620 2 0.00 4 100 0 0 155.00 0.00
4 2,420,189 2 0.00 4 100 0 0 155.00 0.00
18 2,422,504 2 0.00 4 100 0 0 155.00 0.00
14 2,425,636 2 0.00 5 100 0 0 155.00 0.00
9 2,435,896 2 0.00 4 100 0 0 155.00 0.00
11 2,441,645 2 0.00 5 100 0 0 155.00 0.00
28 2,448,836 2 0.00 4 100 0 0 155.00 0.00
21 2,451,677 2 0.00 6 100 0 0 155.00 0.00
24 2,491,389 2 0.00 6 100 0 0 155.00 0.00
16 2,498,162 2 0.00 5 100 0 0 155.00 0.00
13 2,499,714 2 0.00 4 100 0 0 155.00 0.00
12 2,501,702 2 0.00 4 100 0 0 155.00 0.00
2 2,504,263 2 0.00 4 100 0 0 155.00 0.00
7 2,505,041 2 0.00 4 100 0 0 155.00 0.00
20 2,507,636 2 0.00 6 100 0 0 155.00 0.00
17 2,511,492 2 0.00 5 100 0 0 155.00 0.00
25 2,512,057 2 0.00 5 100 0 0 155.00 0.00
15 2,513,185 2 0.00 4 100 0 0 155.00 0.00
19 2,521,023 2 0.00 4 100 0 0 155.00 0.00
5 2,523,058 2 0.00 4 100 0 0 155.00 0.00
22 2,542,637 2 0.00 4 100 0 0 100.00 55.00
10 2,549,355 2 0.00 5 100 0 0 100.00 55.00
30 2,605,115 2 0.00 6 100 0 0 50.00 55.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.25: Case 1. Optimization results for the formulation with β = 1, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 100.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

1 2,035,013 3 0.00 6 100 0 0 315.00 0.00
3 2,041,167 2 0.00 4 100 0 0 315.00 0.00
8 2,050,522 2 0.00 4 100 0 0 315.00 0.00
27 2,057,752 2 0.00 4 100 0 0 315.00 0.00
23 2,065,345 2 0.00 5 100 0 0 315.00 0.00
4 2,077,333 2 0.00 4 100 0 0 315.00 0.00
11 2,082,978 2 0.00 4 100 0 0 315.00 0.00
6 2,085,530 2 0.00 4 100 0 0 315.00 0.00
24 2,090,957 2 0.00 4 100 0 0 315.00 0.00
16 2,091,740 2 0.00 4 100 0 0 315.00 0.00
26 2,092,941 2 0.00 4 100 0 0 315.00 0.00
18 2,094,466 2 0.00 5 100 0 0 315.00 0.00
29 2,095,788 2 0.00 4 100 0 0 315.00 0.00
9 2,100,664 2 0.00 4 100 0 0 315.00 0.00
21 2,103,229 2 0.00 4 100 0 0 315.00 0.00
12 2,105,911 2 0.00 4 100 0 0 315.00 0.00
14 2,114,123 2 0.00 4 100 0 0 315.00 0.00
7 2,120,847 2 0.00 4 100 0 0 315.00 0.00
28 2,122,214 2 0.00 4 100 0 0 315.00 0.00
13 2,122,926 2 0.00 4 100 0 0 315.00 0.00
19 2,123,803 2 0.00 4 100 0 0 315.00 0.00
17 2,129,571 2 0.00 4 100 0 0 315.00 0.00
5 2,130,131 2 0.00 4 100 0 0 315.00 0.00
15 2,140,101 2 0.00 4 100 0 0 260.00 0.00
2 2,141,174 2 0.00 4 100 0 0 260.00 0.00
20 2,145,631 2 0.00 4 100 0 0 260.00 0.00
25 2,158,289 2 0.00 4 100 0 0 260.00 0.00
10 2,158,610 2 0.00 4 100 0 0 260.00 0.00
22 2,185,783 2 0.00 5 100 0 0 260.00 0.00
30 2,208,959 2 0.00 4 100 0 0 260.00 0.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.26: Case 1. Optimization results for the formulation with β = 1, α = (N−1)/N . The results are ordered
by the value of the objective function. M = 30, N = 100.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

20 1,880,961 8 0.00 24 92.26 1 1 315.00 0.00
6 1,902,475 2 0.00 5 100 0 0 315.00 0.00
7 1,915,516 8 0.00 24 90.48 0 1 315.00 0.00
3 1,918,324 2 0.00 4 100 0 0 315.00 0.00
26 1,935,649 2 0.00 5 100 0 0 315.00 0.00
16 1,936,864 2 0.00 5 100 0 0 315.00 0.00
8 1,938,533 3 0.00 6 100 0 0 315.00 0.00
23 1,939,355 5 0.00 14 100 0 0 315.00 0.00
4 1,940,744 5 0.00 13 100 0 0 315.00 0.00
18 1,946,108 2 0.00 6 100 0 0 315.00 0.00
27 1,948,890 2 0.00 4 100 0 0 315.00 0.00
1 1,961,354 2 0.00 5 100 0 0 315.00 0.00
24 1,967,002 2 0.00 5 100 0 0 315.00 0.00
28 1,968,167 2 0.00 4 100 0 0 315.00 0.00
11 1,969,650 2 0.00 6 100 0 0 315.00 0.00
9 1,989,573 3 0.00 6 100 0 0 315.00 0.00
17 1,990,776 2 0.00 5 100 0 0 315.00 0.00
21 1,991,553 3 0.00 7 100 0 0 315.00 0.00
19 1,995,982 2 0.00 5 100 0 0 315.00 0.00
14 1,999,934 2 0.00 5 100 0 0 315.00 0.00
29 2,012,541 2 0.00 4 100 0 0 315.00 0.00
15 2,018,009 2 0.00 5 100 0 0 315.00 0.00
12 2,039,126 2 0.00 5 100 0 0 315.00 0.00
13 2,040,444 2 0.00 4 100 0 0 315.00 0.00
5 2,048,455 2 0.00 5 100 0 0 315.00 0.00
25 2,054,428 2 0.00 5 100 0 0 315.00 0.00
10 2,057,050 2 0.00 5 100 0 0 315.00 0.00
2 2,060,739 3 0.00 7 100 0 0 315.00 0.00
30 2,074,997 2 0.00 5 100 0 0 315.00 0.00
22 2,108,734 2 0.00 4 100 0 0 315.00 0.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.

54



Table C.27: Case 1. Optimization results for the formulation with β = 0. The results are ordered by the value
of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

7 3,078,288 2 0.00 8 100 0 0 0.00 160.00
11 3,100,959 2 0.00 8 100 0 0 0.00 160.00
24 3,117,824 2 0.00 7 100 0 0 0.00 160.00
17 3,119,255 2 0.00 7 100 0 0 0.00 160.00
4 3,126,409 2 0.00 8 100 0 0 0.00 160.00
20 3,131,796 2 0.00 8 100 0 0 0.00 160.00
2 3,135,036 2 0.00 8 100 0 0 0.00 160.00
16 3,142,733 2 0.00 8 100 0 0 0.00 160.00
14 3,147,039 2 0.00 9 100 0 0 0.00 160.00
3 3,148,372 2 0.00 7 100 0 0 0.00 160.00
28 3,153,705 2 0.00 8 100 0 0 0.00 160.00
15 3,170,306 2 0.00 8 100 0 0 0.00 160.00
21 3,173,875 2 0.00 8 100 0 0 0.00 160.00
8 3,196,010 2 0.00 8 100 0 0 0.00 160.00
13 3,196,956 2 0.00 7 100 0 0 0.00 160.00
19 3,199,746 2 0.00 7 100 0 0 0.00 160.00
30 3,199,782 2 0.00 7 100 0 0 0.00 160.00
1 3,201,385 2 0.00 5 100 0 0 0.00 160.00
27 3,203,544 2 0.00 7 100 0 0 0.00 160.00
23 3,206,883 2 0.00 8 100 0 0 0.00 160.00
12 3,209,838 2 0.00 8 100 0 0 0.00 160.00
6 3,214,778 2 0.00 8 100 0 0 0.00 160.00
10 3,218,465 2 0.00 8 100 0 0 0.00 160.00
29 3,223,671 2 0.00 7 100 0 0 0.00 160.00
26 3,237,840 2 0.00 8 100 0 0 0.00 160.00
5 3,244,176 2 0.00 8 100 0 0 0.00 160.00
18 3,255,876 2 0.00 8 100 0 0 0.00 160.00
22 3,259,409 2 0.00 8 100 0 0 0.00 160.00
9 3,261,767 2 0.00 8 100 0 0 0.00 160.00
25 3,274,831 2 0.00 7 100 0 0 0.00 160.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.28: Case 1. Optimization results for the formulation with β = 0.5, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

