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ABSTRACT
The current coronavirus pandemic (COVID-19) became a
world-wide threat, infecting more than 42 million people
since its outbreak in early 2020. Recent studies show that
analyzing chest CT scans plays an essential role in assessing
disease progression and facilitates early diagnosis. Automatic
lesion segmentation constitutes a useful tool to complement
more traditional healthcare system strategies to address the
COVID-19 crisis. We introduce MASC-Net, a novel deep
neural network that automatically detects COVID-19 related
infected lung regions from chest CT scans. The proposed
architecture consists of a multi-input encoder-decoder that
aggregates high-level features extracted with variable-size
receptive fields.

Index Terms— COVID-19, Computer Tomography, le-
sion segmentation

1. INTRODUCTION

Since the first cases of infection in China, the ongoing
COVID-19 global pandemic has affected more than 42 mil-
lion people (October 2020 estimation), claiming the lives of
more than one million others [1, 2, 3]. To face this dramatic
situation, the community of researchers worldwide started to
provide active solutions to help the healthcare system to fight
against this growing threat. In multiple studies, radiologists
have reported the presence of specific lesions in the CT scans
of COVID-19 patients, the two most frequently encountered
ones being Ground Glass Opacities and Pulmonary Con-
solidation [4, 5]. In particular, it appears that an accurate
volumetric estimation of these lesions is useful to evaluate
the severity of the infection and provides valuable informa-
tion in terms of prescription of the most suitable clinical
treatment [6]. In many countries, it is indeed of paramount
importance to manage efficiently the available resources in
terms of intensive care beds. Unfortunately, accurate quan-
tification of chest CT lung lesions is very time-consuming
even for experienced radiologists, so that large-scale manual
analysis is virtually impossible [7].

The use of deep learning methods in analyzing chest CT
scans in the COVID-19 context is an active research area, fo-
cusing on tasks such as lung segmentation, COVID-19-related
lesion segmentation, and the classification of these lesions.
One of the most challenging tasks is lesion segmentation,
which aims at localizing all lesions, indiscriminately. The
authors of [8] propose a semi-supervised system, while [9]
introduces a modified VNet [10] structure to detect COVID-
19 from 3D volumes. Since handling 3D structures may be
unnecessarily costly from both resource and time viewpoints,
some recent works focus on segmenting lesions from CT
slices. In [11] Inf-Net, a semi-supervised segmentation sys-
tem is described, which is based on a partial parallel decoder
structure, using multi-level deep supervision to infer the seg-
mentation mask at different encoding levels. For other CT
slice-based approaches, we refer the reader to [12, 13, 14].

In this work, we propose a new neural network architec-
ture called MASC-Net (Multi-level Atrous Spatial Convolu-
tion Network) to improve automatic lesion segmentation in
chest CT scans. It employs convolution layers with differ-
ent dilation rates, allowing the network to aggregate informa-
tion regarding areas of different sizes, followed by an encoder
module that progressively extracts higher dimensional rep-
resentations by processing local information layer by layer.
This approach allows for better pixel class separation in the
computed higher dimensional space.

The rest of the paper is organized as follows. Section 2
presents our main contribution, which is a new neural net-
work approach for lesion segmentation, by detailing each part
of the proposed system. Section 3 describes the experimental
setup and compares the obtained results with those produced
by other existing approaches in the literature. Finally, Sec-
tion 4 contains some concluding remarks.

2. PROPOSED METHOD

The proposed architecture is detailed in Figure 1. It has an
encoder-decoder-like structure, with skip connections, that in-
puts the original CT scan slice and the histogram-equalized



Fig. 1: Proposed architecture of Multi-level Atrous Spatial Convolution Network (MASC-Net). Top-figure represents the overall configu-
ration of the network, an encoder-decoder structure with different feature extraction blocks. Bottom-left and bottom-right figures detail the
Dense Atrous Convolution (DAC) and Residual Multi-kernel Pooling (RMP) blocks, respectively.

version of it, together with other relevant features. All this en-
coded information is concatenated into a single feature map,
that is passed through a Dense Atrous Convolution (DAC)
block, followed by a Residual Multi-kernel Pooling (RMP)
block. The resulting features are fed to the decoder part. Fol-
lowing the decoding phase, the final predictions are computed
by thresholding the output. Each block of the proposed net-
work is detailed below.

