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Abstract

We propose a new Kalikow decomposition and the corresponding Per-
fect Simulation algorithm for continuous time multivariate counting pro-
cesses, on potentially infinite networks. We prove the existence of such a
decomposition in various cases. This decomposition is not unique and we
discuss the choice of the decomposition in terms of algorithmic efficiency.
We apply these methods on several examples: linear Hawkes process, age
dependent Hawkes process, exponential Hawkes process.

Keywords: Kalikow decomposition, counting process, Hawkes process, Per-
fect Simulation algorithm

MSC 2010 subject classification: 60G55, 60K35

1 Introduction

Multivariate point (or counting) processes on networks have been used to model
a large variety of situations : social networks [14], financial prices [2], genomics
[22], etc. One of the most complex network models comes from neuroscience
where the number of nodes can be as large as billions [17, 16, 23]. Several
counting process models have been used to model such large networks: Hawkes
processes [12, 11], Galves-Löcherbach models [10] etc. If the simulation of such
large and potentially infinite networks is of fundamental importance in compu-
tational neuroscience [16, 17], also the existence of such processes in stationary
regime and within a potentially infinite network draws a lot of interest (see
[10, 19, 13] in discrete or continuous time).

Kalikow decompositions [15] have been introduced and mainly used in dis-
crete time. Such a decomposition provides a decomposition of the transition
probabilities into a mixture of more elementary transitions. The whole idea is
that even if the process is complex (infinite memory, infinite network), the ele-
mentary transitions look only at what happens in a finite neighborhood in time
and space. Once the decomposition is proved for a given process, this can be
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used to write a Perfect Simulation algorithm [10, 13, 19]. Here the word ”per-
fect” refers to the fact that it is possible in finite time to simulate what happens
on one of the nodes of the potentially infinite network in a stationary regime.
The existence of such an algorithm guarantees in particular the existence of the
process in stationary regime. Most of the papers referring to Kalikow decompo-
sition and Perfect Simulation are theoretical and aim at proving the existence
of such processes on infinite networks in stationary regime [13, 10].

In the present paper, we propose to go from discrete to continuous time.
Therefore, we will decompose conditional intensities rather than transition prob-
abilities. This leads to serious difficulties that usually prevent a more practical
application of the Perfect Simulation algorithm. Indeed, up to our knowledge,
the only work dealing with continuous time counting processes, is the one by
Hodara and Löcherbach [13]. Their decomposition is constructed under the as-
sumption that there is a dominating Poisson process on each of the nodes, from
which the points of the processes under interest can be thinned by rejection
sampling (see also [18] for another use of thinning in simulation of counting
processes). To prove the existence of a Kalikow decomposition and go back to
a more classic discrete time setting, the authors need to freeze the dominating
Poisson process, leading to a mixture, in the Kalikow decomposition, that de-
pends on the realization of the dominating Poisson process. Such a mixture is
not accessible in practice, and this prevents the use of their Perfect Simulation
algorithm for more concrete purposes than mere existence.

More recently, in a previous computational article [17], we have used another
type of Kalikow decomposition, which does not depend on the dominating Pois-
son process. This leads to a Perfect Simulation algorithm, which can be used as
a concrete way for Computational Neuroscience to simulate neuronal networks
as an open physical system, where we do not need to simulate the whole network
to simulate what happens in a small part [17].

In the present work, we want to go further, by proposing an even more
general Kalikow decomposition, which does not assume the existence of a dom-
inating Poisson process at all. We also prove (and this is not done in [17]) that
such decomposition exists on various interesting examples, even if these decom-
positions are not unique. Finally we propose a corresponding Perfect Simulation
algorithm and we discuss its efficiency with respect to the decomposition that
is used.

The paper is organized as follows. In Section 2, we introduce the basic
notation and give the precise definition of a Kalikow decomposition. In Section
3, we present two methods to obtain a Kalikow decomposition for a counting
process having stochastic intensity. The first method is very general and based
on adequate choices of neighborhoods and weights. As an application, we study
a classical example, the linear Hawkes process [12, 11], and a very recent and
promising process, the age dependent Hawkes process [20]. Though very simple
cases of Hawkes processes are treated, it is worth to note that our method can
be generalized very easily. The second method exists only for Hawkes processes
and is based on Taylor expansion. Finally, in Section 4, we present a modified
Perfect Simulation algorithm based on the Kalikow decomposition written in
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Section 3, and we discuss the efficiency of the algorithm with respect to the
Kalikow decomposition.

2 Notation and Kalikow decomposition

2.1 Notation and Definition

We start this section by recalling the definition of counting processes and stochas-
tic intensity. We refer the reader to [4] and [9] for more complete statements.

Let I be a countable index set. A counting process Zi, i ∈ I, can be described
by its sequence of jump times in R, (T in)n∈Z [4]. Consider (Ft)t∈R the past
filtration of the process Z = (Zi)i∈I:

Ft = σ(Zis, i ∈ I, s ≤ t).

Since a point process is fully characterized by its arrival times [4], we can
denote by X the canonical path space of Z:

X = {({tin}n∈Z)i∈I such that ∀n, i, tin < tin+1 and ti0 ≤ 0 < ti1},

where {tin}n∈Z denotes a possible realization of (T in)n∈Z. Denote Xt the canon-
ical path space of Z before time t:

Xt = X ∩ (−∞, t)I .

A past configuration xt is an element of Xt which is a realization of arrival
times of Z before t.

Under suitable assumptions, the evolution of the point process Zi with re-
spect to (Ft)t∈R is fully characterized by its stochastic intensity which depends
on the past configuration, see Proposition 7.2.IV of [9]. Hence, in this paper,
for any xt ∈ Xt, given that the past before time t is xt, we denote by φi,t(xt)
the corresponding stochastic intensity of the process Zi at time t for any i ∈ I.
More precisely, for any xt ∈ Xt, we have

P
(
Zi has jump in [t, t+ dt) | past before time t = xt

)
= φi,t(xt)dt.

Together with the path space Xt, we denote Vt a countable collection of
finite space-time neighborhoods vt, in which each neighborhood vt is a Borel
subset of I × (−∞, t). More precisely, we call vt a finite neighborhood if there
exists a finite subset J ⊂ I and a finite interval [a, b] such that:

vt ⊂ J × [a, b].

For convenience, we denote X the canonical path space of Z before time 0
instead of X0. In addition, a past configuration before 0 is denoted by x and the
intensity at time 0 is φi(x) instead of φi,0(x0). Moreover, if x =

(
{tin}n∈Z−

)
i∈I ∈

X , then for any i ∈ I, we denote the point measure associated to index i by
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dxis =
∑
m∈Z−

δtim(ds)

in which δt(.) is a Dirac measure at t. Throughout this article, without further

mentioning, the integral
∫ b
a

stands for
∫

[a,b)
with a, b ∈ R.

Let xt =
(
{tin}n∈Z

)
i∈I ∈ Xt and denote x←tt :=

(
{tin − t}n

)
i
∈ X the shifted

configuration. In this paper, if we do not mention otherwise, we always consider
time homogeneous point processes, which in our setting can be defined as follows.

Definition 1. For a given i ∈ I, a counting process Zi with stochastic intensity
(φi,t(xt))t∈R is said to be time homogeneous if

φi,t(xt) = φi(x
←t
t )

for all t ∈ R and xt ∈ Xt.

Before giving the definition of a Kalikow decomposition, we introduce the
definition of a cylindrical function as follows.

