
HAL Id: hal-03188503
https://hal.science/hal-03188503v1

Submitted on 2 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Time-Series Clustering with UMAP
dimension reduction method

Clément Pealat, Guillaume Bouleux, Vincent Cheutet

To cite this version:
Clément Pealat, Guillaume Bouleux, Vincent Cheutet. Improved Time-Series Clustering with UMAP
dimension reduction method. ICPR 2020 - 25th Internation conference in Pattern Recognition, Jan
2021, Milano (virtual), Italy. �hal-03188503�

https://hal.science/hal-03188503v1
https://hal.archives-ouvertes.fr


1

Improved Time-Series Clustering with UMAP
dimension reduction method

Clément Pealat Univ Lyon, INSA-Lyon
DISP EA4570

Villeurbanne, France
clement.pealat@insa-lyon.fr Guillaume Bouleux Univ Lyon, INSA-Lyon

DISP EA4570
Villeurbanne, France

guillaume.bouleux@insa-lyon.fr Vincent Cheutet Univ Lyon, INSA-Lyon
DISP EA4570

Villeurbanne, France
vincent.cheutet@insa-lyon.fr

Abstract—Clustering is an unsupervised machine learning
method giving insights on data without early knowledge. Classes
of data are return by assembling similar elements together.
Giving the increasing of the available data, this method is now
applied in a lot of fields with various data types. Here, we
propose to explore the case of time series clustering. Indeed,
time series are one of the most classic data type, and are present
in various fields such as medical or finance. This kind of data
can be pre-processed by of dimension reduction methods, such
as the recent UMAP algorithm. In this paper, a benchmark
of time series clustering is created, comparing the results with
and without UMAP as a pre-processing step. UMAP is used
to enhance clustering results. For completeness, three different
clustering algorithms and two different geometric representation
for the time series (Classic Euclidean geometry, and Riemannian
geometry on the Stiefel Manifold) are applied. The results are
compared with and without UMAP as a pre-processing step on
the databases available at UCR Time Series Classification Archive
www.cs.ucr.edu/∼eamonn/time series data/.

I. INTRODUCTION

Considering unlabelled data, clustering is one of the most
famous unsupervised machine learning methods[1]. It is a
data mining method that will put in the same groups, named
clusters, elements with similar behaviour. To do so, clustering
algorithms aim to create clusters by maximizing similarities
between the elements inside while minimizing similarities
between the elements outside.

Several methods have been proposed in the literature. How-
ever, it can be difficult to determine if the results are reliable
since the labels are not available. So, those methods must be
evaluated beforehand on data with known labels.

Hence, we develop a benchmark based on time series data
available at UCR Time Series Classification Archive[2][3].
The databases are composed of one-dimensional labelled time
series. This datatype exists in various fields such as aviation[4],
weather[5], industrial [6],...

To determine the similarity between two one-dimensional
time series, a distance needs to be defined. The Euclidean
distance can be used directly on the time series (seen as

vectors). An other possibility to deal with one-dimensional
time series is to embed the time series into their phase-
space[7][8] using the Takens theorem[9]. It defines a matrix
for each time serie and the similarity between two time series
is now the distance between those matrices. To determine this
distance, we apply the Riemannian geometry.

The main objective of this benchmark is to evaluate the
efficiency of UMAP[10] as a pre-processing step for clustering
algorithms. UMAP is a non-linear dimension reduction method
that aims to keep the structure of high-dimensional data in a
smaller dimension. This method is new, and its efficiency for
clustering algorithms has not yet been clearly shown. Indeed,
this algorithm raises some controversies for clustering because
it can create false clusters due to noises.

Here, we propose to check the effects of UMAP on three
different clustering algorithms: K-means[11], Agglomerative
Hierarchic[12], and HDBSCAN[13]. After computing a metric
(Euclidiean or Riemannian) between all the time series of a
database, we can embed the time series into a small dimen-
sional space by applying UMAP with respect to the distances.
We apply those clustering algorithms with and without the
pre-processing UMAP step and we compare the results.

