Stéphane Demri
email: demri@lsv.ens-cachan.fr

Denis Lugiez
email: lugiez@lif.univ-mrs.fr

Complexity of Modal Logics with Presburger Constraints 1

Keywords: modal logic, Ladner-like algorithm, arithmetical constraint, regularity constraint, computational complexity

We introduce the extended modal logic EML with regularity constraints and full Presburger constraints on the number of children that generalize graded modalities, also known as number restrictions in description logics. We show that EML satisfiability is only pspace-complete by designing a Ladner-like algorithm. This extends a well-known and non-trivial pspace upper bound for graded modal logic. Furthermore, we provide a detailed comparison with logics that contain Presburger constraints and that are dedicated to query XML documents. As an application, we provide a logarithmic space reduction from a variant of Sheaves logic SL into EML that allows us to establish that its satisfiability problem is also pspace-complete, significantly improving the best known upper bound.

Introduction

Logics for XML documents. In order to query XML documents with arithmetical and regular constraints, logical and automata-based formalisms have been recently introduced [SSMH04,ZL06,BT05,OTTR05,SSM07] leading to various expressiveness and complexity results about logics and specialized tree automata. As usual, XML documents are viewed as labeled, unranked ordered trees. For instance, a logic with fixpoint operators, arithmetical and regularity constraints is introduced in [START_REF] Seidl | Counting in trees for free[END_REF] and shown decidable with an exponential time complexity, which improves results for description logics with qualified number restrictions [START_REF] Calvanese | Expressive description logics[END_REF]. At the same period, the sister logic SL ("Sheaves Logic") is shown decidable in [ZL06, Section 4.4] (see also [START_REF] Zilio | XML schema, tree logic and sheaves automata[END_REF]) with a non-elementary decision procedure. The more expressive logic GDL is however shown undecidable in [START_REF] Zilio | XML schema, tree logic and sheaves automata[END_REF] since GDL can express properties about disjoint sequences of children, as done also in Separation Logic (see e.g. [START_REF] Reynolds | Separation logic: a logic for shared mutable data structures[END_REF]). More generally, designing modal logics for semistructured data, either for tree-like models [Mar03,ABD + 05] or for graph-like models [START_REF] Alechina | A modal perspective on path constraints[END_REF][START_REF] Bidoit | A first step towards modeling semistructured data in hybrid multimodal logic[END_REF] has been a fruitful approach since it allows to reuse known technical machineries adapted to special purpose formalisms. A temporal logic with counting can be also found in [START_REF] Moller | Counting on CTL*: on the expressive power of monadic path logic[END_REF] but it has been introduced for other purposes, namely to characterize the expressive power of MSO in which second-order quantifications are over paths.

Our motivation. The main goal of this work is to introduce a modal logic allowing Presburger constraints (more general than those in graded modal logics [START_REF] Barnaba | Graded modalities[END_REF][START_REF] Tobies | PSPACE reasoning for graded modal logics[END_REF][START_REF] Pacuit | Majority logic[END_REF] or description logics [HB91,HST00,CG05]) and with regularity constraints as in the logical formalisms from [Wol83,ZL03,SSMH04] but with a satisfiability problem that can be solved in polynomial space. This would refine decidability and complexity results from [START_REF] Tobies | PSPACE reasoning for graded modal logics[END_REF][START_REF] Seidl | Counting in trees for free[END_REF][START_REF] Zilio | XML schema, tree logic and sheaves automata[END_REF]. Such an hypothetical logic would be much more helpful than the minimal modal logic K that is also known to be pspace-complete [START_REF] Ladner | The computational complexity of provability in systems of modal propositional logic[END_REF] but K has not the ability to express such complex arithmetical and regularity constraints. With such requirements, fixpoint operators are out of the game since modal µ-calculus is already exptime-complete. Similarly, Presburger constraints should be in a normal form since full Presburger logic has already a complexity higher than 2exptime, see e.g. [START_REF] Fischer | Super-exponential complexity of Presburger arithmetic[END_REF][START_REF] Berman | Precise bounds for Presburger arithmetic and the reals with addition: Preliminary report[END_REF]. It is worth observing that as far as memory ressources are concerned, no exptime-complete problem is known to be solved in polynomial space. Hence, the potential difference between exptime-completeness and pspace-completeness remains, so far, a significant gap in practice for running algorithms (pspace and exptime have not been proved to be distinct classes).

Our contribution. We consider an Extended Modal Logic EML with full Presburger constraints on the number of children and with regularity constraints. It is a minor variant of either the fixpoint free fragment of [START_REF] Seidl | Counting in trees for free[END_REF] or the Sheaves Logic SL [START_REF] Zilio | XML schema, tree logic and sheaves automata[END_REF] (extending also Presburger Modal logic from [START_REF] Demri | modal) logics for semistructured data[END_REF]). Relationships between EML, SL and the logic from [START_REF] Seidl | Counting in trees for free[END_REF] are provided in the paper. Our main result states that EML satisfiability is in pspace. The complexity upper bound is proved with a Ladner-like algorithm, see the original one in [START_REF] Ladner | The computational complexity of provability in systems of modal propositional logic[END_REF] and this is strongly related to tableaux methods, see e.g. [START_REF] Fitting | Proof methods for modal and intuitionistic logics[END_REF][START_REF] Goré | Tableaux methods for modal and temporal logics[END_REF]. Such an algorithm can be also advantageously viewed as a specialized depth-first strategy to find proofs in an analytic proof system. Our results generalize what is known about graded modal logic [START_REF] Fine | In so many possible worlds[END_REF][START_REF] Barnaba | Graded modalities[END_REF][START_REF] Tobies | PSPACE reasoning for graded modal logics[END_REF] (including also the majority logic from [START_REF] Pacuit | Majority logic[END_REF]) and apart from its larger scope, we believe our proof is also much more transparent. A different approach introduced in [START_REF] Schröder | PSPACE bounds for rank-1 modal logics[END_REF] provides similar algorithms for graded modal logic and majority logic. Our proof uses the fact that it is simple to characterize the Parikh image of regular images in terms of semilinear sets (see [START_REF] Seidl | Counting in trees for free[END_REF][START_REF] Seidl | Counting in trees[END_REF]) and systems of linear equations admit small solutions [START_REF] Chr | On the complexity of integer programming[END_REF], see also [START_REF] Borosh | Bounds on positive integral solutions of linear diophantine equations[END_REF]. The use of small solutions for such systems goes back to [START_REF] Rackoff | The covering and boundedness problems for vector addition systems[END_REF] in which the boundedness problem for vector addition systems is shown in expspace by taking advantage of small solutions to generate small paths. Our algorithm can be viewed as the optimal composition between an algorithm that transforms an EML formula into a Presburger tree automata and an algorithm that tests emptiness for these peculiar Presburger tree automata. This provides us new and non-trivial pspace complexity upper bounds that are not direct consequences of [START_REF] Seidl | Counting in trees for free[END_REF] since composing a polynomial space reduction with a polynomial space test does not imply the existence of a direct polynomial space test for the composition. For example, runs of linearly-bounded alternating Turing machines can be computed in polynomial space and testing if a run is accepting can be done in polynomial space in the size of the run. However, since apspace = exptime, it is unlikely that the composition can be done in pspace. Additionally, our algorithm substantially refines results from [START_REF] Zilio | XML schema, tree logic and sheaves automata[END_REF][START_REF] Seidl | Counting in trees for free[END_REF]. Indeed, as by-products of the complexity results about EML, we show that • there is a logarithmic space reduction from a slight variant of Sheaves logic SL [resp. the fixpoint free fragment of the main logic from [START_REF] Seidl | Counting in trees for free[END_REF] (herein called SSMH)] into EML. • the satisfiability problem for this variant of SL [resp. SSMH] is pspacecomplete. • the logic PDL tree from [ABD + 05] is undecidable when extended with Presburger constraints. Modalities in PDL tree are quite rich since they allow us to navigate more freely in tree models, for instance sibling relations are present.

The complexity upper bounds are established via a logspace reduction whereas the pspace lower bound is proved by reducing satisfiability for the modal logic K (with modal operators 2 and 3) restricted to the truth constants as the only atomic formulae and characterized by the class of all the Kripke structures or equivalently by the class of all finite trees. Indeed, pspace-hardness of this very K fragment is already known [START_REF] Hemaspaandra | The complexity of poor man's logic[END_REF].

Plan of the paper. In Section 2, we introduce the extended modal logic EML and we show why it is safe for the satisfiability problem to restrict ourselves to finite labeled, unranked ordered trees with a unique label on transitions (using rather standard arguments). Section 3.1 contains preliminary definitions and results for the forthcoming algorithm. The Ladner-like algorithm is presented in Section 3.2 whereas its correctness and complexity are analyzed in Sections 3.3 and 3.4, respectively. The appendix A contains the proof that the branching factor of models can be bounded, essentially adapting developements from [START_REF] Seidl | Counting in trees[END_REF]. In Section 4, we compare our result with related work and it is the opportunity to establish complexity results about SL and SSMH. Section 5 concludes the paper and states a few open problems.

2 Extended Modal Logic EML

Definition

Given countably infinite sets AT = {p 1 , p 2 , . . .} of propositional variables and Σ = {R 1 , R 2 , . . .} of relation symbols, we define the set of formulae and terms inductively as follows:

φ ::= p | ¬φ | φ ∧ φ | t ∼ b | t ≡ k c | A R (φ 1 , . . . , φ n) t ::= a × ♯ R φ | t + a × ♯ R φ,
where

• p ∈ AT, R ∈ Σ, • b, c ∈ N, k ∈ N \ {0, 1}, a ∈ Z \ {0}, • ∼ ∈ {<, >, =},
• A is a nondeterministic finite-state automaton over an n-letter alphabet Σ A in which the letters are linearly ordered Σ A = a 1 , . . . , a n . The language accepted by A is denoted by L(A).

We write |φ| to denote the size of the formula φ with some reasonably succinct encoding and md(φ) to denote the "modal degree" of φ defined as the greatest number of nested occurrences of ♯ and automata-based operators in φ. We also write sub(φ) to denote the set of subformulae of φ. We assume that the cardinal of sub(φ) is bounded by |φ|.

An expression of form ♯ R φ should be understood as a variable in a Presburger arithmetic formula interpreted as the number of immediate R-successors satisfying the formula φ. A term of the form

a 1 × ♯ R 1 φ 1 + . . . + a m × ♯ Rm φ m is abbreviated by i=n i=1 a i ♯ R i φ i .
Because of the presence of Boolean operators and quantifier-elimination for Presburger arithmetic (first-order theory of N, <, =), any kind of Presburger constraints can be expressed in this formalism, maybe less concisely with respect to an analogous language with quantifiers. We assume in the following that the automata are encoded reasonably succinctly and the elements in Z are represented with a binary encoding.