Definition 2. For any neighborhood vt ∈ Vt and xt, yt ∈ Xt, we say xt
vt= yt

whenever xt = yt in vt. This means that, for all i ∈ I, n ∈ Z, such that tin ∈ xt
and (i, tin) ∈ vt, we have tin ∈ yt and vice-versa. A real valued function f is

called cylindrical in vt if f(xt) = f(yt) for any xt
vt= yt, and we usually stress

the dependence in vt by denoting fvt(xt).

In what follows, we give the definition of the Kalikow decomposition for a
counting process Zi with stochastic intensity φi,t(xt).

Definition 3. We say a time homogeneous process Zi for some i ∈ I admits
the Kalikow decomposition with respect to (w.r.t) a neighborhood family (Vt)t∈R
and a sequence of subspaces (Yt)t∈R of X∞, if for all t, the intensity φi,t(xt)
admits a convex decomposition for any past configuration xt ∈ Xt ∩Yt , that is,
for any vt ∈ Vt there exists a cylindrical function φvti,t(.) on vt taking values in

R+ and a probability density function λi,t(.) such that

∀xt ∈ Xt ∩ Yt, φi,t(xt) = λi,t(∅)φ∅i,t +
∑

vt∈Vt,vt 6=∅

λi,t(vt)φ
vt
i,t(xt) (2.1)

with λi,t(∅) +
∑

vt∈Vt,vt 6=∅
λi,t(vt) = 1.

We say process Z = (Zi)i∈I satisfies a Kalikow decomposition w.r.t (Vt)t∈R
and (Yt)t∈R if for all i ∈ I each process Zi satisfies a Kalikow decomposition
w.r.t (Vt)t∈R and (Yt)t∈R. For simplicity, all the conventions of (Xt)t∈R will
be used for (Yt)t∈R, such as Y0 being replaced by Y, etc.

Remark 1. Note that the function λi,t(.) in Definition 3 is a deterministic func-
tion, that is why this decomposition is unconditional, whereas in [13], λi,t(.) was
depending on the dominating Poisson processes (see Introduction). Secondly, we
do not restrict ourself to a bounded intensity, which is a notable improvement
compared to [17].
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In the following subsection, we show that we can translate the decomposition
at time 0 to any time t when dealing with time homogeneous processes.

2.2 From the decomposition at time 0 to the decomposi-
tion at any time t.

In the context of time homogeneous process, for any t ∈ R, we define

Yt = Y→t = {x+ t|x ∈ Y}.

For all i ∈ I, assume that Equation (2.1) is satisfied at time t = 0 for any
x ∈ X ∩Y, we then prove that, for time homogeneous processes, this equation is
achieved at any time t, for any xt ∈ Xt∩Yt, for a particular choice of Vt. Hence,
to show that a counting process Zi, i ∈ I satisfies a Kalikow decomposition, it
is then sufficient to write the Kalikow decomposition at time 0 only.

Consider a neighborhood family at time 0, V0. Take a neighborhood v ∈ V0

and for t ≥ 0, denote v→t = {(i, u + t) : (i, u) ∈ v}, i.e, shift to the right the
time component of the neighborhood v by t and define

Vt = V→t := {v→t : v ∈ V0}. (2.2)

Since Equation (2.1) is satisfied at time 0 for any x ∈ X ∩ Y and since
x←tt ∈ X ∩ Y, this implies that

φi(x
←t
t ) = λi,0(∅)φ∅i,0 +

∑
v∈V0,v 6=∅

λi,0(v)φvi,0(x←tt ).

Define the cylindrical function ϕv
→t

i,t , that is cylindrical on v→t such that

ϕv
→t

i,t (xt) = φvi,0(x←tt ) and ϕ∅i,t := φ∅i,0. Moreover, for any nonempty neighbor-

hood v in V0, we consider λi,t(v
→t) = λi,0(v). Since Zi is a time homogeneous

process, by Definition 1, we have that

φi,t(xt) = λi,t(∅)ϕ∅i,t +
∑

v→t∈Vt,v→t 6=∅

λi,t(v
→t)ϕv

→t

i,t (xt) (2.3)

with
λi,t(∅) +

∑
v→t∈Vt,v→t 6=∅

λi,t(v
→t) = 1.

This shows that Equation (2.1) is satisfied at any time t. Thus, by defini-
tion, Zi admits a Kalikow decomposition w.r.t the neighborhood family (Vt)t∈R
where Vt = V→t. In addition, (Vt)t∈R is completely determined once the neigh-
borhood family at time 0, V0, is determined. From now on, it is sufficient to
mention V0 whenever we speak about the Kalikow decomposition.
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2.3 About the subspace Y
The role of the subspace Y is to make the Kalikow decomposition achievable.
There are many possible choices for such a subspace, depending on the model
under consideration. In this paper, we focus for instance on the choice Y = X>δ,
the subspace of X where the distance between any two consecutive possible
jumps is greater than δ. More precisely,

X>δ = {x = ({tin}n∈Z−)i∈I such that ∀n, i tin+1 − tin > δ and ti0 ≤ 0}.
(2.4)

Another possible choice of a subspace Y that we consider guarantees that
the intensity is finite, by introducing

Y = {x ∈ X , ∀i φi(x) <∞}.

In practice, either the process is known, namely, the formula of the intensity
is given, and we dispose of theoretical results that guarantee for instance that
x ∈ Y almost surely, or we handle the decomposition by creating a certain
threshold. Before the process reaches this threshold, we are able to achieve
the Kalikow decomposition by following one of the methods described in the
following section. However, after having reached this threshold we can not say
anything any more. This depends of course on the initial condition, and if we
start for instance with no point on (−∞, 0), the intensity is in many cases likely
to be finite at least at time 0. To proceed further with a Perfect Simulation
algorithm is more tricky since we need to check that the intensity remains finite
during all steps of the algorithm. This will be the main object of a future work.

3 Main results

3.1 The first method

In this section, we present step by step a general method to prove the existence
of a Kalikow decomposition for the counting process Zi, i ∈ I. We start by
discussing the relevant family of neighborhoods.

For any subset J ⊂ I we say a process Zi is locally dependent on a subprocess
ZJ := (Zj)j∈J if the intensity φi(x) is a cylindrical function on J × (−∞, 0).
Roughly speaking, a process Zi is locally dependent on a subprocess ZJ if the
information of process Zj with j ∈ J is compulsory to compute the intensity
of process Zi. For short, we say i is locally dependent on J . A more formal
definition of local dependence can be found at [8]. Denote

V.→i := {j ∈ I such that i is locally dependent on j} (3.1)

and Si := V.→i × (−∞, 0).
We denote by (P,≤) a countable, ordered set. To simplify notation, in

what follows, we consider P to be N, but depending on the concrete examples,
different sets P will be considered, for example N×N, etc.
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Define a family of finite space-time neighborhoods at time 0 associated to
the dynamic of Zi:

Vi = {(vik)k∈P ⊂ I× (−∞, 0) such that ∪k vik = Si} (3.2)

with the convention that vi0 = ∅.
In order to prove that Zi admits a Kalikow decomposition w.r.t the neigh-

borhood family Vi and a convenient subspace Y, we use the following condition.
Once this condition is fulfilled, we will show in Proposition 1 below that we can
derive the corresponding Kalikow decomposition.

Assumption 1. There exists a non-negative sequence of functions (∆i
k(x))k∈P

which are cylindrical on vik such that

n∑
k=0

∆i
k(x)→ φi(x)

as n→∞, for every x ∈ X ∩ Y.

Now, we present a method to obtain a Kalikow decomposition under As-
sumption 1.

