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Abstract—Computer network technology is developing quickly,
and the advancement of internet techniques is growing faster.
Furthermore, people and companies have became more aware of
the importance of network security. To protect the network from
different attacks, it is necessary to instantly detect intrusions with
significantly low False-Positive Rates (FPRs). Many Anomaly-
based Detection Systems (ADS) have been proposed in the past.
The performance of these systems depends on many factors
such as features selection or extraction, missing or inaccurate
records in data, over-fitting, under-fitting, high bias, and variance
in data. Thus, it is important to take all these factors into
account. Recently, a novel Geometric Area Analysis (GAA)
technique based on Trapezoidal Area Estimation (TAE) has been
proposed based on the Beta Mixture Model (BMM). In this
work, we evaluate GAA and TAE techniques using other flexible
mixture models based on inverted Beta, generalized Dirichlet,
and generalized inverted Dirichlet distributions. The evaluation
of this work is performed on two datasets, namely the NSL-KDD
and UNSW-NBI15. The results have shown the efficiency of the
proposed ADS demonstrated by obtaining high accuracy and low
false-positive rates in all attack types.

Index Terms—Geometric area analysis, anomaly detection
system, trapezoidal area estimation, large-scale network, mixture
models, clustering, feature selection.

I. INTRODUCTION

Different ADS have been proposed in the past. Unfortu-
nately, many of them fail in terms of detection rate and time
trade-off especially in the case of large-scale networks. Over
the past few years, various statistical machine learning models
have been proposed to mitigate this limitation. The main goal
of these models is to distinguish between normal and abnormal
network events represented in terms of vectors of features. The
task of distinguishing between an attack profile and a normal
one is very challenging [1]-[3].

Many Intrusion Detection Systems (IDS), mainly Misuse-
based Systems (MDS), are build using statistical models
trained on normal network data and each deviation from what
is normal is considered as an outlier and then considered
to be an intrusion. A recent study on ADS has shown that
statistical-based mixture models are very effective to detect
malicious network behaviours with significantly low FPR and
high Detection Rate (DR). This work is motivated by a
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successful approach recently proposed to build an effective
ADS statistical decision engine based on Beta mixture model
and TAE for recognizing abnormal behaviours in network
systems with low FPR [4]. We evaluated different algorithms
for each of the commonly known attack types on the widely
used UNSW-NB15 dataset. The most accurate approach is
determined according to the high accuracy, DR, low FPR,
and short execution time. The proposed framework consists of
three modules of dimensionality reduction, training different
models with typical normal data vectors, and a statistical
decision engine. More precisely, we first select the most
relevant features in the dataset by combining the chosen
attributes using feature selection techniques widely used in the
literature [5]. Next, a statistical model is learned to perform
classification. The algorithms with the highest accuracy, de-
tection rate performance, and lowest error rate for each attack
type are determined automatically in our proposed system.
Finally, the decision-making method for identifying anomalies
is designed by specifying a minimum and maximum threshold
for each typical profile and considering any deviation from it
as an attack as proposed in [4]. The contributions of this paper
can be summarized as follows:

o We evaluate different mixture models within the anomaly
detection framework proposed by [4].

o We propose a feature selection approach based on the
highest vote obtained by different techniques in the
literature.

e We evaluated the GAA-TAE technique by deploying
different mixture models for the widely used UNSW-
NB15 and NSL-KDD data sets.

The rest of this paper is organized as follows: In Section II,
we present a background and a brief introduction to different
mixture models used in this study. The framework with feature
selection and data preprocessing is introduced in Section III.
In Section IV, the performance of the TAE technique based
on different mixture models is evaluated. Finally, Section V
concludes the paper.