A model M for EML is a structure M = T, (R R) R∈Σ , (< R s) s∈T,R∈Σ , l where

• T is the set of nodes (possibly infinite),

• (R R) R∈Σ is a family of binary relations in T × T such that for all R ∈ Σ and s ∈ T , the set

{s ′ ∈ T : s, s ′ ∈ R R } is finite (finite-branching), • each relation < R
s is a total ordering on the R R -successors of s, • l : T → 2 AT is the valuation function where 2 AT denotes the powerset of AT.

At this stage, a model is not a tree-like structure but we shall argue later why we can restrict ourselves to such structures, using standard arguments from modal logics. In the rest of the paper, we write R R (s

) = s 1 < . . . < s α to mean that R R (s) def = {s ′ ∈ T : s, s ′ ∈ R R } = {s 1 , . . . , s α } and s 1 < R s . . . < R s s α .
Given a finite-branching binary relation R ⊆ T × T , we write R ♯ (s) to denote the cardinal of the set {s ′ ∈ T : s, s ′ ∈ R} and R * to denote the reflexive and transitive closure relation of R. The satisfaction relation |= is inductively defined below where M is a model for EML and s ∈ T :

• M, s |= p iff p ∈ l(s), • M, s |= ¬φ iff not M, s |= φ, • M, s |= φ 1 ∧ φ 2 iff M, s |= φ 1 and M, s |= φ 2 , • M, s |= i a i ♯ R i φ i ∼ b iff i a i R ♯ R i ,φ i (s) ∼ b with R R i ,φ i = { s ′ , s ′′ ∈ T × T : s ′ , s ′′ ∈ R R i , and M, s ′′ |= φ i }, • M, s |= i a i ♯ R i φ i ≡ k c iff there is n ∈ N such that i a i R ♯ R i ,φ i (s) = nk + c, • The relation M, s |= A R (φ 1 , .
. . , φ n) holds when the finite sequence of children of the node s induces a finite pattern from L(A). There is a correspondence between the letters a 1 , . . . , a n from the alphabet of A and the argument formulae φ 1 , . . . , φ n (below each letter a i is associated with the argument formula φ i). More precisely, M, s |= A R (φ 1 , . . . , φ n) iff there is

a i 1 • • • a iα ∈ L(A) such that • R R (s) = s 1 < . . . < s α ,
• for every j ∈ {1, . . . , α}, M, s j |= φ i j .

Observe that constraints of the form i a i ♯ R i φ i ≡ k c can be expressed by regularity constraints but less concisely because of the binary encoding of integers. Moreover, these constraints are included so that by withdrawing regularity constraints we still obtain arithmetical constraints that have the expressive power of Presburger arithmetic.

Figure 1 illustrates the semantics of automata-based formulae. The automata in EML are used exactly as those defining temporal operators in extended temporal logic ETL [START_REF] Wolper | Temporal logic can be more expressive[END_REF]. The modal operator 3 (see e.g. [START_REF] Blackburn | Modal Logic[END_REF]) is defined by 3φ ≈ ♯ R φ 1 (and dually 2φ ≈ ♯ R ¬φ = 0) whereas the formula 3 n φ from graded modal logic is defined by 3 n φ ≈ ♯ R φ n. A basic example of what EML can express and graded modal logic cannot is that "there are twice more children satisfying p than children satisfying q" which can be stated by ♯ R p -2♯ R q = 0. Similarly, as in [START_REF] Pacuit | Majority logic[END_REF], one can express that "more than half of children satisfies the formula φ" with the formula 2♯φ -♯⊤ > 0.

s 1 |= φ 1 s 2 |= φ 2 s 3 |= φ 2 s 4 |= φ 1 s R R R R |= A R (φ 1 , φ 2) with L(A) = ab * a
A formula φ is satisfiable whenever there exist a model

M = T, (R R) R∈Σ , (< R s) s∈T,R∈Σ , l and s ∈ T such that M, s |= φ.
Examples of formulae. We present below a few more examples of properties that can be expressed in EML.

• The number of children obtained with relation R 1 and satisfying p is equal to the number of children obtained with relation R 2 and satisfying q:

♯ R 1 p = ♯ R 2 q
• The number of children obtained with the relation R is even:

♯ R ⊤ ≡ 2 0 or A R (⊤) with L(A) = (a • a) *
• For all the nodes of distance at most N obtained with the relation R ′ , the number of children obtained with the relation R and satisfying p is strictly greater than the number of those satisfying ¬p:

N i=0 i times 2 . . . 2(♯ R p > ♯ R ¬p), with 2ψ def = ♯ R ′ ¬ψ = 0.

Equivalence Between Graphs, Trees and Finite Trees

Even though EML models are defined from general Kripke structures (apart from the fact that they are finite-branching), we show below that we can restrict ourselves to finite unranked ordered trees. Given a finite set of relation symbols X = {R 1 , . . . , R n }, M = T, (R R) R∈Σ , (< R s) s∈T,R∈Σ , l is said to be a tree model with respect to X iff the restriction of M to i R R i is a tree.

Lemma 1 For every EML formula φ, φ is satisfiable iff φ is satisfiable in a finite tree model with respect to the set of relation symbols occurring in φ.

Proof. Suppose that φ has a EML model M = T, (R R) R∈Σ , (< R s) s∈T,R∈Σ , l and a node s ∈ T such that M, s |= φ. We build a model M ′ satisfying the tree condition by unfolding M in the standard way. However, it remains to define the corresponding linear orderings. The model

M ′ = T ′ , (S R) R∈Σ , (< ′ R s
) s∈T ′ ,R∈Σ , l ′ is defined as follows:

• T ′ is the set of finite non-empty sequences of the form s R 1 s 1 . . . R k s k , • (s R 1 s 1 . . . R n s n) S R (s R 1 s 1 . . . R n s n R n+1 s n+1) iff s n , s n+1 ∈ R R and R = R n+1 , • l ′ (s R 1 s 1 . . . R n s n) = l(s n) for every s R 1 s 1 . . . R n s n ∈ T ′ , • each ordering < ′ R
s ′ is the one induced by < R s ′′ by considering the last element s ′′ of the sequence s ′ .

One can show that for every

s R 1 s 1 . . . R n s n ∈ T ′ and EML formula ψ, M ′ , s R 1 s 1 . . . R n s n |= ψ iff M, s n |= ψ.
In particular M ′ , s |= φ. Since the formula tree of φ is finite and, arithmetical or regular constraints only speak about direct successors, we can truncate M ′ in order to obtain a finite model satisfying φ. 2

Restriction to One Relation

Additionally, one relation symbol suffices as a consequent of the result below.

Lemma 2 For every EML formula φ, one can compute in logspace an EML formula φ ′ with a unique relation symbol R such that φ is satisfiable on finite trees iff φ ′ is satisfiable on finite trees.

Proof. Let R 1 , . . . , R n be the relation symbols occurring in φ. To each R i , we associate a new propositional variable p i . Intuitively, "p i " holds true whenever the (backward) transition leading to the parent node is labelled by R i . The only relation symbol used in φ ′ will be R. Figure 2.3 illustrates this type of transformation.

R 1 R 2 R 2 R 3 R 1 R 2 ⇒ ⇐ p 1 p 2 p 3 p 2 p 1 p 2

Fig. 2. Elimination of relation symbols

The formula φ ′ is the conjunction φ ′ 1 ∧ φ ′ 2 where

• φ ′ 1 states that a unique p i holds true at each non-root node:

φ ′ 1 = |φ| i=1 i times 2 . . . 2(j∈{1,...,n} (p j ∧ l∈{1,...,n}\{j} ¬p l)) with 2ψ def = ♯ R ¬ψ = 0, • the formula φ ′ 2 is obtained from φ by replacing each occurrence of ♯ R i ψ by ♯ R (p i ∧ ψ), and each occurrence of A R i (ψ 1 , . . . , ψ m) by (A ′) R (¬p i , p i ∧ ψ 1 , . . . , p i ∧ ψ m) where A ′ is defined as follows. If the alphabet of A is Σ = {a 1 , . . . , a m }, the alphabet of A ′ is Σ ′ = {a 0 } ⊎ Σ and L(A ′) = {σ ∈ (Σ ′) * : σ \a 0 ∈ L(A)}
where σ \a 0 is obtained from σ by erasing all occurrences of the new letter a 0 . A ′ can be computed in logspace in the size of A by adding self-loops.

One can check that φ is satisfiable iff φ ′ is satisfiable. 2

In the rest of the paper, we assume that Σ is a singleton set {R}, we write A(φ 1 , . . . , φ n) instead of A R (φ 1 , . . . , φ n) and ♯φ i instead of ♯ R φ i . Models are simply written as tuples T, R, (< s) s∈T , l . Furthermore, without any loss of generality, we assume that formulae are satisfied at the root node of models.

An Algorithm for EML Satisfiability

In this section, we show that EML satisfiability can be solved in polynomial space by using a Ladner-like algorithm [START_REF] Ladner | The computational complexity of provability in systems of modal propositional logic[END_REF] and an analysis about constraint systems using in some place a crucial argument from the proof of [START_REF] Seidl | Counting in trees[END_REF]Claim 7.3]. The original algorithm [START_REF] Ladner | The computational complexity of provability in systems of modal propositional logic[END_REF] is designed for the modal logics K and S4 and an extension to tense logic can be found in [START_REF] Spaan | The complexity of propositional tense logics[END_REF] (see also other extensions for multimodal logics in [START_REF] Demri | A polynomial space construction of tree-like models for logics with local chains of modal connectives[END_REF]).

Consistent Sets of Formulae

We define below a notion of closure à la Fischer-Ladner [START_REF] Fischer | Propositional dynamic logic of regular programs[END_REF] for finite sets of formulae. Intuitively, the closure cl(X) of X contains all the formulae useful to evaluate the truth of formulae in X.

Definition 1 Let X be a finite set of formulae. cl(X) is the smallest set of formulae such that

• X ⊆ cl(X), cl(X) is closed under subformulae, • if ψ ∈ cl(X), then ¬ψ ∈ cl(X) (we identify ¬¬ψ with ψ), • if t ∼ b ∈ cl(X), then t ∼ ′ b ∈ cl(X) for every ∼ ′ ∈ {<, >, =},
• let K be the least common multiple (lcm) of all the constants k occurring in subformulae of the form t

≡ k c. If t ≡ k c ∈ cl(X), then t ≡ K c ′ ∈ cl(X) for every c ′ ∈ {0, . . . , K -1}.
A set X of formulae is said to be closed iff cl(X) = X. Observe that card(cl(X)) is exponential in card(X), which is usually not a good start to establish a polynomial space upper bound. Nevertheless, consistent sets of formulae that are satisfiable contain exactly one formula from {t ≡ K c : c ∈ {0, . . . , K -1}} for each constraint t ≡ k c ′ in X. Hence, as explained below, encoding consistent sets will require only polynomial space.