7 2,410,710 2 0.00 7 100 0 0 155.00 0.00
4 2,427,801 2 0.00 7 100 0 0 155.00 0.00
17 2,428,278 2 0.00 7 100 0 0 155.00 0.00
24 2,428,434 2 0.00 9 100 0 0 155.00 0.00
28 2,429,364 2 0.00 9 100 0 0 155.00 0.00
2 2,430,276 2 0.00 7 100 0 0 155.00 0.00
11 2,430,487 2 0.00 7 100 0 0 155.00 0.00
20 2,433,149 2 0.00 8 100 0 0 155.00 0.00
19 2,433,720 2 0.00 9 100 0 0 155.00 0.00
16 2,433,992 2 0.00 9 100 0 0 155.00 0.00
3 2,434,610 2 0.00 7 100 0 0 155.00 0.00
15 2,435,269 2 0.00 8 100 0 0 155.00 0.00
14 2,437,368 2 0.00 8 100 0 0 155.00 0.00
23 2,438,664 2 0.00 10 100 0 0 155.00 0.00
13 2,438,807 2 0.00 8 100 0 0 155.00 0.00
27 2,440,667 2 0.00 9 100 0 0 155.00 0.00
6 2,445,214 2 0.00 7 100 0 0 155.00 0.00
12 2,447,029 2 0.00 8 100 0 0 155.00 0.00
8 2,449,900 2 0.00 7 100 0 0 155.00 0.00
5 2,457,695 2 0.00 7 100 0 0 155.00 0.00
30 2,465,297 2 0.00 8 100 0 0 155.00 0.00
26 2,467,644 2 0.00 9 100 0 0 155.00 0.00
21 2,469,491 2 0.00 8 100 0 0 155.00 0.00
29 2,470,247 2 0.00 9 100 0 0 155.00 0.00
10 2,471,431 2 0.00 8 100 0 0 155.00 0.00
18 2,474,108 2 0.00 8 100 0 0 155.00 0.00
9 2,476,679 2 0.00 7 100 0 0 155.00 0.00
25 2,482,562 2 0.00 9 100 0 0 155.00 0.00
22 2,486,921 2 0.00 9 100 0 0 155.00 0.00
1 2,505,719 2 0.00 7 100 0 0 155.00 0.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.29: Case 1. Optimization results for the formulation with β = 1, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

19 2,076,627 2 0.00 7 100 0 0 315.00 0.00
23 2,081,075 2 0.00 8 100 0 0 315.00 0.00
27 2,082,524 2 0.00 9 100 0 0 315.00 0.00
28 2,083,189 2 0.00 8 100 0 0 315.00 0.00
7 2,084,137 2 0.00 6 100 0 0 315.00 0.00
13 2,084,321 2 0.00 7 100 0 0 315.00 0.00
15 2,086,117 2 0.00 6 100 0 0 315.00 0.00
12 2,086,933 2 0.00 7 100 0 0 315.00 0.00
6 2,087,087 2 0.00 7 100 0 0 315.00 0.00
2 2,089,828 2 0.00 8 100 0 0 315.00 0.00
4 2,089,874 2 0.00 6 100 0 0 315.00 0.00
3 2,090,717 2 0.00 6 100 0 0 315.00 0.00
16 2,090,795 2 0.00 7 100 0 0 315.00 0.00
5 2,091,541 2 0.00 7 100 0 0 315.00 0.00
20 2,092,448 2 0.00 8 100 0 0 315.00 0.00
14 2,093,098 2 0.00 7 100 0 0 315.00 0.00
24 2,093,149 2 0.00 8 100 0 0 315.00 0.00
17 2,093,348 2 0.00 6 100 0 0 315.00 0.00
8 2,094,830 2 0.00 6 100 0 0 315.00 0.00
11 2,099,166 2 0.00 6 100 0 0 315.00 0.00
26 2,100,608 2 0.00 10 100 0 0 315.00 0.00
18 2,104,783 2 0.00 6 100 0 0 315.00 0.00
25 2,104,902 2 0.00 8 100 0 0 315.00 0.00
9 2,105,156 2 0.00 7 100 0 0 315.00 0.00
29 2,105,663 2 0.00 6 100 0 0 315.00 0.00
10 2,109,383 2 0.00 6 100 0 0 315.00 0.00
30 2,109,423 2 0.00 9 100 0 0 315.00 0.00
22 2,113,984 2 0.00 8 100 0 0 315.00 0.00
21 2,118,535 2 0.00 7 100 0 0 315.00 0.00
1 2,150,135 2 0.00 8 100 0 0 260.00 0.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.30: Case 1. Optimization results for the formulation with β = 1, α = (N−1)/N . The results are ordered
by the value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

12 1,783,267 10 0.00 89 86.9 0 1 315.00 0.00
11 1,806,987 2 0.00 6 100 0 0 315.00 0.00
26 1,814,875 3 0.00 11 100 0 0 315.00 0.00
19 1,824,992 12 0.00 179 92.26 1 1 315.00 0.00
15 1,848,261 14 0.00 177 96.43 0 1 315.00 0.00
30 1,848,979 15 0.00 309 88.69 0 1 315.00 0.00
23 1,849,213 10 0.00 137 91.07 0 1 315.00 0.00
4 1,858,044 11 0.00 102 100 0 0 315.00 0.00
27 1,870,761 11 0.00 105 95.24 1 1 315.00 0.00
3 1,876,680 2 0.00 7 100 0 0 315.00 0.00
5 1,878,092 2 0.00 7 100 0 0 315.00 0.00
22 1,889,387 6 0.00 31 95.83 0 1 315.00 0.00
20 1,890,822 3 0.00 11 100 0 0 315.00 0.00
9 1,892,352 2 0.00 6 100 0 0 315.00 0.00
28 1,893,542 14 0.00 152 92.26 1 1 315.00 0.00
25 1,894,784 8 0.00 47 100 0 0 315.00 0.00
13 1,898,621 7 0.00 42 98.21 0 1 315.00 0.00
24 1,903,589 3 0.00 11 100 0 0 315.00 0.00
6 1,906,827 2 0.00 6 100 0 0 315.00 0.00
10 1,910,613 2 0.00 7 100 0 0 315.00 0.00
8 1,910,617 2 0.00 6 100 0 0 315.00 0.00
16 1,911,058 3 0.00 11 100 0 0 315.00 0.00
21 1,914,069 3 0.00 11 100 0 0 315.00 0.00
2 1,918,108 2 0.00 6 100 0 0 315.00 0.00
17 1,918,410 6 0.00 32 100 0 0 315.00 0.00
7 1,920,187 4 0.00 17 100 0 0 315.00 0.00
29 1,922,000 3 0.00 11 100 0 0 315.00 0.00
18 1,934,331 3 0.00 12 100 0 0 315.00 0.00
14 1,937,937 3 0.00 11 100 0 0 315.00 0.00
1 1,968,190 2 0.00 6 100 0 0 315.00 0.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.31: Case 1. Optimization results for the formulation with β = 0. The results are ordered by the value
of the objective function. M = 30, N = 5000.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

7 3,152,653 2 0.00 43 100 0 0 0.00 160.00
26 3,157,290 2 0.00 43 100 0 0 0.00 160.00
10 3,160,733 2 0.00 44 100 0 0 0.00 160.00
22 3,167,437 2 0.00 43 100 0 0 0.00 160.00
5 3,168,381 2 0.00 43 100 0 0 0.00 160.00
1 3,177,129 3 0.00 68 100 0 0 0.00 160.00
24 3,177,415 2 0.00 42 100 0 0 0.00 160.00
20 3,178,844 2 0.00 44 100 0 0 0.00 160.00
13 3,179,045 2 0.00 43 100 0 0 0.00 160.00
25 3,179,781 2 0.00 43 100 0 0 0.00 160.00
6 3,181,609 2 0.00 44 100 0 0 0.00 160.00
4 3,182,952 2 0.00 44 100 0 0 0.00 160.00
18 3,183,790 2 0.00 43 100 0 0 0.00 160.00
3 3,184,504 2 0.00 43 100 0 0 0.00 160.00
14 3,186,290 2 0.00 44 100 0 0 0.00 160.00
30 3,187,511 2 0.00 45 100 0 0 0.00 160.00
12 3,188,824 2 0.00 44 100 0 0 0.00 160.00
11 3,190,389 2 0.00 43 100 0 0 0.00 160.00
28 3,193,385 2 0.00 43 100 0 0 0.00 160.00
27 3,195,170 2 0.00 45 100 0 0 0.00 160.00
21 3,202,691 2 0.00 44 100 0 0 0.00 160.00
8 3,203,348 2 0.00 43 100 0 0 0.00 160.00
23 3,206,562 2 0.00 43 100 0 0 0.00 160.00
19 3,207,772 2 0.00 44 100 0 0 0.00 160.00
2 3,209,244 2 0.00 42 100 0 0 0.00 160.00
16 3,210,155 2 0.00 42 100 0 0 0.00 160.00
29 3,215,728 2 0.00 43 100 0 0 0.00 160.00
15 3,217,836 2 0.00 43 100 0 0 0.00 160.00
17 3,224,431 2 0.00 43 100 0 0 0.00 160.00
9 3,241,724 2 0.00 42 100 0 0 0.00 160.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.32: Case 1. Optimization results for the formulation with β = 0.5, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 5000.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