II. BACKGROUND AND RELATED WORKS

The main goal of the clustering algorithm is to find patterns
and features consisting of the information of data that belongs
to the same group. In the case of network data, it is very
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challenging to differentiate between normal and abnormal
data vectors when both reflect the same pattern. To overcome
this problem, different distance majors considered along with
model-based clustering algorithms. The GAA technique, pre-
sented in [4] can be divided into following steps:

1) Normal profile creation: For D-dimensional positive
vector X representing a network observation, the GAA tech-
nique is applied to calculate its area based on its TAE
computed from the BMM parameters and distances of records.
In this technique normal profile is constructed from legitimate
network data. These legitimate data are first used to estimate
BMM parameters and then used to calculate distances between
the mean of normal records and each record. Finally for each
data vector TAE is calculated using the BMM Probability
Density Function (PDF) and distance between records [6]—[8]
for training and testing dataset.

2) TAE estimation: The final PDF of normal record and
test record is used to estimate TAE from Eq. 1

D-1
b—a

o @) +2 > f@i)+ fap)] (1)

area(V) =

GAA technique is mainly based on trapezoidal rule which is
one of the numerical integration families called Newton-Cotes
formulas [9]. When this rule is used for multivariate data it is
called a composite trapezoidal rule. The PDF of each vector
is considered as the area under the curve as shown in Fig. 1.
The final normal areas are sorted and divided into /; intervals

Fig. 1: Composite trapezoidal rule. [4]

where each K; represents a minimum and maximum value
(ming, and maxg,, respectively) and used in decision-making
step.

3) Testing and Decision-making: In this step, PDF and area
of test data is calculated by using same estimated parametrs
from normal profile. Next, the test area is compared with
normal area. If the area value for test data vector falls in
between normal min and max range, it is considered a normal
record, otherwise as an attack one.

A. Mixture Models

1) Beta Mixture Model: Mixture models have been widely
used for data modeling. Although Gaussian mixture model,
has proven to be efficient in several applications, it fails to
fit the observations accurately especially when the data are
clearly non-Gaussian due to its non-convex clustering prop-
erties [10]. BMM, on the other hand, has proven to be more

efficient in handling many real-world applications involving
one-dimensional data [11]. BMM can be more efficient on
modeling the distribution of bounded data than the Gaussian
mixture [12]. The PDF of a Beta distribution is given by:

1
Beta(z|v,w) =

— v—w 1
beta(v,w)x (

—)* " Lo,w>0 (2)
where = € [0, 1] is the normalized feature, v and w indicate
the shape parameters of the Beta distribution and beta(v,w)
is the Beta function given by:

['(v) T(w)
I'(v+ w)
where I'() is the Gamma function.

Let X = (z1,...,2p) be a D-dimensional vector of indepen-

dent normalized features supposed to follow Beta distributions
described in following Eq 4.

beta(v, w) = 3)

D

p(X|7,0) = H Beta(zg;vg, wq) 4)
d=1

where ¥ = (v1,...,vp) and W = (w1,...,wp). In [4], the
authors have considered a finite mixture model based on the
distribution in Eq.4, by normalizing semi-bounded positive
features, given by:

M
p(X|0) = p(X|5;,;)p; (5)
j=1

where © = {p,,¥;,wW;} refers to the entire set of parameters
to be estimated, p; are positive mixing proportions, with
Z;Vilpj — 1, p(X|7;, ;) is the joint density function
for a D-dimensional positive vector given by Eq.4. These
parameters can be learned using the maximum likelihood
approach proposed in [13] or the Bayesian one proposed
in [12]. By investigating this mixture model, we can notice
a main shortcoming which is related to supposing that the
features are independent which may not be the case. The goal
of this paper is to consider other mixture models to handle
this shortcoming.

2) Other Mixture Models: In order to avoid supposing
that the features are independent, we consider the generalized
Dirichlet mixture [14]. The generalized Dirichlet distribution
with parameters @ = (a,...,ap) and § = (B1,...,8p) is
given by:

for Y207 x4 < 1and 0 < 4 < 1 for d = 1...D, where
ag > 0,84 >0,v = Ba—ags1—PBa+1 ford=1...D—1and
vp = Bp — 1. As discussed extensively in a series of papers
[14], [15] the consideration of the generalized Dirichlet allows
the transformation of the data using a geometric transformation
in such a way that the independence between the features be-
comes a fact and not an assumption. Each original vector X is
geometrically transformed into a vector Y = (y1,---,yp) as:

Authorized licensed use limited to: University of Grenoble Alpes. Downloaded on April 01,2021 at 19:24:41 UTC from IEEE Xplore. Restrictions apply.



ford =2,3,...,D.