We refine the notion of closure by introducing a new parameter n: the distance from the root node to the current node where the formulae are evaluated. Each set cl(n, φ) is therefore a subset of cl({φ}).

Definition 2 Let φ be an EML formula. For n ∈ N, cl(n, φ) is the smallest set such that:

• cl(0, φ) = cl({φ}), for every n ∈ N, cl(n, φ) is closed,

• for all n ∈ N and ♯ψ occurring in some formula of cl(n, φ), we have ψ ∈ cl(n + 1, φ), • for all n ∈ N and A(φ 1 , . . . , φ m) ∈ cl(n, φ), we have {φ 1 , . . . , φ m } ⊆ cl(n + 1, φ).

In the sequel, we consider EML formulae φ such that for every n, we have cl(n, φ) = ∅, the lcm of all the constants k occurring in subformulae from cl(n, φ) of the form t ≡ k c is equal to the lcm of all k occurring in φ. Without any loss of generality, we also assume that ≡ K does not occur in φ. Given an EML formula, one can compute an equivalent EML formula satisfying the above requirements by at most doubling its size.

We are only interested in subsets of cl(n, φ) whose conjunction of its elements is EML satisfiable. A necessary condition to be satisfiable is to be consistent lo-cally, i.e. at the propositional level and at the level of arithmetical constraints.

As far as these latter constraints are concerned, we are more interested to introduce a notion of consistency that allows a polynomial space encoding of consistent sets than to guarantee that the Presburger constraints in a given set are indeed satisfiable. This latter property is checked with constraint systems (see Appendix A) in the main algorithm. This is analogous to the requirement to check maximal consistency at the propositional level but not EML satisfiability at once. It is the adequate construction of locally consistent sets that will guarantee that the initial set of formulae is EML satisfiable.

Definition 3 A set X ⊆ cl(n, φ) is said to be n-locally consistent iff the conditions below hold:

• if ¬ψ ∈ cl(n, φ), then ¬ψ ∈ X iff ψ ∈ X, • if ψ 1 ∧ ψ 2 ∈ cl(n, φ), then ψ 1 ∧ ψ 2 ∈ X iff ψ 1 , ψ 2 ∈ X, • if t ∼ b ∈ cl(n, X) then there is a unique ∼ ′ ∈ {<, >, =} such that t ∼ ′ b ∈ X, • if t ≡ k c ∈ cl(n, X), then there is a unique c ′ ∈ {0, . . . , K -1} such that t ≡ K c ′ ∈ X, • if t ≡ k c ∈ cl(n, X), then ¬t ≡ k c ∈ X iff there is c ′ ∈ {0, . . . , K -1} such that t ≡ K c ′ ∈ X and not c ′ ≡ k c, • if t ∼ b ∈ cl(n, X) then ¬t ∼ b ∈ X iff there is ∼ ′ ∈ {<, >, =} \ {∼} such that t ∼ ′ b ∈ X.
The last condition is obviously a consequence of the two first ones, but we prefer to keep it for the sake of clarity. Observe that given an EML model M and a node s, the set of subformulae {ψ ∈ cl(n, φ) : M, s |= ψ} is nlocally consistent and it behaves as a type for the node s. Moreover, in the above definition, maximal consistency is required and this will simplify a few technical developements.

Lemma 3 Let φ be a EML formula and n ∈ N.

(I) Every n-locally consistent set has cardinal at most 2 × |φ| and can be encoded with a polynomial amount of bits with respect to |φ|.

(II) cl(|φ|, φ) = ∅. (III) Given a set X ⊆ cl(0, φ) of cardinal at most 2 × |φ| and n ∈ N, one can decide in polynomial-time in |φ| whether X is n-locally consistent. Proof. (I) By Definition 2, cl(n, φ) ⊆ cl(φ). Let X ⊆ cl(n, φ) be an n-locally consistent set. (a) For each subformula ψ ∈ cl(n, φ) with Boolean outermost connective, either ψ ∈ X or ¬ψ ∈ X. (b) For each atomic subformula ψ ∈ cl(n, φ), either ψ ∈ X or ¬ψ ∈ X. (c) For each atomic subformulae t ∼ b ∈ cl(n, φ), either ¬t ∼ b ∈ X and t ∼ ′ b for some ∼ ′ ∈ {<, >, =} \ {∼} or t ∼ b ∈ X, (d) For each atomic subformulae t ≡ k c ∈ cl(n, φ), there is a unique c ′ ∈ {0, . . . , K -1} such that t ≡ K c ′ ∈ X.
These are the only ways to obtain subformulae in X. Each subformulae in φ contributes to at most one formula in X except the subformulae of the form t ≡ k c, that can contribute to at most two formulae in X (with the additional subformulae of the form t ≡ K c ′ ∈ X). Consequently, the cardinal of X is bounded by 2×|φ|. Each subformula with Boolean outermost connective, each atomic subformula and their negations can be encoded with 1 bit. Similarly, each atomic formula of the form t ∼ ′ b can be encoded with 2 bits. Finally, each subformula of the form t ≡ K c ′ can be encoded with O(log(K)) bits, that is at most quadratic in |φ|. Indeed, K is at most k 1 × • • • × k u where each k i occurs in some atomic formula of the form t ≡ k i c i in φ. Hence, each n-locally consistent subset of cl(n, φ) can be encoded with O(|φ| 2) bits.

(II) We define the modal degree of a finite set of formulae as the maximal modal degree among the modal degrees of all formulae belonging to the set. By convention, the modal degree of the empty set is zero. By Definitions 1 and 2, md(cl(0, φ)) = md(φ) < |φ|. Moreover, for each n ∈ N such that md(cl(n, φ)) > 0, we have md(cl(n + 1, φ)) < md(cl(n, φ)). One can also observe that whenever md(cl(n, φ)) = 0, we have cl(n, φ) = ∅. This allows us to conclude that cl(|φ|, φ) = ∅.

(III) First, observe that since cl(n, φ) = ∅ for n > |φ|, n can be represented with a binary encoding with no harm. By building the formula tree of φ, it is possible to compute the formulae in cl(n, φ) whose outermost connective is Boolean as well as the atomic formulae from sub(φ) that are also in cl(n, φ). Such a computation mainly depends on the modal depth of the subformula occurrences in the tree. An analogous analysis can be done with elements of cl(n, φ) that are of the form t ∼ ′ b. This allows to check the conditions (a)-(c) above. Finally, a visit of the formula tree also allows to decide which terms should occur in subformulae of the form t

≡ K c in cl(n, φ). It remains then to check that if t ≡ k c ∈ cl(n, X), then ¬t ≡ k c ∈ X implies there is c ′ ∈ {0, . . . , K -1} such that t ≡ K c ′ ∈ X and not c ′ ≡ k c, which can be performed in polynomial-time in |φ|. Similarly, one needs to check that t ≡ k c ∈ X implies there is c ′ ∈ {0, . . . , K -1} such that t ≡ K c ′ ∈ X and c ′ ≡ k c. 2
Before defining the main algorithm in Section 3.2, let us introduce the notion of M-bounded models.

Definition 4 Let φ be an EML formula, M be a natural number and M be a finite tree model such that M, s |= φ for some node s. We say that M, s is M-bounded for φ iff for every node s ′ of distance d from s, the cardinal of

1 2 < M × nb(d + 1) s depth d • • • • • • Fig. 3. A schema for M -boundedness R(s ′) is bounded by nb(d + 1) × M where nb(d + 1
) is the number of distinct (d + 1)-locally consistent sets (with respect to φ).

Observe that nb(d + 1) is exponential in |φ| in the worst case and nb(d + 1) = ∅ as soon as d |φ|. Figure 3 presents a schematic illustration for M-boundedness.

An Algorithm for M-Bounded Satisfiability

We define the function SAT such that φ is EML satisfiable in some Mbounded model iff there is X ⊆ cl(0, φ) such that X is 0-locally consistent and SAT(X, 0) has a computation that returns true. Indeed, the function SAT(X, d) defined in Figure 4 is parameterized by some natural number M (see the step (guess-number-children)) and by the formula φ. These two parameters should be understood as global variables. We shall fix later the value M that will be only exponential in |φ| (see Lemma 7 and Appendix A).

The first argument X is intended to be a subset of cl(d, φ). SAT is a nondeterministic algorithm but it can be defined as a deterministic one by enumerating possibilities instead of guessing, in the standard way. The (d + 1)-locally consistent sets are denoted by Y i for some 1 i nb(d + 1).

A call SAT(X, d) performs the following actions. First it checks whether X is d-locally consistent and if the modal degree is zero, then it returns true in case of d-locally consistency. In order to check that X is satisfiable, children of the node are guessed from left to right (providing an ordering of the successors) and during the guess, auxiliary variables are updated. For each subformula ψ, there is a counter C ψ and its current value contains the current number of children that should satisfy ψ. Similarly, regularity constraints use auxiliary variables. For each subformula in X whose outermost connective is automatabased, we introduce a variable that encodes the current state in the automaton. At the end of the guess of the children, this variable should be equal to a final state of the automaton. By contrast, for each subformula in X whose outermost connective is the negation of some automata-based formula, we introduce a variable that encodes the set of states that could be reached so far in the automaton (simulating a subset construction of the underlying automaton). At the end of the guess of the children, this variable should not contain any final state of the automaton. Checking regularity constraints on-the-fly as done herein goes back to [START_REF] Seidl | Counting in trees for free[END_REF]. After guessing at most M × nb(d + 1) children, there is a final checking that verifies that the regularity constraints and the arithmetical constraints are satisfied. For instance, an atomic formula of the form a i ♯ψ i ∼ b will lead to verify whether a i ♯C ψ i ∼ b holds true. For each child, we guess in fact a (d + 1)-locally consistent set Y , which allows us to update all the auxiliary variables. However, we apply recursively SAT(Y, d + 1) to ensure that not only Y is (d + 1)-locally consistent but also that Y is satisfiable. Hence, if we guess a set Y that contains some unsatisfiable formula with respect to M-bounded models then SAT(Y, d + 1) has no accepting computation which also induces a non accepting computation for SAT(X, d).

The algorithm SAT described in Figure 4 is a typical example of Ladner-like algorithm, see e.g. similar algorithms in [Lad77, [START_REF] Spaan | The complexity of propositional tense logics[END_REF][START_REF] Demri | A polynomial space construction of tree-like models for logics with local chains of modal connectives[END_REF]. Indeed,

• it does not rely on any machinery such as automata or tableaux/sequent proof systems for checking satisfiability, • the graph of recursive calls (here for SAT) induces a tree model for the argument formula. Since EML models are precisely trees, we get the EML model for free.