7 2,438,827 2 0.00 52 100 0 0 155.00 0.00
10 2,442,404 2 0.00 53 100 0 0 155.00 0.00
26 2,443,736 2 0.00 53 100 0 0 155.00 0.00
12 2,445,958 2 0.00 54 100 0 0 155.00 0.00
5 2,446,162 2 0.00 54 100 0 0 155.00 0.00
22 2,448,996 2 0.00 52 100 0 0 155.00 0.00
20 2,449,162 2 0.00 53 100 0 0 155.00 0.00
27 2,449,428 2 0.00 51 100 0 0 155.00 0.00
14 2,451,262 2 0.00 55 100 0 0 155.00 0.00
13 2,451,416 2 0.00 55 100 0 0 155.00 0.00
24 2,451,658 2 0.00 55 100 0 0 155.00 0.00
1 2,452,715 3 0.00 101 100 0 0 155.00 0.00
11 2,453,772 2 0.00 53 100 0 0 155.00 0.00
6 2,454,585 2 0.00 53 100 0 0 155.00 0.00
30 2,455,711 2 0.00 52 100 0 0 155.00 0.00
4 2,455,824 2 0.00 54 100 0 0 155.00 0.00
8 2,456,689 2 0.00 55 100 0 0 155.00 0.00
3 2,457,515 2 0.00 54 100 0 0 155.00 0.00
28 2,457,743 2 0.00 53 100 0 0 155.00 0.00
25 2,459,366 2 0.00 53 100 0 0 155.00 0.00
18 2,460,287 2 0.00 52 100 0 0 155.00 0.00
19 2,460,305 2 0.00 54 100 0 0 155.00 0.00
2 2,460,491 2 0.00 51 100 0 0 155.00 0.00
21 2,462,597 2 0.00 53 100 0 0 155.00 0.00
23 2,462,860 2 0.00 52 100 0 0 155.00 0.00
9 2,465,095 2 0.00 53 100 0 0 155.00 0.00
16 2,466,943 2 0.00 54 100 0 0 155.00 0.00
15 2,468,180 2 0.00 55 100 0 0 155.00 0.00
29 2,468,395 2 0.00 53 100 0 0 155.00 0.00
17 2,470,008 2 0.00 52 100 0 0 155.00 0.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.33: Case 1. Optimization results for the formulation with β = 1, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 5000.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

12 2,091,898 2 0.00 56 100 0 0 315.00 0.00
7 2,093,596 2 0.00 56 100 0 0 315.00 0.00
27 2,094,286 2 0.00 55 100 0 0 315.00 0.00
10 2,095,708 2 0.00 58 100 0 0 315.00 0.00
5 2,097,202 2 0.00 56 100 0 0 315.00 0.00
9 2,097,710 2 0.00 55 100 0 0 315.00 0.00
26 2,097,738 2 0.00 54 100 0 0 315.00 0.00
20 2,098,027 2 0.00 55 100 0 0 315.00 0.00
14 2,098,030 2 0.00 52 100 0 0 315.00 0.00
8 2,098,866 2 0.00 54 100 0 0 315.00 0.00
11 2,098,969 2 0.00 55 100 0 0 315.00 0.00
13 2,099,721 2 0.00 55 100 0 0 315.00 0.00
22 2,100,685 2 0.00 55 100 0 0 315.00 0.00
24 2,100,955 2 0.00 52 100 0 0 315.00 0.00
2 2,101,484 2 0.00 57 100 0 0 315.00 0.00
19 2,101,701 2 0.00 54 100 0 0 315.00 0.00
1 2,101,987 3 0.00 97 100 0 0 315.00 0.00
6 2,102,000 2 0.00 56 100 0 0 315.00 0.00
30 2,102,130 2 0.00 54 100 0 0 315.00 0.00
28 2,102,548 2 0.00 56 100 0 0 315.00 0.00
4 2,102,698 2 0.00 58 100 0 0 315.00 0.00
21 2,104,407 2 0.00 56 100 0 0 315.00 0.00
3 2,104,418 2 0.00 55 100 0 0 315.00 0.00
23 2,104,444 2 0.00 55 100 0 0 315.00 0.00
15 2,106,649 2 0.00 55 100 0 0 315.00 0.00
29 2,106,857 2 0.00 53 100 0 0 315.00 0.00
17 2,106,857 2 0.00 55 100 0 0 315.00 0.00
16 2,106,862 2 0.00 55 100 0 0 315.00 0.00
18 2,106,909 2 0.00 55 100 0 0 315.00 0.00
25 2,107,041 2 0.00 54 100 0 0 315.00 0.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.34: Case 1. Optimization results for the formulation with β = 1, α = (N−1)/N . The results are ordered
by the value of the objective function. M = 30, N = 5000.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

1 1,724,981 11 0.00 4,258 85.12 0 1 315.00 0.00
24 1,733,320 18 1.43 12,168 100 0 0 315.00 0.00
20 1,735,550 21 0.09 11,386 93.45 1 1 315.00 0.00
22 1,756,808 12 0.00 3,363 85.12 1 1 315.00 0.00
27 1,768,362 19 0.00 12,703 92.86 1 1 315.00 0.00
5 1,774,171 12 0.26 11,330 87.5 2 2 315.00 0.00
28 1,779,792 10 0.00 5,121 85.71 0 1 315.00 0.00
14 1,788,131 2 0.00 48 100 0 0 315.00 0.00
6 1,793,446 6 0.00 396 94.05 0 1 315.00 0.00
2 1,796,485 13 0.00 4,964 95.24 1 1 315.00 0.00
10 1,798,659 5 0.00 266 86.9 0 1 315.00 0.00
4 1,799,131 2 0.00 48 100 0 0 315.00 0.00
30 1,805,833 17 0.16 12,289 92.26 1 1 315.00 0.00
13 1,811,513 7 0.00 447 100 0 0 315.00 0.00
11 1,812,367 14 0.00 3,898 92.86 0 1 315.00 0.00
26 1,814,654 4 0.00 224 100 0 0 315.00 0.00
12 1,816,482 5 0.00 299 100 0 0 315.00 0.00
7 1,818,685 4 0.00 165 88.69 0 1 315.00 0.00
17 1,819,389 8 0.00 747 91.07 0 1 315.00 0.00
16 1,819,758 4 0.00 208 94.05 0 1 315.00 0.00
23 1,820,145 3 0.00 108 100 0 0 315.00 0.00
3 1,825,805 8 0.00 725 100 0 0 315.00 0.00
19 1,827,064 6 0.00 474 100 0 0 315.00 0.00
21 1,827,814 3 0.00 109 100 0 0 315.00 0.00
25 1,827,866 12 0.00 2,429 95.24 0 1 315.00 0.00
18 1,829,674 7 0.00 703 96.43 0 1 315.00 0.00
9 1,834,693 18 0.00 5,240 93.45 1 1 315.00 0.00
15 1,844,823 2 0.00 50 100 0 0 315.00 0.00
8 1,856,768 3 0.00 119 100 0 0 315.00 0.00
29 1,858,717 3 0.00 109 100 0 0 315.00 0.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.35: Case 2. Optimization results for the formulation with β = 0. The results are ordered by the value
of the objective function. M = 30, N = 10.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

23 278,255 10 0.00 5 100 1 0 155.00 0.00
22 293,356 6 0.00 2 100 1 0 50.00 55.00
27 296,389 6 0.00 2 100 1 0 50.00 55.00
18 305,215 6 0.00 2 100 1 0 50.00 55.00
17 312,596 6 0.00 2 100 1 0 50.00 55.00
2 313,445 9 0.00 4 100 1 0 50.00 55.00
19 318,237 6 0.00 2 100 1 0 50.00 110.00
20 335,096 6 0.00 2 100 1 0 50.00 110.00
3 342,450 6 0.00 2 100 1 0 0.00 160.00
9 367,848 6 0.00 2 100 1 0 0.00 160.00
21 372,055 6 0.00 3 100 1 0 0.00 160.00
28 379,972 6 0.00 3 100 1 0 0.00 160.00
26 380,994 6 0.00 2 100 1 0 0.00 160.00
13 384,496 6 0.00 2 100 1 0 0.00 160.00
7 402,657 6 0.00 3 100 1 0 0.00 160.00
4 411,077 6 0.00 2 100 1 0 0.00 160.00
14 433,070 6 0.00 3 100 1 0 0.00 160.00
12 439,331 6 0.00 2 100 1 0 0.00 160.00
25 442,568 6 0.00 3 100 1 0 0.00 160.00
15 446,775 6 0.00 3 100 1 0 0.00 160.00
10 456,645 6 0.00 3 100 1 0 0.00 160.00
8 462,723 6 0.00 2 100 1 0 0.00 160.00
16 467,242 6 0.00 2 100 1 0 0.00 160.00
29 474,619 6 0.00 3 100 1 0 0.00 160.00
11 486,923 6 0.00 3 100 1 0 0.00 215.00
6 549,396 6 0.00 3 100 1 0 0.00 265.00
30 556,406 6 0.00 2 100 1 0 0.00 265.00
5 621,995 6 0.00 3 100 1 0 0.00 265.00
24 649,724 6 0.00 2 100 1 0 0.00 265.00
1 652,424 7 0.00 3 100 1 0 0.00 265.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.36: Case 2. Optimization results for the formulation with β = 0.5, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 10.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

