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Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR7342,
49 Rue F. Joliot Curie, 13384 Marseille, France

(Received ?; revised ?; accepted ?. - To be entered by editorial office )

The critical dynamics of supersonic combustion waves is studied in the context of the
direct initiation of detonation in a spherical geometry. The study is performed by an
asymptotic analysis in the limit of small heat release, including unsteadiness, curvature
and the gradient of the burnt-gas flow. Derivation of analytical expressions for the rar-
efaction wave in the burnt-gas flow, combined with numerical studies, provides the basis
of the analysis. The critical trajectories “detonation velocity versus front radius” D(rf )
are characterized by a decay well below the CJ velocity at a small radius (however larger
than the detonation thickness), followed by a re-acceleration process back to a CJ deto-
nation. The phenomenon is explained by the dynamics of the sonic point inside the inert
rarefaction wave behind the reaction zone. The key mechanism is a critical slowdown
as soon as the sonic condition (relative to the lead shock) approaches the reaction zone
from behind, leading to an increase of the time delay in the nonlinear response of the
combustion wave to the rarefaction-wave-induced decay. Detonation fails if the rate of
decay is strong enough to prevent the sonic point to catch the reaction zone. Concerning
successful initiation, the link between the trajectories D(rf ) of the fully unsteady prob-
lem and of the self-similar CJ solution of the discontinuous model is deciphered in the
long time limit.

Key words:

1. Introduction

The dynamics of spherical gaseous detonations is controlled by small modifications of
its inner structure which is thin compared to the radius. The direct initiation process is
a typical example of such a sensitivity, see Clavin & Denet (2020). For large activation
energy, a critical radius larger than the detonation thickness by two orders of magnitude
has been identified by He & Clavin (1994) illustrating a quasi-steady curvature-induced
quenching of spherical detonations. Direct numerical simulations have confirmed such a
large critical radius but they also show that strong unsteadiness of the inner-detonation-
structure is involved in the trajectories “propagation velocity versus radius”, especially
near criticality, see He & Clavin (1994), He (1996), Eckett et al. (2000) and Ng &
Lee (2003). Investigating successful initiation far from the critical radius (supercritical
regime) and neglecting the small gradient of the burnt-gas flow, Clavin & Denet (2020)
have shown that, near the CJ regime, unsteadiness is produced by the upstream-running
compressible mode which controls the delayed response of the detonation structure to
the burnt-gas flow. The analysis was performed in the limit of small heat release which
provides us with a systematic framework for studying the problem which is one of two
timescales.
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The present paper is an extension of the Clavin & Denet (2020) analysis to the critical
dynamics in a spherical geometry. The objective is to elucidate further the mechanism
responsible for the complex dynamics observed near criticality in direct numerical simu-
lations, namely re-ignition after a quasi-quenching of the detonation with a propagation
velocity decreasing well below the CJ velocity accompanied by a substantial increase of
the reaction-zone thickness, called sometimes “decoupling of the reaction from the lead
shock”. The problem is investigated here by an asymptotic analysis in the limit of small
heat release, including unsteadiness, curvature and the gradient of the burnt-gas flow
(rarefaction wave) at the exit of the reaction zone. The gradient of the rarefaction flow
which is small at the scale of the detonation thickness, plays however an important role
in the critical dynamics; it controls the dynamics of the sonic point inside the rarefaction
wave behind the reaction wave. Our attention will be limited to stable or weakly unstable
detonations.

In the limit of small heat release, the Mach number is everywhere close to unity,
0 < M−1� 1, and the problem reduces to a single equation for the flow. In a preliminary
step, an analytical solution is obtained for the rarefaction wave behind a detonation
treated as a discontinuity. Near the detonation front, the solution presents the same local
properties as in ordinary spherical detonations approaching the CJ regime. For example,
the decrease-rate at the front is given by the curvature of the flow as in Liñan et al. (2012)
in the limit of large Mach number. The analytical solution of the burnt gas flow is used as
the external solution of the unsteady inner structure of curved detonations. The latter is
analyzed with the same formalism as in Clavin & Denet (2020). A combination of matched
asymptotic method and numerical study of the asymptotic equation is then used for
improving our understanding of the phenomenon. When the detonation velocity is larger
than the planar CJ velocity the detonation is overdrive and the sonic point is outside
the inner structure of the reaction wave. Near the critical threshold of direct initiation,
the propagation velocity of the lead shock first decreases below the CJ velocity and the
unsteady regime is still overdriven. The dynamics of the sonic point (sonic condition of
the flow relative to the lead shock) then controls the subsequent critical dynamics that
leads to either sustained detonation propagation or detonation failure. In that respect,
the gradient of the burnt gas flow, even small, plays an important role, and analytical
solutions for the rarefaction wave behind the reaction wave are quite useful.

The analysis also clarifies the question raised by Taylor (1950a) concerning the self-
similar solution of the rarefaction flow behind a spherical CJ detonation, obtained by
Zeldovich (1942) and Taylor (1950a) in the limit of large Mach number. The detonation
being treated as a discontinuity, the radial rate of change of the flow becomes infinite on
the detonation front. According to Taylor (1950a), it is unlikely that this result would be
true if the modification of the inner structure is taken into account (non zero detonation
thickness). To address this question, a self-similar solution is derived in the present
article for the CJ detonation moving with a propagation Mach number larger than unity
by a small amount 0 < M − 1 � 1 (small heat release). Amazingly, the new self-
similar solution is qualitatively similar to that obtained in the opposite limit M � 1;
the gradient of the flow is also infinite on the front. However, this self-similar CJ flow
is quite different from the unsteady flow behind an overdriven detonation approaching
the CJ regime. The transitory flow, bridging the gap between the two flows, is obtained
by a numerical solution of the asymptotic equation and is re-constructed by combining
method of characteristics and analytical solutions. We will then see to what extent the
self-similar flow is meaningful when the inner structure is taken into account.

The paper is organized as follows. The first part of the paper in sections 2 and 3 is
devoted to the rarefaction wave in a spherical geometry in the limit 0 < M − 1� 1. The
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two-timescale nature of this flow is discussed in § 2.1. The self-similar solution behind
a spherical CJ detonation treated as a discontinuity is obtained in § 2.2. The unsteady
rarefaction wave behind an overdriven detonation is presented in § 2.3. The transitory
flow describing the transition from the overdriven regime to the self-similar CJ solution
is obtained in section 3 for a detonation treated as a discontinuity. The rest of the paper
is devoted to the study of the dynamics near criticality when the modifications to the
inner structure is taken into account. The formulation of the problem and the method of
solution are presented in § 4.1. The asymptotic analysis of overdriven detonations near
the CJ regime is performed in § 4.2. The critical dynamics is discussed in section 5 where
the numerical results are presented. Conclusions and perspectives are given in section 6.

Five appendices are added. The jump conditions across a detonation treated as a
discontinuity are recalled in §A. The linear acoustic wave in a spherical geometry is
briefly recalled in §B and compared with the nonlinear structure of the rarefaction wave
for 0 < M − 1 � 1. Technical details are presented in §C, including the calculation of
the motion of the sonic point in the rarefaction wave. The decay of an inert spherical
shock wave freely propagating in open space is presented in §D. The C-shaped curve of
the steady-state approximation is briefly revisited in §E, extending the previous analysis
to a non-uniform flow of burnt gas.

2. Rarefaction wave behind a detonation treated as a discontinuity

In principle, gaseous detonations could be treated as a discontinuity if the length scale
of the burnt gas flow is larger than the detonation thickness, namely for a radius large
enough in a spherical geometry. Even though the discontinuous model is not relevant for
the critical dynamics, the unsteady solution of the rarefaction wave is first analyzed with
this model in the limit of small heat release. This is a useful preliminary step providing
us with the external solution of the solution including the modification of the inner
structure.

2.1. Two-time-scale analysis of the rarefaction wave

In the limit of small heat release, the flow of burnt gas close to the detonation front is
controlled by a single equation, which corresponds to equation (6.6) of Clavin & Denet
(2020) by setting the reaction rate equal to zero. In this section we show that this equation
can be extended throughout the rarefaction wave. For that purpose we study the problem
of fluid mechanics behind a supersonic discontinuity in the limit of a propagation velocity
larger than the sound speed by a small amount. Denoting γ, a, p and u the ratio of
specific heat, the isentropic speed of sound, the pressure and the gas velocity (relative to
the laboratory frame where the uncompressed gas is at rest), an inert compressible flow
in a spherical geometry is governed by two hyperbolic equations

1

γp

[
∂

∂t
+ (u± a)

∂

∂r

]
p± 1

a

[
∂

∂t
+ (u± a)

∂

∂r

]
u = −2

u

r
, (2.1)

where r is the radius and t the time, see Liñan et al. (2012) and Clavin & Denet (2020).
For a detonation treated as a discontinuity, the pressure p and the gas velocity u on the
detonation front r = rf (t) are given in terms of the propagation velocity D(t) by the
conservation equations recalled in Appendix A, see (A 1)-(A 6),

r = rf (t) :
1

γ

p− pu
pu

= M(t)
u

au
(2.2)
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where M(t) ≡ D(t)/a is the Mach number and the subscript u identifies the constant
properties upstream from the front. Written in the reference frame attached to the front
equations (2.1) read

x ≡ r − rf (t) 6 0, drf (t)/dt = D(t)

1

γp

[
∂

∂t
+ (u± a−D)

∂

∂x

]
p± 1

a

[
∂

∂t
+ (u± a−D)

∂

∂x

]
u = −2

u

rf (t) + x
. (2.3)

In the limit of small heat release qm/cpTu ≡ ε2 � 1, the velocity of the planar CJ
wave in steady state is slightly higher than the sound speed, see (A 2),

0 < (DoCJ − a)/a ≈ ε� 1, DoCJ ≈ (1 + ε)a, (2.4)

and the attention is focused on detonations sufficiently close to the CJ regime

0 6 (D −DoCJ )/εa = O(1) or smaller. (2.5)

In the limit ε � 1, 0 < (M − 1) = O(ε), according to (A 1)-(A 6), the gas velocity is
smaller than the speed of sound u/a = O(ε) at the front. The condition for which a
weak shock wave 0 < (M − 1) � 1 can be considered as a discontinuity is discussed
in Clavin & Williams (2002). According to (2.2), the relative pressure variation is as
small as u/a and the variation of (1/γ)δp/p− u/a is even smaller, of order (M − 1)u/a,
(1/γ)δp/p− u/a = O(ε2). The variation of the speed of sound is also of order ε2 δa/a =
O(ε2). Neglecting terms of order ε2, the variation of a is negligible, and the isentropic
relation (1/γ)δp/p ≈ u/a holds at the front, up to the second order in the perturbation
analysis for ε � 1 under the conditions (2.4) and (2.5) for which the relative jump
of entropy across the detonation front is of order ε2. Then, the rarefaction wave is a
quasi-transonic flow which can be analyzed by a two-time-scale analysis.