Complexity Analysis

Firstly, we characterize the space needed to run SAT.

Lemma 4 For all 0-locally consistent sets X, and computations of SAT(X, 0)

• the recursive depth is linear in |φ|,

• each call requires space polynomial in the sum of • the space for encoding 0-locally consistent sets • and log(M).

Consequently, only polynomial space is required when M is exponential in |φ|.

function SAT(X, d) (consistency) if X is not d-locally consistent then abort;

(base case) if X contains only propositional formulae then return true;

(witnesses) (initialization-counters) for every ψ ∈ cl(d + 1, φ) that is not a periodicity constraint of the form t ≡ K c, C ψ := 0; (initialization-states) for every A(ψ 1 , . . . , ψ α) ∈ X, q A(ψ 1 ,...,ψα) := q 0 for some initial state q 0 of A; (initialization-states-complement) for every ¬A(ψ 1 , . . . , ψ α) ∈ X, Z ¬A(ψ 1 ,...,ψα) := I where I is the set of initial states of A; (guess-number-children) guess NB in {0, . . . , nb(d + 1) × M}; (guess-children-from-left-to-right) for i = 1 to NB do (1) guess x ∈ {1, . . . , nb(d + 1)};

(2) if not SAT(Y x , d + 1) then abort;

(3) for every

ψ ∈ cl(d + 1, φ) different from some t ≡ K c, if ψ ∈ Y x , then C ψ := C ψ + 1; (4) for every A(ψ 1 , . . . , ψ α) ∈ X,
(a) guess a transition q A(ψ 1 ,...,ψα)

a i -→ q ′ in A with Σ A = a 1 , . . . , a α ; (b) if ψ i ∈ Y x , then q A(ψ 1 ,...,ψα) := q ′ , otherwise abort; (5) for every ¬A(ψ 1 , . . . , ψ α) ∈ X, Z ¬A(ψ 1 ,...,ψα) := {q : ∃ q ′ ∈ Z ¬A(ψ 1 ,...,ψα) , q ′ a i -→ q, ψ i ∈ Y x }; (final-checking) (1) for every i a i ♯ψ i ∼ b ∈ X, if i a i × C ψ i ∼ b does not hold, then abort, (2) for every i a i ♯ψ i ≡ k c ∈ X, if i a i × C ψ i ≡ k c does not hold, then
abort, (3) for every A(ψ 1 , . . . , ψ α) ∈ X, if q A(ψ 1 ,...,ψα) is not a final state of A, then abort; (4) for every ¬A(ψ 1 , . . . , ψ α) ∈ X, if Z ¬A(ψ 1 ,...,ψα) contains a final state of A, then abort; (return-true) return true. Proof. By Lemma 3, the size of the stack of recursive calls to SAT is at most |φ| since cl(|φ|, φ) = ∅. In the function SAT, the steps (consistency), (base case), (initialization-counters), (initialization-states) and (initialization-statescomplement) can be obviously checked in polynomial time in φ (and therefore in polynomial space), see e.g. Lemma 3(III). In the step (guess-children-fromleft-to-right), one needs a counter to count at most until nb(d + 1) × M. A polynomial amount of bits in |φ| + log(M) suffices. All the non-recursive instructions in (guess-children-from-left-right) can be done in time polynomial in |φ| + log(M). Since at the end of the step (guess-children-from-left-right), the values of the counters are less than or equal to nb(d + 1) × M, checking the points 1. and 2. in (final-checking) can be done in polynomial space in |φ| + log(M) (remember that the encoding of constants a i , b and c and k are already in linear space in |φ|). 2

Correctness

After having characterized the space needed to run the algorithm, it remains to prove that it is correct as far as the M-bounded models are concerned.

Lemma 5 If for some X ⊆ cl(0, φ), SAT(X, 0) has a computation that returns true and φ ∈ X, then φ is EML satisfiable in some M-bounded model.

Proof. Assume that SAT(X, 0) has an accepting computation with φ ∈ X. Let us build an EML model M = T, R, (< s) s∈T , l for which there is s ∈ T such that for every ψ ∈ X, we have M, s |= ψ iff ψ ∈ X.

From an accepting computation of SAT(X, 0), we consider the following finite ordered tree T, R, (< s) s∈T , L that corresponds to the calls tree of SAT(X, 0).

• T, R, (< s) s∈T is a finite ordered tree, • for each s ∈ T , L(s) = Y, d for some d-consistent set Y , • the root node s 0 is labelled by X, 0 , • for each node s with s 1 < s • • • < s s n ,
If ψ ∈ Y , then by consistency of Y , there is ∼ ′ ∈ {<, >, =} \ {∼} such that α i=1 a i ♯ψ i ∼ ′ b ∈ X by following a reasoning as above this means that M, s |= i=α i=1 a i ♯ψ i ∼ ′ b which entails M, s |= i=α i=1 a i ♯ψ i ∼ b.
Case 3: ψ = i=α i=1 a i ♯ψ i ≡ k c. The proof is similar to the cases 1 and 2.

The current model M is in exponential size in |φ| and it is easy to show that M is M-bounded. 2

The converse property holds.

Lemma 6 If φ is EML satisfiable in some M-bounded model then for some X ⊆ cl(0, φ), SAT(X, 0) has an accepting computation.

Proof. Assume that φ is EML satisfiable in some M-bounded model M = T, R, (< s) s∈T , l . So there is s ∈ T such that M, s |= φ and M, s is Mbounded. We shall show that whenever M ′ , s ′ is M-bounded and X = {ψ ∈ cl(d, φ) : M ′ , s ′ |= ψ} for some d ∈ {0, . . . , |φ|} and X ⊆ cl(d, φ), then SAT(X, d) has an accepting computation. We recall that X is d-locally consistent. Consequently, we get that SAT({ψ ∈ cl(0, φ) : M, s |= ψ}, 0) has an accepting computation.

′ = T ′ , R ′ , (< ′ s) s∈T ′ , l ′ and s ′ ∈ T ′ verifying X = {ψ ∈ cl(d ′ , φ) : M ′ , s ′ |= ψ} and M ′ , s ′ is M-bounded, SAT(X, d ′
) has an accepting computation.

Let d ′ = n -1 and X be a subset of cl(d ′ , φ) for which there exist an EML model

M ′ = T ′ , R ′ , (< ′ s) s∈T ′ , l ′ nd ′ ∈ T ′ verifying X = {ψ ∈ cl(d ′ , φ) : M ′ , nd ′ |= ψ} and M ′ , s ′ is M-bounded.
The set X is therefore d ′ -locally consistent and EML satisfiable, i.e. ψ∈X ψ is EML satisfiable.

For i ∈ {1, . . . , nb(d ′ + 1)}, we write n i to denote the number of children nd ′′ of nd ′ such that

Y i = {ψ ∈ cl(d + 1, φ) : M, s ′′ |= ψ}. Since M ′ is M-bounded, i n i nb(d ′ + 1) × M.
This is sufficient to establish that SAT(X, d ′) has an accepting computation. Indeed, the step (consistency) is successful because X is d ′ -locally consistent. The guessed number NB is obviously

n 1 +• • •+n n nb(d ′ +1)
and each set Y i is guessed n i times in the step (guess-children-from-left-toright). Additionally, the order in which the sets Y i are guessed is precisely given by the ordering of the children of the root of M ′ . Since M ′ is a model for X, for every i ∈ {1, . . . , nb(d ′ + 1)}, if n i = 0, then the set Y i is satisfiable in some M-bounded model. By the induction hypothesis, SAT(Y i , d ′ + 1) returns true. Each passage to (guess-children-from-left-to-right)(4,5) as well as the passage to (final-checking) are successful steps because the numbers of children is computed from M ′ . Consequently, SAT(X, d ′) has an accepting computation. 2 So, we have established that a formula φ is EML satisfiable in a M-bounded model iff for some X ⊆ cl(0, φ), SAT(X, φ, 0) has a computation that returns true.

A Sharp Bound for EML Models

In this section, we state the following lemma which provides a bound on the size of minimal models for EML. The proof of the lemma is partly based on [START_REF] Seidl | Counting in trees[END_REF] and Appendix A provides all technical details that are missing in the proof sketch below.

Lemma 7 There is a polynomial p(•) such that for every formula φ, φ is EML satisfiable iff φ is satisfiable in some 2 p(|φ|) -bounded model.

Proof.(sketch) Given a d-locally consistent set X, the main part of the proof consists in building a Boolean combination of arithmetical constraints, say S X , such that X is EML satisfiable iff S X has a solution. In the system S X , the atomic constraints are of the form j a j × x i j = b (a j ∈ Z, b ∈ N, x i,j is a variable). By [START_REF] Chr | On the complexity of integer programming[END_REF] (see also [START_REF] Borosh | Bounds on positive integral solutions of linear diophantine equations[END_REF]), a finite set S of atomic constraints has a positive solution iff there is a positive solution such that all the coefficients are bounded by

n × (ma) 2m+1
where n is the number of variables, a is the maximal absolute value among constants in S and m is the number of atomic constraints in S. In the system S X , to each (d + 1)-locally consistent set Y i , there is a variable x i counting how many children of the node satisfying X satisfy Y i . Hence, small solutions for S X would imply that the number of children for that node satisfying X is bounded. The statement of the lemma is then obtained by applying such a reasoning at any depth of the tree model.