23 242,440 6 0.00 3 100 1 0 100.00 49.08
21 253,258 7 0.00 4 100 1 0 100.00 46.54
27 254,761 6 0.00 3 100 1 0 100.00 36.03
22 258,455 32 0.00 41 100 1 0 100.00 55.00
7 258,840 18 0.00 17 100 1 0 100.00 50.89
19 258,882 28 0.00 36 100 1 0 100.00 34.00
3 260,127 10 0.00 8 100 1 0 100.00 40.38
4 261,163 6 0.00 3 100 1 0 100.00 46.48
9 262,575 6 0.00 4 100 1 0 100.00 41.25
30 262,627 6 0.00 3 100 1 0 50.00 55.00
15 264,311 30 0.00 39 100 1 0 100.00 37.02
18 265,213 61 0.00 128 100 1 0 50.00 55.00
2 266,040 53 0.00 102 100 1 0 100.00 30.72
17 266,530 16 0.00 16 100 1 0 100.00 39.18
25 266,673 15 0.00 13 100 1 0 100.00 47.39
20 270,348 67 0.00 157 100 1 0 100.00 46.05
14 272,214 50 0.00 96 100 1 0 50.00 55.00
28 273,879 6 0.00 3 100 1 0 50.00 55.00
29 274,764 11 0.00 8 100 1 0 50.00 55.00
13 275,044 6 0.00 3 100 1 0 50.00 55.00
8 277,031 73 0.00 180 100 1 0 50.00 55.00
26 279,177 38 0.00 60 100 1 0 50.00 55.00
10 284,476 24 0.00 25 100 1 0 50.00 55.00
16 286,771 19 0.00 18 100 1 0 50.00 55.00
11 289,698 12 0.00 8 100 1 0 50.00 55.00
12 291,166 23 0.00 26 100 1 0 50.00 55.00
24 293,600 6 0.00 3 100 1 0 50.00 55.00
1 296,516 10 0.00 6 100 1 0 50.00 55.00
6 327,310 14 0.00 11 100 1 0 50.00 110.00
5 338,714 6 0.00 3 100 1 0 0.00 160.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.37: Case 2. Optimization results for the formulation with β = 1, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 10.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

7 228,015 39 0.00 50 100 1 0 100.00 50.89
23 232,552 14 0.00 10 100 1 0 100.00 49.08
21 234,983 35 0.00 42 100 1 0 100.00 39.97
6 243,240 41 0.00 53 100 1 0 50.00 55.00
5 243,334 148 0.00 513 100 1 0 100.00 28.71
16 243,590 24 0.00 23 100 1 0 79.71 55.00
29 244,640 82 0.00 180 100 1 0 100.00 32.49
15 244,808 55 0.00 89 100 1 0 100.00 37.02
13 244,826 23 0.00 23 100 1 0 100.00 54.59
14 245,156 417 0.00 10,321 100 1 0 100.00 41.01
28 246,216 19 0.00 14 100 1 0 100.00 34.29
4 246,470 132 0.00 489 100 1 0 100.00 46.48
30 247,845 21 0.00 19 100 1 0 100.00 34.91
18 249,093 114 0.00 338 100 1 0 100.00 47.41
19 249,495 32 0.00 39 100 1 0 100.00 34.00
22 249,926 17 0.00 13 100 1 0 100.00 41.51
26 250,219 178 4.29 10,902 93.45 3 2 99.93 55.00
12 250,233 97 0.00 237 100 1 0 94.10 55.00
27 250,441 78 0.00 185 100 1 0 100.00 33.55
3 251,359 126 0.00 388 100 1 0 100.00 40.38
9 251,562 10 0.00 6 100 1 0 100.00 41.25
8 251,952 54 0.00 91 100 1 0 100.00 44.87
25 252,300 24 0.00 25 100 1 0 100.00 38.22
1 254,554 222 0.32 10,810 100 1 0 100.00 34.38
17 255,316 78 0.00 177 100 1 0 100.00 39.18
11 255,642 268 0.00 8,205 100 1 0 100.00 38.24
24 255,993 240 0.00 2,553 100 1 0 100.00 35.33
10 256,871 99 0.00 279 100 1 0 100.00 34.95
20 261,466 306 0.00 9,481 100 1 0 100.00 46.05
2 262,106 42 0.00 57 100 1 0 100.00 30.72

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.38: Case 2. Optimization results for the formulation with β = 1, α = (N−1)/N . The results are ordered
by the value of the objective function. M = 30, N = 10.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

7 228,015 39 0.00 50 100 1 0 100.00 50.89
23 232,552 14 0.00 10 100 1 0 100.00 49.08
21 234,983 35 0.00 41 100 1 0 100.00 39.97
6 243,240 41 0.00 52 100 1 0 50.00 55.00
5 243,334 148 0.00 511 100 1 0 100.00 28.71
16 243,590 24 0.00 23 100 1 0 79.71 55.00
29 244,640 82 0.00 178 100 1 0 100.00 32.49
15 244,808 55 0.00 89 100 1 0 100.00 37.02
13 244,826 23 0.00 23 100 1 0 100.00 54.59
14 245,156 417 0.00 10,325 100 1 0 100.00 41.01
28 246,216 19 0.00 15 100 1 0 100.00 34.29
4 246,470 132 0.00 490 100 1 0 100.00 46.48
30 247,845 21 0.00 19 100 1 0 100.00 34.91
18 249,093 114 0.00 339 100 1 0 100.00 47.41
19 249,495 32 0.00 39 100 1 0 100.00 34.00
22 249,926 17 0.00 13 100 1 0 100.00 41.51
26 250,219 178 4.29 10,921 93.45 3 2 99.93 55.00
12 250,233 97 0.00 236 100 1 0 94.10 55.00
27 250,441 78 0.00 188 100 1 0 100.00 33.55
3 251,359 126 0.00 391 100 1 0 100.00 40.38
9 251,562 10 0.00 7 100 1 0 100.00 41.25
8 251,952 54 0.00 92 100 1 0 100.00 44.87
25 252,300 24 0.00 25 100 1 0 100.00 38.22
1 254,554 222 0.32 10,819 100 1 0 100.00 34.38
17 255,316 78 0.00 177 100 1 0 100.00 39.18
11 255,642 268 0.00 8,165 100 1 0 100.00 38.24
24 255,993 240 0.00 2,545 100 1 0 100.00 35.33
10 256,871 99 0.00 277 100 1 0 100.00 34.95
20 261,466 306 0.00 9,498 100 1 0 100.00 46.05
2 262,106 42 0.00 56 100 1 0 100.00 30.72

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.39: Case 2. Optimization results for the formulation with β = 0. The results are ordered by the value
of the objective function. M = 30, N = 50.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

5 299,859 6 0.00 7 100 1 0 50.00 55.00
6 311,092 6 0.00 7 100 1 0 50.00 55.00
21 316,032 6 0.00 7 100 1 0 50.00 110.00
9 321,234 6 0.00 7 100 1 0 50.00 110.00
4 324,476 6 0.00 7 100 1 0 50.00 110.00
1 346,215 7 0.00 8 100 1 0 0.00 160.00
27 346,424 6 0.00 7 100 1 0 0.00 160.00
12 348,758 6 0.00 8 100 1 0 0.00 160.00
28 348,761 6 0.00 8 100 1 0 0.00 160.00
13 377,528 6 0.00 7 100 1 0 0.00 160.00
11 378,324 6 0.00 7 100 1 0 0.00 160.00
23 383,923 6 0.00 7 100 1 0 0.00 160.00
30 391,823 6 0.00 7 100 1 0 0.00 160.00
15 395,809 6 0.00 7 100 1 0 0.00 160.00
8 404,411 6 0.00 8 100 1 0 0.00 160.00
17 407,812 6 0.00 7 100 1 0 0.00 160.00
19 417,084 6 0.00 8 100 1 0 0.00 160.00
25 426,353 6 0.00 7 100 1 0 0.00 160.00
22 434,835 6 0.00 7 100 1 0 0.00 160.00
14 447,748 6 0.00 7 100 1 0 0.00 160.00
7 447,795 6 0.00 7 100 1 0 0.00 160.00
26 447,846 6 0.00 7 100 1 0 0.00 160.00
10 462,572 6 0.00 7 100 1 0 0.00 160.00
2 462,986 6 0.00 7 100 1 0 0.00 160.00
18 465,290 6 0.00 7 100 1 0 0.00 160.00
16 465,601 6 0.00 7 100 1 0 0.00 160.00
3 478,897 6 0.00 7 100 1 0 0.00 215.00
24 481,940 6 0.00 7 100 1 0 0.00 215.00
20 503,173 6 0.00 8 100 1 0 0.00 215.00
29 509,493 6 0.00 7 100 1 0 0.00 215.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.40: Case 2. Optimization results for the formulation with β = 0.5, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 50.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