Organization of the paper: In section II, we present
the UMAP algorithm. Then, in section III, the clustering
algorithms are detailed. In section IV, the geometric represen-
tation of the time series is explained. We use general results
on Riemannian geometry to determine the distance, and the
Karcher mean on the Stiefel manifold. With this two elements,
we can then apply UMAP and clustering algorithms. Then, in
section V, the results on the Euclidean geometry and the Stiefel
manifold are presented.

II. UMAP: UNIFORM MANIFOLD APPROXIMATION AND
PROJECTION

A. Presentation

UMAP[10] realizes a reduction of dimension using the
distance between each elements of a dataset. The theory



2

behind this algorithm assumes that the data is uniformly
distributed. It is a strong assumption, but a correct choice of
a parameter σ (see eq.(1)) allows to make it true. It starts
by giving a graphical directed weighted representation. Each
element is a vertex, and the distance determines the edges.
Indeed, for a given k, and an element Y , the k-th closest
neighbour Y1, ..., Yk (sorted out by distance d to Y ) are linked
to Y . The weights, degrees of membership, are then computed
between Y and Y1, ..., Yk. The closest element Y1 to Y as a
membership of 1. Let’s call λ the distance between Y1 and Y .
The weight between Y and Y0<i≤k is then defined by :

wi = exp(−d(Y, Yi)− λ
σ

)

The choice of this heat kernel for the weight is justified in
[14]. The parameter σ is defined by eq.(1). This parameter
ensures that for each element Y of the data, the density of the
circle of centre Y and of radius equal to the distance to the
k-neighbours are sensibly the same for each Y .

k∑
i=1

wi = log2(k) (1)

Once the graph G has been determined, the reduction of
dimension into Rm is done. To do so, the Laplacian eigenmaps
is used. The i-th element of the data is represented as a
vector of Rm of coordinates (f1(i), ..., fm(i)) with f0, .., fm
the eigenvectors of the Laplacian associated with G (with the
eigenvalues associated such that λ0 < λ1 < ... < λm). Then,
it defines a graph G’ from the elements of Rm, the same way
that it did for G except for the weights. Indeed, the weight
between Y, Y ′ ∈ Rm is now defined by :

w(X,Y ) =
1

1 + a(‖Y − Y ′‖22)b

The parameters a and b are chosen such that the function ψ
realizes a smooth approximation of Ψ with ψ and Ψ defined
by :

Rm × Rm → [0, 1]

ψ(X,Y ) =
1

1 + a(‖X − Y ‖22)b

Ψ(X,Y ) = exp(−‖X − Y ‖2)

This smooth approximation allows to derived the cross-
entropy between G and G’. This determines attractive and
repulsive forces, and a forced directed graph layout algorithm
is computed. So, each element of Rm acts as a physical point
under those two forces until a physical equilibrium is obtained.
The cross-entropy is now minimized between the two graphs
G and G’. So, from the dataset lying on the manifold M,
UMAP returns element of Rm with respect to the cross-
entropy between a graph on the manifold and a graph on Rm.

To summarize:
• UMAP creates a graph G with respect to the distances on

the manifold and to the k-neighbourhood of each element.
• A graph G’ on Rm is obtained by a Laplacian eigenmaps

dimension reduction method.

• The graph G’ is modified by a forced directed graph
layout algorithm so that the cross-entropy between G and
G’ is minimized.

B. UMAP for clustering

The first goal of UMAP is to visualize high-dimensional
data[15]. To do so, the dimension is reduced at 2 or 3. But,
since UMAP is a dimension reduction method, it can be used
to clarify the data, and so, to increase the results of clustering
algorithms. However, this is not compulsory. Indeed, UMAP
cannot completely keep the density of the data when the
dimension is reduced. It can create pseudo-groups that will
disturb the clustering algorithms. Indeed, an article[16] shows
it on T-SNE a similar reduction of dimension. But, it is in some
particular cases, and we decide to check it on real databases.

To do so, we use particular parameters. Indeed, we want
to keep the global structure of the data. So, the number of
neighbours should be high, we put it at 30. This way, we take
into account for each elements the action of its 30th closest
neighbours, it limits the impact of noise that can create false
clusters when only a small number of neighbours is kept.
Moreover, since we are not interested by visualization, we
decide to keep 10 components for the data.