Let us briefly sketch how the system S X is built. For each ψ ∈ cl(d + 1, φ), we write t ψ to denote the sum {i : ψ∈Y i } x i . Remember that the (d + 1)-locally consistent sets are denoted by Y 1 , . . . , Y nb(d+1) and each variable x i is related to the number of children satisfying the subformulae in Y i . First, we require that the sum of the x i 's such that Y i is not EML satisfiable is zero. This constraint will be checked on-the-fly in SAT by using recursive calls. Moreover, an atomic formula i a i #ψ i = b ∈ X leads to the atomic constraint i a i t ψ i = b in S X . The other arithmetical constraints are treated in a similar way. The automatabased formulae in X or the negation of such formulae in X are treated in the following way. Let A 1 (. . .), . . . , A l (. . .), ¬A ′ 1 (. . .), . . . , ¬A ′ l ′ (. . .) ∈ X be such formulae in X for which the argument subformulae are in {ψ 1 , . . . , ψ P } ⊆ cl(d + 1, φ). We consider the enriched alphabet Σ = {Y 1 , . . . , Y nb(d+1) } made of (d + 1)-locally consistent sets. Using the subset construction for finite-state automata, one can build an exponential-size automaton B over the alphabet Σ such that for every w

= Y j 1 • • • Y jα ∈ Σ * , w ∈ L(A)

iff the conditions below hold:

• For all i, there exist formulae

ψ 1 ∈ Y j 1 , . . . , ψ α ∈ Y jα such that ψ 1 • • • ψ α ∈ L(A i). • For all i, there are no formulae ψ 1 ∈ Y j 1 , . . . , ψ α ∈ Y jα such that ψ 1 • • • ψ α ∈ L(A ′ i).
The set of atomic constraints obtained from B is obtained from the characterization of its Parikh image, that is a subset of N |Σ| . A Parikh image of a finite word built over the alphabet Σ is a tuple in N |Σ| that contains for each letter in Σ, its number of occurrences. The Parikh image of a language is defined as a set of such tuples in N |Σ| obtained from the Parikh image of words from the language. We recall that given a finite-state automaton A = Σ, Q, δ, I, F , its Parikh image π(L(A)) is a finite union of linear sets {σ 0 + m i=1 y i σ i : y i 0}. By [START_REF] Seidl | Counting in trees for free[END_REF], we can enforce that each σ j is in {0, . . . , |Q|} |Σ| and m is bounded by (|Q| + 1) |Σ| . So, π(L(B)) is equal to some union L 1 ∪ • • • ∪ L m with L i = {σ 0 + h j=1 y j σ j : y j 0}. Each σ j is in {0, . . . , |Q ′ |} |Σ| where Q ′ is the set of states for B and h is bounded by

(|Q ′ | + 1) |Σ| 2 p(|φ|)×2 |φ| . The set of atomic constraints obtained from B is then           x 1 x 2 . . . x |Σ|           = σ 0 + h j=1 y j σ j .
It contains |Σ| + h variables and it admits a (small) solution whose values are at most doubly exponential in |φ|. This is too large for the bound we aimed to. In order to get a constraint system with small solutions of adequate size, we take advantage of [SSM07, Claim 7.3]. Full details are provided in Appendix A. 2

By Lemmas 4, 5, 6 and 7 (and pspace-hardness of modal logic K), we obtain the main result of the paper. Indeed, M can be choosen exponential in |φ|.

Theorem 1 EML satisfiability is pspace-complete.

pspace-hardness follows from the fact that 3 can be encoded as a simple regularity constraint, whence the reduction from modal logic K.

Complexity results for similar logics

In this section, we compare EML with other logics dealing with Presburger constraints. We clarify the relationships between EML and the different logics from [ZL06,SSMH04,ABD + 05] and to state some new pspace-completeness and undecidability results.

Graded Modal Logics

Graded modal logics are obviously the modal ancestors of EML where the formulae with Presburger constraints are of the form 3 n φ, are considered, see e.g. the early works [Fin72,BC85,Cer90,vdH92,vdHdR95].

Such logics have been extended to fit more specific motivations, giving epistemic logics [START_REF] Van Der Hoek | Graded modalities in epistemic logic[END_REF] and description logics (see e.g. [HB91,CG05]) with graded modalities. It is only in [START_REF] Tobies | PSPACE reasoning for graded modal logics[END_REF] that minimal graded modal logic, counterpart of the modal logic K, is shown decidable in pspace, various decidability results being earlier established in a systematic way in [START_REF] Cerrato | Decidability by filtrations for graded normal logics (graded modalities V)[END_REF]. Our complexity result about EML extends the main result from [START_REF] Tobies | PSPACE reasoning for graded modal logics[END_REF]. Various extensions of known logics by adding graded modalities have been considered and undecidability is often obtained because the ability to count allows sometime to encode a grid, see e.g. [START_REF] Bonatti | On the undecidability of logics with converse, nominals, recursion and counting[END_REF]. However, the exptime-completeness of graded µ-calculus [KSV02] remains a major complexity result. Furthermore, there exist various attempts to encode concisely logics with counting into logics with no explicit counting mechanism, see e.g. [OSH96,MP97,Kaz04], but none of them implies a pspace upper bound, even for the poor minimal graded modal logic counterpart of K. Modal-like logics with more expressive Presburger constraints on the number of children can be found in [SSMH04,ZL06,SSM07] and are the subject of the two next sections.

Sheaves Logic

Definition

In this section, we recall the syntax and semantics of the Sheaves Logic SL [ZL06, Section 4.4] that is shown decidable in [START_REF] Zilio | XML schema, tree logic and sheaves automata[END_REF] with a non-elementary algorithm. For the sake of uniformity, we adopt a presentation of SL models similar to the one for EML models whereas the mode of representation for regular languages and semilinear sets is the same as for EML. Hence, regular languages are represented by finite-state automata (instead of regular expressions in [START_REF] Zilio | XML schema, tree logic and sheaves automata[END_REF] that are less concise) and arithmetical constraints are represented by quantifier-free Presburger formulae as in EML (instead of Presburger formulae in [START_REF] Zilio | XML schema, tree logic and sheaves automata[END_REF] that are much more concise). We admit that our choice of representations for such objects is crucial to obtain the forthcoming pspace upper bound and we thought that it is fair to use the same encodings as in EML. Apart from the mode representation, the logic presented below differs from the one in [ZL06, Section 4.4] since herein we allow Boolean operators at the level of element formulae (denoted by E) as done for document formulae (denoted by D).

The major difference between SL and EML rests on the evaluation of quantifierfree Presburger formulae. In EML, in order to evaluate a Boolean combination of atomic formulae of the form either i a i ♯φ i ∼ b or i a i ♯φ i ≡ k c, each successor node can contribute to the interpretation of more than one expression of the form ♯φ i . By contrast, in order to evaluate the analogous formula in SL (see below the formulae of the form ∃x 1 , . . . , x p :

i a i x i ∼ b : x 1 E 1 & • • • &x p E p)
, each successor node contributes to the interpretation of exactly one analogous expression of the form ♯φ i , namely x i .

The element and document formulae are inductively defined as follows:

• E := α[D] | δ | ¬E | E ∧ E | true, • D := A(E 1 , . . . , E p) | ∃x 1 , . . . , x p : φ(x 1 , . . . , x p) : x 1 E 1 & • • • &x p E p | true | ¬D | D ∧ D,
where

• α belongs to a countably infinite set TAGS of tags,

• δ belongs to a countably infinite set DATATYPES of datatypes, disjoint from TAGS, • A is a nondeterministic finite-state automaton over an p-letter alphabet Σ A in which the letters are linearly ordered Σ A = a 1 , . . . , a p . • φ(x 1 , . . . , x p) is a Boolean combination of Presburger formulae built over the variables x 1 , . . . , x p of the form either t ∼ b with ∼∈ {<, >, =} or t ≡ k c with t = i a i x i .

A model M for SL is a structure M = T, R, (< s) s∈T , l where

• T is a finite set of states,

• T, R is a tree and each < s is a total ordering on R(s),

• l : T → TAGS ∪ DATATYPES is a labeling function such that

• for every s ∈ T , if s is a leaf of T, R then l(s) ∈ DATATYPES, • for every s ∈ T , if s is not a leaf of T, R then l(s) ∈ TAGS.
The satisfaction relation |= is inductively defined below where M is a model for SL and s ∈ T (we omit the clauses for Boolean operators):

• M, s |= δ iff δ = l(s), • M, s |= α[D 1 ∧ D 2] iff M, s |= α[D 1] and M, s |= α[D 2], • M, s |= α[¬D] iff α = l(s) and not M, s |= α[D], • M, s |= α[true] iff α = l(s), • M, s |= α[∃x 1 , . . . , x p : φ(x 1 , . . . , x p) : x 1 E 1 & • • • &x p E p] iff α = l(s), R(s) = s 1 < • • • < s k ,
= i}), • M, s |= α[A(E 1 , . . . , E p)] iff α = l(s), R(s) = s 1 < • • • < s k ,
and there is i 1 , . . . , i k such that for every j ∈ {1, . . . , k}, M, s j |= E i j and

a i 1 • • • a i k ∈ L(A) with Σ A = a 1 , . . . , a p .
As said earlier, the major difference with the semantics of EML (see also [START_REF] Seidl | Counting in trees for free[END_REF]) is that in Presburger constraints each child counts only once.

PSPACE-completeness

Let φ be an SL formula with tags {α 1 , . . . , α n } and datatypes {δ 1 , . . . , δ n ′ }. We define a EML formula φ ′ built over the propositional variables (plus others, see below)

AP = {p α 1 , . . . , p αn , p αnew } ∪ {p δ 1 , . . . , p δ n ′ , p δnew }.
Given an EML formula ϕ, we write ∀ m ϕ as an abbreviation for m i=0 i times 2 . . . 2 ϕ. The formula φ ′ is defined as the conjunction φ ′ val ∧ t(φ) where t(φ) is defined recursively on the structure of φ and φ ′ val states constraints about the valuation of datatypes and tags in SL models. For each document formula of the form

D = ∃x 1 • • • x p : φ(x 1 , . . . , x p) : x 1 E 1 & • • • & x p E p in φ, we introduce new propositional variables p 1 D , . . . , p p D .
The formula φ ′ val is defined as the conjunction of the formulae below

• ∀ |φ| (D is of the form ∃...Ep (i =j∈{1,...,p} ¬(p i D ∧ p j D) ∧ (p i D ⇒ t(E i))).
where |φ| is the size of φ (an optimal construction would consider md(φ)) and t is the reduction from SL formulae to EML formulae defined below.

• t is homomorphic for Boolean operators and t(true

) = true, • t(α i [D]) = p α i ∧ t(D), t(δ i) = p δ i , • t(A(E 1 , . . . , E p)) = A(t(E 1), . . . , t(E p)), • t(∃x 1 • • • x p : φ(x 1 , . . . , x p) : x 1 E 1 & • • • & x p E p) equals the formula below: φ(x 1 , . . . , x p)[x 1 ← ♯(p 1 D), . . . , x p ← ♯(p p D)] ∧ ¬♯(¬p 1 D ∧ • • • ∧ ¬p p D) > 0.
where φ(x 1 , . . . , x p)[x 1 ← ♯(p 1 D), . . . , x p ← ♯(p p D)] is obtained from φ(x 1 , . . . , x p) by replacing each occurrence of x i by ♯(p i D).

New propositional variables need to be introduced and a constraint on them needs to be stated because in SL in Presburger constraints each child can count only once. It is not difficult to show that t is sound.

Lemma 8 t is a logspace reduction such that φ is satisfiable iff φ ′ is satisfiable.