It has been known long ago that the rarefaction wave u(r, t) behind a spherical deto-
nation is delimited by a weak discontinuity at the radius r0(t) of a core of stagnant gas
(r0 < rf ) which growths with the speed of sound

dr0(t)/dt = a, r 6 r0(t) : u = 0 ⇒ du
(
r0(t), t

)
/dt = 0; r > r0(t) : u > 0. (2.6)

The flow u is oriented in the same direction as the propagation D > 0, u > 0, and is
increasing monotonously from zero at r = r0(t) to a value (at the detonation front rf )
smaller than the speed of sound by a factor ε, so that the ordering u/a = O(ε) holds
throughout the rarefaction wave. The equations of the two characteristics C± in (2.3)
involve two differential operators

∂/∂t+ V±∂/∂x, V± ≡ (u± a)−D. (2.7)

The scalars I+ ≡ (1/γ)δp/p+u/a and I− ≡ (1/γ)δp/p−u/a that are transported by C+
and C− respectively, are modified by the flow divergence on the right-hand side of (2.3)
whose order of magnitude is εa/r,

∂I±
∂t

+ V±
∂I±
∂x

= −2
u

r
= O(εa/r). (2.8)

Under the conditions (2.4) and (2.5), the flow with respect to the front is quasi-transonic,
D−u = O(εa). The propagation velocity V− ≡ u−a−D < 0 of the downstream-running †
characteristics C− is approximately −a throughout the rarefaction wave. Near the deto-
nation front where the flow relative to the front is subsonic D−u 6 a (overdriven regime),

† We use here the same convention as in Clavin & Williams 2002; upstream-running (down-
stream-running) characterizes a propagation towards the shock (the core of stagnation gas) in
the frame attached to the front.
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the characteristics C+ is upstream-running V+ = a− (D − u) > 0. But a sonic point ap-
pears when u decreases since V+ = 0 when D − u = a. Therefore the characteristics C+
becomes downstream-running (V+ < 0) behind the sonic point which stands close to the
front because we consider propagation regimes of the detonation that are close to the CJ
regime which is characterized by the sonic condition at the detonation front. Then the
transport of I− by C− from the sonic point to r0 is quasi-instantaneous compared to the
slow transport of I+ by C+, |V+|/a = O(ε), |V−|/a ≈ 1. Anticipating that the thickness of
the rarefaction wave ∆r ≡ (rf − r0) is smaller than the detonation radius ∆r/rf = O(ε),
see § 2.2, the modification of I− by the geometrical effect during the transit time ∆r/a
of C− is of order ε∆r/rf = O(ε2) and can be neglected. Then, to leading order in the
limit ε � 1, the isentropic relation of acoustics (1/γ)δp/p = u/a, which is valid inside
the detonation structure in the limit of small heat release, holds throughout the rarefac-
tion wave u � a, u/εa = O(1). Then, neglecting the short time delay and the small
flow modification (of order ε2a) introduced by the fastest downstream-running mode and
retaining only the slow timescale, the leading order of the flow u(r, t) is controlled by a
single equation corresponding to the simple wave associated with C+,

[
∂

∂t
+ (u+ a)

∂

∂r

]
u = −au

r
(2.9)

x ≡ r − rf (t) 6 0,

[
∂

∂t
+ (u+ a−D)

∂

∂x

]
u = −a u

rf (t) + x
,

drf
dt

= D(t). (2.10)

2.2. Self-similar rarefaction wave behind a spherical CJ detonation

Generally speaking when the modification to the inner structure of the leading front is
ignored (zero detonation-thickness), a self-similar solution exists when a finite amount
of energy is deposited quasi-instantaneously by a quasi-punctual external source at the
centre because there is no length and time scales in the problem. This is the case for
the blast wave of Sedov (1946) and Taylor (1950b) and the rarefaction wave of Zeldovich
(1942) and Taylor (1950a) behind a CJ detonation, obtained in the limit of large Mach
number M � 1, see textbooks, for example Clavin & Searby (2016). We show below
that, in the opposite limit of small heat release MoCJ − 1� 1, there is also a self-similar
solution for the rarefaction wave behind a CJ detonation, which is qualitatively similar to
the self-similar solution of Zeldovich (1942) and Taylor (1950a). The difference concerns
mainly the extension of the self-similar rarefaction wave which is small compared to the
radius of the detonation in the limit MoCJ − 1� 1.

2.2.1. Formulation

Consider the spherical detonation propagating with the constant CJ velocity DoCJ ≈
(1 + ε)a in the limit (2.4) ε � 1. According to the conservation equations (A 1)-(A 6),
the boundary condition at the front takes the form

x = 0 : u ≈ εa. (2.11)

After dividing by εa and introducing the non dimensional flow of order unity in the limit
ε� 1, v(x, t) ≡ u/(εa), v ∈ [0, 1], equation (2.10) yields

[
∂

∂t
+ (u+ a−DoCJ )

∂

∂x

]
v = −a v

rf (t) + x
, v ≡ u

εa
, (2.12)

[
1

a

∂

∂t
+ (v− 1)ε

∂

∂x

]
v = − v

rf (t) + x
(2.13)
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where (2.4) has been used. This suggests to rescale the distance from the front by using
the new space variable η ≡ x/ε, so that equations (2.11) and (2.13) read

η ≡ [r − rf (t)]/ε,

[
1

a

∂

∂t
+ (v− 1)

∂

∂η

]
v = − v

rf (t) + εη
; η = 0 : v = 1. (2.14)

The downstream relation (2.6) is automatically fulfilled at η = η0(t) ≡ [r0(t) − rf (t)]/ε
since the relations v(η0(t), t) = 0 and dv(η0(t), t)/dt = 0 are verified by (2.14), v = 0 :
∂v/∂t−a∂v/∂η = 0, yielding dη0(t)/dt = −a, so that, using (2.4) drf/dt = (1 + ε)a, one
gets dr0/dt = a.

Introducing the two lengths rfi and r0i characterizing the initial condition t = 0,

rf (t) = DoCJ t+ rfi ≈ (1 + ε)at+ rfi, r0(t) = at+ r0i, rfi > r0i, (2.15)

η0(t) ≡ −[rf (t)− r0(t)]/ε = −at+ η0i, η0i ≡ −(rfi − r0i)/ε < 0, (2.16)

ε|η0i| being the initial thickness of the rarefaction wave, we will show below that a self-
similar solution of (2.14) exists in the limit ε� 1 if the initial thickness of the rarefaction
wave rfi − r0i is smaller than the initial radius of the detonation rfi by a factor ε, as it
is the case in the linear solution presented in Appendix B.1,

(rfi − r0i)/r0i = O(ε), rf (t)− r0(t) = ε(at− η0i), |η0i| = O(r0i). (2.17)

To leading order, the denominator r = rf + εη on the right-hand side of (2.14) can be
replaced by r0(t) throughout the rarefaction wave r0(t) 6 r 6 rf (t) since, according
to (2.17), rf (t) = r0(t) + εat − εη0i so that rf (t) = (1 + ε)r0(t) + O(εr0i). Therefore,
replacing the time variable t by a time-like variable ν ≡ r0(t) = at+ r0i whose dimension
is a length, equation (2.14) for the flow v(η, ν) takes the form of a Burgers-like equation,
free from parameter, in which the local viscous dissipation is replaced by a global (linear)
damping rate on the right-hand side,

ε→ 0 :

[
∂

∂ν
+ (v− 1)

∂

∂η

]
v = −v

ν
, η = 0 : v = 1 (2.18)

where ν ≡ at+ r0i, η ≡ r − rf (t)

ε
, v(η, ν) ≡ u(x, t)

εa
. (2.19)

The parameter r0i in the definition of the time-like variable ν can be eliminated by a
change of time origin.

2.2.2. Infinite gradient of the flow on the front. Self-similar solution

As in the self-similar solution of Zeldovich (1942) and Taylor (1950a) obtained in the
opposite limit of large Mach number DoCJ/a� 1, the solution of (2.18) is singular on the
detonation front where the gradient of the flow becomes infinite. The flow being constant
on the front v = 1, the unsteady term ∂v/∂ν in (2.18) is negligible around η = 0− so that
the steady-state approximation holds near the detonation front (v− 1)∂v/∂η ≈ −1/ν

1− v =

√
2

ν
(−η), 1− u

εa
=

√
2[rf (t)− r]
ε(at+ r0i)

, (2.20)

the time derivative ∂v/∂ν|η=0− =
√−2η/(2ν3/2) being negligible in a boundary layer at

the front |∂v/∂ν|η=0− � 1/ν,

|η| � 2ν, rf (t)− r � 2ε(at+ r0i). (2.21)

The divergence of the flow gradient on the front of a spherical CJ detonation ∂v/∂η|η=0− ∝
1/(−η)1/2 is a consequence of the sonic condition η = 0 : v− 1 = 0 ∀t.
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Figure 1. Solution of (2.23)-(2.24) representing the self-similar rarefaction flow behind the
front of a spherical CJ detonation considered as a discontinuity for small heat release
(DoCJ − a)/a ≈ ε � 1. The reduced flow v = u(r, t)/εa is plotted versus the reduced dis-
tance from the front z =

(
r − rf (t)

)
/εr0(t) with rf (t) = DoCI t + rfi, r0(t) = at + r0i and,

according to (2.26), rfi = (1 + ε)r0i.

The self-similar solution of (2.18) is obtained by looking for a solution in the form

v(η, ν) = V(z) with z ≡ η/ν ⇒ u

εa
= V

(
r − rf (t))

εr0(t)

)
(2.22)

[−(1 + z) + V ]
dV

dz
= −V, z = 0 : V = 1. (2.23)

After multiplication by 1/V 2, equation (2.23) takes the form d[(1+z)/V ]/dz+(1/V )dV/dz =
0, then, the solution V (z) satisfying the boundary condition at z = 0 is the root of a
transcendental equation

V lnV − V + (z + 1) = 0. (2.24)

According to this equation, the radius r = r0(t) of the spherical core of stagnant gas
V = 0 corresponds to z = −1. Therefore, r0(t) and rf (t) are linked by the relation

z ≡ [r0(t)− rf (t)] /εr0(t) = −1 ⇔ (1 + ε)r0(t) = rf (t) (2.25)

in agreement with the assumption (2.17) in the limit of small heat release (2.4), which
finally takes the more restrictive form

(rfi − r0i) = εr0i, (2.26)

in a consistent way with rf (t) ≈ (1+ε)at+rfi and r0(t) = at+r0i yielding (2.26) for z =
−1. The velocity profile of the self-similar rarefaction wave is plotted in Figure 1. Close to
the detonation front z ≈ 0, namely for V = 1+δV with |δV | � 1, lnV ≈ δV −δV 2/2+ ..,
V lnV ≈ −1+(δV )2/2+ .. so that equation (2.24) yields (δV )2/2+z ≈ 0 and the relation
(2.20) is recovered for |z| � 1, V ≈ 1−

√
−2z. At the radius of the stagnant core, the root

of (2.24) goes to zero limz=−1 V = 0+ with a zero gradient dV/dz|z=−1 = 0, as shown
by taking the limit V → 0+ of the derivative of (2.24) d(V lnV )/dz − dV/dz + 1 = 0
leading to limV→0+(dV/dz) = −2/ lnV → 0+.

To conclude the rarefaction wave behind a spherical CJ detonation sustained by a small
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heat release (MoCJ − 1 ≈ ε� 1) is similar to the self-similar solution for MoCJ � 1. The
only difference is quantitative; the extension of the rarefaction wave is smaller than the
detonation radius rf (t) by a factor MoCJ − 1, (rf − r0)/rf ≈ (MoCJ − 1)/MoCJ for small
heat release while (rf − r0)/rf = 1/2 for MoCJ � 1.

2.3. Rarefaction wave behind an overdriven detonation considered as a discontinuity

Within the framework of the the discontinuous model the decay of the propagation veloc-
ity of an overdriven detonation D(τ) in a spherical geometry to the planar Chapmann-
Jouguet velocity DoCJ occurs systematically after a finite time and at a finite radius. In
this section, we derive an analytical expression for the rarefaction wave behind an over-
driven detonation treated as a discontinuity approaching the CJ velocity, in the limit
ε� 1. The subsequent relaxation to the self-similar solution is discussed in section 3.