III. CLUSTERING ALGORITHMS

To be exhaustive, we decide to choose clustering algorithms
of three distinct types: the K-means[11] algorithm among
the top-down clustering algorithms, the Agglomerative Hier-
archical[12] among the bottom-up methods (Hier.) and HDB-
SCAN[13] (Density-Based Clustering Based on Hierarchical
Density Estimates) among the density-based methods.

A. K-means

For a given k, the K-means algorithm initializes randomly
k pseudo-centres and each element of the dataset is affiliated
with its closest pseudo-centre. Then, the k means of the k
clusters created are the new pseudo-centre, and each element
of the data is affiliated with those new means. This iteration
is repeated until the results of clustering stop changing. So,
to apply the K-means algorithm, we need to initially select a
distance, a mean, and a number of clusters.

B. Agglomerative Hierarchical (Hier.)

At the beginning, Hier. algorithm considers each element of
the dataset as one distinct clusters. Then, the nearest clusters
are merged together and form a new cluster. This operation
goes on until the wanted number of clusters is obtained.

C. Silhouette Score

Both K-means and Hier. need to know beforehand the
number of clusters k. To determine this number without
using the labels of the data, we use the silhouette score[17].
The silhouette score for a clustering calculates a score that
represents the quality of the clustering. If the distance intra-
clusters is low, and the distance inter-clusters is high, the



3

silhouette score gives a good value. So, we compute the
clustering algorithms for several values of k, and we keep
the number of clusters to optimize the value of the silhouette
score.

D. HDBSCAN

HDBSCAN is a prolongation of the clustering algorithm
Density-Based Spatial Clustering of Applications with noise
(DBSCAN). We start by explaining DBSCAN[18][19].

DBSCAN is one of the most used density based clustering
algorithms. A cluster determined by this kind of clustering
concurs to a region of high density on the data surrounded
by region of low density[19]. Moreover, DBSCAN has the
ability to detect noise points. Two parameters must be chosen
beforehand: the threshold ε and the number of neighbours m.
A point A of the data is density reachable from another point
B, if a path from A and B through the elements of the data
exists such that the distance between two elements of the path
is smaller than ε. For each point, DBSCAN determines the
category of each point of the datasets:
• Core point: If a point of the dataset has in its ε-

neighbourhood more than m other points of the dataset,
it is a core point.

• Border point: A point of the dataset is a border point if
it is not a core point and is density reachable by at least
one core point.

• Noise point: A point is considered as noise if it is neither
core point nor border point

Then, the clusters are defined such that there is at least one
core point, and all the elements are density reachable from
one another. Figure 1, from [18], is an example of DBSCAN
clustering with m (number of neighbours) at two. The core
points in red creates a cluster. B and C are not core points (not
enough neighbours), but are density reachable from the red
points, so, they belong to the same cluster. N is not reachable,
so, it is a noise point.

Fig. 1: Example of clustering by DBSCAN: N is a noise point,
A (core point), B and C (border points) are in the same cluster

However, in this algorithm, the threshold ε is chosen by the
user, and there is no correct answer on how to choose it on real

data. Moreover, if for two groups of our dataset, the densities
are not the same, ε can consider a valid group as noise.
To tackle this issue, we prefer HDBSCAN algorithm. This
algorithm computes the results of DBSCAN for all thresholds
in the range of ]0; +∞[. The clustering starts with one big
cluster (meaning a high value of ε). Then, when ε decreases,
the cardinal of a cluster is diminishing until it splits into two
clusters or when all the elements become noises. It gives us
a birth and death of each cluster in function of ε. So, for
each cluster, a score of stability is given depending on the ε
of creation and the ε of disappearance. A cluster has a high
score of stability if it exists for a large range of value of ε.
Then, the clusters with a good stability score are kept. So, the
HDBSCAN algorithm gives accurate clusters, even if there is
a difference of density, and the user does not have to choose
the value of a threshold.