6 251,824 6 0.00 11 100 1 0 100.00 42.15
21 253,449 6 0.00 10 100 1 0 100.00 38.28
9 254,000 6 0.00 10 100 1 0 100.00 50.53
25 254,659 6 0.00 10 100 1 0 100.00 48.52
4 255,323 6 0.00 11 100 1 0 100.00 44.22
19 255,769 6 0.00 10 100 1 0 100.00 46.91
12 256,056 6 0.00 10 100 1 0 100.00 41.12
5 257,305 25 0.00 98 100 1 0 100.00 37.18
27 257,764 6 0.00 9 100 1 0 100.00 41.67
30 258,578 6 0.00 10 100 1 0 100.00 55.00
23 259,278 6 0.00 10 100 1 0 100.00 46.10
1 259,322 8 0.00 15 100 1 0 100.00 45.91
28 260,541 6 0.00 10 100 1 0 100.00 41.64
8 260,559 6 0.00 10 100 1 0 100.00 48.18
15 260,733 6 0.00 10 100 1 0 100.00 41.49
18 261,559 6 0.00 9 100 1 0 76.21 55.00
10 261,598 6 0.00 10 100 1 0 100.00 55.00
24 262,070 6 0.00 10 100 1 0 50.00 55.00
14 262,166 6 0.00 10 100 1 0 100.00 50.81
13 262,818 6 0.00 10 100 1 0 91.84 55.00
11 263,652 6 0.00 9 100 1 0 50.00 55.00
20 264,754 6 0.00 10 100 1 0 100.00 55.00
22 264,961 6 0.00 11 100 1 0 100.00 48.65
7 265,986 10 0.00 22 100 1 0 66.42 55.00
26 266,144 9 0.00 17 100 1 0 96.60 55.00
17 266,735 6 0.00 10 100 1 0 100.00 50.14
3 269,377 6 0.00 8 100 1 0 50.00 55.00
2 272,740 6 0.00 8 100 1 0 50.00 55.00
29 275,234 6 0.00 9 100 1 0 50.00 55.00
16 279,103 6 0.00 9 100 1 0 50.00 55.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.41: Case 2. Optimization results for the formulation with β = 1, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 50.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

24 233,632 12 0.00 23 100 1 0 100.00 38.91
25 235,513 6 0.00 9 100 1 0 100.00 40.23
6 235,720 7 0.00 11 100 1 0 100.00 32.13
10 237,622 16 0.00 40 100 1 0 100.00 36.86
18 237,710 6 0.00 9 100 1 0 100.00 36.62
2 237,850 6 0.00 9 100 1 0 100.00 39.74
9 238,090 12 0.00 24 100 1 0 100.00 38.93
19 238,194 8 0.00 13 100 1 0 100.00 40.58
30 238,277 18 0.00 45 100 1 0 100.00 37.66
21 239,059 11 0.00 22 100 1 0 100.00 35.01
4 239,437 12 0.00 26 100 1 0 100.00 36.40
23 239,559 9 0.00 16 100 1 0 100.00 42.17
29 240,516 6 0.00 9 100 1 0 100.00 40.25
27 240,975 7 0.00 11 100 1 0 100.00 38.75
1 241,285 9 0.00 16 100 1 0 100.00 41.35
16 241,662 6 0.00 9 100 1 0 100.00 47.12
7 242,136 6 0.00 9 100 1 0 100.00 39.29
3 242,246 10 0.00 17 100 1 0 100.00 37.61
20 242,471 10 0.00 19 100 1 0 100.00 36.67
12 242,598 27 0.00 99 100 1 0 100.00 37.58
5 242,838 22 0.00 62 100 1 0 100.00 37.18
11 243,096 11 0.00 21 100 1 0 100.00 37.17
26 243,359 6 0.00 9 100 1 0 100.00 40.20
14 243,413 7 0.00 11 100 1 0 100.00 35.51
13 243,539 22 0.00 65 100 1 0 100.00 35.47
15 243,575 11 0.00 20 100 1 0 100.00 38.68
8 243,586 6 0.00 10 100 1 0 100.00 33.65
28 245,615 13 0.00 31 100 1 0 100.00 37.17
22 245,648 12 0.00 26 100 1 0 100.00 39.79
17 247,703 8 0.00 14 100 1 0 100.00 46.12

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.42: Case 2. Optimization results for the formulation with β = 1, α = (N−1)/N . The results are ordered
by the value of the objective function. M = 30, N = 50.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

10 217,279 21 0.00 55 100 1 0 100.00 31.07
24 220,107 11 0.00 19 100 1 0 100.00 49.45
25 229,505 35 0.00 143 100 1 0 100.00 36.72
6 230,570 42 0.00 178 100 1 0 100.00 42.35
20 231,216 11 0.00 21 100 1 0 100.00 33.61
2 232,090 35 0.00 140 100 1 0 100.00 34.75
18 233,110 25 0.00 77 100 1 0 100.00 34.72
19 234,725 25 0.00 78 100 1 0 100.00 44.04
4 234,800 46 0.00 219 100 1 0 100.00 40.45
9 235,124 47 0.00 223 100 1 0 100.00 36.00
5 235,197 34 0.00 128 100 1 0 100.00 37.11
17 235,318 9 0.00 15 100 1 0 100.00 35.57
15 235,618 37 0.00 153 100 1 0 100.00 35.73
23 235,858 44 0.00 207 100 1 0 100.00 35.71
29 235,920 29 0.00 96 100 1 0 100.00 38.65
30 236,094 104 0.00 1,199 100 1 0 100.00 39.35
27 236,185 132 0.00 2,059 100 1 0 100.00 32.43
3 236,587 49 0.00 254 100 1 0 100.00 39.80
26 236,618 24 0.00 72 100 1 0 100.00 49.36
11 237,514 79 0.00 736 100 1 0 100.00 46.48
21 237,708 45 0.00 224 100 1 0 100.00 31.07
13 238,433 54 0.00 316 100 1 0 100.00 35.22
16 238,989 9 0.00 17 100 1 0 100.00 50.73
1 239,567 72 0.00 544 100 1 0 100.00 38.67
7 239,780 9 0.00 16 100 1 0 100.00 37.54
14 240,318 15 0.00 36 100 1 0 100.00 33.05
12 240,766 28 0.00 92 100 1 0 100.00 39.15
22 241,880 108 0.00 1,344 100 1 0 100.00 40.04
8 242,116 8 0.00 15 100 1 0 100.00 36.26
28 243,776 9 0.00 16 100 1 0 100.00 38.31

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.43: Case 2. Optimization results for the formulation with β = 0. The results are ordered by the value
of the objective function. M = 30, N = 100.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

27 327,639 6 0.00 12 100 1 0 50.00 110.00
6 332,241 6 0.00 13 100 1 0 50.00 110.00
26 349,968 6 0.00 13 100 1 0 0.00 160.00
14 357,968 6 0.00 13 100 1 0 0.00 160.00
23 369,383 6 0.00 12 100 1 0 0.00 160.00
8 369,422 6 0.00 13 100 1 0 0.00 160.00
1 370,492 7 0.00 15 100 1 0 0.00 160.00
29 374,068 6 0.00 12 100 1 0 0.00 160.00
28 374,533 6 0.00 12 100 1 0 0.00 160.00
18 378,245 6 0.00 13 100 1 0 0.00 160.00
9 386,806 6 0.00 13 100 1 0 0.00 160.00
4 406,344 6 0.00 13 100 1 0 0.00 160.00
21 406,530 6 0.00 13 100 1 0 0.00 160.00
3 414,150 6 0.00 13 100 1 0 0.00 160.00
25 419,611 6 0.00 12 100 1 0 0.00 160.00
11 424,004 6 0.00 12 100 1 0 0.00 160.00
22 429,869 6 0.00 12 100 1 0 0.00 160.00
2 430,911 6 0.00 12 100 1 0 0.00 160.00
20 432,125 6 0.00 12 100 1 0 0.00 160.00
15 446,570 6 0.00 13 100 1 0 0.00 160.00
13 447,803 6 0.00 13 100 1 0 0.00 160.00
17 460,272 6 0.00 12 100 1 0 0.00 160.00
7 460,277 6 0.00 12 100 1 0 0.00 160.00
30 469,454 6 0.00 12 100 1 0 0.00 160.00
5 470,576 6 0.00 13 100 1 0 0.00 160.00
12 473,520 6 0.00 13 100 1 0 0.00 215.00
10 473,895 6 0.00 13 100 1 0 0.00 215.00
19 476,614 6 0.00 13 100 1 0 0.00 215.00
24 493,900 6 0.00 13 100 1 0 0.00 215.00
16 499,403 6 0.00 13 100 1 0 0.00 215.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.44: Case 2. Optimization results for the formulation with β = 0.5, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 100.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