2.1. Receptive Field Block (RFB)

The RFB consists of multiple branches with different kernel
sizes and dilated convolution layers. This type of structure
has been used in accurate and fast object detection, by tak-
ing into account variable-distanced pixels, while maintaining
roughly the same number of parameters for the convolution
operation. In our approach, we use a RFB structure com-

prised of 4 branches that contains 4 different dilation rates,
e.g. 1,3,5,7 (1 corresponds to the standard 2D Convolution)
and a residual connection. For each of our inputs we apply
an RFB in order to extract relevant features characterising re-
gions with 4 distinctive sizes.

2.2. Dense Atrous Convolution block (DAC) and Residual
Multi-kernel Pooling block (RMP)

Inspired by [15], we pass our concatenated high-level feature
map to a DAC block in order to further extract significant in-
formation by using 4 branches with different dilated convolu-
tion rates, followed by 1 × 1 Convolution blocks to achieve
the same dimension for the filter space in each branch. The
proposed RMP encodes the resulting features by using mul-
tiple pooling layers with different receptive field sizes and a



1×1 Convolution operation to reduce the computational cost.
The results from these 3 pooling branches are then concate-
nated alongside the original feature map in order to produce
the output which is then passed to our decoder module.

2.3. Encoder-Decoder

The encoder part of our proposed architecture which acts as
a feature extractor takes as input the original CT scan, the
equalized histogram version of it, and the 2 feature maps gen-
erated by passing each input slice through an RFB, succes-
sively down-sampling the input images to a small size ab-
stract feature space. The reason for using the CT slice along
with its equalized version of it as input lies in the fact that
some lesion areas are of low-contrast, relative to the majority
of annotated lesions. Each Encoder block consists of a 2D
Convolution layer with a 3 × 3 kernel, a padding of 1, and
various filters to extract feature representations from slices,
followed by ReLU activation function, a Batch Normalization
step, and a 2 × 2 Max Pooling layer. The 4 produced high-
level feature maps are then concatenated and passed-down to
the DAC and the RMP blocks, followed by 5 decoding blocks,
each being composed by layers similar to those that our en-
coder blocks contain, except that the Max Pooling operation
is replaced by a 2 × 2 up-sampling operation using bilinear
interpolation in order to restore the high-level features back
to the input slice resolution. While 2D Convolution is used
when extracting relevant information in our encoding layers,
max-pooling leads to a loss of semantic information. In order
to overcome this limitation, we add skip connections from
convolution layers in encoding blocks to the mirrored up-
sampling layers from decoding blocks. The encoded feature
maps are thus concatenated with the up-sampled high-level
decoded maps to account for the loss of information due to
successive down-sampling.

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup

Let V ∈ RD×H×W denote a volume which corresponds to a
chest CT. We aim at classifying each voxel value Vi,j,k ∈ R
with (i, j, k) ∈ {1, . . . , D} × {1, . . . ,H} × {1, . . . ,W} into
one of the following classes: non-lesion and lesion. After this
segmentation, each lesion voxel could be classified into dif-
ferent lesion types. We used as input data slices S ∈ RH×W

extracted from volume V .
We trained our model on an online dataset1 which con-

tains 9 annotated volumes of chest CT scans (from differ-
ent patients). We split the dataset into 2 distinct sub-sets for
training (6 volumes, 200 slices) and testing (3 volumes, 173
slices), using only slices that contain lesions. Each volume
has been truncated to [−1000, 1000] on the Hounsfield scale,

1https://medicalsegmentation.com/covid19/

then normalized in the range [0, 1], and reshaped in order to
obtain slices of 512× 512 pixels.

To further assess the performance of our approach, we
tested it on another dataset, consisting of slice by slice an-
notated CTs, acquired with a different scan. The test dataset,
detailed in [16], contains 10 annotated volumes from Coro-
nacases Initiative. In our experiments, we selected slices that
contain infected areas, totaling approximately 500 slices.

The proposed structure was trained with ADAM opti-
mizer [17] with a learning rate γ = 10−3 and exponential
decay rates β1 = 0.9 and β2 = 0.999, using dice loss, a
popular choice in segmentation tasks [18]. The weights were
initialized using Xavier uniform distribution.