Step 1: For any k ≥ 0, take ∆i
k(x) from Assumption 1, it then guarantees

that φi(x) can be written as follows:

φi(x) = ∆i
0 +

∑
k≥1

∆i
k(x)

where ∆i
0 := ∆i

0(x) is a constant, that is, it does not depend on x since vi0 = ∅.
Note that, for k ≥ 1, by definition, ∆i

k(x) is cylindrical on vik and non negative.
Step 2: Define a deterministic nonnegative sequence (ηik)k∈P such that∑

k≥0

ηik = 1.

Obviously, φi(x) can be written as:

φi(x) = ηi0
∆i

0

ηi0
+
∑
k≥1

ηik
∆i
k(x)

ηik

with the convention that 0/0 = 1. We can set ηik to 0 whenever ∆i
k(x) equals 0

for all x and even discard the corresponding neighborhood from Vi.

Proposition 1. Consider a point process Zi, i ∈ I, with intensity at time 0,
φi(x), for any x ∈ X . For the neighborhood family Vi defined in (3.2), if φi(x)
satisfies Assumption 1, then Zi has the following Kalikow decomposition with
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respect to Vi and the subspace Y:

λi(∅) = ηi0

φ∅i =
∆i

0

ηi0
λi(v

i
k) = ηik

φ
vik
i (x) =

∆i
k(x)

ηik

for any choice of non negative weights (ηik)k∈P such that∑
k≥0

ηik = 1.

Remark 2. From Step 2, it is clear that such a Kalikow decomposition is not
unique. However, to perform the Perfect Simulation algorithm (see Section 4),
(ηik)k∈P can not be chosen arbitrarily. These weights need to satisfy several
conditions, for example: the stopping condition, see Proposition 5 below, which
enables the algorithm to end. On the other hand, for the simulation purposes,

these weights should be chosen carefully to avoid the explosion of φ
vik
i (x). In

addition, they also influence the mean number of total simulated points of this
algorithm, and therefore the efficiency of the algorithm (see Section 4). To
illustrate this point more clearly, one example is considered in Section 4.

3.2 Examples of the first method

3.2.1 Linear Hawkes process.

In the following, we consider a linear Hawkes process [12, 11], where the intensity
at time 0, φi(x), is given as follows. For any x ∈ X ,

φi(x) = µi +
∑
j∈I

∫ 0

−∞
hji(−s)dxjs,

where hji(.) measures the local dependence of process Zi on Zj and µi refers
to the spontaneous rate of process Zi.

We consider the following assumption for the method to work.

Assumption 2. For all i, j ∈ I, hji(.) is a non negative function.

Denote ε an arbitrary, fixed and positive number. Then we have

φi(x) = µi +
∑
j∈I

∑
n∈N∗

∫ −nε+ε
−nε

hji(−s)dxjs.

Furthermore, in this example, we have

V.→i = {j ∈ I such that hji 6= 0}.

8



Since I is at most countable, we may enumerate the indices in I by jl for
l ∈ N∗. In this example we put P = N∗×N∗, and we consider the neighborhood
family Vatom as follows: for l, n ≥ 1

vi(l,n) := {jl} × [−nε,−nε+ ε).

We define, for all l, n ≥ 1:

∆i
(l,n)(x) :=

∫ −nε+ε
−nε

hjli(−s)dxjls ≥ 0,

and ∆i
(0,0) := ∆i

(0,0)(x) := µi. Applying the Monotone Convergence theorem,
we obtain

∆i
(0,0) +

(L,N)∑
(l,n)=(1,1)

∆i
(l,n)(x)→ φi(x),

when (L,N)→ (∞,∞).
Notice that the intensity φi(x) is finite if and only if the series converges.

However, what we do here is more general, since we allow the intensity to be
infinite.

Thus, Assumption 1 is fulfilled. As a consequence, relying on Proposition 1,
we conclude that Zi has a Kalikow decomposition with respect to Vatom with

λi(∅) = η(0,0)

φ∅i =
µi
η(0,0)

λi

(
vi(l,n)

)
= η(l,n)

φ
vi(l,n)

i (x) =

∫ −nε+ε
−nε hjli(−s)dxjls

η(l,n)
,

for any choice of non negative weights
(
ηi(l,n)

)
(l,n)∈N∗×N∗

such that

ηi(0,0) +
∑
l,n≥1

ηi(l,n) = 1.

Remark 3. Note that under mild conditions (see for instance [7]) it is well-
known that the process exists in a stationary regime. On the other hand, for our
purpose it is sufficient to consider the subspace Y = {x ∈ X | ∀i φi(x) < ∞}
such that for all x ∈ X ∩ Y, φi(x) and φvi (x) are finite.

3.2.2 Age dependent Hawkes process with hard refractory period.

In this section, we are interested in writing a Kalikow decomposition for Age
dependent Hawkes processes with hard refractory period. Up to our knowledge,
this process was first introduced in [5] and no Kalikow decomposition has been

9



proved, even in a conditional framework, for this type of process. In our set-
ting, the stochastic intensity of an Age dependent Hawkes process with hard
refractory of length δ > 0 can be written as follows. For any i ∈ I and x ∈ X ,

φi(x) = ψi

∑
j∈I

∫ 0

−∞
hji(−s)dxjs

1ai0(x)>δ (3.3)

with the convention that ai0(x) = −Li0(x) and

Li0(x) = sup{tik ∈ x such that tik < 0} = ti−1

is the last jump before 0 of process Zi, if it has at least one jump. Otherwise,
we put Li0(x) = −∞. Again, we have

V.→i = {j ∈ I such that hji 6= 0} ∪ {i}.
By definition of stochastic intensity (3.3), we observe that the distance of any
two consecutive jumps have to be larger than δ. This observation leads us to
consider the subspace Y = X>δ that is introduced in (2.4). To prove a Kalikow
decomposition, we consider the following assumptions.

Assumption 3. (i) For all i, j ∈ I, hji(.) is a non negative, non increasing
L1 function. Moreover, for every i∑

j∈I

‖hji‖L1 <∞.

(ii) For every i, ψi(.) is an increasing, non negative continuous function.

On the other hand, we build a neighborhood family Vnested by introducing
a non decreasing sequence (Vi(k))k≥0 of finite subsets of I such that

Vi(0) = ∅, Vi(1) = {i}, Vi(k − 1) ⊂ Vi(k) and ∪k Vi(k) = V.→i ∪ {i }. (3.4)

Consider P = N and set vik = Vi(k)× [−kδ, 0), then we obtain by construc-
tion an increasing, nested neighborhood sequence (vik)k∈N. By applying the
methodology of Section 3.1, we prove the following Proposition.

Proposition 2. Consider X>δ defined as in (2.4). For any past configuration
x ∈ X , suppose that the intensity is of the form

φi(x) = ψi

∑
j∈I

∫ 0

−∞
hji(−s)dxjs

1ai0(x)>δ.

If Assumption 3 is fulfilled, then the corresponding Kalikow decomposition with
respect to Vnested and X>δ is for k ≥ 1λi(v

i
k) = ηik

φ
vik
i (x) =

∆i
k(x)

ηik

with
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(i) any positive sequence (ηik)k≥1 such that
∑
k≥1 η

i
k = 1,

(ii)

∆i
k(x) = ψi

 ∑
j∈Vi(k)

0∫
−kδ

hji(−s)dxjs

1ai0(x)>δ

− ψi

 ∑
j∈Vi(k−1)

0∫
−kδ+δ

hji(−s)dxjs

1ai0(x)>δ

for k ≥ 2 and ∆1
i (x) = ψi(0)1ai0(x))>δ.