2.3.1. Formulation

As already mentioned, there is no length (or time) scale in the direct-initiation problem
with the discontinuous model. However, in view of bridging the gap with the study in
the second part of this manuscript, it is useful to introduce the non-dimensional space
and time variables ξ and τ as well as the reduced flow field µ(ξ, τ) that are of order unity
inside the unsteady (and curved) inner structure of the detonation in the limit (2.4)-(2.5)

ξ ≡ (r − rf (t))

l
, τ ≡ εa t

l
, D =

drf
dt

, (2.27)

µ(ξ, τ) ≡ v− 1 = u/εa− 1 ⇔ u/a = ε(1 + µ) (2.28)

where l is the detonation thickness and 1/tr = a/l the reaction rate at the Neumann
state,

∂

∂r
=

1

l

∂

∂ξ
,

∂

∂t
=

ε

tr

∂

∂τ
− D

l

∂

∂ξ
. (2.29)

For clarity, the results will be written with the two types of variables. Introducing the
reduced radius r̃f (τ) and propagation velocity α̇τ (τ)

r̃f (τ) ≡ εrf (τ)/l, α̇τ (τ) ≡ [D(τ)−DoCJ ]/(ε a), (2.30)

equation (2.10) reduces to (6.6) in Clavin & Denet (2020) without the reaction term

∂µ

∂τ
+ (µ− α̇τ )

∂µ

∂ξ
= − 1

r̃f (τ) + εξ
(1 + µ), (2.31)

where
dr̃f (τ)

dτ
=
D
a

= (1 + ε) + εα̇τ (τ), r̃f (τ) = r̃fi + (1 + ε)τ + ε

∫ τ

0

α̇τdτ, (2.32)

see Appendix C.1. In (2.31), r̃fi ≡ εrfi/l is associated with the initial position of the
front rfi ≡ rf (0). The sonic condition with respect to the front (D− u) = a corresponds
to (µ− α̇τ ) = 0, and a subsonic condition (D−u) < a corresponds to (µ− α̇τ ) > 0 while
(µ− α̇τ ) < 0 characterizes a supersonic flow relative to the detonation front. The decay
of the detonation velocity to the CJ velocity corresponds to α̇τ → 0+ and µf → 0+.

As already mentioned, the radius r = r0(τ) of the spherical core of stagnant gas
u
(
r0(τ), τ

)
= 0

r < r0(τ) : u = 0, r > r0(τ) : u > 0, ∂u/∂r|r=r+0 > 0

is a weak discontinuity of the flow moving at the speed of sound dr0(t)/dt = a. Intro-
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ducing the reduced thickness of the rarefaction wave |ξ0(τ)|

ξ0(τ) ≡ [r0(τ)− rf (τ)]

l
< 0; ξ = ξ0(τ) : µ = −1 i.e. µ

(
ξ0(τ), τ

)
= −1, (2.33)

the weak discontinuity is recovered in (2.31) at ξ = ξ0(τ) where ∂µ/∂τ |ξ=ξ+0 − (1 +

α̇τ )∂µ/∂ξ|ξ=ξ+0 = 0 and µ = −1 by differentiating the last expression in (2.33), dµ
(
ξ0(τ), τ

)
/dτ =

∂µ/∂τ |ξ=ξ+0 + (dξ0/dτ)∂µ/∂ξ|ξ=ξ+0 = 0 yielding

dξ0/dτ = −(1 + α̇τ ), ξ0(τ) = −τ −
∫ τ

0

α̇τ (τ ′)dτ ′ + ξ0i (2.34)

which corresponds effectively to dr0/dt = a that is d(r0−rf )/dt = a−D with, according
to (2.4) and (2.30), (a − D) = −εa(1 + α̇τ ). When the order of magnitude of α̇τ is not
larger than unity in the limit ε → 0, (D − a)/a = O(ε), equation (2.34) shows that the
thickness of the rarefaction wave rf (t)−r0(t) increases with a velocity of order εa smaller
than the speed of sound by a factor ε. Considering τ = O(1) in the limit of small heat
release, limε→0 εξ0 = 0, equation (2.32) yields limε→0 r̃f = τ + r̃fi, so that, to leading
order, equation (2.31) reduces to

ε→ 0,
∂µ

∂τ
+ [µ− α̇τ (τ)]

∂µ

∂ξ
= − 1 + µ

τ + r̃fi
where r̃fi ≡ ε

rfi
l

= O(1). (2.35)

Rescaling the non-dimensional length ξ and time τ with r̃fi ≡ εrfi/l,

τ̃ ≡ τ

r̃fi
=

at

rfi
, ξ̃ ≡ ξ

r̃fi
=
r − rf (t)

ε rfi
, ξ̃0(τ̃) ≡ ξ0(τ)

r̃fi
=
r0(t)− rf (t)

ε rfi
(2.36)

equations (2.34)-(2.35) take a form free from parameter

∂µ

∂τ̃
+ [µ− α̇τ (τ̃)]

∂µ

∂ξ̃
= − (1 + µ)

τ̃ + 1
,

dξ̃0
dτ̃

= −[1 + α̇τ (τ̃)]. (2.37)

Once a general solution of (2.37) is known, the dynamics of the front α̇τ (τ̃) is obtained
by a boundary condition at the front. For the discontinuous model, the instantaneous flow
of burned gas at the front, denoted by µf (τ̃) ≡ µ(ξ̃ = 0, τ̃), is given by the conservation of
mass, momentum and energy in appendix A, leading to express µf (τ̃) in terms of α̇τ (τ̃)

ξ̃ = 0 : µ ≡ µf (τ̃) =Mf (α̇τ (τ̃)). (2.38)

Equations (2.37) and (2.38) represent an eigenvalue problem in which the unknown func-
tion α̇τ (τ̃) appears in the boundary condition (2.38) and in equation (2.37).

2.3.2. Simplified formulation near the CJ velocity

The formulation gets simpler when the attention is focused on the end of the detonation
decay when the velocity is close to the CJ velocity,

0 <
(Di −DoCJ )

εa
� 1, 0 6 α̇τ ≡

(D −DoCJ )

εa
� 1, (2.39)

Expanding (A 1)-(A 2) for small values of (D −DoCJ ) /εa yields the well known square
root relation between the flow of burnt gas at the front ub(t) and the detonation veloc-
ity D(τ) near the CJ regime ub/εa ≈ 1 +

√
2 (D −DoCJ ) /εa, obtained by the relation

(MoCJ −M−1oCJ )2/(M −M−1)2 ≈ 1−2 (D −DoCJ ) /εa in (A 1). Then the boundary con-
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dition at the front simplifies to

uf (τ)/εa ≈ 1 +
√

2 (D(τ)−DoCJ ) /εa, µf (τ) ≈
√

2α̇τ (τ)� 1 (2.40)

0 < µfi ≡ ufi/εa− 1 ≈
√

2(Di −DoCJ )/εa� 1, (2.41)

where ufi and µfi denote the initial value of uf (τ) and µf (τ) ≡ ufi/εa−1 with ufi > εa.
The term [µ − α̇τ (τ̃)] can then be replaced by µ in (2.35) because the flow field in the
rarefaction wave increases monotonously with the radius, from u = 0 at r = r0 to a
positive value uf on the front (r = rf ), µ ∈ [−1, µf ], with, according to (2.39)-(2.40),
0 6 α̇τ � µf � 1 so that α̇τ (τ)� |µ(ξ, τ)| ∀ξ ∈ [ξ0, 0]. Under the condition (2.39), the
unknown velocity of the front α̇τ (τ̃) does not appear explicitly anymore on the left-hand
side of equation (2.37) which reduces to the Burgers-like equation in (2.18),

ε→ 0, 0 < α̇τ � 1 ⇒ ∂µ

∂τ̃
+ µ

∂µ

∂ξ̃
= − (1 + µ)

τ̃ + 1
, ξ̃0(τ̃) = −τ̃ + ξ̃0i, (2.42)

the unknown function being the flow at the front µf (τ̃) ≡ uf (τ̃)/εa− 1.

As we shall see in § 3.1, the solution µ(ξ̃, τ̃) of (2.42) reaches the self-similar CJ solution
(2.23)-(2.24) in the long time limit if the initial thickness of the rarefaction wave scales as
(2.17), |ξ̃0i| = O(1) in the limit ε→ 0. Notice that equation (2.42), divided by rfi, yields
(2.18) for v = µ + 1, the difference with the CJ problem being the boundary condition
on the front (ξ̃ = 0) which now involves an unknown flow µf (τ̃) 6= 0, v(η = 0, ν) 6= 1.

2.3.3. Analytical solutions.

The rarefaction wave behind a spherical detonation is a nonlinear solution of the Euler
equations, which cannot be described by a linearized approximation, even if the flow
velocity is smaller than the speed of sound as it is the case in the limit of small heat
release. By comparison, the linear solution is briefly recalled in Appendix B. Equations
(2.37) and (2.42) have analytical solutions µ(ξ̃, τ̃) which provide us with an expression
of the unsteady flow on the front µf (τ̃) = µ(0, τ̃) in terms of the unknown function
α̇τ (τ̃) which, according to (2.30), represents the propagation velocity of the front D(t).
The dynamics of the front α̇τ (τ̃) is then obtained in a second step through the boundary
condition on the front. For example, the Rankine-Hugoniot condition yields the relaxation
of a pure shock freely propagating in a spherical geometry which is derived in Appendix D.
The end of the decay of an overdriven detonation, treated as a discontinuity, is obtained
from (2.42) by using the boundary condition (2.40).

Analytical solutions of (2.37) are obtained in the form of separated variables,

µ(ξ̃, τ̃) = A(τ̃)B(η̃)− 1, η̃ ≡ ξ̃ − ξ̃0(τ̃), µ
(
ξ̃0(τ̃), τ

)
= −1

dξ̃0
dτ̃

= −(1 + α̇τ ). (2.43)

Introducing the notation B′ ≡ dB/dη̃ and Ȧ ≡ dA/dτ̃ , ∂µ/∂τ̃ = Ȧ + (1 + α̇τ )AB′,
µ∂µ/∂ξ̃ = (AB− α̇τ )AB′, the unknown function α̇(τ̃) disappears from the equations for
A(τ̃) and B(η̃), yielding

ȦB +A2BB′ = −AB/(τ̃ + 1) ⇒ −dA−1/dτ̃ +A−1/(τ̃ + 1) = −B′, (2.44)

the second equation being obtained after division by A2B. The left-hand side of the
second equation in (2.44) is a function of τ̃ only, while the right-hand side is a function
of η̃. Therefore the two sides should be equal to the same constant yielding an ordinary
differential equation for A(τ̃) and B(η̃) respectively

dA−1/dτ̃ −A−1/(τ̃ + 1) = k, dB/dη̃ = k. (2.45)
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The constant k has to be obtained by an initial condition. Integration of the second
equation is straightforward leading to a uniform gradient (straight profile of the flow).
Introducing the initial value τ = 0 : A = Ai, the solution of the first equation is,

A−1 = (1 + τ̃)A−1i + k(1 + τ̃) ln(1 + τ̃) (2.46)

the first term on the right-hand side being the general solution of the homogeneous
equation and the second term a particular solution. Solutions of (2.42) then take the
form

µ(ξ̃, τ̃) =
k[ξ̃ − ξ̃0(τ̃)]

(1 + τ̃)[A−1i + k ln(1 + τ̃)]
− 1 (2.47)

ξ̃ = 0 : µf (τ̃) =
−kξ̃0(τ̃)