Proof. First, suppose that φ is SL satisfiable. There exist an SL model M = T, R, (< s) s∈T , l and s ∈ T such that M, s |= φ. Let M ′ be the EML model

M ′ = T ′ , R ′ , (< ′ s) s∈T ′ , l ′ defined by: • T ′ , R ′ , (< ′ s) s∈T ′ = T, R, (< s) s∈T , • for every s ∈ T ′ , p l(s) ∈ l ′ (s). Moreover, l ′ (s) may contain other proposi- tional variables of the form p i D as explained below. Let D = ∃x 1 • • • x p : φ(x 1 , . . . , x p) : x 1 E 1 & • • • & x p E p be a document formula occurring in φ. If M, s |= α[D], then by definition R(s) = s 1 < • • • < s k ,
and there are i 1 , . . . , i k such that for every j ∈ {1, . . . , k}, M, s j |= E i j and [x 1 ← n 1 , . . . , x p ← n p] |= φ(x 1 , . . . , x p) with n i = card({s ∈ {1, . . . , k} : i s = i}). So for every j, we require that p

i j D ∈ l ′ (s j). If M, s |= α[D] and M, s |= α[∃x 1 • • • x p : ¬φ(x 1 , . . . , x p) : x 1 E 1 & • • • & x p E p],
then by definition R(s) = s 1 < • • • < s k , and there are i 1 , . . . , i k such that for every j ∈ {1, . . . , k}, M, s j |= E i j and [x 1 ← n 1 , . . . , x p ← n p] |= ¬φ(x 1 , . . . , x p) with n i = card({s ∈ {1, . . . , k} : i s = i}). So for every j, we require that p

i j D ∈ l ′ (s j). If M, s |= α[D] and M, s |= α[∃x 1 • • • x p : ¬φ(x 1 , . . . , x p) : x 1 E 1 & • • • & x p E p],
then this means either there is one child of s, say s ′ , satisfies none of the E i or l(s) = α. So, we require that none of the p i D s belongs to l(s ′′) for s ′′ ∈ R(s).

By structural induction, one can show that M ′ , s |= t(φ).

Now suppose that φ ′ val ∧ t(φ) is EML satisfiable. There exist a EML model M = T, R, (< s) s∈T , l and s ∈ T such that M, s |= φ. Let M ′ be the SL model M ′ = T ′ , R ′ , (< ′ s) s∈T ′ , l ′ defined by: • T ′ , R ′ , (< ′ s) s∈T ′ = T, R, (< s) s∈T , • for every s ∈ T ′ , l ′ (s) = β
where β is the unique element of TAGS ∪ DATATYPES such that p β ∈ l(s) (l(s) may contain other propositional variables of the form p i new). Unicity is guaranteed by the satisfaction of φ ′ val .

It is easy to show that M ′ , s |= φ. 2

Consequently, SL is in pspace which contrasts with the non-elementary complexity of the decision procedure from [START_REF] Zilio | XML schema, tree logic and sheaves automata[END_REF].

Proposition 1 SL satisfiability problem is pspace-complete.

Proof. It remains to establish the pspace-hardness of SL. This can be done by reducing the satisfiability problem for minimal modal logic K with no propositional variable but with logical constant true and false that is already pspace-complete [START_REF] Hemaspaandra | The complexity of poor man's logic[END_REF]. We can even restrict ourselves to negation-free formulae. Let us define a reduction t ′ from this fragment of modal logic K into SL:

• t ′ (true) = true, t ′ (false) = ¬true, • t ′ (φ ∧ φ ′) = t ′ (φ) ∧ t ′ (φ ′), • t ′ (φ ∨ φ ′) = ¬(¬t ′ (φ) ∧ ¬t ′ (φ ′)), • t ′ (3φ) = α[∃ x : x 1 : x t ′ (φ)], • t ′ (2φ) = α[∃ x : x = 0 : x ¬t ′ (φ)] ∨ δ.
α is a tag (always the same) and δ is a datatype (always the same). One can show that the negation-free formula φ (with no propositional variable) is K satisfiable iff t ′ (φ) is SL satisfiable.

Suppose that φ is K satisfiable. So there is a tree model M = W, R (no need for labeling) and w ∈ W such that M, w |= φ (the logic K has the finite tree model property). The SL model M ′ = T ′ , R ′ , (< ′ s) s∈T ′ , l ′ is defined as follows:

• T ′ = W , R ′ = R, • For every s ∈ T ′ , < ′
s is an arbitrary linear ordering on < ′ s . These orderings are irrelevant because t ′ (φ) has no regularity constraint.

• For every s ∈ T ′ , if s is a leaf then l ′ (s) = δ, otherwise l ′ (s) = α.
It is easy to show that M ′ , w |= t ′ (φ). Similarly if M is a model for t ′ (φ), then a model for φ is obtained from M by deleting the labeling and the family of orderings. 2

The logics SL and EML interpreted over finite trees cannot be immediately compared because of the presence of tags and datatypes in SL, whence the models are different. The reduction from SL into EML in the proof of Lemma 8 allows to transform an SL model into an EML model. For the other direction, assuming that in SL the nodes are labelled by propositional valuations as in EML, the reduction from EML into SL amounts to being able to express atomic formulae of the form i=γ i=1 a i ♯p i ∼ b, which can be captured by the SL formula below:

v v[∃x 0 • • • x 2 γ -1 : i=γ i=1 a i (j:p i ∈X j x j) ∼ b : x 0 E 0 & • • • & x 2 γ -1 E 2 γ -1]
where v ranges over all the propositional valuations over a given finite set of propositional variables and, the E j 's and X j 's are defined as follows. Given j ∈ {0, . . . , 2 γ -1}, we write X j ⊆ {p 1 , . . . , p γ , ¬p 1 , . . . , ¬p γ } such that for 1 i γ, the ith bit of j in binary representation is 1 iff

p i ∈ X j iff ¬p i ∈ X j .
The formula E j is defined as follows:

{i: ith bit of j is 1} p i ∧ {i: ith bit of j is 0} ¬p i
Since no node can satisfy two distinct E j , E j ′ , this allows us to tame the fact that each child counts only once in an arithmetical constraint. However, the translation causes an exponential blowup.

Fixpoint free SSMH logic

In this section, we recall the syntax and semantics of the fixpoint free fragment of the logic from [START_REF] Seidl | Counting in trees for free[END_REF]. For brevity, we call it SSMH. The full logic in [START_REF] Seidl | Counting in trees for free[END_REF] contains additionnally fixpoint operators and it is a strict extension of modal µ-calculus, see e.g. [START_REF] Bradfield | Modal mu-calculi[END_REF]. Like for SL, definitions are adapted to our presentation to EML which allows to compare easily the (sometimes minor) differences between EML, SL and SSMH. The SSMH formulae are inductively defined as follows:

φ ::= true | ¬φ | φ ∧ φ ′ | α Φ(x 1 , . . . , x p) : x 1 φ 1 & • • • &x p φ p | ⋆ Φ(x 1 , . . . , x p) : x 1 φ 1 & • • • &x p φ p | α A(φ 1 , . . . , φ p) | ⋆ A(φ 1 , . . . , φ p) .

where

• α belongs to a countably infinite set TAGS of tags, • A is a nondeterministic finite-state automaton over an p-letter alphabet, • Φ(x 1 , . . . , x p) is a Presburger formula as in SL.

A model M for SSMH is a structure M = T, R, (< s) s∈T , l where • T is a finite set of states, • T, R is a tree and each < s is a total ordering on R(s),

• l : T → TAGS is a labeling function (no datatypes here).

The satisfaction relation is inductively defined below where M is a model for SSMH and s ∈ T (we omit the clauses for Boolean operators):

• M, s |= α iff α = l(s), • M, s |= α Φ(x 1 , . . . , x p) : x 1 φ 1 & • • • &x p φ p iff α = l(s) and R(s) = s 1 < • • • < s k and [x 1 ← n 1 , . . . , x p ← n p] |= Φ(x 1 , . . . , x p) where n i = card({s ∈ {1, . . . , k} : M, s s |= φ i }), • M, s |= ⋆ φ(x 1 , . . . , x p) : x 1 φ 1 & • • • &x p φ p iff [x 1 ← n 1 , . . . , x p ← n p] |= Φ(x 1 , . . . , x p) where n i = card({s ∈ {1, . . . , k} : M, s s |= φ i }), • M, s |= α A(φ 1 , . . . , φ p) iff α = l(s), R(s) = s 1 < • • • < s k
and there is i 1 , . . . , i k such that for every j ∈ {1, . . . , k}, M, s j |= φ i j and

a i 1 • • • a i k ∈ L(A). (analogous clause for ⋆ A(φ 1 , . . . , φ p)).
Unlike SL and like EML, a child can count more than once in Presburger constraints. Let φ be an SSMH formula with tags {α 1 , . . . , α n }. We shall define an EML formula φ ′ built over the propositional variables AP = {p α 1 , . . . , p αn , p α n+1 }.

Let t be a logspace reduction from SSMH formulae to EML formulae:

• t is homomorphic for Boolean operators and t(true) = true,

• t(α φ(x 1 , . . . , x p) :

x 1 φ 1 & • • • &x p φ p) equals p α ∧ φ(x 1 , . . . , x p)[x 1 ← ♯t(φ 1), . . . , x p ← ♯t(φ p)].
• t(⋆ φ(x 1 , . . . , x p) :

x 1 φ 1 & • • • &x p φ p) equals φ(x 1 , . . . , x p)[x 1 ← ♯t(φ 1), . . . , x p ← ♯t(φ p)].
• t(α A(φ 1 , . . . , φ p)) = p α ∧ A(t(φ 1), . . . , t(φ p)),

• t(⋆ A(φ 1 , . . . , φ p)) = A(t(φ 1), . . . , t(φ p)).

Lemma 9 t is a logspace reduction such that φ is satisfiable iff

∀ |φ| p∈AP (p ∧ q∈AP \{p} ¬q) ∧ t(φ) is satisfiable.
The proof is similar (and indeed simpler) than the proof of Lemma 8. The subformula ∀ |φ| p∈AP (p ∧ q∈AP \{p} ¬q) guarantees that each node satisfies exactly one atomic proposition from AP . Observe that SSMH and EML has similar expressive power and one can see them as syntactic variants for any bijection between a finite set of propositional valuations and a finite set of tags.

Proposition 2 SSMH satisfiability problem is pspace-complete.

Proof. It remains to establish pspace-hardness. We reduce again negation-free fragment of K with no propositional variable to SSMH:

• t ′ (true) = true, t ′ (false) = ¬true, • t ′ is homomorphic for Boolean operators, • t ′ (3φ) = ⋆ ∃ x : x 1 : x t ′ (φ) , • t ′ (2φ) = ⋆ ∃ x : x = 0 : x ¬t ′ (φ) . It is easy to show that φ is K satisfiable iff t ′ (φ) is SSMH satisfiable. 2
The main differences between SSMH and its extension with fixpoint operators from [START_REF] Seidl | Counting in trees for free[END_REF] is similar to the difference between the modal logic K and the modal µ-calculus. For instance, whenever a formula in SSMH has a tree model, its depth can be polynomially bounded which is not anymore the case when fixpoint operators are added. This partly explains why the satisfiability problem for SSMH is only in pspace and for the full logic exptime-complete [START_REF] Seidl | Counting in trees[END_REF]. Formulae in SSMH can only produce constraints on immediate successors of a node (at distance at most the modal depth of the formula), whereas fixpoint operators allow to express reachability operators that can produce constraints on all descendant nodes.