Remark 4. Note that λi(∅) does not appear in the above Kalikow decomposi-
tion. Amazingly, this does not cause any problems for the Perfect Simulation
algorithm (see Section 4). We stress that this is one of the main differences
with [13], the other one being that the decomposition does not depend on the
dominating Poisson processes.

Proof. For any x ∈ X>δ, i ∈ I and k ≥ 2, consider

∆i
k(x) = ψi

 ∑
j∈Vi(k)

∫ 0

−kδ
hji(−s)dxjs

1ai0(x)>δ

− ψi

 ∑
j∈Vi(k−1)

∫ 0

−kδ+δ
hji(−s)dxjs

1ai0(x)>δ. (3.5)

By Assumption 3, (∆i
k(x))k∈N is well-defined, non negative and cylindrical

on vik. Moreover, we set ∆i
0 = 0 as well ηi0 = 0 and ∆1

i (x) = ψi(0)1ai0(x))>δ. Let

r
[n]
i (x) :=

n∑
k=1

∆i
k(x) = ψi

 ∑
j∈Vi(n)

∫ 0

−nδ
hji(−s)dxjs

1ai0(x)>δ

and let us show that r
[n]
i (x)→ φi(x) when n→∞. Consider the inner-term of

the parenthesis,∑
j∈Vi(n)

∫ 0

−nδ
hji(−s)dxjs =

∫
I×R−

hji(−s)1(j,s)∈vindx
j
sdκj ,

where we denote dκ the counting measure on the discrete set I.
We have that

(
hji(−s)1(j,s)∈vin

)
n∈Z is non negative and non decreasing se-

quence in n. In addition, it converges to hji(−s)1(j,s)∈V.→i×(−∞,0) as n → ∞.
Moreover, since ψi(.) is a continuous and increasing function, the Monotone con-

vergence theorem for Lebesgue Stieltjes measures implies that r
[n]
i (x) → φi(x)

as n → ∞. As a consequence, Assumption 1 is fulfilled, and by Proposition 1,
the conclusion follows.
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Remark 5. Denote Dk
i (x) = {z ∈ X>δ : z

vik= x}. Clearly,

ψi

∑
j∈I

∫ 0

−∞
hji(−s)dzjs

1ai0(x)>δ = ψi

( ∑
j∈Vi(k)

∫ 0

−kδ
hji(−s)dzjs+

+
∑

j∈Vi(k)

∫ −kδ
−∞

hji(−s)dzjs +
∑

j /∈Vi(k)

∫ 0

−∞
hji(−s)dzjs

)
1ai0(x)>δ.

By Assumption 3, we conclude that,

inf
z∈Dki (x)

ψi

∑
j∈I

∫ 0

−∞
hji(−s)dzjs

1ai0(x)>δ = ψi

 ∑
j∈Vi(k)

∫ 0

−kδ
hji(−s)dxjs

1ai0(x)>δ.

The equality is achieved when we consider the configuration z having points
only inside the neighborhood vik.

Hence, for k ≥ 2, we observe that

∆i
k(x) = inf

z∈Dki (x)
ψi

∑
j∈I

∫ 0

−∞
hji(−s)dzjs

1ai0(x)>δ

− inf
z∈Dk−1

i (x)
ψi

∑
j∈I

∫ 0

−∞
hji(−s)dzjs

1ai0(x)>δ.

The above prescription corresponds to the classical method of obtaining a Ka-
likow decomposition in discrete time, discussed in [13, 10].

3.3 Another method for nonlinear Hawkes processes

In this section, we present a second method to prove the existence of a Kalikow
decomposition for nonlinear Hawkes processes [3]. In the setting of this section,
we suppose that the intensity of the nonlinear Hawkes process Zi, i ∈ I, is given
by

φi(x) = ψi

∑
j∈I

∫ 0

−∞
hji(−s)dxjs


for any x ∈ X .

We work under the following assumptions.

Assumption 4. (i) For any i, j ∈ I, the function hji(.) is non negative and
belongs to L1. Moreover, for every i, we have∑

j∈I

‖hji‖L1 <∞.

12



(ii) For every i ∈ I, ψi(.) is an analytic function on R with radius of con-
vergence about 0 which is given by K, for some positive K. Moreover, its

derivative of order n, ψ
(n)
i (0), is non negative for all n ≥ 1, and ψi(0) is

non negative as well.

In this section, to develop our series using Taylor expansion, we choose

YK =

x | sup
i

∑
j

∫ 0

−∞
hji(−s)dxjs

 < K

 .

We now describe our method. We fix ε an arbitrary positive parameter, and
we put D = I×N. An index in D is α = (j, n) where j ∈ I and n ∈ N. We put
|α| := |j|+ n. For any x ∈ X ∩ YK , we introduce

aα(x) :=

∫ −nε
−(n+1)ε

hji(−s)dxjs.

Note that, whenever x ∈ X ∩ YK , we have aα(x) converges to 0 when
|α| → ∞. Furthermore, we have

φi(x) = ψi

∑
j∈I

∑
n∈N

∫ −nε
−(n+1)ε

hji(−s)dxjs

 = ψi

∑
j∈I

∑
n∈N

ajn(x)

 = ψi

(∑
α∈D

aα(x)

)
.

We suppose moreover that

Assumption 5. For any i ∈ I, there exist a deterministic sequence (ηiαk)αk∈D ∈
(0, 1) such that ∑

n≥1

∑
α1,...,αn∈D

ηiα1
. . . ηiαn < 1.

Let us consider P = ∪∞n=1D
n where Dn := D ×D × . . .×D (n times). We

construct the neighborhood family VTaylor by defining for α1:k = (α1, . . . , αk),

viα1:k
= vi(α1,...,αk) := ∪kl=1wαl , (3.6)

where wαl := {j} × [−(n+ 1)ε, nε) if αl = (j, n), and vi0 := ∅.

Proposition 3. Consider a non linear Hawkes process Zi, i ∈ I, with intensity
φi(x) given by

φi(x) = ψi

∑
j∈I

∫ 0

−∞
hji(−s)dxjs

 .

Under Assumption 4 and 5, Zi has a Kalikow decomposition with respect to
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the neighborhood family VTaylor defined by (3.6) and YK as follows:

λi(∅) = 1−
∑
k≥1

∑
α1,...,αk∈D η

i
α1
. . . ηiαk

φ∅i =
ψi(0)

λi(∅)
λi(v

i
α1:k

) = ηiα1
. . . ηiαk

φ
viα1:k
i (x) =

ψ
(k)
i (0)

k!

aα1
(x)

ηiα1

. . .
aαk(x)

ηiαk
,

for any weights (ηiαk)αk∈D satisfying Assumption 5 and for α = (j, n), aα defined
by

aα(x) :=

∫ −nε
−(n+1)ε

hji(−s)dxjs.

Proof. From Assumption 4, (ii), and noticing that for any x ∈ X ∩YK , we have
0 ≤

∑
j∈I
∑
n∈N ajn(x) =

∑
α∈D aα(x) < K, we have a Taylor expansion of

φi(x):

φi(x) = ψi

∑
j∈I

∑
n∈N

ajn(x)

 = ψi

(∑
α∈D

aα(x)

)

= ψi(0) +
∑
k≥1

ψ
(k)
i (0)

k!

 ∑
α=(j,n)∈D

aα(x)

k

= ψi(0) +
∑
k≥1

∑
α1...αk∈D

ψ
(k)
i (0)

k!
aα1(x) . . . aαk(x).

Thus, to obtain the Kalikow decomposition, take (ηiαk)αk∈D from Assump-
tion 5, then the conclusion follows.

Remark 6. The parameter (ηiαk)αk∈D plays the same role here as (ηik)k∈N in
the previous section. Again, the choice of this parameter is discussed in Section
4.