(1 + τ̃)[A−1i + k ln(1 + τ̃)]
− 1, τ̃ = 0 : 1 + µfi = −kξ̃0iAi (2.48)

where the initial values µfi and ξ̃0i have been used, τ̃ = 0 : µf = µfi, ξ̃0 = ξ̃0i. Elim-

inating Ai in favour of µfi, A
−1
i = −kξ̃0i/(1 + µfi), the constant k is also eliminated

from the expressions of µ(ξ̃, τ̃) and µf (τ̃), leading to a two-parameters family of solutions

involving the parameters µfi and ξ̃0i,

µ(ξ̃, τ̃) =
[ ξ̃ − ξ̃0(τ̃) ]

(1 + τ̃)[θi + ln(1 + τ̃)]
− 1, θi ≡

−ξ̃0i
(1 + µfi)

> 0, (2.49)

µf (τ̃) =
−ξ̃0(τ̃)

(1 + τ̃)[θi + ln(1 + τ̃)]
− 1, ξ̃0(τ̃) = −

[
τ̃ +

∫ τ̃

0

α̇τ (τ̃ ′)dτ̃ ′
]

+ ξ̃0i. (2.50)

These expressions for the flow field are solutions to (2.37) and also to (2.42) when α̇τ (τ̃) is
small. Notice that the unknown function α̇τ (τ̃) appears only through ξ̃0(τ̃). Written with
the original variables, denoting uf (t) the flow on the front, ufi its initial value (t = 0),
rfi the initial radius of the front and Di > D(t) the initial detonation velocity, equations
(2.49)-(2.50), using the definition in (2.28) 1 + µ = u/εa, take the form

0 <
ufi
εa
− 1� 1, r0(t) 6 r 6 rf (t) :

u(r, t)

uf (t)
=

r − r0(t)

rf (t)− r0(t)
(2.51)

r0(t) = at+ r0i,
uf (t)

ufi
=
rf (t)− r0(t)

rfi + at

[
rfi − r0i
rfi

+
ufi
a

ln

(
1 +

at

rfi

)]−1
.(2.52)

where ufi/a = (rfi− r0i)/(r0iθi). Self consistency of the asymptotic analysis in the limit
ε→ 0 ufi/a = O(ε) is ensured by the scaling

ε→ 0 :
rf (t)− r0(t)

ε r0(t)
= − ξ̃0(τ̃)

τ̃ + 1
= O(1). (2.53)

Under the condition (2.41), the integral term can be neglected in the expression (2.50)
of ξ̃0, so that (2.53) reduces to (2.25) (rf (t)− r0(t))/ε r0(t) = 1 for ξ̃0i = −1.

Notice also that µ(ξ̃, τ̃) in (2.49)-(2.52) can be written in the same form as the self-
similar solution of (2.18), v = [z + A(ν)]/B(ν) with z = η/ν, B(ν) = (θi + ln ν) and
A(ν) = [rf (t) − r0(t)]/εr0(t) which reduces to A(ν) = 1 − (1 + ξ̃0i)/ν for α̇τ � 1 and

A(ν) = 1 for ξ̃0i = −1.

2.3.4. Simplified expression of the rarefaction flow near the CJ regime.

According to (2.49) and/or (2.51), the gradient of the flow is uniform and decreases
monotonously with the time. According to (2.50) and/or (2.52) the flow velocity on the
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front also decreases and the planar CJ velocity is reached at finite time tt

t = tt : uf/εa = 1, D = DoCJ ⇔ τ̃ = τ̃t : µf = 0, τ̃t ≡ att/rfi = τt/r̃fi. (2.54)

However at t − tt = 0−, the flow field (2.49)-(2.52) is different from the self-similar
rarefaction wave behind a CJ wave (2.22)-(2.24) plotted in Figure 1. We will show in
§ 3.1 that the relaxation of the flow towards the CJ rarefaction wave occurs progressively
for t > tt after a sudden and sharp transition of the flow gradient on the front at t = tt.

At the end of the decay, |α̇τ | � 1, equation (2.50) where the integral term
∫ τ̃
0
α̇τ (τ̃ ′)dτ̃ ′

is neglected (initial condition close to the CJ velocity), introducing µf (τ̃t) = 0, leads to

a transcendental equation for τ̃t in terms of ξ̃0i and µfi

∫ τt

0

α̇τ (τ ′)dτ ′ � τt, µf (τ̃t) = 0 ⇒ τ̃t − ξ̃0i = (1 + τ̃t)

[
− ξ̃0i

(1 + µfi)
+ ln(1 + τ̃t)

]
,(2.55)

which has a single positive root which is small for µfi � 1 whatever ξ̃0i < 0, see Appendix
C.2. This root yields a simple expression of τ̃t (and/or tt) in terms of the initial value of
the flow at the front

µfi � 1 : τ̃t ≈ µfi � 1 ⇒ τ̃t ≡
a tt
rfi
≈
(ufi
εa
− 1
)
� 1, ∀ ξ̃0i < 0 (2.56)

obtained from the Taylor expansion of (2.55) when the quadratic terms τ̃2t are neglected.
Limiting our attention to 0 6 t 6 tt, 0 6 τ̃ = O(τ̃t), quadratic terms τ̃2 = (at/rfi)

2 are
negligible, and a Taylor expansion of (2.49)-(2.50) in powers of τ̃t ≈ µfi � 1, limited to
first order, yields

0 6 τ̃ 6 τ̃t � 1 : µ ≈ ξ̃

(−ξ̃0i)

[
1 + τ̃t −

(
1 +

1

−ξ̃0i

)
τ̃

]
+ τ̃t − τ̃ , |ξ̃0i| = O(1). (2.57)

The downstream condition at the weak discontinuity, ξ = ξ0(τ̃) : µ = −1 with ξ̃0 =
−τ̃ + ξ̃0i in (2.42), is recovered at the first order of the Taylor expansion of (2.57) in the
form ξ̃0/(−ξ̃0i) = −1 − τ̃ /(−ξ̃0i). According to (2.41) and (2.56), there is a boundary
layer near the detonation front where the flow (2.57) takes an even simpler form at the
end of the decay 0 6 τ̃ 6 τ̃t � 1

−ξ̃ ≡ (rf − r)
εrfi

= O(τ̃t), τ̃t ≈ µfi =

√
2(Di −DoCI )

εa
� 1 : (2.58)

µ(ξ̃, τ̃) ≈ ξ̃

−ξ̃0i
− (τ̃ − τ̃t), µf (τ̃) ≈ (τ̃t − τ̃), (2.59)

u(r, t)

εa
− 1 ≈ r − rf (t)

εrfi
+
a (tt − t)
rfi

,
uf (t)

εa
− 1 ≈ a (tt − t)

rfi
, (2.60)

obtained when terms of second order τ̃2t are neglected. This leads to

∂µ(ξ̃, τ̃)

∂τ̃
≈ −1,

∂u(r, t)

∂r

∣∣∣
r=rf

≈ a

rf
,

1

εa

duf (t)

dt
≈ − a

rf
⇒ duf (t)

dt
≈ −auf

rf
, (2.61)

where rfi has been replaced by rf in the denominators since rf − rfi = O(εrf ). The
terms of order ε being neglected in (2.42), retaining the small term (τ̃t − τ̃) which is of
order τ̃t ≈ µfi ≡ (ufi/εa)−1, is meaningful in (2.59) in an intermediate asymptotic limit

ε�
√

2(Di −DoCJ )/εa� 1.
The last equation in (2.61) corresponds to the closure assumption used in Clavin &
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ξ̃

τ̃

τ̃ ′1

τ̃ ′2
τ̃t

0

Figure 2. Example of three characteristic curves ξ̃ = ξ̃ C+ (τ̃ , τ̃ ′) for τ̃ ′ = τ̃t, τ̃
′ = τ̃ ′2 and τ̃ ′ = τ̃ ′1

with τ̃t < τ ′2 < τ ′1. In the dashed region ξ̃ 6 ξ̃ C+ (τ̃ , τ̃t), the transitory flow is equal to the un-

perturbed flow (3.7) (straight profile whose slope is decreasing to zero) µ(tr)(ξ̃, τ̃) = µ(wd)(ξ̃, τ̃).

Denet (2020) who neglected the small gradient of the flow at the exit of the reaction
zone. This equation is indeed quite general close to the CJ regime and was derived
previously in the opposite limit MoCJ � 1 by Liñan et al. (2012). This can be seen in
(2.9)-(2.10); because of the transonic character of the burnt gas flow near the detonation,
u+ a−D � 1, the term involving the gradient of the flow on the left-hand side becomes
negligible near the detonation front, the unsteady term being balanced by the divergence
of the flow −au/r. More precisely in the limit of small heat-release , using DoCJ −a ≈ εa,
D− a = εa(1 + α̇τ ) ≈ εa, uf = O(εa), µ = u/εa− 1, see (2.28), and, according to (2.61),
∂u/∂r|r=rf ≈ a/rf with (2.56) µf < µfi � 1, the gradient term on the left-hand side of
(2.10) is shown to be smaller than the curvature term au/r on the right-hand side by a
factor ε,

(uf + a−D)
∂u

∂x

∣∣∣
x=0
≈ εµfa

a

rf
� a

εa

rf
= O

(a uf
rf

)
. (2.62)

As we shall see, this small gradient of the rarefaction flow cannot be ignored in the critical
dynamics studied in § 4 because it controls the instantaneous position of the sonic point
inside the rarefaction wave.

3. Transitory flow for the discontinuous model

The way the rarefaction wave (2.49) reaches the self-similar solution behind the CJ
wave (2.22)-(2.23) after tt, is presented in this section for MoCJ − 1� 1. The transition
is similar to that described by Liñan et al. (2012) in the opposite limit MoCJ � 1.

3.1. Abrupt transition of the flow on the front

Both the flows (2.49) and (2.22)-(2.23) vanish at the radius of the spherical core of
stagnant gas but the gradient of the flow is uniform and finite in the former while it is
infinite on the detonation front in the latter, see Figure 1. The sonic condition of (2.49)
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r − rf (τ̃)

rf (τ̃)− r0(τ̃)
0−1

u/ǫa

[
1 + ln

(
1 + τ̃

1 + τ̃t

)]−1

1

0

τ̃
=
τ̃ t

τ̃ t
<
τ̃
<
∞

τ̃
<
τ̃ t

[
1 + ln

(
1 + τ̃

1 + τ̃t

)]
1 + τ̃t
1 + τ̃

− 1

Figure 3. Sketch of the transitory flow, plotted in a universal form for ξ̃0i = −1 and
τ̃t ≈ µfi � 1, τ̃t being the cross-over time (2.55). The bold curve in black is the rarefaction

wave u(tr)/εa = 1+µ(tr) behind a detonation treated as a discontinuity, after the cross-over time
τ̃ > τ̃t. The slope is infinite at the front and the profile is straight away from the front where
µ(tr) = µ(wd). Expressed in terms of the space variable ξ̃/(−ξ̃0) = [r − rf (t)]/[rf (t) − r0(t)],

−ξ̃0(τ̃) = τ̃ + 1, the profile of the transitory flow is parameter free, provided the time is mea-
sured by (1+ τ̃)/(1+ τ̃t). The bold points are the time dependent radius and flow velocity of the

junction point where the transitory flow µ(tr) matches µwd in (3.7). The colored straight lines
represent the rarefaction wave (2.49) of the overdriven detonations before the velocity reaches
the planar CJ velocity τ̃ < τ̃t, the red one being just before the transition to CJ, τ̃ − τ̃t = 0−.