IV. GEOMETRIC REPRESENTATIONS OF THE TIME SERIES

A. Euclidean distance

One way to do it is to directly apply clustering algorithms
to the data[20] [11]. It uses the Euclidean geometry : For a
database D of n time series (Yi(t), t = 0, ...l−1, i = 0, ..., n−
1) of length l, we consider each time series Yi as a vector of
Rl. So, the distance is defined by: for Yi, Yj ∈ Rl, d(Yi, Yj) =

(
∑l−1
k=0(Yi(k)− Yj(k))2)

1
2 and the Karcher mean is the clas-

sical mean defined by: for Y1, ..., Yk ∈ Rl, Y = 1
k

∑k
i=1 Yi.

But, for time series data, it can be accurate to look at the
phase space of the time series.

B. Phase space

In the case of high-dimensional time series (for example
movement of a body through time[21]), one way to do the
clustering is to determine the true space of the data[22][23].

Several articles show great results with this method[24][22].
We wanted to apply a similar method to our 1-D time series. To
do so, the time series can be embedded in a structure similar to
a high-dimensional time series, it defines a phase space[25][7].
The Takens Embedding theorem[9][26][27] confirms that the
phase space is an accurate representation of the time series.
There are several ways to realise this embedding, proposed for
example in [7] and [8].

C. Stiefel Manifold

1) Embedding: For a time series Y = (Y (0), ..., Y (m)),
we determine the trajectory matrix as proposed in figure 2.
To have a good representation, we choose n − m such that
n−m = bm/2c[28]

Fig. 2: Example of construction of the trajectory matrix



4

Those trajectory matrices are rectangular matrix, and have
an important noise. We operate a reduction of dimension with
UMAP. UMAP realizes a non-linear reduction of dimension.
Then, we orthogonalize the reduced matrices to clarify the
space generated by the trajectory. So, each time series of
the databases are now embedded into the Stiefel manifold
defined by : Vp(Rn) = {A ∈ Rn×p : ATA = Id}. The
Stiefel manifold has not an Euclidean geometry, we need to
define the Riemannian geometry to determine the distance and
the Karcher mean on the Stiefel manifold with respect to the
curvature of this manifold.

2) Generality about manifold: A manifold M is a curve
space that can be seen locally as an Euclidean space. The
geometry associated is called the Riemannian geometry[29].

The distance on a manifold between two elements is seen
as the length of the shortest curve γ that goes from one to
another (see equ.(2)).

∀U1, U2 ∈M,dM (U1, U2) = min
γ(0)=U1,γ(1)=U2

L(γ) (2)

The tangent space at A of M is defined by the tangent at
A of all the curves passing by A. In figure 3, from [22], the
manifold is a sphere. For two elements P1 and P2, the tangent
vectors define the tangent plane TP1 and TP2.

Fig. 3: Illustration on a sphere of the geodesics and the tangent
planes

The Riemannian exponential projects a tangent vector to
the closest point on the manifold. In figure 4, from [22], two
tangent vectors at P are projected into the manifold using the
Riemannian exponential.

Once the distance is defined, a mean with respect to this
distance, must be also defined. It is the Karcher mean, defined
by:

∀U1, ...Un ∈M,U = arg min
X∈M

n∑
i=1

dM (X,Ui)
2 (3)

To determine this mean from eq.(3), we can use a gradient
descent algorithm. To do so, we derivate the equation (3),

Fig. 4: Riemannian Exponential on a sphere

as proposed by [30], and we obtain a new definition for the
Karcher mean X:

∀X1, ...Xn ∈M,

n∑
i=1

LogX(Xi) = 0 (4)

3) Geometry of the Stiefel manifold: The Stiefel mani-
fold[31][32] is a submanifold of Rn×p defined by Vp(Rn) =
{A ∈ Rn×p : ATA = Id}. For two elements A,B of Vp(Rn),
it exists an element of O(n) (orthogonal group of dimension
n), such that CA = B. It allows us to see the distance between
two elements of Vp(Rn) as the norm of their principal angles.
Figure 5 illustrates an example of the distance between two
elements A,B of V3,2. A base of A is defined by the two
vectors a1, a2 in blue and the base B is defined by the two
vectors b1, b2 in blue. Then, the two principal angles θ1, θ2
between A, B are defined by θ1 = (a1, b1), θ2 = (a2, b2). To

Fig. 5: Example of Principal Angle on R3

determine the principal angles between A,B, we compute the
arccos of the singular values of ATB.