In the following, we give several examples in which we can apply the second
method.

3.4 Examples of second method

In this section, we always consider a deterministic sequence (ηiαk)αk∈D that
satisfies Assumption 5.

Example 1. Exponential Hawkes process with ψi(.) := exp(.). In this case we

have K =∞, ψi(0) = 1 and ψ
(k)
i (0) = 1 for k ≥ 1. Therefore,
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φi(x) = exp

∑
j∈I

∫ 0

−∞
hji(−s)dxjs


= 1 +

∑
k≥1

∑
α1...αk∈D

1

k!
aα1(x) . . . aαk(x).

Then, the Kalikow decomposition of Zi with respect to the neighborhood fam-
ily VTaylor in (3.6) and Y∞ is given by

λi(∅) = 1−
∑
k≥1

∑
α1,...,αk∈D

ηiα1
. . . ηiαk

φi(∅) =
1

λi(∅)
λi(v

i
α1:k

) = ηiα1
. . . ηiαk

φ
viα1:k
i (x) =

1

k!
× aα1

(x)

ηiα1

. . .
aαk(x)

ηiαk
.

Example 2. We consider the non-linear Hawkes process with ψi(u) = ch(u)

where ch(u) =
eu + e−u

2
. Then K = ∞, ψi(0) = 1, and for k ≥ 1, we have

ψ
(2k)
i (0) = 0 and ψ

(2k−1)
i (0) =

1

2
.

Therefore, Zi has the following Kalikow decomposition with respect to the
neighborhood family VTaylor in (3.6) and Y∞ is given by

λi(∅) = 1−
∑
k≥1

∑
α1,...,α2k−1

ηiα1
. . . ηiα2k−1

φi(∅) =
1

λi(∅)
λi(v

i
α1:2k−1

) = ηiα1
. . . ηiα2k−1

φ
viα1:2k−1

i (x) =
1

2(2k − 1)!
× aα1

(x)

ηiα1

. . .
aα2k−1

(x)

ηiα2k−1

.

Remark 7. It is well-known that the Exponential Hawkes process may explode
in finite time with probability non null [6] (that is, produce an infinite number
of jumps within a finite time interval). To perform the Perfect Simulation, in
this case, we shall consider the process having empty past before time 0, in other
words, the process starting from 0. However, the difficulty lies on the fact that we
need to check that the process stays in Y∞. To avoid this difficulty, we shall not
consider the Exponential Hawkes process or other potentially explosive processes
in the following section. The discussion of potentially explosive process will be
the main object of upcoming work, as we mentioned earlier.

4 Modified Perfect Simulation algorithm

In the following, we present a Perfect Simulation algorithm that simulates the
process Zi on an interval [0, tmax], for some fixed tmax > 0 in the stationary
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regime. Our algorithm is a modification of the method described in [17]. The
procedure consists of backward and forward steps. In the backward steps, thanks
to the Kalikow decomposition, we create a set of ancestors, which is a list of
all the points that might influence the point under consideration. On the other
hand, in the forward steps, where we go forward in time, by using the thinning
method [18] we give the decision (keep or reject) to each visited point based
on its neighborhood until the state of all considered points is decided. Further
discussion can be found in [10, 13, 17].

For this algorithm to work, we introduce a subspace Y as follows:

Y = {x ∈ X such that ∀v, i : φvi (x) ≤ Γi},

where Γi is a positive constant. We assume that the process generated by the
algorithm stays in Y almost surely. For example, in the case of age dependent
Hawkes processes in Section 3.2.2, we show in Proposition 7 below that ∆i

k(x)
are bounded. Thus, with an adequate choice of weights (λi(.))i∈I and (Γi)i∈I,
the algorithm remains in Y almost surely. Moreover, for any x ∈ Y, we have

φi(x) = λi(∅)φ∅i +
∑
∅6=v∈Vi

λi(v)φvi (x) ≤ Γi,

which means that the intensity is bounded.
Furthermore, for any t and xt ∈ Yt, by the time homogeneity assumption,

φi,t(xt) = φi(x
←t
t ) ≤ Γi.

4.1 Backward procedure

Initial step. Fix i, set the initial time to be 0.
Step 1. Move to the first possible jump T of Zi after 0 by taking

T ← 0 + Exp(Γi).

Step 2. Recall that Vi is the neighborhood family associated to index
i. Independently of anything else, pick a random neighborhood Vi,T of (i, T )
according to the distribution (λi(v))v∈Vi , which corresponds to the Kalikow
decomposition of intensity φi,T (xT ) in (2.1) where xT ∈ YT .

More precisely, this means that we attach to (i, T ) a random variable Vi,T
with values in (Vi)→T . For any v ∈ Vi,

P(Vi,T = v→T ) = λi(v).

Assume that Vi,T = v→T and define the projection to the second coordinate
of v by

πj(v) := {t ∈ R|(j, t) ∈ v} ,

for any j ∈ I. Notice that if for some j, (j, t) /∈ v for all t, then πj(v) = ∅.
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Simulate Poisson processes in v→T , that is for each j ∈ I, we simulate a
Poisson process Πj with intensity Γj on πj(v

→T ). Put these points in C1
i,T , call

it the first set of ancestors of (i, T ):

C1
i,T =

⋃
j∈I

{
(j, t)|t ∈ Πj

(
πj(v

→T )
)}
.

Step 3. Recursively, we define the nth set of ancestors of (i, T ),

Cni,T =
⋃

(j,s)∈Cn−1
i,T

C1
j,s \

(
C1
i,T ∪ . . . ∪ Cn−1

i,T

)
,

and for each (j, t′) ∈ Cni,T , we perform Step 1 and Step 2.
The backward scheme stops when Cni,T = ∅. We denote

Ni,T = inf{n : Cni,T = ∅}.

The genealogy of (i, T ) is given by

Ci,T = ∪Ni,Tk=1 C
k
i,T .

Remark 8. Let us emphasize that λi(∅) does not need to be strictly positive
in the present Kalikow decomposition. This means that there is a chance that
at every step of the Backward steps, we need to simulate a Poisson process in
a non empty neighborhood. However, if there is no point simulated in these
intervals, then we do nothing in the next step. Hence, the Backwards steps end.
This is one of the main advantage of this Kalikow decomposition with respect to
[13, 10].

Remark 9. Notice that, comparing to the original Backward procedure [13, 10],
here, we start by simulating a point in the ”future” by adding an exponential
random variable to the initial time. Unfortunately, due to this additional step,
the algorithm always requires that the intensity is bounded in Y. This is one of
the main drawback of this new algorithm.

4.2 Forward procedure

We now attach to each point in Ci,T a random variable χ whose value is either
0 or 1, where 1 means that this point is accepted.

For any point (i, t) in the Backward steps, we know its neighborhood which
contains all the points that might influence the state of (i, t), but we do not
know yet the state χ of the points in the neighborhood.

We start with the point (j, s) ∈ Ci,T which is the smallest in time, so that
its associated neighborhood is either empty (v = ∅) or non empty but without
any point of the Poisson process in it.

Step 1. Assign χj,s by Bernoulli variable with parameter
φ
Vj,s
j,s (xs)

Γj
where

Vj,s is the neighborhood of (j, s) . If χj,s = 1, this means we accept this point.

17



Step 2. Move to the next point of Ci,T in increasing time order. Repeat
Step 1:2 until χi,T is determined.
Update step. Update the starting time of the initial step by T . Repeat the
Backward and Forward procedures until the starting time is greater than tmax.