PDL over finite trees

In [ABD + 05] a PDL-like logic PDL tree is introduced where models are finite, labeled ordered trees and the four atomic relations are: left-sibling, rightsibling, mother-of and daughter-of. Other relations can be generated with standard "program operators" (iteration, test, union and composition). There is no (full) Presburger constraints in PDL tree (except the obvious ones derived from the standard modal operators) but regularity constraints can be stated thanks to the interplay between the program operators and the atomic relations. PDL tree satisfiability is shown exptime-complete in [ABD + 05]. It is not difficult to show that, on the model of the undecidability proof for [ZL06, Proposition 1], adding Presburger constraints to PDL tree leads to undecidability. We provide below an undecidability proof for a logic sharing features from PDL tree and EML, say L, that is a strict fragment of the logic PDL tree on which are added Presburger constraints. Hence, the logic L is an hybrid version of PDL tree and EML without subsuming any of them. Nevertheless, below, the satisfiability problem for L will be shown undecidable mainly because of the ability to compare for each node, its number of siblings with its number of children. Hence, as illustrated below, combining this type of comparisons with the ability to access to all descendant nodes, makes the logic too expressive to retain decidability. Given a countably infinite set AT = {p 1 , p 2 , . . .} of propositional variables and Σ = {↓, ↓ * , →, → * , ←, ← * , ↑, ↑ * } a set of relation symbols, we define the set of formulae and terms inductively as follows:

φ ::= p | ¬φ | φ ∧ φ | t ∼ b t ::= a × ♯ R φ | t + a × ♯ R φ
where p ∈ AT, R ∈ Σ, b ∈ N, a ∈ Z\{0} and ∼∈ {<, >, =}. The programs from PDL tree are much richer than Σ because iteration, test, union and composition are present in PDL tree . Similarly, the Presburger constraints from EML strictly contains those of L, as L has no modulo constraints. A model M for L is a structure

M = T, R ↓ , R ↓ * , R → , R → * , R ← , R ← * , R ↑ , R ↑ * , l where
• T, R ↓ , R → is a finite ordered tree with R ↓ and R → are child-of and rightsibling relations, respectively;

• l : T → 2 AT is the valuation function, • for every R ∈ {↓, →, ←, ↑}, R * R = R R * (R * R is the reflexive and transitive closure of R R), R → = R -1 ← and R ↑ = R -1 ↓ ,
The satisfaction relation is inductively defined as for EML except this time the models are finite ordered trees.

Proposition 3 The satisfiability problem for L is undecidable.

Proof. The proof is by reducing the halting problem for 2-counter machine. A 2-counter machine M consists of two counters C 1 and C 2 , and a sequence of n 1 instructions. The Lth instruction is written as one of the following:

L : C i = C i + 1; goto L ′ . L : if C i = 0 then goto L ′ else C i = C i -1; goto L ′′ .
We represent the configurations of M by triples L, c 1 , c 2 where 1 L n, c 1 0 and c 2 0. A computation of M is a finite sequence of related configurations, starting with the initial configuration 1, 0, 0 . The halting problem can be stated as the existence of a finite sequence of related configurations that reaches the instruction 1 in at least one step. We build a formula φ of L such that M halts iff φ is satisfiable in L.

As usual, we use the standard notations: The formula φ is defined as the conjunction of the following formulae and enforces the above encoding of computations:

R φ def = ♯ R φ > 0 [R]φ def = (♯ R ¬φ = 0). A computation q 1 , c 1 , d 1 , . . . , q t , c t ,
• Initial configuration:

¬(1 ∨ • • • ∨ n + 2) ∧ ↓ (1 ∧ C 1 =0 (♯ → * n + 1 = 0) ∧ C 2 =0 (♯ → * n + 2 = 0)).
• Unicity of the labelling of the nodes:

[↓][↓ *](1 i n+2 (i ∧ i ′ =i ¬i ′)).
• The instruction counter is the leftmost child:

[↓][↓ *]((

1 i n i) ⇔ ¬ ← ⊤).
• Encoding of C 1 is strictly before the encoding of C 2 :

[↓ *](n + 1 ⇒ (♯ ← * n + 2 = 0)). • Instruction L: C 1 = C 1 + 1; goto L ′ . [↓ *](L∧ ↓ ⊤ ⇒ ↓ [L ′ ∧ C 1 :=C 1 +1 (♯ ↓ n + 1 -♯ → * n + 1 = 1) ∧ C 2 is unchanged (♯ ↓ n + 2 -♯ → * n + 2 = 0))]. • Instruction L: if C 1 = 0 then goto L ′ else C 1 = C 1 -1; goto L ′′ . [↓ *](L ∧ ↓ ⊤ ∧ C 1 =0 (♯ → * n + 1 = 0) ⇒ ↓ L ′ ∧ C 1 is unchanged (♯ ↓ n + 1 -♯ → * n + 1 = 0) ∧ C 2 is unchanged (♯ ↓ n + 2 -♯ → * n + 2 = 0))∧ [↓ *](L ∧ ↓ ⊤ ∧ C 1 =0 ¬(♯ → * n + 1 = 0) ⇒ ↓ L ′′ ∧ (C 1 :=C 1 -1 ♯ → * n + 1 -♯ ↓ n + 1 = 1) ∧ C 2 is unchanged (♯ ↓ n + 2 -♯ → * n + 2 = 0)) • The instruction 1 is reached after at least one step: ↓ ↓ ↓ * 1.
Then, it is easy to show that M halts iff φ is satisfiable in L. 2

If we modify the models by allowing infinite trees with finite-branching, satisfiability becomes Σ 1 1 -hard by reducing the recurring problem for nondeterministic 2-counter machines [AH94, Lemma 8]. The formulae built in the proof of Proposition 3 are specific since only the relation symbols from {↓ * , ↓, → * , ←} are used. The decidability status of the following logics is still open:

• restriction of L to formulae with no subformula of the form i a i ♯ R i φ i where for some j = j ′ , R j = R j ′ (forbidding for instance the comparison of the number of siblings with the number of children), • EML on finite trees with the relation symbols ↓ (as before) and the leftsibling relation ←, • PDL tree augmented with a subclass of Presburger constraints.

The logic obtained by adding ↓ * to EML is a fragment of the logic SSMH extended with fixpoints, for which satisfiability is shown decidable in [START_REF] Seidl | Counting in trees for free[END_REF]. Actually, this fragment is already exptime-hard, even if we use only trivial regularity and Presburger constraints (by using the complexity result of [START_REF] Fischer | Propositional dynamic logic of regular programs[END_REF]).

29

In this paper, we have shown that the satisfiability problem for the logic EML is only pspace-complete. We improve previous results, for instance from [Tob01,SSMH04,ZL06], and we give a pspace bound for the satisfiability of a logic that generalizes many previous logics. The proof to obtain the pspace upper bound is established by designing a specially tailored Ladnerlike algorithm and by using reasoning on constraint systems from [START_REF] Seidl | Counting in trees for free[END_REF]. The logic EML is therefore a remarkable example of modal logics with a reasonable complexity that combines counting abilities and regularity constraints, which are useful features for applications ranging from query language for XML documents to knowledge representation.

We plan to investigate decidable fragments of PDL tree augmented with Presburger constraints on the numbers of children that are more expressive than EML. For instance, the decidability status of EML extended with the leftsibling relation (and therefore with an enriched class of arithmetic constraints) is open.

A Proof of Lemma 7

The proof basically restates the proof of [SSM07, Claim 7.3] in the context of EML with subsets of cl(n, φ). Section A.1 recalls a result due to Papadimitriou [START_REF] Chr | On the complexity of integer programming[END_REF] about small solutions of constraint systems, see also [START_REF] Borosh | Bounds on positive integral solutions of linear diophantine equations[END_REF]. Section A.2 explains how the Parikh image of a language defined as an intersection can be characterized from automata (Parikh image of context-free languages are semilinear). Section A.3 shows how to reduce the constraint systems in order to obtain exponential-size small solutions. This is the place where we essentially follow part of the proof of [SSM07, Claim 7.3]. Finally, Section A.4 explains how to build constraint systems from subsets of cl(n, φ) and why it allows us to conclude the proof. This appendix completes the proof sketch provided in the body of the paper.

A.1 Constraint Systems

A constraint system S over the set of variables {x 1 , . . . , x n } is a Presburger formula built over {x 1 , . . . , x n } that is a Boolean combination of atomic constraints of the form j a j × x i j = b with each a j ∈ Z and b ∈ N. A positive solution for S is an element x ∈ N n such that x |= S in Presburger arithmetic. We base our analysis on Lemma 10 below, which follows from a result of Papadimitriou [START_REF] Chr | On the complexity of integer programming[END_REF].

Theorem 2 [START_REF] Chr | On the complexity of integer programming[END_REF] Let S be a constraint system over {x 1 , . . . , x n } made of a single conjunction of atomic constraints. S has a positive solution iff there is a positive solution such that all the coefficients are bounded by n×(ma) 2m+1 where a is the maximal absolute value among the constants occurring in S and m is the number of atomic constraints in S.

We have the following corollary.

Lemma 10 Let S be a constraint system over {x 1 , . . . , x n }. S has a positive solution iff there is a positive solution such that all the coefficients are bounded by (n + 2 × m) × (2 × m + (a + 1)) 4m+1 where a is the maximal absolute value among the constants occurring in S and m is the number of atomic constraints in S.

Proof. The system S can be transformed in disjunctive normal form providing a disjunction of conjunctions with conjuncts of the form either j a j × x i j = b or ¬(j a j × x i j = b). Each disjunct has at most m atomic constraints. Since ¬(j a j ×x i j = b) can be rewritten as (j a j ×x i j -y = b+1)∨(j a j ×x i j +y ′ = b -1), we get a disjunction of conjunctions as those in Theorem 2. Here y and y ′ are new variables. However, the process of replacing negated atomic constraints possibly multiplies by 2 the number of atomic constraints, add at most 2 × m variables, and add one to the maximal absolute value of each conjunction, whence the bound. 2

A.2 Product automata over an enriched alphabet

Suppose that the formulae below A 1 (φ 1 1 , . . . , φ 1 n 1), . . . , A l (φ l 1 , . . . , φ l n l), ¬A ′ 1 (ψ 1 1 , . . . , ψ 1 m 1), . . . , ¬A ′ l ′ (ψ l ′ 1 , . . . , ψ l ′ m l ′) are exactly the automata-based formulae or their negation that occurs in some set X ⊆ cl(n, φ). Let {ψ 1 , . . . , ψ P } be the subformulae in sub(φ) that occur as arguments in the above formulae. Necessarily, {ψ 1 , . . . , ψ P } ⊆ cl(n + 1, φ).