To determine the Karcher mean on the Stiefel manifold, we
need to compute the Riemannian exponential and Riemannian
logarithm associated at the Stiefel manifold. The algorithms
[33] ?? and ?? allow us to compute those two functions.



5

Algorithm 1: Stiefel Exponential
Input: U ∈ Vn,p, ∆ ∈ TUVn,p

Decomposition of ∆: ∆ = UUT∆ + (I − UUT )∆
Decomposition QR of (I − UUT )∆:
∆ = UA+QERE[
M

NE

]
= exp(

[
A −RTE
RE 0

]
)

[
Ip

0

]
Output: ExpSU t(∆) = UM +QENE ;

Algorithm 2: Stiefel Logarithm

Input: U ∈ Vn,p, U ∈ Vn,p, threshold τ ;
Initialization:
M = UTU
QN = U − UM

V0 =

[
M X0

N Y0

]

log(V0) =

[
A0 −BT0
B0 C0

]
while ‖Ck‖2 ≤ τ do
φk = exp(−Ck) Vk+1 = VkWk where

Wk =

[
Ip 0

0 φk

]
end
Output: LogStU (U) = UAk +QBk

V. RESULTS

To determine the quality of the clustering, we use the
v-measure score [34]. The v-measure score compares the
expected labels and the clustering results, using an evaluation
based on entropy. It computes the harmonic mean between
the homogeneity and the completeness score. Homogeneity
and Completeness give a score between 0 and 1. For the
homogeneity, the score of 1 is given if all the elements of each
cluster have the same ’true’ labels. By symmetry, completeness
score is at maximum if all elements of each ’true’ label are
in the same cluster. The v-measure score realizes a balance
between those two indicators. It is necessary because, for
example, the completeness is at 1 if each element has its own
clusters.

A. Databases

At UCR Time Series Classification Archive, 85 databases
are available. A brief summary of those databases are pre-
sented in table I. The number of clusters in a database varies
from 2 (only two labels) to 60. Moreover, some databases have
a great number of time series to cluster and others are quite
small. For a given database, all the time series have the same
length (from 24 min. to 2709 max.)

B. Results on Euclidean geometry

On table II, we present:
• The mean of the v-measure score for each method of

clustering across the 85 databases

• The standard deviation of the v-measure score
• The number of databases for which a method is the best

one. For example, HDBSCAN alone has the best results
for 12 databases (among 85 databases)

• For a given algorithm the percentage of databases for
which the v-measure score is enhanced with UMAP (ex:
UMAP with k-means is better than k-means for 61% of
the databases.

First, we can remark that UMAP is a good pre-processing
step whatever the clustering algorithm is. Indeed, UMAP
increases the v-measure score in a majority of databases for
the 3 algorithms, and this is confirmed by the mean of the
v-measure score. However, the standard deviation increases a
bit for K-means and hierarchic algorithm. So, the results are
less stable. But, for HDBSCAN, UMAP clearly improves the
results for all of those indicators.

To represent the results, we propose to compare two meth-
ods by plotting the v-measure score of one method in function
of the v-measure score of the other method. The databases are
represented by points, and the red line separates into two fields,
when one of the two methods is better than the other.

Those figures 6,7 and 8 give a visual representation of the
good results obtained by UMAP. On figure 6, we see that
UMAP clearly enhances HDBSCAN in a vast majority of
cases. Moreover, for some databases, UMAP + HDBSCAN
gives good results whereas HDBSCAN is completely off.

Fig. 6: Databases represented by v-measure score with
UMAP+HDBSCAN in function of v-measure score with
HDBSCAN

UMAP is particulary efficient for HDBSCAN, a density-
based clustering algorithms. It was expected, since UMAP also
uses the data density to reduce the dimensions.

The results does not seem to be intrinsic at the databases.
Indeed, only 26 databases presents better results with UMAP
for the 3 clustering algorithms. We can take also the example
of k-means and hierarchical algorithm. UMAP presents better
results for k-means on 52 databases, and on 56 databases for
hierarchical algorithm. Only 35 databases are in common.