Remark 10. When implementing the algorithm on a computer, it is worth
noticing that, whenever we simulate in an interval that intersects with previously
simulated intervals, we will not simulate in the intersecting parts. In particular,
no additional points is simulated in {i}×(0, T ) where (i, T ) is the first simulated
point.

4.3 Do we construct the right intensity?

For any i ∈ I, we denote the arrival times of Πi in Step 2 of the Backward
steps by (τ in)n∈Z, with τ i1 being the first positive time. Indeed even if we have
simulated it on the randomly generated neighborhood, since the intensity is
always the same, we can assume that all these points come only from one single
Poisson process.

As in Step 1 of the Forward steps, we attach to each point of Πi a stochastic
mark χ given by,

χin =

{
1 if τ in is accepted,

0 otherwise.

In addition, for any i ∈ I, define Zi = (τ in, χ
i
n)n∈Z an E-marked point

process with E = {0; 1}. In particular, following the notation in Chapter VIII
of [4], for any i ∈ I, let

dZit(mark) =
∑
n∈Z

1χin=markδτ in(dt) for mark ∈ E,

FZt− =
∨
i∈I

σ(Zis(0),Zis(1); s < t) and FZ(1)
t− =

∨
i∈I

σ(Zis(1); s < t).

Moreover note that (Zit(1))t∈R is the counting process associated to the
accepted points of the algorithm. With these notations, we can prove the fol-
lowing result. This proof is already done in [17] but we add it here for sake of
completeness.

Proposition 4. If we suppose that the process (Zit(1))t∈R stays in (Yt)t∈R
almost surely then it admits φi,t(xt) as FZ(1)

t− -predictable intensity.

Proof. Take Ct a non negative predictable process with respect to FZ
i(1)

t , that

is FZ(1)
t− measurable and therefore FZt− measurable . We have, for any i ∈ I,

E

 ∞∫
0

CtdZit(1)

 =

∞∑
n=1

E
(
Cτ in1χin=1

)
.
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Note that by Theorem T35 at Appendix A1 of [4], any point T should be
understood as a stopping time, and that by Theorem T30 at Appendix A2 of
[4],

FZT− =
∨
j∈I

σ{τ jm, χjm such that τ jm < T, T}.

Therefore,

E

 ∞∫
0

CtdZit(1)

 =

∞∑
n=1

E
(
Cτ inE(1χin=1|FZτ in− , V

i
n)
)

=

∞∑
n=1

E

Cτ in φ
V in
i,τ in

(xτ in)

Γi

 ,

where we denote V in for the neighborhood of τ in.
Let us now integrate with respect to the choice V in, which is independent of

anything else.

E

 ∞∫
0

CtdZit(1)

 =

∞∑
n=1

E

Cτ in
λi(∅)φ∅i,τ in +

∑
v∈V→τin ,v 6=∅

λi(v)× φvi,τ in(xτ in)

Γi


= E

 ∞∫
0

Ct
φi,t(xt)

Γi
dΠi(t)

 .

Since Πi is a Poisson process with respect to FZt with intensity Γi, and

Ct
φi,t(xt)

Γi
is FZt− measurable, we finally have that

E

 ∞∫
0

CtdZit(1)

 = E

 ∞∫
0

Ctφi,t(xt)dt

 ,

which ends the proof.

4.4 Why does the Backward steps end?

We construct a tree with root (i, T ). For each point (jT ′ , T
′) in the tree, the

points which are simulated in VjT ′ ,T ′ (Step 2 of the Backward steps) define the

children of (jT ′ , T
′) in the tree. This forms the tree T̃ .

Let us now build a tree C̃ with root (i, T ) (that includes the previous tree)
by mimicking the procedure in the Backward steps, except that we simulate –
independently on anything else – on the whole neighborhood even if it has a
part that intersects with previous neighborhoods (if they exist) (Step 3 of the
Backward steps). By doing so, we make the number of children larger but at
each node, they are independent of anything else.

If the tree C̃ goes extinct, then so does the tree T̃ , and the backward part of
the algorithm terminates.
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To formulate a sufficient criterion that implies the almost sure extinction of
C̃, let us denote the product measure P on I × R, defined on the product sets
that generate the Borel subsets of I×R, as follows.

P (J ×A) :=
∑
j∈J

Γj µ(A)

for any J ⊂ I, where A is a Borel subset of R and where µ is the Lebesgue mea-
sure. The following proposition is already proved in [17], but without precisely
defining P .

Proposition 5. If

sup
i∈I

∑
k≥1

P (vik)λi(v
i
k) < 1 (4.1)

then the Backward steps in the Perfect Simulation algorithm terminate almost
surely in finite time.

Remark 11. For any neighborhood v, we have∑
j∈v

E (Πj (πj(v))) = P (v).

This implies that
∑
k≥1 P (vik)λi(v

i
k) is the mean number of children issued from

one point of type i. Then, the condition (4.1) says that the number children in
each step should be less than one in average, for the tree to go extinct almost
surely. That is a very classical result in Branching process [1].

4.5 The complexity of the algorithm in terms of η

In this section, we study the effect of (λi(v
i
k))i,k on the number of points simu-

lated by our algorithm. Until the end of this section, we suppose that

Assumption 6. The index set I is finite, namely

|I| = N <∞.

Let us mention several notations that will be useful in the sequel. We denote
ei the i-th unit vector of RN , 1 is the vector (1, 1, . . . , 1)T and µ always stands
for the Lebesgue measure. Finally, by a positive vector, we mean that all its
components are positive.

Coming back to our problem, since the tree C̃ dominates T̃ , to give an upper
bound of the number of points of T̃ , it is sufficient to study the number of points
of C̃. Recall that the root of the tree C̃ is of type i ∈ I. For n ≥ 1, write Ki(n)
for the vector containing the numbers of ancestors in the nth set of ancestors of
a single point of index i. We consider

Ki(n) =


number of ancestors in the nth set of ancestors of type 1
number of ancestors in the nth set of ancestors of type 2

. . .
number of ancestors in the nth set of ancestors of type N

 ,
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with the convention that Ki(0) = ei for every i. For every j ∈ I, denote
Xj
i := Kj

i (1) the number of ancestors of type j in the first set of ancestors with

initial point of type i. Moreover, as we discussed earlier, Xj
i is the cardinal of

the points that a Poisson process of intensity Γj puts on πj(Vi), where Vi is the
random neighborhood from a point of type i. In other words, if we denote P
the Poisson distribution, conditioning on Vi = v, we have

Xj
i ∼ P (Γjµ(πj(v))) .

In addition, we denote Xi = (X1
i , X

2
i , . . . , X

N
i )T and for any θ ∈ RN , we

consider the log-Laplace transform of Xi:

φi(θ) := logEi

(
eθ
TXi
)

where we denote Pi the law of a random tree C̃, whose root is of type i and Ei
the corresponding expectation.

For n ≥ 2, given the population in the first set of ancestors Xi, we have the
following relationship between the (n− 1)th set of ancestors and the nth set of
ancestors in C̃,

Ki(n) =
∑
j∈I

Xji∑
p=1

K
(p)
j (n− 1),

where K
(p)
j (n − 1) is the vector of the number of ancestors in the (n − 1)th

set of ancestors issued from the p-th point of type j in the first generation. In

addition, for p = 1, . . ., Xj
i , we have that the K

(p)
j (n − 1)’s are independent

copies of Kj(n− 1). Note that this equation is trivial for n = 1.
Moreover, we consider

Wi(n) =

n∑
k=0

Ki(k)

the total number of ancestors in the first n set of ancestors.
The log Laplace transform associated to the random vector Wi(n) is given

by:

Φ
(n)
i (θ) := logEi

(
eθ
TWi(n)

)
.