Hence, each feature y,4 has a Beta dlstnbutlon and the resultmg
vector Y follows the distribution in Eq.4 .

In the following we consider two other techniques. The first
one is based on a mixture model based on Inverted Beta
Distribution (IBMM) [16], [17] as a replacement to the Beta
distribution considered in the original approach in [4]. The
inverted Beta distribution is given by:

F(OZ + B) xa—l
I(a)l(B)

where > 0 and I'() is the Gamma function. The learning of
the resulting mixture model could be based on the approaches
proposed in [16]-[18].

However, it is clear that the previous technique supposes
that the features are independent. A better alternative is the
Generalized Inverted Dirichlet (GID) mixture as introduced
[19]. The GID distribution is given by [19].

yqg =xq if d=1and yq =

iBeta(z|a, B) = (1+z)~@H8)  (7)

¢|a. §) (o +ﬁd Ty
p(X|&@ 8
= HF a) (14 2, @) ®

where vq = Bqg+aqg—Par1 ford=1,..., D with fp41 = 0.
As described in [19], we can factorize GID distribution as a
product of inverted Beta distributions by using the following
geometric transformation: y; = x; and yq = Mi’ﬁ for
d = 2,3,...,D. Thus, each feature y; has an inverted beta
distribution with parameters oy and (3, as described in eq.7 .
The learning of the parameters of a GID mixture model could
be based on the approaches proposed in [19], [20]. The PDFs
estimated from above mixture models will then be used to
calculate trapezoid area by applying the composite trapezoidal
rule and uniform-grid property (features of equal length) as
described in [21] and using Eq. 1.

III. DATA PREPROCESSING AND FRAMEWORK

In this section, we describe the ADS framework to train
the high dimensional vectors to create the normal profile
using estimated parameters, distances between the means of
the records, and normal area using the GAA-TAE method as
described in [4]. This module can be divided into several sub-
modules namely data preprocessing including dimensionality
reduction, area estimation, and a decision engine to distinguish
between normal and abnormal data instances. The block
diagram of the system is shown in Fig.2.

A. Data preprocessing

Data preprocessing involves different steps such as data
cleaning, instance selection, normalization, transformation,
feature selection, and dimensionality reduction. Raw data
collected from network traffic is often in an undependable
format, incomplete, and/or deprived of certain trends or be-
haviors and likely to contain many missing values. Machine
learning models are generally built using structured data with
numeric values. Unstructured data such as text or categorical
data, images, video, and audio need to be converted into

numeric representation using appropriate methods. After re-
moving missing, inconsistent, and duplicated values, data are
aggregated into appropriate numerical format and structure.
At this point, each feature in the dataset needs to be scaled
into specific range using normalization, in this study we used
min-max normalization in the equation 9:

= (X; —min(X))/(max(X)

Xnormalized X)) (9)
In many research works, it is found that normalization has a
great impact to improve overall accuracy and efficiency while
building a statistical model.

To build effective ADS, it is very crucial to identify
important relevant features in a dataset. In a machine learning
model, considering irrelevant features might decrease the
performance of the model and overall time efficiency. Thus,
feature selection plays an important role while building any
statistical model. In this study, we applied feature selection
based on the voting method for each dataset. In this method,
we selected features by considering multiple data aspects like
dimensionality, mean, length, and variance of the dataset. To
fulfill the above-listed aspects of data we combined different
feature selection techniques such as LightGBM, Random
forest, embedded approach, RFE wrapper, data variance,
feature correlation, and Chi-2. Based on the highest vote
of different feature selection methods, we selected optimal
features.