At last, across the six methods, UMAP with HDBSCAN
presents the best results. It has the best mean and has the best
score for 25 of the 85 databases. We propose in figure 9 a



6

Number of databases 85
Min Mean Max

Nb of clusters 2 7.5 60
Nb of time series 16 432 8926
Length of time series 24 422 2709

TABLE I: Presentation of the databases

Kmeans Hier. HDB. UMAP+Kmeans UMAP+Hier. UMAP+HDB.
Mean 0.253 0.212 0.218 0.284 0.273 0.292
Best with UMAP 61% 66% 75%

TABLE II: Summary of the Euclidean results

Fig. 7: Databases represented by v-measure score with
UMAP+HDBSCAN in function of v-measure score with
HDBSCAN

Fig. 8: Databases represented by v-measure score with UMAP
+ K-means in function of v-measure score with K-means

comparison with the most classic/used clustering algorithms
the k-means. UMAP with HDBSCAN has a better mean than
k-means and gives better results for 62% of the databases.

C. Results on the Stiefel Manifold

For the Stiefel Manifold, the computation of the Karcher
mean takes some time, as the rest of the calculus. So, we

Fig. 9: Databases represented by v-measure score with UMAP
+ HDBSCAN in function of v-measure score with K-means

decide to apply the data transformation only on 6 databases.
The results on the Stiefel Manifold are summarized on table
III. It gives similar results: UMAP enhances the clustering
score, and the duo UMAP + HDBSCAN gives the best results.

VI. CONCLUSION

Clustering algorithms are unsupervised method. An eval-
uation before a general utilisation is needed. So, on this
paper, we propose a benchmark on time series clustering to
evaluate the efficiency of UMAP to enhance clustering results.
Using 85 labelled databases, we compute the results with and
without UMAP. UMAP shows great results. Indeed, on the
Euclidean geometry, UMAP increases the score of clustering
in a large majority of the cases. Moreover, UMAP seems to be
particulary efficient with density-based clustering algorithms.

On a few cases with a Riemannian geometry, the results
have been consistent: UMAP gives an improvement.

So, UMAP enhances in general the clustering score, and the
best method to use with is HDBSCAN. Compared to k-means
(the most known method), UMAP coupled with HDBSCAN
gives a better results for 62% of the databases.

REFERENCES

[1] R. Xu and D. Wunsch, Clustering, en. John Wiley & Sons, Nov. 2008,
Google-Books-ID: kYC3YCyl tkC, ISBN: 978-0-470-38278-3.



7

K-means Hier. HDBSCAN UMAP + K-means UMAP + Hier. UMAP + HDBSCAN
Mean 0.203 0.173 0.182 0.292 0.213 0.301
Std 0.202 0.179 0.186 0.227 0.256 0.270
Times best results 1 1 0 2 1 2
Pre-processing UMAP best results 50% 67% 83%

TABLE III: Summary of the Stiefel Manifold results

[2] M. Corduas and D. Piccolo, “Time series clustering and classification by
the autoregressive metric,” en, Computational Statistics & Data Analysis,
vol. 52, no. 4, pp. 1860–1872, Jan. 2008, ISSN: 0167-9473. DOI: 10.
1016/j.csda.2007.06.001.

[3] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-Series Classifica-
tion with COTE: The Collective of Transformation-Based Ensembles,”
IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 9,
pp. 2522–2535, Sep. 2015, ISSN: 2326-3865. DOI: 10.1109/TKDE.2015.
2416723.

[4] B. Matthews, S. Das, K. Bhaduri, K. Das, R. Martin, and N. Oza,
“Discovering anomalous aviation safety events using scalable data
mining algorithms,” Journal of Aerospace Information Systems, vol. 10,
no. 10, pp. 467–475, 2013.

[5] A. Mellit, A. M. Pavan, and M. Benghanem, “Least squares support
vector machine for short-term prediction of meteorological time series,”
en, Theor Appl Climatol, vol. 111, no. 1, pp. 297–307, Jan. 2013, ISSN:
1434-4483. DOI: 10.1007/s00704-012-0661-7.