Finally we put Φ(n)(θ) = (Φ
(n)
1 (θ), . . . ,Φ

(n)
N (θ))T .

Denote the derivative of φ(.) at 0 by the matrix M = Dφ(0). Now, let us
take a closer look to the function φi(θ),

φi(θ) = logEi

(
eθ
TXi
)

= logEi

 N∏
j=1

eθjX
j
i

 .
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Therefore the gradient matrix M satisfies Mji = Ei(X
j
i ) for i, j ∈ I. Recall

that, conditioning on Vi = v, Xj
i ∼ P (Γjµ(πj(v))), therefore we have

Mji =
∑
k

Γjµ
(
πj(v

i
k)
)
λi(v

i
k). (4.2)

Introduce Wi(∞) := limn→∞Wi(n), if it exists, and let Wi = 1TWi(∞) be
the total number of points of C̃. The log-Laplace transform of Wi(∞) is given
by

Φi(θ) := logEi

(
eθ
TWi(∞)

)
,

and we write again Φ(θ) = (Φ1(θ),Φ2(θ), . . . ,ΦN (θ))T .
With this approach, we can prove the following exponential inequality. This

result is inspired by Lemma 1 of [21]. Define ‖.‖1 a 1− norm on RN and the
ball with respect to this norm on RN by B(.).

Proposition 6. Grant Assumption 6 and assume that the weights (λi(.))i∈I
satisfy the following condition:

sup
i∈I

∑
k≥1

P (vik)λi(v
i
k) < 1.

Suppose moreover that there exists a positive number r that depends on the
matrix M such that, for all positive vectors θ belonging to B(0, r), we have

sup
i
φi(θ) = sup

i

∑
j

log

(∑
k

λi(v
i
k) exp

[
(eθj − 1)Γjµ

(
πj(v

i
k)
)])

<∞.

Then for all θ ∈ B(0, r), we conclude that Φi(θ) <∞ and moreover

Φ(θ) = θ + φ(Φ(θ)).

In particular, for ϑ ∈ R+ such that θ = ϑ1 ∈ B(0, r), there exists a constant
c0 that depends on M and i such that

P (Wi > E(Wi) + x) ≤ c0e−ϑx (4.3)

for all x > 0.

Remark 12. From Chapter V of [1] , we have

E (Ki(n)) = MnE (Ki(0)) = Mnei.

Therefore, the total number of points simulated of the tree C̃ with initial
point of type i is

E (Wi(n)) = E

(
n∑
k=0

Ki(k)

)
=

(
n∑
k=0

Mk

)
ei.
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It leads us to conclude that,

E(Wi) = 1T

( ∞∑
k=0

Mk

)
ei,

where the matrix M is defined in (4.2).
To conclude, if we think the complexity of the algorithm in terms of the

number of simulated points, Wi is a good bound, and by (4.3) we see that we
can grasp the complexity of the algorithm by studying (4.3).

Proof. First, we prove that φi(θ) is well defined for all θ ∈ B(0, r). Indeed, since
(Xj

i )j=1,...,N are independent, we have

φi(θ) = logEi

∏
j

exp (θjX
j
i )


=
∑
j

logEi

(
exp (θjX

j
i )
)
.

Moreover, by conditioning on the first random neighborhood of type i, Vi,
we have

Xj
i |Vi = vik ∼ P

(
Γjµ(πj(v

i
k))
)
.

Therefore, we conclude that

Ei

(
exp (θjX

j
i )|Vi = vik

)
= exp

[
(eθj − 1)Γjµ

(
πj(v

i
k)
)]
.

Finally, we obtain that

φi(θ) =
∑
j

log

(∑
k

λi(v
i
k) exp

[
(eθj − 1)Γjµ

(
πj(v

i
k)
)])

<∞.

In the following, we prove that Φ
(n)
i (θ) satisfies the following recursion

Φ
(n)
i (θ) = θTKi(0) + φi(Φ

(n−1)(θ)).

Indeed, by definition of Wi(n) we have

Ei

(
eθ
TWi(n)

)
= eθ

TKi(0)Ei

(
eθ
T ∑n

k=1Ki(k)
)
.

In addition, from the definition of Ki(k) we obtain,

Ei

(
eθ
T ∑n

k=1Ki(k)
)

= Ei

(
eθ
T ∑n

k=1

∑N
j=1

∑X
j
i

p=1K
(p)
j (k−1)

)

= Ei

 N∏
j=1

eθ
T ∑n

k=1

∑X
j
i

p=1K
(p)
j (k−1)


= Ei

E
 N∏
j=1

eθ
T ∑n

k=1

∑X
j
i

p=1K
(p)
j (k−1)|Xi

 .
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Since conditioning on Xi, K
(p)
j (k − 1)’s are independent, we have that

Ei

(
eθ
T ∑n

k=1Ki(k)
)

= Ei

 N∏
j=1

E

(
eθ
T ∑n

k=1

∑X
j
i

p=1K
(p)
j (k−1)|Xj

i

)
= Ei

 N∏
j=1

Xji∏
p=1

E
(
eθ
T ∑n

k=1K
(p)
j (k−1) | Xj

i

)
= Ei

 N∏
j=1

Xji∏
p=1

E
(
eθ
T ∑n

k=1K
(p)
j (k−1)

)
= Ei

 N∏
j=1

(
E
(
eθ
TWj(n−1)

))Xji 
= Ei

 N∏
j=1

eΦ
(n−1)
j (θ)Xji

 = Ei

[
eΦ(n−1)(θ)TXi

]
= eφi(Φ

(n−1)(θ)).

Finally, we conclude that

Φ
(n)
i (θ) = θTKi(0) + φi(Φ

(n−1)(θ)).

This equation holds for every i, therefore we have

Φ(n)(θ) = θ + φ(Φ(n−1)(θ)). (4.4)

Let us consider the column sums of the matrix M :∑
j∈I

Mji =
∑
j∈I

Ei(X
j
i ) =

∑
k≥1

P (vik)λi(v
i
k).

Hence, ‖M‖1 = sup‖x‖1≤1{‖Mx‖1} = supi
∑
j∈I |Mji| < 1 where ‖.‖1 is the

induced norm for matrix on RN×N . Therefore, ‖Dφ(0)‖1 ≤ C < 1. Moreover
the norm is continuous and Dφ(s) is likewise, there is a r > 0 such that, for
||s||1 ≤ r,

‖Dφ(s)‖1 ≤ C < 1.

Hence, φ(s) is Lipschitz continuous in the ball B(0, r) and moreover φ(0) = 0,
which implies that

‖φ(s)‖1 ≤ C‖s‖1
for ‖s‖1 ≤ r.

Moreover, take θ such that
‖θ‖1

1− C
≤ r, hence ‖θ‖1 ≤ r. By induction we

can show that

‖Φ(n)(θ)‖1 ≤ ‖θ‖1(1 + C + . . .+ Cn) ≤ r <∞.
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In addition, (Wi(n))n≥1 is a positive, increasing vector sequence. Here, for
any u, v ∈ RN , we say u ≥ v if (u− v) is a positive vector.

For any θ such that
‖θ‖1

1− C
≤ r, by using the theorem of monotone conver-

gence, we have
Φ(n)(θ)→ Φ(θ)

when n → ∞. Moreover, ‖Φ(θ)‖1 < ∞, and passing to the limit n → ∞ in
equation (4.4), we conclude that

Φ(θ) = θ + φ(Φ(θ)).