27 256,309 11 0.00 45 100 1 0 100.00 42.36
9 256,578 6 0.00 18 100 1 0 100.00 44.56
26 256,580 6 0.00 17 100 1 0 100.00 46.99
6 256,862 6 0.00 19 100 1 0 100.00 45.75
1 258,106 7 0.00 22 100 1 0 100.00 42.33
25 258,158 6 0.00 17 100 1 0 99.13 55.00
14 258,171 6 0.00 17 100 1 0 100.00 48.48
18 258,826 6 0.00 18 100 1 0 100.00 46.37
3 259,008 6 0.00 18 100 1 0 100.00 43.70
21 259,338 6 0.00 17 100 1 0 100.00 55.00
11 259,400 6 0.00 17 100 1 0 100.00 47.98
29 259,577 6 0.00 17 100 1 0 100.00 47.67
8 259,715 6 0.00 18 100 1 0 100.00 40.72
12 260,005 6 0.00 18 100 1 0 100.00 55.00
23 260,409 6 0.00 16 100 1 0 100.00 47.41
28 260,904 6 0.00 17 100 1 0 100.00 46.21
4 262,097 6 0.00 18 100 1 0 100.00 52.05
13 262,138 6 0.00 19 100 1 0 100.00 51.15
24 262,169 6 0.00 18 100 1 0 95.53 55.00
2 262,469 6 0.00 18 100 1 0 95.94 55.00
20 262,930 6 0.00 17 100 1 0 95.31 55.00
22 263,080 6 0.00 17 100 1 0 56.82 55.00
7 263,443 6 0.00 18 100 1 0 95.35 55.00
19 263,600 6 0.00 18 100 1 0 100.00 55.00
16 264,084 6 0.00 17 100 1 0 92.58 55.00
5 264,233 6 0.00 18 100 1 0 93.97 55.00
17 264,943 6 0.00 18 100 1 0 92.50 55.00
15 265,042 6 0.00 17 100 1 0 95.66 55.00
10 267,755 6 0.00 17 100 1 0 50.00 55.00
30 273,163 6 0.00 16 100 1 0 50.00 55.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.45: Case 2. Optimization results for the formulation with β = 1, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 100.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

25 234,727 6 0.00 16 100 1 0 100.00 39.54
16 236,227 6 0.00 17 100 1 0 100.00 35.45
21 236,774 6 0.00 17 100 1 0 100.00 38.23
12 236,898 11 0.00 37 100 1 0 100.00 40.85
10 237,177 6 0.00 16 100 1 0 100.00 39.09
30 237,882 6 0.00 17 100 1 0 100.00 41.23
9 238,678 6 0.00 17 100 1 0 100.00 37.19
24 239,019 6 0.00 16 100 1 0 100.00 38.86
19 239,066 6 0.00 16 100 1 0 100.00 39.50
17 239,118 6 0.00 16 100 1 0 100.00 36.86
26 239,529 6 0.00 17 100 1 0 100.00 36.69
20 239,766 6 0.00 16 100 1 0 100.00 38.29
29 239,966 6 0.00 17 100 1 0 100.00 40.47
18 240,023 8 0.00 25 100 1 0 100.00 39.91
7 240,299 6 0.00 16 100 1 0 100.00 40.93
11 240,464 6 0.00 16 100 1 0 100.00 38.30
14 240,630 6 0.00 16 100 1 0 100.00 37.90
4 240,640 6 0.00 17 100 1 0 100.00 37.45
13 240,902 6 0.00 17 100 1 0 100.00 39.43
1 240,918 7 0.00 19 100 1 0 100.00 35.93
2 241,080 6 0.00 16 100 1 0 100.00 39.42
27 241,105 6 0.00 16 100 1 0 100.00 37.31
3 241,562 6 0.00 16 100 1 0 100.00 36.60
28 242,029 6 0.00 16 100 1 0 100.00 40.18
5 242,068 6 0.00 16 100 1 0 100.00 37.09
6 242,086 6 0.00 16 100 1 0 100.00 38.84
15 242,311 6 0.00 16 100 1 0 100.00 38.30
23 242,809 6 0.00 16 100 1 0 100.00 38.32
22 243,068 12 0.00 42 100 1 0 100.00 39.39
8 243,621 14 0.00 58 100 1 0 100.00 39.15

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.46: Case 2. Optimization results for the formulation with β = 1, α = (N−1)/N . The results are ordered
by the value of the objective function. M = 30, N = 100.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

16 218,770 6 0.00 16 100 1 0 100.00 50.28
25 220,821 7 0.00 20 100 1 0 100.00 31.64
10 226,380 21 0.00 107 100 1 0 100.00 36.05
24 228,868 40 0.00 328 100 1 0 100.00 41.94
21 228,897 6 0.00 16 100 1 0 100.00 42.22
28 230,301 44 0.00 411 100 1 0 100.00 42.19
12 230,579 50 0.00 545 100 1 0 100.00 33.42
30 230,734 32 0.00 229 100 1 0 100.00 36.78
19 230,811 16 0.00 64 100 1 0 100.00 35.40
14 231,333 28 0.00 184 100 1 0 100.00 32.21
27 231,464 6 0.00 16 100 1 0 100.00 34.15
15 231,500 85 0.00 1,948 100 1 0 100.00 41.90
9 232,265 22 0.00 109 100 1 0 100.00 38.00
17 232,352 6 0.00 17 100 1 0 100.00 36.54
26 232,683 13 0.00 46 100 1 0 100.00 34.80
29 232,880 85 0.00 1,599 100 1 0 100.00 38.78
5 233,057 26 0.00 147 100 1 0 100.00 40.38
11 233,296 29 0.00 190 100 1 0 100.00 40.44
20 233,806 44 0.00 459 100 1 0 100.00 40.77
13 234,409 29 0.00 183 100 1 0 100.00 42.26
18 234,455 46 0.00 448 100 1 0 100.00 37.87
7 235,278 32 0.00 219 100 1 0 100.00 39.48
6 235,353 69 0.00 1,188 100 1 0 100.00 45.88
2 235,744 25 0.00 151 100 1 0 100.00 36.98
1 236,011 32 0.00 206 100 1 0 100.00 37.39
23 236,089 20 0.00 85 100 1 0 100.00 37.08
4 236,197 6 0.00 16 100 1 0 100.00 40.82
3 236,222 10 0.00 33 100 1 0 100.00 35.14
8 238,498 13 0.00 50 100 1 0 100.00 39.22
22 241,294 56 0.00 691 100 1 0 100.00 39.89

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.47: Case 2. Optimization results for the formulation with β = 0. The results are ordered by the value
of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

7 379,038 6 0.00 23 100 1 0 0.00 160.00
11 386,098 6 0.00 24 100 1 0 0.00 160.00
24 393,393 6 0.00 24 100 1 0 0.00 160.00
17 394,248 6 0.00 23 100 1 0 0.00 160.00
4 396,543 6 0.00 24 100 1 0 0.00 160.00
20 397,845 6 0.00 24 100 1 0 0.00 160.00
2 398,937 6 0.00 24 100 1 0 0.00 160.00
16 402,244 6 0.00 24 100 1 0 0.00 160.00
14 402,376 6 0.00 24 100 1 0 0.00 160.00
3 404,888 6 0.00 24 100 1 0 0.00 160.00
28 405,871 6 0.00 24 100 1 0 0.00 160.00
15 412,871 6 0.00 23 100 1 0 0.00 160.00
21 414,024 6 0.00 24 100 1 0 0.00 160.00
8 421,739 6 0.00 24 100 1 0 0.00 160.00
13 422,243 6 0.00 24 100 1 0 0.00 160.00
1 422,718 7 0.00 29 100 1 0 0.00 160.00
30 423,331 6 0.00 23 100 1 0 0.00 160.00
19 424,465 6 0.00 24 100 1 0 0.00 160.00
27 424,567 6 0.00 23 100 1 0 0.00 160.00
23 425,526 6 0.00 23 100 1 0 0.00 160.00
12 425,587 6 0.00 23 100 1 0 0.00 160.00
6 427,701 6 0.00 24 100 1 0 0.00 160.00
10 429,332 6 0.00 23 100 1 0 0.00 160.00
29 431,214 6 0.00 24 100 1 0 0.00 160.00
26 435,081 6 0.00 23 100 1 0 0.00 160.00
5 438,943 6 0.00 24 100 1 0 0.00 160.00
18 441,966 6 0.00 24 100 1 0 0.00 160.00
22 445,356 6 0.00 24 100 1 0 0.00 160.00
9 445,841 6 0.00 23 100 1 0 0.00 160.00
25 450,188 6 0.00 24 100 1 0 0.00 160.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.