[6] H. Hassani, S. Heravi, and A. Zhigljavsky, “Forecasting UK Industrial
Production with Multivariate Singular Spectrum Analysis,” en, Journal
of Forecasting, vol. 32, no. 5, pp. 395–408, 2013, ISSN: 1099-131X.
DOI: 10.1002/for.2244.

[7] C. O’Reilly, K. Moessner, and M. Nati, “Univariate and Multivari-
ate Time Series Manifold Learning,” en, Knowledge-Based Systems,
vol. 133, pp. 1–16, Oct. 2017, ISSN: 09507051. DOI: 10.1016/j.knosys.
2017.05.026.

[8] Z. Gao and N. Jin, “Complex network from time series based on phase
space reconstruction,” en, Chaos, vol. 19, no. 3, p. 033 137, Sep. 2009,
ISSN: 1054-1500, 1089-7682. DOI: 10.1063/1.3227736.

[9] L. Noakes, “The takens embedding theorem,” Int. J. Bifurcation Chaos,
vol. 01, no. 04, pp. 867–872, Dec. 1991, ISSN: 0218-1274. DOI: 10 .
1142/S0218127491000634.

[10] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Mani-
fold Approximation and Projection for Dimension Reduction,” en,
arXiv:1802.03426 [cs, stat], Dec. 2018, arXiv: 1802.03426.

[11] T. Warren Liao, “Clustering of time series data—a survey,” en, Pattern
Recognition, vol. 38, no. 11, pp. 1857–1874, Nov. 2005, ISSN: 0031-
3203. DOI: 10.1016/j.patcog.2005.01.025.

[12] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
en, ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, Sep. 1999,
ISSN: 03600300. DOI: 10.1145/331499.331504.

[13] R. J. Campello, D. Moulavi, and J. Sander, “Density-based clustering
based on hierarchical density estimates,” in Pacific-Asia conference on
knowledge discovery and data mining, 2013, pp. 160–172.

[14] M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensionality
Reduction and Data Representation,” en, Neural Computation, vol. 15,
no. 6, pp. 1373–1396, Jun. 2003, ISSN: 0899-7667, 1530-888X. DOI:
10.1162/089976603321780317.

[15] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I. W. H. Kwok, L. G. Ng,
F. Ginhoux, and E. W. Newell, “Dimensionality reduction for visualizing
single-cell data using UMAP,” en, Nature Biotechnology, vol. 37, no. 1,
pp. 38–44, Jan. 2019, Number: 1 Publisher: Nature Publishing Group,
ISSN: 1546-1696. DOI: 10.1038/nbt.4314.

[16] E. Schubert and M. Gertz, “Intrinsic t-Stochastic Neighbor Embedding
for Visualization and Outlier Detection,” en, in Similarity Search and
Applications, C. Beecks, F. Borutta, P. Kröger, and T. Seidl, Eds.,
ser. Lecture Notes in Computer Science, Cham: Springer International
Publishing, 2017, pp. 188–203, ISBN: 978-3-319-68474-1. DOI: 10.1007/
978-3-319-68474-1 13.

[17] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, pp. 53–65, 1987. DOI: 10.1016/0377- 0427(87)
90125-7.

[18] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN
Revisited, Revisited: Why and How You Should (Still) Use DBSCAN,”
en, ACM Trans. Database Syst., vol. 42, no. 3, pp. 1–21, Jul. 2017,
ISSN: 03625915. DOI: 10.1145/3068335.

[19] H. Kriegel, P. Kröger, J. Sander, and A. Zimek, “Density-based cluster-
ing,” en, WIREs Data Mining Knowl Discov, vol. 1, no. 3, pp. 231–240,
May 2011, ISSN: 1942-4787, 1942-4795. DOI: 10.1002/widm.30.

[20] V. Kavitha and M. Punithavalli, “Clustering Time Series Data Stream - A
Literature Survey,” arXiv:1005.4270 [cs], May 2010, arXiv: 1005.4270.