(relative to the detonation front) which is located at finite distance behind the detonation
front for t < tt, reaches the front at t = tt. Within the framework of the discontinuous
model, the velocity of the burnt gas relative to the lead shock cannot become smaller
than the sound speed on the detonation front. According to (2.40)-(2.41), neither α̇t(t)
nor µf (t) can become negative; they should vanish simultaneously at t = tt and stay
equal to zero at later times t > tt.

t > tt : uf = εa, µf = 0, D = DoCJ , rf (t) = DoCJ (t− tt) + rf (tt). (3.1)

Therefore, the decrease of uf (t) with a quasi-constant deceleration rate (2.60) for t 6 tt
stops suddenly at t = tt since uf stays constant after tt. A jump of deceleration of the
flow is thus produced at t = tt on the detonation front

1

εa

duf
dt

∣∣∣
t+t

t−t

=
a

rf (tt)
,

dµf
dτ̃

∣∣∣
τ̃+
t

τ̃−t

=
rfi
rf (tt)

≈ 1. (3.2)
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However, the trajectory in the phase space of velocity-radius ”D-rf” is tangent to the axis
D = DoCJ at t = tt, as shown by (2.40) α̇τ = µ2

f (τ)/2 by using (2.60) µf ≈ a(tt − t)rfi
ε� 1, (t− tt)→ 0− : [D(t)−DoCJ ]/a→ (ε/2)[(t− tt)a/rfi]2,

drf/dt ≈ DoCJ = a(1 + ε), (D −DoCJ )/a→ (ε/2)(rf − rf (tt))
2/r2fi, (3.3)

the last relation being valid near the CJ regime 0 6 D − DoCJ � DoCJ in the limit of
small heat release (DoCJ − a)/a = ε � 1. The jumps in (3.2) and the tangency of the
trajectories at t = tt are consequences of the discontinuous model and are no longer valid
when small modification of the inner structure of the detonation is taken into account.

3.2. Transitory regime. An analytical study

The transitory flow between the transition from the straight profile (2.49) for τ̃ 6 τ̃t to
the self-similar solution (2.22)-(2.24), denoted µ(tr)(ξ̃, τ̃) in the following, is solution of
(2.42) for a flow velocity at the front kept equal to its CJ value after tt.

τ̃ > τ̃t :
∂µ(tr)

∂τ̃
+ µ(tr) ∂µ

(tr)

∂ξ̃
= −1 + µ(tr)

τ̃ + 1
, ξ̃ = 0 : µ(tr) = 0. (3.4)

This flow is equal to (2.49) (with µfi > 0) when t < tt,

τ̃ ≈ τ̃−t , ξ̃0(τ̃t) 6 ξ̃ 6 0 : µ(tr)(ξ̃, τ̃t) =
ξ̃

−ξ̃0i + τ̃t
=

ξ̃

−ξ̃0(τ̃t)
, (3.5)

where the simplified expression (2.57) has been used by introducing (2.55)-(2.56) into
(2.49) neglecting the quadratic terms τ̃2t . Equation (3.5) says simply that the transitory
flow at τ̃ = τ̃t has a straight profile corresponding to the reduced thickness |ξ̃0(τ̃t)| of the
rarefaction wave. Simultaneously with the jump of deceleration (3.2), the flow gradient
on the detonation front, which is finite for τ̃ < τ̃t, jumps at τ̃ = τ̃t for becoming infinite
at τ̃ = τ̃+t and stays infinite afterwards τ̃ > τ̃t

τ̃ = τ̃−t � 1 :
∂µ

∂ξ̃

∣∣∣
ξ̃=0−

=
1

−ξ̃0(τ̃t)
, τ̃ > τ̃t : lim

ξ̃→0−

∂µ(tr)

∂ξ̃
≈ 1√

−2ξ̃
. (3.6)

These expressions are obtained by the same method as in § 2.2.2 for the self-similar CJ
solution (2.22)-(2.23). Recalling that no boundary condition is used on the front to derive
(2.49)-(2.50), this flow is still solution of (2.42) for τ̃ > τ̃t when µf (τ̃) decreases below

zero. The corresponding flow, denoted µ(wd)(ξ̃, τ̃) from now on, takes the form

τ̃t ≈ µfi � 1, τ̃ > τ̃t, µ(wd)(ξ̃, τ̃) ≈ ξ̃ + τ̃ − ξ̃0i
(1 + τ̃)[−ξ̃0i/(1 + τ̃t) + ln(1 + τ̃)]

− 1, (3.7)

where, neglecting the quadratic terms τ̃2t , the flow at τ = τt is given in (3.5), µ(wd)(ξ̃, τ̃t) =
µ(tr)(ξ̃, τ̃t). The instantaneous position of the weak discontinuity corresponding to (3.7),
ξ̃ = ξ̃0(τ̃): 1 + µ(wd)(ξ̃0, τ̃t) = 0, takes the form

ξ̃0(τ̃) = ξ̃0(τ̃t)− (τ̃ − τ̃t). (3.8)

Equation (3.7) cannot represent the transitory flow nearby the detonation front for τ̃ >
τ̃t : µ(wd)(ξ̃, τ̃) 6= µ(tr)(ξ̃, τ̃) since µ(tr)(0, τ̃) = 0 while µ(wd)(0, τ̃) < 0 ∀ τ̃ > τ̃t. However
(3.7) still represents the transitory flow at a distance from the front large enough, as
explained now by the method of characteristics.

The singular perturbation (3.6), which is generated instantaneously at τ̃ = τ̃t on the
front, induces a disturbance which is transported downstream with the velocity µ(tr) by
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the mode C+ (downstream-running for τ̃ > τ̃t since µ(tr) 6 0). According to (3.4), the
characteristic curves ξ̃ = ξ̃ C+ (τ̃)

dξ̃ C+/dτ̃ = µ(tr)(ξ̃ C+ (τ̃), τ̃) (3.9)

corresponds to the following equation for the flow velocity transported by C+

µ(tr)
C+

(τ̃) ≡ µ(tr)
(
ξ̃ C+ (τ̃), τ̃

)
,

dµ(tr)
C+

(τ̃)

dτ̃
= −

1 + µ(tr)
C+

(τ̃)

τ̃ + 1
. (3.10)

Denoting ξ̃ = ξ̃ C+ (τ̃ , τ̃ ′) the characteristic curve leaving the front (ξ̃ = 0) at τ̃ = τ̃ ′ > τ̃t,

integration of (3.10) from τ̃ = τ̃ ′ : µ(tr)
C+

(τ̃ ′) = 0 yields the flow velocity transported by

this characteristic in the form

τ̃ > τ̃ ′ > τ̃t : 1 + µ(tr)
(
ξ̃ C+ (τ̃ , τ̃ ′), τ̃

)
=
τ̃ ′ + 1

τ̃ + 1
. (3.11)

Integrating (3.9) from τ = τ ′ : ξ̃ C+ (τ̃ ′, τ̃ ′) = 0 using (3.11), then determines the charac-

teristic curves ξ̃ = ξ̃ C+ (τ̃ , τ̃ ′)

τ̃ > τ̃ ′ > τ̃t :
∂ξ̃ C+ (τ̃ , τ̃ ′)

∂τ̃
=
τ̃ ′ + 1

τ̃ + 1
− 1 6 0 (3.12)

ξ̃ C+ (τ̃ , τ̃ ′) = (τ̃ ′ + 1) ln
τ̃ + 1

τ̃ ′ + 1
− (τ̃ − τ̃ ′). (3.13)

All these characteristics leave the front slowly since their velocity is zero at the front
(ξ = 0) µ(tr)(0, τ̃ ′) = 0, ∂ξ̃ C+ (τ̃ , τ̃ ′)/∂τ̃ |τ̃=τ̃ ′ = 0 ∀τ̃ ′ > τ̃t. They all reach the same

velocity in the long-time limit, limτ̃→∞ ∂ξ̃ C+ (τ̃ , τ̃ ′)/∂τ̃ = −1. Moreover, in agreement

with the fact that no shock can be created when the flow u(r, t) increases in space in the
direction of the flow, ∂u/∂r > 0, these characteristic curves do not cross each other. This
is checked by noticing that the modulus of their velocity satisfies the following relation
τ̃ ′1 > τ̃ ′2 ⇒ |∂ξ̃ C+ (τ̃ , τ̃ ′1)/∂τ̃ | < |∂ξ̃ C+ (τ̃ , τ̃ ′2)/∂τ̃ |, see Figure 2. Therefore, the trajectory

ξ̃ = ξ̃ C+ (τ̃ , τ̃t) associated with the characteristic curve leaving the front at the earliest

time τ̃ ′ = τ̃t is, according to (3.13),

τ̃ > τ̃t, ξ̃ C+ (τ̃ , τ̃t) = (τ̃t + 1) ln
τ̃ + 1

τ̃t + 1
− (τ̃ − τ̃t), (3.14)

= (τ̃t + 1) ln(τ̃ + 1)− τ̃ +O(τ̃2t ), (3.15)

with, according to (3.11), the following expression of the flow which is transported

µ(tr)
(
ξ̃ C+ (τ̃ , τ̃t), τ̃

)
=
τ̃t + 1

τ̃ + 1
− 1. (3.16)

In other words, ξ̃ = ξ̃ C+ (τ̃ , τ̃t) is the equation of the leading edge of the disturbance

resulting from keeping equal to zero the front velocity ξ̃ = 0 : µ(tr) = 0 ∀τ̃ > τ̃t. Ahead
of this leading edge, the flow µ(tr)(ξ̃, τ̃) is equal to the “unperturbed” flow (3.7),

ξ̃ 6 ξ̃ C+ (τ̃ , τ̃t) : µ(tr)(ξ̃, τ̃) = µ(wd)(ξ̃, τ̃). (3.17)

The junction point at which µ(wd)(ξ̃, τ̃) is equal to (3.16)

ξ̃(τ̃) + τ̃ − ξ̃0i
−ξ̃0i/(1 + τ̃t) + ln(1 + τ̃)

= τ̃t + 1 ⇒ ξ̃(τ̃) = −τ̃ + (τ̃t + 1) ln(1 + τ̃) ∀ξ̃0i, (3.18)
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corresponds effectively to the characteristics (3.14) when the quadratic terms τ̃2t are
neglected as it should be.

Strictly speaking, this point does not reach the core of stagnant gas (3.8) ξ̃0(τ̃) in the
long time limit, limτ̃→∞ ξ̃ C+ (τ̃ , τ̃t)− ξ̃0(τ̃) ≈ ln τ̃ . However, this is true in the sense of the

self-similar analysis when using the self-similar variable z C+ (τ̃) ≡ [r C+ (t)−rf (t)]/εr0(t) ≈
ξ̃ C+ (τ̃ , τ̃t)/(−τ̃), yielding, according to (3.15)

lim
τ̃→∞

ξ̃ C+ (τ̃ , τ̃t)/ξ̃0(τ̃) = 1, lim
τ̃→∞

z C+ (τ̃) = −1, . (3.19)

To conclude, the transitory flow µ(tr)(ξ̃, τ̃) is composed of two parts. The part cor-
responding to ξ̃ 6 ξ̃ C+ (τ̃ , τ̃t) is the straight profile µ(wd)(ξ̃, τ̃) in (3.7) whose slope is

uniform and decreases to zero limτ̃→∞(1 + τ̃)−1[−ξ̃0i/(1 + τ̃t) + ln(1 + τ̃)]−1 = 0. The
transitory flow has a curved shape in the range ξ̃ C+ (τ̃ , τ̃t) 6 ξ̃ 6 0, joining the straight

solution µ(wd)(ξ̃, τ̃) at ξ̃ = ξ̃ C+ (τ̃ , τ̃t), while the slope is infinite at the front (ξ̃ = 0). The
evolution of the rarefaction wave is sketched in figure 3 where the theoretical expressions
for the coordinates (position and flow velocity at time t) of the point of junction with
the straight profile are given.