75



Table C.48: Case 2. Optimization results for the formulation with β = 0.5, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

20 257,748 6 0.00 42 100 1 0 100.00 49.67
14 257,981 6 0.00 44 100 1 0 100.00 47.57
16 258,025 6 0.00 42 100 1 0 100.00 46.90
11 258,245 6 0.00 44 100 1 0 100.00 47.78
12 258,349 6 0.00 42 100 1 0 100.00 49.43
28 258,411 6 0.00 39 100 1 0 100.00 48.60
7 258,778 7 0.00 52 100 1 0 100.00 45.11
2 258,898 6 0.00 42 100 1 0 100.00 48.54
26 259,360 6 0.00 38 100 1 0 100.00 55.00
24 259,594 6 0.00 40 100 1 0 100.00 51.10
4 259,682 6 0.00 39 100 1 0 100.00 48.31
17 259,779 6 0.00 41 100 1 0 100.00 49.86
29 259,965 6 0.00 42 100 1 0 100.00 53.95
15 260,170 6 0.00 43 100 1 0 100.00 50.39
10 260,267 6 0.00 38 100 1 0 100.00 55.00
3 260,293 6 0.00 42 100 1 0 100.00 49.55
27 260,300 6 0.00 44 100 1 0 100.00 48.91
23 260,378 6 0.00 39 100 1 0 100.00 52.00
1 260,427 7 0.00 52 100 1 0 100.00 55.00
25 260,772 6 0.00 42 100 1 0 100.00 55.00
21 260,784 6 0.00 39 100 1 0 100.00 54.36
6 260,793 6 0.00 41 100 1 0 100.00 52.16
19 260,803 6 0.00 42 100 1 0 100.00 49.61
8 260,918 6 0.00 39 100 1 0 100.00 54.74
5 261,027 6 0.00 41 100 1 0 100.00 53.54
18 261,690 6 0.00 43 100 1 0 100.00 55.00
13 261,790 6 0.00 39 100 1 0 100.00 50.38
30 261,802 6 0.00 42 100 1 0 100.00 55.00
9 262,194 6 0.00 41 100 1 0 100.00 55.00
22 263,220 6 0.00 40 100 1 0 100.00 55.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.49: Case 2. Optimization results for the formulation with β = 1, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

20 238,248 6 0.00 40 100 1 0 100.00 38.27
12 238,967 6 0.00 36 100 1 0 100.00 38.58
10 239,050 6 0.00 43 100 1 0 100.00 38.48
29 239,153 6 0.00 34 100 1 0 100.00 38.32
30 239,174 6 0.00 38 100 1 0 100.00 39.59
24 239,257 6 0.00 38 100 1 0 100.00 39.65
14 239,289 6 0.00 39 100 1 0 100.00 38.59
28 239,433 6 0.00 37 100 1 0 100.00 37.52
16 239,469 6 0.00 35 100 1 0 100.00 37.98
11 239,732 6 0.00 44 100 1 0 100.00 39.15
17 239,767 6 0.00 38 100 1 0 100.00 39.15
27 239,796 6 0.00 39 100 1 0 100.00 38.80
9 239,806 6 0.00 41 100 1 0 100.00 38.76
8 239,847 6 0.00 40 100 1 0 100.00 39.13
23 239,886 6 0.00 39 100 1 0 100.00 37.97
3 239,897 6 0.00 37 100 1 0 100.00 38.67
25 239,928 6 0.00 35 100 1 0 100.00 38.06
21 240,030 6 0.00 39 100 1 0 100.00 38.64
26 240,099 6 0.00 35 100 1 0 100.00 38.67
19 240,265 6 0.00 37 100 1 0 100.00 37.53
1 240,586 7 0.00 47 100 1 0 100.00 38.58
5 240,662 6 0.00 40 100 1 0 100.00 38.72
4 240,815 6 0.00 42 100 1 0 100.00 37.84
2 240,869 6 0.00 39 100 1 0 100.00 38.52
7 240,941 6 0.00 46 100 1 0 100.00 39.18
15 240,967 6 0.00 38 100 1 0 100.00 38.09
18 241,011 6 0.00 37 100 1 0 100.00 39.85
22 241,191 6 0.00 37 100 1 0 100.00 39.25
6 241,577 6 0.00 41 100 1 0 100.00 39.17
13 242,038 6 0.00 37 100 1 0 100.00 38.82

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.

77



Table C.50: Case 2. Optimization results for the formulation with β = 1, α = (N−1)/N . The results are ordered
by the value of the objective function. M = 30, N = 500.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

12 218,757 6 0.00 34 100 1 0 100.00 43.36
30 220,833 9 0.00 71 100 1 0 100.00 37.83
20 222,004 6 0.00 33 100 1 0 100.00 34.84
24 223,950 19 0.00 303 100 1 0 100.00 36.27
10 224,680 26 0.00 611 100 1 0 100.00 44.26
13 225,354 15 0.00 176 100 1 0 100.00 44.65
14 225,985 15 0.00 220 100 1 0 100.00 33.17
8 226,144 24 0.00 494 100 1 0 100.00 43.19
6 226,291 6 0.00 35 100 1 0 100.00 40.97
5 226,837 7 0.00 44 100 1 0 100.00 38.08
9 227,104 12 0.00 118 100 1 0 100.00 36.91
29 227,114 19 0.00 317 100 1 0 100.00 41.73
27 227,267 37 0.00 1,220 100 1 0 100.00 36.07
21 227,566 6 0.00 33 100 1 0 100.00 36.37
25 228,217 36 0.00 1,572 100 1 0 100.00 37.87
4 228,328 47 0.00 2,372 100 1 0 100.00 38.04
7 228,755 6 0.00 32 100 1 0 100.00 38.58
22 228,859 74 0.00 8,967 100 1 0 100.00 34.60
16 228,926 6 0.00 35 100 1 0 100.00 36.90
26 229,088 32 0.00 1,203 100 1 0 100.00 36.73
28 229,236 9 0.00 73 100 1 0 100.00 33.84
19 229,549 32 0.00 1,018 100 1 0 100.00 36.78
1 229,644 20 0.00 357 100 1 0 100.00 35.86
3 229,761 13 0.00 147 100 1 0 100.00 37.30
17 230,121 9 0.00 71 100 1 0 100.00 41.82
15 230,258 19 0.00 364 100 1 0 100.00 34.53
11 230,308 19 0.00 322 100 1 0 100.00 39.65
2 230,839 6 0.00 36 100 1 0 100.00 40.50
18 231,640 18 0.00 261 100 1 0 100.00 37.02
23 232,142 6 0.00 34 100 1 0 100.00 36.72

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.51: Case 2. Optimization results for the formulation with β = 0. The results are ordered by the value
of the objective function. M = 30, N = 5000.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

7 405,696 6 0.00 199 100 1 0 0.00 160.00
26 407,199 6 0.00 192 100 1 0 0.00 160.00
10 408,563 6 0.00 192 100 1 0 0.00 160.00
22 410,452 6 0.00 187 100 1 0 0.00 160.00
5 411,117 6 0.00 191 100 1 0 0.00 160.00
1 414,447 7 0.00 243 100 1 0 0.00 160.00
24 414,780 6 0.00 192 100 1 0 0.00 160.00
20 415,108 6 0.00 191 100 1 0 0.00 160.00
13 415,186 6 0.00 186 100 1 0 0.00 160.00
25 415,315 6 0.00 193 100 1 0 0.00 160.00
6 416,114 6 0.00 193 100 1 0 0.00 160.00
18 416,536 6 0.00 191 100 1 0 0.00 160.00
4 416,543 6 0.00 193 100 1 0 0.00 160.00
3 417,303 6 0.00 194 100 1 0 0.00 160.00
14 417,922 6 0.00 194 100 1 0 0.00 160.00
30 418,085 6 0.00 194 100 1 0 0.00 160.00
12 418,730 6 0.00 191 100 1 0 0.00 160.00
11 419,309 6 0.00 193 100 1 0 0.00 160.00
28 420,349 6 0.00 191 100 1 0 0.00 160.00
27 421,228 6 0.00 188 100 1 0 0.00 160.00
21 423,891 6 0.00 193 100 1 0 0.00 160.00
8 424,395 6 0.00 194 100 1 0 0.00 160.00
19 425,205 6 0.00 194 100 1 0 0.00 160.00
23 425,290 6 0.00 193 100 1 0 0.00 160.00
2 426,018 6 0.00 196 100 1 0 0.00 160.00
16 426,418 6 0.00 193 100 1 0 0.00 160.00
29 428,238 6 0.00 193 100 1 0 0.00 160.00
15 429,282 6 0.00 191 100 1 0 0.00 160.00
17 432,086 6 0.00 188 100 1 0 0.00 160.00
9 438,123 6 0.00 192 100 1 0 0.00 160.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.52: Case 2. Optimization results for the formulation with β = 0.5, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 5000.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