First, let us build automata B 1 , . . . , B l over the alphabet Σ = {Y 1 , . . . , Y nb(n+1) } where Y 1 , . . . , Y nb(n+1) are the only (n + 1)-locally consistent sets (nb(n + 1) is exponential in |φ|). For every i ∈ {1, . . . , l}, the automata B i and A i have the same sets of states, initial states and final states and q Y -→ q ′ in B i iff q ψ -→ q ′ in A i for some ψ ∈ Y .

Similarly, we build the automata B ′ 1 , . . . , B ′ l ′ from the automata A ′ 1 , . . . , A ′ l ′ . We write B ′¬ 1 , . . . , B ′¬ l ′ to denote the complement automata obtained, for instance, by the standard powerset construction.

Hence, we can define a product automaton B obtained by synchronizing B ′ 1 , . . . , B l , B ′ 1 , . . . , B ′ l ′ over the alphabet Σ satisfying the conditions below:

• The cardinal of the alphabet Σ is bounded by 2 |φ| and the set of states Q ′ has cardinal bounded by 2 p(|φ|) for some polynomial p(•). • For every word w = Y j 1 • • • Y jα ∈ Σ * , w ∈ L(B) iff the conditions below hold true.

• For every i ∈ {1, . . . , l}, there are ψ 1 ∈ Y j 1 , . . . , ψ α ∈ Y jα such that

ψ 1 • • • ψ α ∈ L(A i).
• For i ∈ {1, . . . , l ′ }, there are no ψ 1 ∈ Y j 1 , . . . , ψ α ∈ Y jα such that

ψ 1 • • • ψ α ∈ L(A ′ i).
The Parikh image of L(B), subset of N |Σ| and denoted by π(L(B)), is a finite union L 1 ∪ • • • ∪ L m of linear sets L i = {σ 0 + h j=1 y j σ j : y j 0} where each σ j is in {0, . . . , |Q ′ |} |Σ| by [SSMH04, Theorem 1]. Consequently, h is bounded by (|Q ′ | + 1) |Σ| 2 p(|φ|)×2 |φ| . By Theorem 2 (see also Lemma 10), if the constraint By definition of π and B, for every v ∈ N P , v ∈ H(π(L(B)) iff there is w ∈ L(B) such that for j ∈ {1, . . . , P }, the cardinal of {w(k) : k < |w|, ψ j ∈ w(k)} is v(j). Consequently, v ∈ H(π(L(B))) iff v ∈ H(L i) for some i ∈ {1, . . . , m}. However, H(L i) is precisely equal to {H(σ 0)+ h j=1 y j H(σ j) : y j 0}. Observe that each H(σ j) has dimension P |φ| and each coefficient is bounded by N × 2 p(|φ|)×|φ| . Consequently, the cardinal of the set {H(σ j) : 1 j h} is bounded by (N × 2 p(|φ|)×|φ| + 1) |φ| , which is bounded by α 2 p 1 (|φ|) for some polynomial p 1 (•). Roughly speaking, this entails that there are many images H(σ j) and H(σ k) that are equal with σ j = σ k . Let h 1 , . . . , h α be the elements of the above mentioned set. So, (EQUIV) the projections over the components z 1 , . . . , z P of the solutions of the system (⋆)

          z 1 z 2 . . . z P           = H(σ 0) + α j=1
y j h j are exactly the projections over the components z 1 , . . . , z P of the solutions of the system (⋆⋆)

          z 1 z 2 . . . z P           = H(σ 0) + h j=1 y ′ j H(σ j)
Typically, from (⋆⋆) to (⋆), each y j can be defined as a sum of variables y ′ k (with H(σ k) = h j). We recall that a solution of (⋆) is a tuple in N P +α whereas a solution of (⋆⋆) is a tuple in N P +h . We assume that the P first elements of the tuples correspond to values for z 1 , . . . , z P . We write S ⋆ [resp. S ⋆⋆] to denote the disjunction of all the systems of the form (⋆) [resp. (⋆⋆)]. There is indeed one disjunct by element from the union L 1 ∪• • •∪L m . Observe that each disjunct of S ⋆ has a polynomial amount of equations, an exponential amount of variables and coefficients are at most exponential in |φ|. The above-mentioned equivalence (EQUIV) can be extended as follows (the proof is by an easy verification).

Lemma 11 Let S ′ is a contraint system with no variable of the form either y j or y ′ j . The two sets below are identical (obtained by projection over the values related to the variables z 1 , . . . , z P):

(1) {v P ∈ N P : v P , v is a solution of S ⋆ ∧ S ′ }.

(2) {v P ∈ N P : v P , v ′ is a solution of S ⋆⋆ ∧ S ′ }.

transitions between the root s of T (a new state) and all the s i 's of all copies. Moreover l(s) = AT ∩ X. Because n 1 , . . . , n nb(d+1) is a positive solution of S X , there is a way to order the children of s so that the constraints of the form either A(ψ 1 , . . . , ψ l) or ¬A(ψ 1 , . . . , ψ l) in X are also satisfied (this comes by construction of S ⋆). Because X is a d-locally consistent set, one can easily show that M, s |= X. This is shown by structural induction and the base case for atomic formulae hold true because n 1 , . . . , n nb(d+1) is the projection of a positive solution for S X .

Fig. 1 .

 1 Fig. 1. Semantics for regular constraints

Fig. 4 .

 4 Fig. 4. Satisfiability algorithm

 the call related to l(s) recursively calls SAT with the respective arguments l(s 1), . . . , l(s n) and in this very ordering.The model M we are looking for, is precisely M = T, R, (< s) s∈T , l for which l(s) = Y ∩ AT where L(s) = Y, d for each s.By structural induction on ψ, we shall show that for all s ∈ T with L(s) = Y, d , for all ψ ∈ cl(d, φ), we have ψ ∈ Y iff M, s |= ψ. Consequently, we then get M, s 0 |= φ. The case when ψ is a propositional variable is by definition of l.Induction hypothesis: for all ψ ∈ cl(φ) such that |ψ| n, for all s ∈ T withL(s) = Y, d , if ψ ∈ cl(d, φ), then ψ ∈ Y iff M, s |= ψ.Let ψ be a formula in cl(φ) such that |ψ| = n + 1. The cases when the outermost connective of ψ is Boolean is a consequence of the d-local consistency of Y and the induction hypothesis. Let us treat the other cases. Case 1:ψ = A(ψ 1 , . . . , ψ k). Let s ∈ T with L(s) = Y, d such that ψ ∈ cl(d, φ).By definition of T , SAT(Y, d) has an accepting computation. If ψ ∈ Y , then each call in the sequence SAT(Y x 1 , d + 1), . . . , SAT(Y x NB , d + 1) has an accepting computation. Hence the children of s are the following (from left to right) s 1 , . . . , s N B such that L(s i) = Y x i , d + 1 . Then, it is not difficult to show that the steps (initialization-states), (guess-children-from-left-to-right)(4) and (finalchecking)(3) guarantee that M, s |= ψ. If ψ ∈ Y , then by consistency of Y , ¬A(ψ 1 , . . . , ψ k) ∈ Y and by following a reasoning as above we also get M, s |= A(ψ 1 , . . . , ψ k). Case 2: ψ = i=α i=1 a i ♯ψ i ∼ b. Let s ∈ T such that L(s) = Y, d and ψ ∈ cl(d, φ). By definition of T , SAT(Y, d) has an accepting computation. If ψ ∈ Y , then each call in the sequence SAT(Y x 1 , d + 1), . . . , SAT(Y x NB , d + 1) has an accepting computation. Moreover, for every i ∈ {1, . . . , α}, there are exactly C ψ i elements in Y x 1 , . . . , Y x NB that contain ψ i where C ψ i is the value of the counter after the step (guess-children-from-left-to-right) in the above-mentioned successful computation for SAT(Y, d). Hence the children of s in M are the following (from left to right): s 1 , . . . , s N B with L(s i) = Y x i , d + 1 . It is not difficult to show that the steps (initialization-counters), (guess-children-from-left-to-right)(3) and (final-checking)(1) guarantee that M, s |= ψ.

 The proof is by induction on d maxd where d max is the maximal value such that cl(d max , φ) = ∅. Base case: d = |φ|. Since cl(|φ|, φ) = ∅, the property holds. Induction hypothesis: for all |φ| d ′ n 1, and X ⊆ cl(d ′ , φ) such that there exist an EML model M

Acknowledgment We would like to thank Anca Muscholl and Helmut Seidl for their explanations about some parts of the paper [SSM07] and the anonymous referees for helpful comments and suggestions on previous versions.

A.4 Constraint systems from locally consistent sets Let φ be an EML formula and X be a n-locally consistent set. We shall build the system S X that contains the variables x 1 , . . . , x nb(n+1) . Each x i is the number of occurrences of "type" Y i among the children of a node of type X. To each formula ψ ∈ cl(n + 1, φ) that is not a periodicity constraint of the form t ≡ K c, we associate the term t ψ = i,ψ∈Y i x i . Remember that we have assumed without any loss of generality that formulae of the form t ≡ K c belongs to the closure sets but are not atomic formulae occurring in φ. We shall define S X as a conjunction of the constraints below:

) are all the automaton-based formulae in X, then we add the system S ⋆ from Section A.3 where each variable z i is replaced by t ψ i .

By construction S X is equivalent to a disjunction of the form S i with an exponential amount of disjuncts for which each S i has a polynomial amount of equations, an exponential amount of variables and coefficients are at most exponential in |φ|. Hence, by Lemmas 10 and 11, if S X has solutions, then S X has solutions with values bounded by some M exponential in |φ|. We write M to denote the maximal value amongst all the values obtained for the different depths n between 0 and |φ|.

The proof of Lemma 7 is then a simple consequence of Lemma 12 below.

Lemma 12 Let φ be a EML formula, d ∈ {0, . . . , |φ|} and X be a d-locally consistent set of formulae. Then, X is EML satisfiable iff S X has a positive solution.

Proof. It is easy to check that if X is EML satisfiable, then S X has a positive solution. The converse requires a bit more care. Assume that S X has a positive solution whose projection over {x 1 , . . . , x nb(n+1) } is n 1 , . . . , n nb(d+1) . We build the EML model M = T, R, (< s) s∈T , l as follows. For each n i = 0, the set Y i is satisfiable since Σ Y i is not satisfiable n i = 0. Hence, there exist a EML model M i = T i , R i , (< i s) s∈T i , l i and s i ∈ T i such that M i , s i |= Y i . M is built from n 1 copies of M 1 , . . . , n nb(d+1) copies of M nb(d+1) by adding R-