These theoretical results are fully confirmed by the numerical solution of (3.4)-(3.5).
An example of numerical result is shown in figure 4. When the result is plotted with
a space coordinate reduced by the thickness of the CJ rarefaction wave, the numerical
analysis shows that the transitory flow and the self-similar CJ solution are quasi-identical
in the range between the detonation front and the junction point traveling with the
characteristic C+ issued from the front at t = tt at which the front reaches the CJ
velocity. Outside this range, the numerical result shows a straight profile down to the
stagnant core, in full agreement with (3.7). The trajectory of the junction point between
the two parts of the transitory flow corresponds exactly to the theoretical result plotted
in figure 3.

4. Direct initiation of detonation

Modification to the inner structure influences drastically the dynamics of a spherical
detonation. In contrast to the discontinuous model, detonation failure is observed when
the detonation velocity reaches the CJ velocity for the first time at a too small radius
(however larger than the detonation thickness). Moreover, during successful initiation of
a stable detonation, the CJ velocity is no longer reached abruptly. The critical dynamics
is analyzed here in the limit of small heat release.

4.1. Detonation model and method of solution

The reduced variables of order unity governing the structure and the dynamics of the
inner structure in the limit of small heat release ε → 0 are ξ = O(1) and τ = O(1)
in (2.27) where rfi is the initial radius of the detonation at τ = 0. According to (2.35)-

(2.36), the link of ξ, τ with ξ̃ ≡ ξ/r̃fi and τ̃ = τ/r̃fi is through the parameter r̃fi ≡ εrfi/l
of order unity in the limit ε→ 0.

As in Clavin & Denet (2020), we will use the detonation model of Clavin & Williams
(2002), obtained by an asymptotic analysis in the limit of small heat release, coupled to
the Newtonian approximation neglecting the compressional heating in the reaction zone
where the chemical energy is released (after the induction period),

ε ≡
√
qm/cpTu ≈MoCJ − 1� 1, (γ − 1) < ε. (4.1)
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Figure 4. Numerical solution (solid line) of (3.4)-(3.5), describing the transitory flow

u(tr)/εa = 1 + µ(tr) for τ̃ − τ̃t = 3, using the non dimensional radius, reduced by the thick-
ness of the rarefaction wave. The dotted line is the self-similar rarefaction flow (2.23)-(2.25)
behind the spherical CJ detonation which is reached in the long time limit τ̃ − τ̃t → ∞. The
dashed straight line is (3.7) for τ̃ − τ̃t = 3. The trajectory of the point at the junction of the
numerical solution of (3.4)-(3.5) and the straight profile (3.7) is in full agreement with the the-
oretical prediction (3.12)-(3.18). To summarize, the numerical solution of (3.4)-(3.5) is found to
be exactly the straight profile (3.7) below the junction while, in the range between the front and
the junction point, there is no noticeable difference between the numerical solution of (3.4)-(3.5)
and the self-similar solution (2.23)-(2.25).

The Rankine-Hugoniot conditions (A 3)-(A 5) in the limit (4.1) takes the form,

TN/Tu ≈ 1 + 2(γ − 1)(M − 1), b ≡ 2ε(γ − 1)E/kBTu, (4.2)

TNoCJ/Tu ≈ 1 + 2(γ − 1)ε, (E/kBT
2
u)(TN − TNoCJ ) = bα̇τ (4.3)

where E is the activation energy governing the induction length, and b = O(1) is its
reduced form. A first simplification concerns the temperature and the mass fraction of
species which, to leading order in the limit (4.1), are solutions of the steady-state version
of the conservation equations of energy and mass, satisfying the Rankine-Hugoniot condi-
tions at the lead shock, see the original article Clavin & Williams (2002) recalled in §B.1
of Clavin & Denet (2018). The unsteady distribution of the rate of heat release ω(ξ, τ)
can then be expressed in terms of the unsteady detonation velocity and the distribution
in steady state, ω(ξ, τ) = ω(ξ, α̇τ (τ)). Focusing our attention on propagation velocity
close enough to the CJ velocity, y(τ) ≡ bα̇τ (τ) = O(1), the unsteady distribution of
reaction rate takes the form ω(ξ, τ) = ω(ξ, y(τ)) which will be denoted simply ω(ξ, y) in
the following. For the sake of simplicity we will use here the scaling law assuming that the
distribution of reaction rate is fully governed by the induction length. Introducing the
distribution of the planar CJ wave ωoCJ (ξ), the reaction-rate-distribution ω(ξ, y) then
takes the form

ω(ξ, y) = ey(τ)ωoCJ (ξey(τ)), y(τ) ≡ bα̇τ (τ) =
b

ε

(D(τ)−DoCJ )

a
= O(1). (4.4)

The chemical-kinetics thus appears only through the activation energy b and the CJ
distribution ωoCJ (ξ).

In order to further simplify the presentation, the same bounded-thickness model for
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the inner structure of the planar CJ detonation as in (3.15)-(3.17b) of Clavin & Denet
(2020) will be used,

ξ 6 −1 : ωoCJ (ξ) = 0, ξ > −1 : ωoCJ (ξ) > 0 (4.5)
∫ 0

−1
ωoCJ (ξ′)dξ′ = 1, dωoCJ/dξ|ξ+1=0+ > 0, (4.6)

so that, in the limit of small heat release, the structure of the flow in the planar CJ wave
(y = 0) µoCJ (ξ) is solution to

µoCJ
dµoCJ

dξ
=

1

2
ωoCJ (ξ), ξ 6 −1 : µoCJ = 0, ξ = 0 : µoCJ = 1. (4.7)

According to (4.4) and (4.5) the exit of the reaction zone ξ = ξb(τ) of the unsteady inner
structure of the spherical combustion wave is

ξb(τ) = −e−y(τ), (4.8)

describing a substantial increase of the reaction-wave thickness when the velocity de-
creases below the CJ velocity y < 0. However for a reduced detonation velocity of order
unity |y| = O(1), the thickness of the detonation is of the same order of magnitude as in
the planar CJ wave, e−y = O(1) in the limit ε→ 0. The variation of y is bounded from be-
low since a supersonic velocity D > a implies α̇τ ≡ (D−DoCJ )/εa = (D−a)/εa−1 > −1
so that y ≡ bα̇τ > −b. In fact, according to the well-known chemical-kinetics quenching
in combustion, occurring at a crossover temperature for which the recombination reac-
tions become faster than the chain-branching reactions, the rate of heat release vanishes
earlier. In real combustion, this crossover temperature Tc at which the reaction rate de-
creases sharply and the induction time increases strongly is typically Tc ≈ 1000 K in
ordinary condition while the Neumann temperature of a CJ wave is about TNoCJ ≈ 2000
K, see Sanchez & Williams (2014) and Clavin & Searby (2016). Considering that ordinary
combustion cannot proceed below Tc with TNoCJ − Tc ≈ (TNoCJ − Tu)/2, a chemical
quenching is assumed to be produced in the limit of small heat release for y = yc with
typically yc = −b/2. Then, the following condition is added to (4.4)-(4.5)

y 6 yc ≈ −b/2 : ω(ξ, y) = 0 ∀ ξ. (4.9)

The reaction being quenched below y 6 yc, detonation fails systematically as soon as the
detonation velocity decreases below the lower bound yc.

Another key simplification of the limit (4.1) concerns the two-timescale-nature of the
dynamics which, to a lesser extent, characterizes also real detonations. To leading order
in the limit (4.1), following the reasoning used in § 2.1, the unsteady flow inside the inner
structure of a spherical detonation is governed by a single equation corresponding to
(2.35) plus an additional term on the right-hand side associated with the reaction rate

ε→ 0 :
∂µ

∂τ
+
(
µ− y

b

) ∂µ
∂ξ

=
1

2
ω(ξ, y(τ))− (1 + µ)

r̃f (τ)
, (4.10)

ξ = 0 : µ = 1 + 2y(τ)/b. (4.11)

with, according to (2.30)-(2.32),

ε→ 0 : r̃f (τ) ≡ εrf (τ)/l ≈ τ + r̃fi. (4.12)

The key point which is used to obtain (4.10) is that the variation of pressure and flow
velocity across the inner structure of the reaction wave are identical to leading order in
the limit (4.1), π = µ + 1 where π ≡ (1/εµ), ln(p/pu) ≈ u/a, see Clavin & Williams
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Figure 5. Sketch of the flow in an overdriven regime with 0 < y/b < µext
f , µext(ξs, 0) = y/b

< µext
f , ξs < −e−y. The distances plotted on the horizontal and vertical axis correspond to the

simplified expressions (C 11), τt corresponding to the time at which µext
f = 0.

(2002) and also §B.1 of Clavin & Denet (2018) and § 3.1 of Clavin & Denet (2020) for
a spherical geometry. The boundary condition at the lead shock (4.11) is the Rankine-
Hugoniot relation (4.2)-(4.3) obtained from (A 5)-(A 6) for M − 1 = ε(1 + y/b). The last
term on the right-side of (4.10) is the damping rate (2.35) (l/a)(u/r) due to the divergence
of the burnt-gas flow near the front for rf � l in a spherical geometry, u/r ≈ u/rf .

When the attention is focused on the inner structure, ξ = O(1), the time-dependent
velocity of the lead shock y(τ) is obtained as an eigenfunction of the system (4.10)-
(4.11) plus a boundary condition at the exit of the reaction zone. In contrast to Clavin
& Denet (2020) where, considering the burnt-gas flow as uniform, the decelerating flow
µb(τ), solution to dµb/dτ ≈ −(1 + µb)/r̃f , was imposed in the burnt gas ξ = −e−y, the
solution of (4.10)-(4.11) will be matched now with the non uniform flow of the rarefaction
wave, solution to the inert version (2.35) of (4.10), denoted µext(ξ, τ) from now on. In
overdriven regimes, this external flow field µext(ξ, τ) is given by the analytical expressions
(2.49)-(2.50), as discussed now.