[21] L. Sigal, A. Balan, and M. Black, “HumanEva: Synchronized Video
and Motion Capture Dataset and Baseline Algorithm for Evaluation of
Articulated Human Motion,” International Journal of Computer Vision,
vol. 87, pp. 4–27, Mar. 2010. DOI: 10.1007/s11263-009-0273-6.

[22] P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa, “Statis-
tical Computations on Grassmann and Stiefel Manifolds for Image and
Video-Based Recognition,” en, IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 11, pp. 2273–2286, Nov. 2011, ISSN: 0162-8828, 2160-9292.
DOI: 10.1109/TPAMI.2011.52.

[23] A. B. Chan and N. Vasconcelos, “Modeling, Clustering, and Segmenting
Video with Mixtures of Dynamic Textures,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 30, no. 5, pp. 909–926,
May 2008, ISSN: 1939-3539. DOI: 10.1109/TPAMI.2007.70738.

[24] R. Li, T.-P. Tian, and S. Sclaroff, “Simultaneous Learning of Nonlinear
Manifold and Dynamical Models for High-dimensional Time Series,”
en, in 2007 IEEE 11th International Conference on Computer Vision,
Rio de Janeiro, Brazil: IEEE, 2007, pp. 1–8, ISBN: 978-1-4244-1630-1.
DOI: 10.1109/ICCV.2007.4409044.

[25] Z. Wang and T. Oates, “Imaging Time-Series to Improve Classification
and Imputation,” en, arXiv:1506.00327 [cs, stat], May 2015, arXiv:
1506.00327.

[26] F. Takens, “Detecting strange attractors in turbulence,” en, in Dynamical
Systems and Turbulence, Warwick 1980, D. Rand and L.-S. Young,
Eds., vol. 898, Berlin, Heidelberg: Springer Berlin Heidelberg, 1981,
pp. 366–381, ISBN: 978-3-540-11171-9 978-3-540-38945-3. DOI: 10 .
1007/BFb0091924.

[27] J. Stark, D. Broomhead, M. Davies, and J. Huke, “Takens embedding
theorems for forced and stochastic systems,” en, Nonlinear Analysis:
Theory, Methods & Applications, vol. 30, no. 8, pp. 5303–5314, Dec.
1997, ISSN: 0362546X. DOI: 10.1016/S0362-546X(96)00149-6.

[28] G. Bouleux, E. Marcon, and O. Mory, “Early index for detection of
pediatric emergency department crowding,” IEEE journal of biomedical
and health informatics, vol. 19, no. 6, pp. 1929–1936, 2015.

[29] S. Gudmundsson, “An Introduction to Riemannian Geometry,” Lecture
Notes version, pp. 1–235, 2004.

[30] H. Karcher, “Riemannian center of mass and mollifier smoothing,” en,
Comm. Pure Appl. Math., vol. 30, no. 5, pp. 509–541, Sep. 1977, ISSN:
00103640, 10970312. DOI: 10.1002/cpa.3160300502.

[31] P.-A. Absil, R. Mahony, and R. Sepulchre, “Riemannian Geometry of
Grassmann Manifolds with a View on Algorithmic Computation,” en,
Acta Applicandae Mathematicae, vol. 80, no. 2, pp. 199–220, Jan. 2004,
ISSN: 0167-8019. DOI: 10.1023/B:ACAP.0000013855.14971.91.

[32] A. Edelman, T. A. Arias, and S. T. Smith, “The Geometry of Algorithms
with Orthogonality Constraints,” en, SIAM Journal on Matrix Analysis
and Applications, vol. 20, no. 2, pp. 303–353, Jan. 1998, ISSN: 0895-
4798, 1095-7162. DOI: 10.1137/S0895479895290954.

[33] R. Zimmermann, “A matrix-algebraic algorithm for the Riemannian
logarithm on the Stiefel manifold under the canonical metric,” en,
arXiv:1604.05054 [math], Apr. 2016, arXiv: 1604.05054.

[34] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-
based external cluster evaluation measure,” in Proceedings of the 2007
joint conference on empirical methods in natural language processing
and computational natural language learning (EMNLP-CoNLL), 2007,
pp. 410–420.