In addition to feature selection, to increase the computational
and modeling efficiency we applied Principal Component
Analysis (PCA) as a dimensionality reduction technique
as described in [4] on selected optimal features.
Using the above feature selection approach, the most
relevant  features obtained for NSL-KDD  dataset
are: dst_host_srv_count, dst_host_same_srv_rate,
dst_host_count, same_srv_rate, protocol_type,
logged_in, flag, dst_host_srv_dif f_host_rate,
dst_host_serror_rate, dst_host_same_src_port_rate,
count. The optimal features selected for UNSW-NBIS5
dataset using the proposed voting approach are: synack,
sttl, sinpkt, dttl, dload, ct_srv_dst, swin, smean, sload,
sbytes, rate, dur, dmean, dbytes, ct_state_ttl, ct_srv_src,
ct_dst_src_ltm, ackdat. After applying the PCA on selected
features, we reduced the dimensionality to 10 for NSL-KDD
and 3 for the UNSW-NB15 dataset.

— man(

B. Area estimation and standard profile creation

To build the ADS, we divided both datasets into training
and testing sets. Only normal data vectors were selected
to create a standard profile. Besides, we further divided
the UNSW-NB15 dataset according to attack types, includ-
ing Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic,
Reconnaissance, and Worms to evaluate detection of each
category using different models. In the training phase, for
every given normal data vector we estimated the parameters of
the tested mixture models using Maximum Likelihood (ML)
and Expectation-Maximization (EM) algorithms. The normal
profile includes the estimated parameters, PDFs for normal
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Fig. 2: Framework for anomaly detection system.

data vector (PDF"°"™a!) absolute distance (calculated using
mean of all the normal records () and mean of each normal
record (f1,,) using following equations 10 to 12, and mixing
weights.

N
W= l/NZvi/(vi + w;)

(10)
=1
D
Hn = 1/Dzvnd/(vnd+wnd) (11)
d=1
absdistance = |M - Mn| (12)

In testing phase, we use same estimated parameters from
normal profile to calculate PDFs for testing set (PD Ftesting)
and use mean of normal profile (u,) to calculate distance
measure for testing records. After calculating (PDEFmermal)
and (PDF'estn9) we use the PDFs to calculate TAE area
using eq. 1 to get (area™™!) and (area'®**"9). Further,
we divided (area™ ™) into (K™°"™a) folds, where each
fold contains minimum and maximum values of normal area
for each normal vector. (K™°"™a) folds can be calculated
using following equation [4]:

Kyoras = [N/2], [(N = 1)/2], (N = 2)/2],..., [4/2]

Finally, we use this (K7°"™)) fold in the decision engine
to classify normal and abnormal data instances proposed in
[4]. Any observation falling in the range of (area'®s'"9 >=
ming,)and(areat®s'"" <= maxg:,) is considered as normal
otherwise as abnormal data vector.

13)

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the GAA
technique using TAE. We deployed two widely used datasets,
namely, UNSW-NB15' and NSL-KDD? for the following
models: Beta Mixture Model (BMM), Inverted Beta Mix-
ture Model (IBeta), Generalized Dirichlet Mixture Model

Uhttps://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ ADFA-
NB15-Datasets/
Zhttps://www.unb.ca/cic/datasets/nsl.html

(GDir), and Generalized Inverted Dirichlet (GID) mixture
model. The parameters of these models have been estimated
using the maximum likelihood approach within expectation-
maximization framework as detailed in [13], [17], [14], and
[19], respectively.

The first set of experiments evaluates the effectiveness of
absolute distance with the TAE method to detect malicious
attack vectors in a network with low FPR. For BMM, Fig.
3a and Fig. 3b represent the areas estimated for normal and
abnormal data vectors without using any distance measure with
minimum and maximum range for the normal profile from
0.2 and 0.89, respectively. TAE estimate for abnormal data
instance is 0.87, which is under normal range and produces
FPR.