4.2. Overdriven regimes. Splitting and matching

The burnt-gas flow at the exit of the reaction zone of a supersonic reaction wave in the
overdriven regime is, by definition, subsonic relative to the lead shock, D − ub < a ⇔
µext(−e−y(τ), τ) > y(τ)/b. The sonic point ξ = ξs(τ), µext(ξs(τ), τ) = y(τ)/b, is located
inside the rarefaction flow, behind the inner structure of the combustion wave. Overdriven
regimes are then characterized by the relations

ξs(τ) < −e−y(τ), µext(ξs(τ), τ) = y(τ)/b, µext(−e−y(τ), τ) > y(τ)/b, (4.13)

the last inequality being in agreement with a rarefaction flow of inert gas which is
an increasing function of the radius ∂µext/∂ξ > 0. The larger the overdrive factor
µext(−e−y(τ), τ) − y(τ)/b > 0 is, the larger is the distance between the sonic point and
the exit of the reaction zone. The characteristic C+ of equation (2.35) is downstream
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running (towards the weak discontinuity ξ = ξ0 < 0) behind the sonic point (ξ < ξs,
µext < y/b)) while it is upstream running (towards the lead shock ξ = 0) for ξ > ξs,
µext > y/b, see figure 5. Then, under the condition (4.13), modifications of the inner
structure of the combustion wave cannot influence the rarefaction flow in the burnt gas
which is still given by (2.49)-(2.50),

ξ 6 −e−y(τ) : µ(ξ, τ) = µext(ξ, τ), (4.14)

µext(ξ, τ) =
ξ

r̃f (τ)[(−ξ̃0i)/(1 + µextfi ) + ln(r̃f/r̃fi)]
+ µextf (τ), (4.15)

where r̃f (τ) is the reduced radius (4.12). Introducing the notation

Y (τ) ≡ (1/τ)

∫ τ

0

α̇τ (τ ′)dτ ′ = O(y/b), (4.16)

the function µextf (τ) is, according to (2.50),

µextf (τ) =
τ [1 + Y (τ)] + (−ξ̃0i)r̃fi

r̃f (τ)[(−ξ̃0i)/(1 + µextfi ) + ln(r̃f/r̃fi)]
− 1. (4.17)

The external flow µext(ξ, τ) is a linear function of the radius (straight shape) with a
slope decreasing monotonously to zero, regardless of the time-dependent velocity of the
front y(τ). The dependence of µextf (τ) on the past of the unknown solution y(τ) through
the integral Y (τ) comes from the increase of the thickness of the rarefaction wave with
the time, −ξ0(τ) ≡ [rf (τ)− r0(τ)]/l, −dξ0/dτ = 1 + y/b, see (2.33)-(2.34). At large
radius and close to the CJ velocity the external flow takes the simplified form (C 11),
reminiscent of (2.60). To summarize, for overdriven regimes, the boundary condition in
the burnt gas of the solution of (4.10) is (4.14)

ξs(τ) < −e−y(τ); ξ 6 −e−y(τ) : µ(ξ, τ) = µext(ξ, τ) (4.18)

and, in particular ξ = −e−y(τ) : µ(ξ, τ) = µext(−e−y(τ), τ). (4.19)

Introducing the decomposition

µ(ξ, τ) = µext(ξ, τ) + µ̂(ξ, τ), (4.20)

and subtracting (2.35) from (4.10)

∂µ̂

∂τ
+
(
µ− y

b

) ∂µ
∂ξ
−
(
µext − y

b

) ∂µext
∂ξ

=
1

2
ey(τ)ωoCJ (ξ ey(τ))− µ̂

r̃f
, (4.21)

the dynamics of the lead shock y(τ) during the decay of a combustion wave in the
overdriven regime corresponds to the eigenfunction of the following problem

τ 6 τs :
∂µ̂

∂τ
+
(
µ̂− y

b

) ∂µ̂
∂ξ

=
1

2
ey(τ)ωoCJ (ξ ey(τ))− µ̂

r̃f
− ∂

∂ξ

[
µextµ̂

]
, (4.22)

ξ = 0 : µ̂ = 1 + 2y(τ)/b− µextf (τ); ξ 6 −e−y(τ) : µ̂ = 0, (4.23)

where µext(ξ, τ) is given in (4.15) and τs denotes the time at which the overdriven regime
is no more verified. The boundary conditions at ξ = 0 and at ξ = −e−y(τ) are respectively
the Rankine-Hugoniot relation (4.11) and (4.18).

Typically, ξs(τ) increases when y(τ) decreases, see § 5.1, so that the sonic point ap-
proaches the end of the reaction ξb(τ) = −e−y. As soon as the sonic point crosses the
exit of the reaction zone, τ > τs, ξs(τs) = −e−y(τs), µext(ξs, τ) = y/b, the propagation
regime is no more overdriven; the external flow which is still solution of (2.37) in the
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burnt gas ξ < −e−y(τ), is influenced by the disturbances emitted from the reactive tran-
sonic flow and transported downstream (towards the weak discontinuity ξ = ξ0 < 0)
by the characteristic C+. Then, for τ > τs, ξs(τ) > −e−y(τ), the boundary condition
(4.19) is no more valid and the rarefaction wave is no more represented accurately by the
analytical expression (4.15) everywhere in the burnt gas. In other words, soon after τs,
the rarefaction flow behind the end of the reaction (ξ < −e−y(τ)) is modified by the heat
which is released in the region delimited by the end of the reaction and the sonic point
(−e−y 6 ξ 6 ξs). However, as in the discontinuous model in § 3.2, see figures 3 and 4, the
solution (4.15) is recovered downstream until the arrival of the disturbance transported
by the characteristic C+. The subsequent dynamics for τ > τs should then be analyzed
by the numerical solution of (4.10)-(4.11) using an initial condition at τ = τs given by
the solution of the eigenvalue problem (4.22)-(4.23).

4.3. Initial condition

In a real initiation process the trajectory of the lead shock is fully determined by the
strong blast wave (inert flow) which is generated initially by a quasi-punctual and quasi-
instantaneous deposit of external energy at the centre. According to the self-similar
solution of Sedov (1946) - Taylor (1950b), this strong blast wave depends only on the
amount of energy which is deposited, see the discussion of Liñan et al. (2012) for more
details. Such an initial stage corresponds to a large Mach number which is beyond the
scope of the asymptotic analysis in the limit 0 < M − 1 � 1. The critical condition of
initiation will be investigated in the present article by a parametric study of the initial
conditions of the solution of (4.10)-(4.17). Three parameters of order unity in the limit
ε → 0 are involved at τ = 0; the initial radius r̃fi ≡ εrfi/l, the initial thickness of

the rarefaction wave −ξ̃0i ≡ (rfi − r0i)/εrfi > 0, and a positive parameter µextfi . The
initial propagation velocity yi = b(Di − DoCJ )/εa is related to the above-mentioned
parameters through the inner structure of the detonation. Our attention will be focused
on initial velocity of weakly overdriven detonations close to the CJ velocity, typically
yi/b = 0.15 − 0.5 and on an initial extension of the rarefaction wave much larger than
the detonation thickness, as in real initiation processes near criticality

rfi − r0i � l ⇒ (−ξ̃0i)r̃fi � 1. (4.24)

The numerical integration of (4.10)-(4.11) is initialized at τ = 0 by igniting the exother-
mal reaction in the inert flow (4.15)

τ = 0 : µext(ξ) =
(1 + µextfi )

(−ξ̃0i)r̃fi
ξ + µextfi with µextfi > 0, (4.25)

leading quickly, on a time scale shorter than unity, to the structure (4.13) of an overdriven
regime sketched in figure 5, D−ub < a⇔ µextfi (−e−yi)−yi/b > 0. For µextfi large enough,
the initial detonation velocity is larger than the CJ velocity yi > 0. As explained at the
beginning of § 4.2, the rarefaction flow of burnt gas (4.15)-(4.17) is not perturbed by the
heat release since the regime is overdriven.

5. Discussion of the critical dynamics

As discussed in Clavin & Denet (2020), the case of large activation energy leading
to strongly overdriven detonations is difficult and is left for future works. Within the
framework of the detonation model (4.4)-(4.9) in the limit of small heat-release, the
threshold of the longitudinal instability corresponds to a critical activation energy b = bc
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of order unity, bc = O(1), for example bc = 1.27 for the distribution ωoCJ (ξ) used in Clavin
& Denet (2018). Therefore, focusing our attention on marginally stable and/or unstable
detonations (b of order unity), the curvature-induced quenching which is described in the
quasi-steady approximation for b� 1 in Appendix E cannot provide an accurate picture
of detonation failure. However we will see that the order of magnitude of the critical
radius is correctly predicted.

5.1. Slowdown mechanism of overdriven waves. Failure and successful initiation

Consider initial conditions for which the propagation velocity crosses the planar CJ
velocity for the first time at τ = τt, y(τt) = 0, −e−y(τt) = −1, with a radius small enough
and a overdrive factor µext(−1, τt) > 0 large enough so that the flow at the exit of the
reaction zone continues to be subsonic (relative to the lead shock) well below the planar
CJ velocity, y < 0 : µext(−e−y(τ), τ) − y/b > 0. According to (2.49)-(2.50), the sonic
point inside the rarefaction flow of burnt gas behind an overdriven detonation moves
towards the reaction zone when the acceleration |dy/dτ | is not too large (dy/dτ < 0),
more precisely when the decrease rate of 1 +y(τ)/b > 0 is smaller than the damping rate
by the curvature

−d(y/b)

dτ

1

1 + y(τ)/b
<

1

r̃f
⇔ dξs

dτ
> 0, (5.1)

see (C 16). The exit of the reaction zone ξ = −e−y moving in the opposite direction when
y decreases, the overdrive factor µext(−e−y(τ), τ) − y(τ)/b > 0 decreases and the sonic
point can catch the exit of the inner structure of the reaction wave at a later time.

The curvature term on the right-hand side of (4.10) influences the inner structure of
the reaction wave and also the burnt gas flow at the exit of the reaction zone, see (4.19).
These two mechanisms have an opposite effect on the dynamics of the lead shock, as
shown by the following rough arguments. Considering a constant flow (subsonic/shock)
at the exit of the reaction zone, the solution of (4.10)-(4.11) describes the dynamics of
an overdriven wave which is isolated from the external world. In the context of direct
initiation, for a velocity y < 0 well below the CJ wave, namely for |y| not small, the
flow µ(ξ, τ) in the inner structure of the combustion wave is fully out of equilibrium.
Then, if the CJ wave is stable, the nonlinear relaxation towards equilibrium is expected
to correspond to an increase of y, especially if the overdrive factor is small since the
equilibrium would correspond to y ≈ 0. Therefore, the decay of y should be associated
with the rarefaction-wave-induced flow at the exit of the reaction zone µext(−e−y, τ).
The corresponding response of the inner structure for adjusting the propagation velocity
y is thus delayed by the transit time of the characteristics C+ ξ = ξc(τ, τ

′) leaving the end
of the reaction ξ = −e−y(τ) at time τ to reach the point ξ > −e−y at a later time τ ′ > τ .
According to the left-hand side of the hyperbolic equation (4.10), the corresponding delay
∆τ+(ξ, τ), τ ′ = τ + ∆τ+, takes the form,

ξs(τ) < −e−y(τ), ξc > −e−y(τ) , (5.2)

τ ′ > τ : ∂ξc(τ, τ
′)/∂τ ′ = µ(ξc, τ

′)− y(τ ′)/b > 0, (5.3)

τ ′ = τ : ξc = −e−y(τ), µ = µext(−e−y(τ), τ), (5.4)

∆τ+(ξ, τ) =

∫ ξ

−e−y(τ)

dξc
µ(ξc, τ + ∆τ+)− y(τ + ∆τ+)/b

> 0, (5.5)

reflecting the complexity of the dynamics since the delay (5.5) depends on the future
of the inner structure µ(ξ, τ ′), y(τ ′), τ ′ = τ + ∆τ+. Except for the integral term Y (τ)
which is negligible in (4.17), the decay of the velocity y(τ) of an overdriven wave can be
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considered as slaved by the decreasing rate of the rarefaction flow µext(−e−y, τ) but with
the time delay ∆τ+(0, τ) introduced by the characteristics C+ travelling from the exit of
the reaction zone to the lead shock.

This is true up to a time τ = τs at which the sonic point catches the exit of the
inner structure µext(−e−y(τs), τ) = y(τs)/b (sonic condition). When the sonic condition
approaches the end of the reaction µext(−e−y) = y/b the denominator on the right-hand
side of (5.5) approaches zero at the lower bound of the integral, ∂ξc(τ, τ

′)/∂τ ′|τ ′=τ → 0+,
see (5.3)-(5.4), so that the time delay ∆τ+(0, τ) which is introduced by the response of the
inner structure increases strongly. Keeping in mind that the time delay becomes infinite
for a CJ wave in steady state when the burnt-gas flow is uniform, ∆τ+(0, τ) → ∞ see
§C.3 of Clavin & Denet (2020), a slowdown of the velocity decay y(τ) should occur
when the sonic point ξs(τ) approaches the end of the reaction −e−y(τ) since the time
delay of the response becomes much larger than the characteristic time of the forcing
term responsible for the decay, namely the inverse of the decreasing rate of the rarefaction
flow µext(ξ, τ). Therefore the derivative dy/dτ approaches 0 for y(τ) < 0 (local minimum
below the CJ velocity), and the decay of the propagation velocity is stopped.