7 259,298 6 0.00 427 100 1 0 100.00 50.45
22 259,370 6 0.00 402 100 1 0 100.00 51.13
26 259,453 6 0.00 419 100 1 0 100.00 49.93
12 259,484 6 0.00 462 100 1 0 100.00 51.17
5 259,484 6 0.00 397 100 1 0 100.00 50.79
10 259,647 6 0.00 423 100 1 0 100.00 49.51
4 259,652 6 0.00 440 100 1 0 100.00 50.99
3 259,688 6 0.00 459 100 1 0 100.00 52.45
18 259,794 6 0.00 390 100 1 0 100.00 52.62
13 259,854 6 0.00 470 100 1 0 100.00 51.99
28 259,903 6 0.00 437 100 1 0 100.00 53.42
11 259,911 6 0.00 423 100 1 0 100.00 50.84
25 260,003 6 0.00 451 100 1 0 100.00 52.19
14 260,028 6 0.00 486 100 1 0 100.00 51.14
30 260,078 6 0.00 403 100 1 0 100.00 52.95
19 260,082 6 0.00 407 100 1 0 100.00 53.33
16 260,151 6 0.00 398 100 1 0 100.00 54.12
6 260,177 6 0.00 388 100 1 0 100.00 51.77
20 260,217 6 0.00 404 100 1 0 100.00 51.03
27 260,290 6 0.00 435 100 1 0 100.00 51.79
1 260,298 7 0.00 593 100 1 0 100.00 52.78
23 260,342 7 0.00 565 100 1 0 100.00 53.77
8 260,363 6 0.00 440 100 1 0 100.00 52.12
21 260,405 6 0.00 420 100 1 0 100.00 51.57
2 260,433 6 0.00 433 100 1 0 100.00 53.11
24 260,458 6 0.00 398 100 1 0 100.00 51.30
29 260,663 7 0.00 569 100 1 0 100.00 53.77
15 260,922 6 0.00 390 100 1 0 100.00 54.23
9 260,944 7 0.00 538 100 1 0 100.00 53.67
17 261,169 6 0.00 375 100 1 0 100.00 55.00

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.53: Case 2. Optimization results for the formulation with β = 1, α = 0.9. The results are ordered by
the value of the objective function. M = 30, N = 5000.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

19 239,212 6 0.00 359 100 1 0 100.00 39.25
12 239,222 6 0.00 376 100 1 0 100.00 38.63
3 239,260 6 0.00 366 100 1 0 100.00 38.26
13 239,384 6 0.00 349 100 1 0 100.00 38.60
16 239,469 6 0.00 382 100 1 0 100.00 38.29
7 239,483 6 0.00 360 100 1 0 100.00 38.44
18 239,545 6 0.00 359 100 1 0 100.00 38.56
5 239,641 6 0.00 358 100 1 0 100.00 38.67
30 239,645 6 0.00 375 100 1 0 100.00 38.77
23 239,653 6 0.00 336 100 1 0 100.00 38.83
1 239,749 7 0.00 444 100 1 0 100.00 39.36
25 239,809 6 0.00 337 100 1 0 100.00 38.48
22 239,855 6 0.00 335 100 1 0 100.00 38.64
8 239,890 6 0.00 348 100 1 0 100.00 38.69
28 239,907 6 0.00 353 100 1 0 100.00 38.20
17 239,927 6 0.00 367 100 1 0 100.00 38.51
4 239,931 6 0.00 374 100 1 0 100.00 38.29
21 239,979 6 0.00 394 100 1 0 100.00 38.60
27 240,009 6 0.00 366 100 1 0 100.00 38.71
9 240,068 6 0.00 356 100 1 0 100.00 38.61
26 240,081 6 0.00 342 100 1 0 100.00 38.12
10 240,105 6 0.00 352 100 1 0 100.00 38.75
20 240,157 6 0.00 364 100 1 0 100.00 39.28
6 240,169 6 0.00 340 100 1 0 100.00 38.73
29 240,185 6 0.00 377 100 1 0 100.00 39.11
2 240,251 6 0.00 363 100 1 0 100.00 38.80
15 240,251 6 0.00 381 100 1 0 100.00 38.74
14 240,257 6 0.00 387 100 1 0 100.00 38.55
24 240,423 6 0.00 336 100 1 0 100.00 39.00
11 240,497 6 0.00 386 100 1 0 100.00 38.20

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Table C.54: Case 2. Optimization results for the formulation with β = 1, α = (N−1)/N . The results are ordered
by the value of the objective function. M = 30, N = 5000.

First-stage variables (aggregated)

m ŵN,m (e) ITER GAP (%) T (s) UT (%) SUP SD SELLC (MW) BUYC (MW)

9 216,894 13 0.00 2,052 100 1 0 100.00 38.54
12 217,025 6 0.00 352 100 1 0 100.00 36.23
11 218,970 9 0.00 827 100 1 0 100.00 34.74
6 219,618 24 0.61 11,071 99.4 2 1 100.00 40.52
1 219,752 10 0.00 1,071 100 1 0 100.00 35.26
2 219,785 15 0.00 3,643 100 1 0 100.00 39.95
22 219,899 6 0.00 345 100 1 0 100.00 34.81
16 220,122 6 0.00 315 100 1 0 100.00 39.01
5 220,313 6 0.00 346 100 1 0 100.00 35.73
20 220,466 17 0.00 4,050 100 1 0 100.00 39.45
27 220,732 6 0.00 354 100 1 0 100.00 40.70
30 220,744 21 0.07 11,191 100 1 0 100.00 39.53
13 220,956 6 0.00 316 100 1 0 100.00 38.70
19 221,324 6 0.00 345 100 1 0 100.00 38.83
14 221,740 13 0.00 2,188 100 1 0 100.00 36.16
23 221,810 14 0.00 2,683 100 1 0 100.00 38.90
7 222,244 6 0.00 335 100 1 0 100.00 38.33
17 222,371 6 0.00 320 100 1 0 100.00 34.90
10 222,624 25 0.40 12,105 100 1 0 100.00 36.10
29 222,741 25 0.00 11,348 100 1 0 100.00 39.53
21 223,017 7 0.00 545 100 1 0 100.00 37.02
24 223,078 6 0.00 315 100 1 0 100.00 38.07
3 223,190 6 0.00 364 100 1 0 100.00 36.68
15 223,280 18 0.00 5,356 100 1 0 100.00 40.04
18 223,527 12 0.00 2,080 100 1 0 100.00 38.98
4 223,627 14 0.00 2,646 100 1 0 100.00 38.05
28 224,112 17 0.00 4,547 100 1 0 100.00 39.79
25 224,619 6 0.00 350 100 1 0 100.00 38.50
8 224,876 6 0.00 345 100 1 0 100.00 36.10
26 225,697 9 0.00 765 100 1 0 100.00 39.19

m - Optimization replication number, ŵN,m - objective function value for Optimization replication m, ITER -
number of iterations of the L-Shaped method, GAP - gap between the upper and lower bound within the
L-Shaped method, T - elapsed wall-clock time, UT - percentage of up-time of the thermal unit, SUP - number
of startups of the thermal unit, SD - number of shutdowns of the thermal unit, SELLC - power sold through
contract, BUYC - power bought through contract.
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Appendix D. Supplementary results - bound estimation stage

Figures D.9 and D.10 show the limits of the confidence intervals on the point estimate of
the lower and upper bounds on the objective function (LBN ′,T ′ and UBN ′,T ′ , respectively) as a
function of the risk parameters, N ′, T , and T ′. These results complement the results presented
for a limit set of risk parameters in Figures 5 and 6.
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(g) β = 1, α = (N − 1)/N , N ′ = 5, 000,
{T, T ′} = 10.
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(h) β = 1, α = (N − 1)/N , N ′ = 25, 000,
{T, T ′} = 30.

Figure D.9: Case 1. Limits of the confidence intervals on the point estimates of the lower and upper
bounds on the objective function (LBN ′,T ′ and UBN ′,T ′ , respectively) as a function of risk parameters,
N ′, T , and T ′. M = 30.
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(a) β = 0, N ′ = 5, 000, {T, T ′} = 10.
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(c) β = 0.5, α = 0.90, N ′ = 5, 000, {T, T ′} =
10.
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(d) β = 0.5, α = 0.90, N ′ = 25, 000, {T, T ′} =
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(e) β = 1, α = 0.90, N ′ = 5, 000, {T, T ′} = 10.
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(f) β = 1, α = 0.90, N ′ = 25, 000, {T, T ′} = 30.Chart	#1		-		27/11/17 CHRT-BOUNDS-SAA-CASE	2,1,1	ZX
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(g) β = 1, α = (N − 1)/N , N ′ = 5, 000,
{T, T ′} = 10.
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(h) β = 1, α = (N − 1)/N , N ′ = 25, 000,
{T, T ′} = 30.

Figure D.10: Case 2. Limits of the confidence intervals on the point estimate of the lower and upper
bounds on the objective function (LBN ′,T ′ and UBN ′,T ′ , respectively) as a function of risk parameters,
N ′, T , and T ′. M = 30.
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