In particular, choosing θ = ϑ1 ∈ B(0, r) with ϑ ∈ R, we have

Ei
(
eϑWi

)
<∞,

where Wi = 1TWi(∞) is the total number of point of C̃.
The last point is concluded by using Markov’s inequality, that ends the proof.

4.6 Efficiency of the algorithm and discussion of the choice
of the weights η’s on a particular example

Finally, to illustrate the effect of η to the complexity of Perfect Simulation al-
gorithm, we consider the age dependent Hawkes process with hard refractory
period of length δ. We consider the setting of Proposition 2 and assume more-
over that ψi(.) is an L-Lipschitz function, where L is the Lipschitz constant. In
this case we obtain an explicit upper bound for ∆i

k(x), for any x ∈ X>δ.

Proposition 7. For any k ≥ 1, we have

∆i
k(x) ≤ L×

 ∑
j∈Vi(k)\Vi(k−1)

∑
0≤m<k

hji(mδ) +
∑

j∈Vi(k−1)

hji((k − 1)δ)

 .
To prove this proposition we use the following lemma, which is a particular

case of Lemma 2.4 in [20].

Lemma 1. For any 0 ≤ k < l, j ∈ I, z ∈ X>δ, t ∈ R we have∫ t−kδ

t−lδ
hji(t− s)dzjs ≤

∑
k≤m<l

hji(mδ).

Proof of Lemma 1. For any j, fixed ε > 0, we have

∫
[t−lδ,t−kδ−ε]

hji(t− s)dzjs =
∑

k≤m<l

∫
[t−(m+1)δ−ε,t−mδ−ε]

hji(t− s)dzjs

≤
∑

k≤m<l

hji(mδ + ε)
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by Assumption 3 and the fact that there is at most one jump in the interval of
length δ. Therefore,∫

[t−lδ,t−kδ)
hji(t− s)dzjs = lim

ε↓0

∫
[t−lδ,t−kδ−ε]

hji(t− s)dzjs

≤ lim
ε↓0

∑
k≤m<l

hji(mδ + ε)

≤
∑

k≤m<l

lim
ε↓0

hji(mδ + ε)

≤
∑

k≤m<l

hji(mδ),

by using the theorem of monotone convergence and the fact that hji(.) is a
decreasing function according to Assumption 3. This completes the proof of
Lemma 1.

Proof of Proposition 7. By (ii) of Assumption 3, we have

∆k
i (x) ≤ L×

 ∑
j∈Vi(k)\Vi(k−1)

∫ 0

−kδ
hji(−s)dxjs +

∑
j∈Vi(k−1)

∫ −kδ+δ
−kδ

hji(−s)dxjs

 .
Applying Lemma 1 we conclude that

∆i
k(x) ≤ L×

 ∑
j∈Vi(k)\Vi(k−1)

∑
0≤m<k

hji(mδ) +
∑

j∈Vi(k−1)

hji((k − 1)δ)


which ends the proof.

Remark 13. In addition, from (i) of Assumption 3, we have∑
j∈Vi(k)\Vi(k−1)

∑
0≤m<k

hji(mδ) +
∑

j∈Vi(k−1)

hji((k − 1)δ)→ 0

as k →∞. Therefore ∆i
k(x)→ 0 when k →∞.

In what follows, to simplify the computation, we consider that I = Z, and
for all i, we set

1. hji(t) = βji exp (−αt) where βji, α are positive constants for all j, i. In

addition, we take α =
1

δ
and βji =

1

2|j − i|γ
for j 6= i with a positive

number γ and βii = 1.

2. Vi(0) = ∅, Vi(1) = {i}, . . . , Vi(k) = {i − k + 1, . . . , i, i + 1, . . . , i + k − 1}
∀k ≥ 2.
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3. ηik = ηk = cη
1

kp
,∀k ≥ 1, where p is a positive constant and cη is a

normalization constant.

From Proposition 7, we can choose

Γi = sup

 L

cη
, sup
k≥2

Lkp
cη

1− e−k

1− e−1

∑
j∈{i−k+1,i+k−1}

βji + e−k+1
∑

j∈Vi(k−1)

βji


= sup

{
L

cη
, sup
k≥2

[
Lkp

cη

(
1− e−k

(k − 1)γ(1− e−1)
+ e−k+1

(
1 +

k−2∑
m=1

1

mγ

))]}
:= Γ.

Since we define ηik are independent of i, so we can consider that all points
have the same type. Instead of comparing the Backward Steps to a multitype
branching process, we may therefore put K(k) := Ki(k) :=

∑
j K

j
i (k) and

W (n) := Wi(n) :=
∑
jW

j
i (n) such that K(k) is the total number of ancestors

in the kth set of ancestors and W (n) is the total number of ancestors in the first
n set of ancestors. Hence, all the vector K(k) := Ki(k) and W (n) = Wi(n) in
Proposition 6 now are numbers.

Moreover, vik = Vi(k)× [−kδ, 0) and we set

ζ =
∑
k′≥1

P (vik′)λ(vik′) =
∑
k′≥1

ηk′ k
′δ

∑
j∈Vi(k′)

Γj

=
∑
k′≥1

cη
1

k′p
k′δ(2k′ − 1)Γ := f(p).

By a classical well-known result in Branching processes [1] , we have for
k ≥ 1

E(K(k)) = ζk.

Therefore, the total expected number of simulated points W := W (∞) is
given by

E(W ) =
1

1− ζ
.

Now we are looking for values of p such that:

(a) (ηk)k defines a probability,

(b) the algorithm stays in Y,

(c) the Kalikow decomposition exists (Proposition 2),

(d) the branching process goes extinct in finite time almost surely.
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Once all these condition are fulfilled, we choose p such that it minimizes
f(p), so that the total number of simulated points is minimal.

(a) :
∑
k

ηk = 1⇒ p > 1

(b) : Γ <∞⇒ p < γ

(c) :
∑∫

hji <∞⇒ γ > 1

(d) : ζ < 1⇒ p− 2 > 1

Finally, we conclude that 3 < p < γ. Moreover, we want to choose p such
that f(p) to be smallest possible, which means that we need to take p largest
possible. Hence, we take p close to γ.

5 Conclusion

Prior research has investigated the Perfect Simulation based on a conditional
Kalikow decomposition in continuous time point processes [13]. However, it is
impossible to implement this study in practice. In the present study, we con-
tinue our work in [17], to extend the class of point processes which satisfies a
new Kalikow decomposition. This decomposition plays a vital role to build a
tractable algorithm in practice. In addition, we also improve the results in [13]
and [17] on the existence of the Kalikow decomposition. Most notably, this
is the first study to our knowledge to establish a Kalikow decomposition for a
stochastic intensity in general context. Our results provide a general method
to write a Kalikow decomposition for large class of point processes, for exam-
ple: linear Hawkes processes, exponential Hawkes processes and including very
complex Hawkes processes: age dependent Hawkes processes. However, some
limitations are worth noting. Although, we succeed to write the Kalikow de-
composition for a variety of Hawkes processes, we still have to restrict ourselves
to a bounded intensity to implement the Perfect Simulation. This is due to the
simulation of the first jump in the Backward Steps. Future work should focus
on removing totally the upper bound of the intensity and extending the Perfect
Simulation to the unbounded intensities.
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and 3IA Côte d’Azur Investissements d’Avenir managed by the National Re-
search Agency (ANR-15- IDEX-01 and ANR- 19-P3IA-0002), by the CNRS

28



through the ”Mission pour les Initiatives Transverses et Interdisciplinaires”
(Projet DYNAMO, ”APP Modélisation du Vivant”), by the interdisciplinary
Institute for Modeling in Neuroscience and Cognition (NeuroMod) of the Uni-
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