Fig. 3c and Fig. 3d, represent IBeta-TAE for normal and
abnormal data vectors. It can be observed that some abnormal
data vectors fit the same as the normal vectors and thus
generate high FPR. We can observe that by adding distance
measure, in Fig. 3c and Fig. 3d, the model can distinguish
between normal range (0.383 to 0.841) and abnormal data
vectors. In this case, the overall IBeta-TAE value (0.836) is
close to the normal range, but still, some abnormal data are
considered as normal.

Fig. 3e and Fig. 3f shows the effectiveness of the GID
model using TAE technique and distance measure to detect
the same normal and abnormal data vectors very effectively
with a normal profile range from 0.27 to 0.82 and significant
change in respective TAE values for abnormal data vector
value as 0.895. Thus, the GID-TAE gives good detection
capability with low FPR as we prove it also in the next set of
experiments.

Fig. 3g and Fig. 3h, represent GDir-TAE for normal and
abnormal data vectors. Although It can be observed that some
abnormal data vectors look like normal ones and thus reduce
the overall accuracy, the model can distinguish between normal
range (0.12 to 0.77) and abnormal data vectors. In this case,
the overall GDir-TAE value is (0.86) and generates less FPR.
In the second set of experiments, the performance evaluation
of mixture models was conducted with selected features,
and the principal components using the PCA technique for
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TABLE I: Overall accuracy for NSL-KDD.

Model ACC DR  FPR
(%) () (%)

BMM 9212 99.16 0.29
IBeta  90.50 97.00 0.29
GID 9112 9433 0.18

GDir 8728 90.60 0.21

TABLE II: Overall accuracy for UNSW-NB15.

Model ACC DR FPR
(%) (%) (%)

BMM 9586 93.50 0.023

IBeta 9640 96.00 0.014

GID 96.44  97.50 0.010

GDir 98.85 96.00 0.010

both datasets. The overall accuracy of the different models is
measured by Detection Rate and False Positive Rate. Tables
I and II summarize the obtained results for NSL-KDD and
UNSW-NBIS5 data sets, respectively.

We evaluated the performance of the proposed model with
the TAE technique in detecting each type of attack in the
UNSWNBI5 dataset in the final set of experiments. Table
IIT shows the comparison of the performance test results for
accuracy for each attack category in the UNSW-NB15 dataset.
The performance of GID with TAE techniques gives us higher
accuracy in each attack type as compared to other models
except the shellcode attack type.

V. CONCLUSION

The main goal of this work is to evaluate the Geometric
Area Analysis technique based on Trapezoidal Area Estima-
tion with different mixture models. We evaluated the proposed
hybrid ADS through extensive experiments involving two
well-known datasets, namely, NSL-KDD and UNSW-NB15.
We have shown that the GID and GDir using the TAE
technique provide promising results by accurately detecting
abnormal network behavior. Moreover, results indicate that
the false-positive rate in the GID is much less as compared
to other mixture models. Thus, it can be considered to build
ADS for a high-speed network to detect malicious activity.
By selecting an appropriate number of folds and selecting the
optimal number of features using the voting approach with
the PCA technique for dimensionality reduction, we achieved
a significant improvement in the modeling accuracy. Future
works could be devoted to deploying infinite mixture models
instead of the finite ones as developed in [22]-[25].
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TABLE III: Accuracy with TAE technique for all the attack types in UNSW-NB15 dataset

Dataset ~ Analysis (%) Backdoor (%) DoS (%) Exploits (%) Fuzzers (%) Generic (%) Reconnaissance (%) Shellcode (%) Worms (%)
BMM 92.93 95.06 94.53 90.80 90.53 91.33 93.46 87.06 89.83
IBMM 88.53 96.80 94.13 92.93 90.00 96.66 93.73 83.20 92.66
GID 91.28 99.57 96.71 100.00 90.85 99.85 97.14 85.71 94.28
GDir 97.57 93.57 96.71 83.85 90.28 99.85 90.10 88.42 96.82
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Fig. 3: Normal profile range with TAE values Beta, IBeta, and GID model to detect abnormal data vector
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