3.2. Evaluation metrics

To estimate the performance of our proposed method, we re-
port several evaluation metrics, including Dice Coefficient
Score (DSC), Sensitivity (i.e. Recall), Specificity, Precision
and F-score. These metrics are widely used for assessing the
accuracy in different medical tasks and are defined as follows:

DSC =
2|A ∩B|
|A|+ |B|+ ε

, (1)

Sensitivity : r =
TP

TP + FN
, (2)

Specificity: s =
TN

TN + FP
, (3)

Precision: p =
TP

TP + FP
, (4)

F-Score =
2pr

p+ r
. (5)

Here-above A, B, TP, TN, FN, FP denote the ground-truth,
the predicted mask, the number of true positives, true nega-
tives, false negatives, false positives, respectively. In our case,
a positive refers to a pixel that is labeled as lesion, while neg-
atives represent non-lesion pixels.

3.3. Results and discussion

We experimented with different versions of MASC-Net.
Firstly, we trained an Encoder-Decoder model, feeding the
the network with the original CT slice, its equalized his-
togram version, alongside the features extracted by the RFB
computed from the normalized CT slice. Secondly, we added
an additional branch which encodes features obtained by the
RFB on the equalized histogram CT slice. This resulted in
a significant increase of the mean DSC on validation set,
asserting the relevance of the additional features extracted
from the equalized histogram CT slice. For the final structure
of MASC-Net, we added skip connections from encoding
to decoding blocks to account for information loss during
down-sampling operation. We also added 2 feature encoding
blocks, respectively DAC and RMP blocks which operate on
the high-level concatenated encoded feature-maps.
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Fig. 2: Validation examples from both datasets. (a), (b), (c) are examples from dataset1, (d), (e), (f), (g) from dataset [16]. First
row: normalized CT slices. Second row: corresponding infection masks. Third row: infection masks predicted by MASC-Net

DSC Sensitivity Specificity Precision F-score
U-Net 0.492 0.456 0.996 0.657 0.492
Inf-Net 0.664 0.674 0.997 0.789 0.632
Encoder-Decoder + RFB CT scan 0.515 0.495 0.996 0.564 0.477
Encoder-Decoder + RFB CT scan + RFB CT scan w/ e.h 0.665 0.802 0.996 0.608 0.639
MASC-Net 0.707 0.803 0.996 0.671 0.707

Table 1: Average performance measures on test set from dataset1; e.h. stands for equalized histogram

Table 1 summarizes our results computed as a mean over
the test set. We compare the performance of our proposed
architecture with other state-of-the-art ones used for lesion
segmentation, namely UNet [19] and InfNet [11]. Note that
all models were trained on a small number of scans. Even in
this setting, the performance of MASC-Net in terms of DSC
is comparable with recent structures trained on much larger
datasets; see for example [13].

To test the generalization capabilities of each system in
the context of training with limited data, we tested all the
models on a different dataset, in an attempt to simulate how
such system would function in real-life conditions, e.g. a hos-
pital were CTs from different scanners may need to be anal-
ysed. The results detailed in Table 2 show that MASC-Net
outperforms the other models in terms of DSC, Sensitivity,
Precision, and F-Score, proving the adaptability of the ar-
chitecture to new data. The performance of our system can
be compared with results in [11], where the reported DSC
value was 0.59. Some visual results of masks predicted using
MASC-Net are presented in Figure 2.

DSC Sen. Spec. Precision F-score
U-Net 0.485 0.377 0.999 0.810 0.485
Inf-Net 0.516 0.438 0.998 0.747 0.512
MASC-Net 0.655 0.575 0.998 0.821 0.657

Table 2: Average performance measures on test dataset [16]

4. CONCLUSION

This paper has presented MASC-Net, a novel lung CT lesion
segmentation architecture using a four-level encoder-decoder
module and multiple feature extractor blocks. Trained on a
small dataset, accurate results are obtained for lesion segmen-
tation tasks. Indeed, the proposed structure outperforms state-
of-the-art models in terms of DSC and Sensitivity. We also
provided performance measures on a second larger dataset,
showing that MASC-Net exhibits good generalization capa-
bilities, an essential aspect in medical segmentation tasks. An
estimation of the COVID-19 disease extent could be deduced
by estimating the volume of the segmented lesions.
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