Consider the case for which this occurs when the propagation velocity is larger than the
lower bound yc corresponding to the chemical kinetics quenching yc < y(τs) < 0. Then,
as soon as ξs(τ) + e−y(τ) crosses zero, the domain of the inner structure corresponding
to ξ > ξs(τ) > −e−y(τ) becomes isolated from the rarefaction wave and thus from its
damping rate. In other words the driving mechanism of the decay is switched off. As said
earlier, the state of the flow inside the inner detonation-structure being out of equilibrium,
a nonlinear relaxation process toward the stable CJ regime starts, so that the velocity
y increases after τs for ending with a success of initiation. We will come back to the
slowdown mechanism in § 5.2. Notice however that, for a large activation energy b, the
success of initiation is not guarantee when the sonic point approaches the exit of the
reaction zone because of a possible mechanism of curvature-induced quenching, similar
to that in Appendix E. This case is not considered here and is left for future works.

In any case, a detonation failure will be produced by the chemical-kinetics quenching
(4.9) if the latter occurs before the sonic condition y(τs) 6 yc < 0. Another possibility is
that the condition in (5.1) is not verified by the initial conditions so that the sonic point
could never catch the exit of the reaction zone. This will be investigated in future works.

5.2. Numerical results

In order to illustrate the asymptotic analysis, preliminary numerical solutions of (4.10)-
(4.12) are presented with the scaling law (4.4), using the re-scaled distribution ωoCJ (ξ),∫ 0

−1 ωoCJ (ξ)dξ = 1, of the three-step kinetic scheme (B 16)-(B 18) in Clavin & Denet
(2018) whose instability threshold corresponds to b = 1.27. Two values of the reduced
activation energy will be considered; b = 1 for a stable CJ wave and b = 2 for a weakly
unstable CJ wave. Typical results of a parametric study of the trajectories in the plane
y − r̃f are presented for an initial thickness of the rarefaction wave 30 times larger than

the detonation thickness, −ξ̃0ir̃fi ≡ (rfi − r0i)/l = 30, by varying the initial radius
r̃fi ≡ εrfi/l in the range 0.3− 3.5 for an initial velocity yi in the range 0.25− 0.5.

Successful initiation and detonation failure are shown in figure 6 for a stable case,
b = 1, yi = 0.25 and yc = −0.5 (chemical-kinetics quenching). A weakly unstable case for
b = 2, yi = 0.5 and yc = −1 is presented in fig7. The results for such marginally unstable
and stable detonations are similar, except for a nonlinear oscillation superimposed on the
trajectories. For such moderate values of b, detonation failure is produced by the chemical-
kinetics quenching. This is clearly shown by decreasing the lower bound yc associated with
the chemical-kinetics quenching. For example, considering the case b = 1 and yc = −0.8, a
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Figure 6. Examples of numerical integration of (4.10)-(4.11) for b = 1 and yc = −0.5. The
failure occurs for a small initial radius r̃fi < 0.85 because of chemical-kinetics quenching.
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Figure 7. Examples of numerical integration of (4.10)-(4.11) for a weakly unstable detonation
b = 2 and yc = −1. The failure occurs for initial radius small enough r̃fi < 1.5 because of
chemical-kinetics quenching.

successful initiation is observed in figure 8 for r̃fi = 0.5 which corresponds to a detonation
failure for yc = −0.5 in figure 6.

The slowdown mechanism, discussed in § 5.1, leading to a minimum of propagation
velocity well below the planar CJ velocity y < 0, is clearly observed when the sonic point
ξ = ξs(τ) approaches the end of the reaction ξ = −ey(τ), see figures 8 and 13 where
the minimum y ≈ −0.71 is reached at τ ≈ 3. During the subsequent re-acceleration
of the propagation velocity y(τ) for τ > 3, the position of the sonic point inside the
inner structure stays close to the end of the reaction, as in the solution of a steady
and weakly curved CJ detonation with large activation energy, but, here the flow in
the inner-detonation structure is out of equilibrium, as already mentioned. Notice that
the minimum of propagation velocity y(τ) occurs just before the sonic point catches the
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Figure 8. Numerical integration of (4.10)-(4.11) for a stable detonation b = 1 for yc = −0.8 and
r̃fi = 0.5, showing a successful initiation. The profiles of the reduced flow velocity u(ξ, τ)/εa
are plotted on the left at different times. The trajectory y(r̃f ) is plotted on the right. The full
points denote the exit of the reaction zone and the open circles on the left are the sonic points
(relative to the lead shock).
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Figure 9. Numerical integration of (4.10)-(4.11) for stable detonation, b = 1 and yc = −0.8.
The trajectory corresponding to r̃fi = 0.1 describes a failure of initiation y(τ) → −1 and
that corresponding to r̃fi = 0.3 is a successful initiation with jumps during the increase of
the detonation velocity resulting from the formation of shock waves in the induction zone, as
explained in the text.

exit of the inner structure of the reaction wave. This means that the external damping
rate is balanced by the internal mechanism of re-acceleration for a small overdrive factor
µext(−e−y(τ), τ) − y(τ)/b > 0, a little bit before τs for which the sonic condition is ob-
tained µext(−e−y(τs), τ)−y(τs)/b = 0. Notice also that the minimum of y(τ) corresponds
to a non-dimensional radius r̃f/b of order unity as for the critical radius of the C-shaped
curve obtained by the quasi-steady state approximation, see Appendix E.
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Figure 10. Comparison of the numerical solution with the theoretical expression (4.15)-(4.17)
of the rarefaction wave µext(ξ, τ) for a successful initiation.
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Figure 11. Comparison of the numerical solution with the theoretical expression (4.15)-(4.17)
of the rarefaction wave µext(ξ, τ) for a detonation failure.

Inside the induction zone where the heat release is negligible, ω ≈ 0, the curvature
term on the right-hand side of (4.10) makes the instantaneous distribution of the flow
decreasing when approaching the lead shock, ∂µ/∂ξ < 0. Then, the distribution µ(ξ, τ)
presents a maximum inside the inner structure of the reaction wave, clearly shown on
figures 8 left and 10. The corresponding peak of pressure was observed in direct numerical
simulations and was considered by Ng & Lee (2003) to be the driving mechanism of the
re-acceleration of the wave leading to the detonation initiation in the critical regime. The
flow velocity decreasing in space in the direction of propagation, formation of shock waves
is possible inside the induction zone. This is observed on the numerical solutions of (4.10)-
(4.12) during the increase of the detonation velocity for trajectories whose minimum of
y is just above the lower bound (chemical-kinetics quenching) when the latter is small,
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Figure 12. Numerical solutions at different times compared to the self-similar solu-
tion of (2.23)-(2.24) (dotted line) representing the self-similar rarefaction flow behind the
front of a spherical CJ detonation considered as a discontinuity for small heat release
(DoCJ − a)/a ≈ ε � 1. The reduced flow v = u(r, t)/εa is plotted versus the reduced dis-
tance from the front z =

(
r − rf (t)

)
/εr0(t) with rf (t) = DoCI t + rfi, r0(t) = at + r0i and,

according to (2.26), rfi = (1 + ε)r0i. Because of the finite thickness of the reaction zone e−y the
origin of space variable has been shifted in the figure.
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Figure 13. Zoom of the velocity profiles for the same parameters as in figure 10 for later time.
The sonic point is out of the picture at τ = 3

0 < (D − a)/εa ≡ 1 + y/b ≈ 0+, y + b � b. This occurs for initial radius small enough,
see for example the trajectory corresponding to r̃fi = 0.3 in figure 9. The physical
relevance of a detonation velocity becoming so close to y = −b is questionable since it
corresponds to a crossover temperature for the chemical-kinetics quenching close to the
initial temperature, since typically in real detonations the chemical-kinetics quenching
corresponds to yc = −b/2, see the paragraph above (4.9). The phenomenon of shock
formation during the re-acceleration was also observed in the direct numerical simulations
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of Ng & Lee (2003) for a one-step kinetic rate law in a planar geometry. This question
deserves more work.

Comparison between the numerical solution and the asymptotic analysis shows a very
good agreement, confirming the validity and relevance of both numerical method and
analytical solution. Solving numerically (4.10)-(4.12) for an initial condition (4.25), down
to the radius of the core of stagnant gas ξ = ξ0(τ) where u = 0, a straight part of the
numerical solution is observed. The latter fits with an excellent accuracy the theoretical
expression µext(ξ, τ) in (4.15)-(4.17) for either successful initiation or failure, see figures
10 and 11. Moreover, the theoretical result (4.17) with Y = 0 fits also with a good
accuracy the numerical result. This could be quite helpful for further theoretical analyses.

Moreover the numerical solution of successful initiation clarifies the question raised
long ago by Taylor (1950a) concerning the link between the self-similar solution and
the trajectory ”detonation velocity versus radius” for a successful initiation when the
inner structure of the reaction wave is taken into account. A first indication is given
by the instantaneous profiles of the burnt-gas flow behind the reaction zone in figure
10 for τ > 7 showing similitudes with the discontinuous model in figure 4. The self-
similar profile of figure 1 is recovered by the numerical result in the long-time limit
τ̃ ≡ τ/r̃fi � −ξ̃0i when the reduced flow µ(ξ, τ) + 1 is plotted versus the self-similar

variable (2.25) [r − rf (t)]/[rf (t)− r0(t)] ≡ ξ̃/(−ξ̃0) with ξ̃0 = −τ̃ + ξ̃0i. This is shown in
figure 12. According to the zoom in figure 13, the slope ∂µ/∂ξ|ξ=−e−y , which is initially
small (at the scale of the detonation thickness ξ = O(1)) in the overdriven regimes,
increases when the sonic point gets into the inner structure, so that the flow gradient
becomes infinite at the scale of the thickness of the rarefaction wave which increases
linearly with the time.

6. Conclusion and perspectives

The critical dynamics of the direct initiation of detonation is studied in the limit
of small heat release reducing the problem to solve a single hyperbolic equation. This
limit emphasizes the two-time-scale nature of the problem which also characterizes real
detonations when the condition at the exit of the reaction zone is nearly sonic. The
simplification comes from a flow Mach number differing from unity by a small amount
everywhere. In real detonations near the CJ regime, this is true at the end of the reaction
zone, but not close to the lead shock. Concerning the trajectories of the lead shock in
direct initiation, the limit of small heat release introduces differences that are mainly
quantitative, except for the overshoot during the re-acceleration phase which is sometimes
observed in direct numerical simulations. Useful results of the asymptotic limit are the
analytical expressions of the rarefaction flow for both discontinuous model of detonation
and combustion waves whose inner structure is unsteady. Amazingly, these asymptotic
solutions present the same characteristic properties as those of the flow in the opposite
limit of a large Mach number of propagation. This confirms the relevance of the limit of
small heat release for improving our understanding of the detonation dynamics.

The evolution of the sonic point (sonic condition relatively to the lead shock) inside
the rarefaction wave is then found to be the key element of the overall dynamics. Due to
the increase of the time delay by the response of the detonation inner-structure to the
burnt-gas flow, a slowdown mechanism is identified when the sonic point, located initially
in the burnt gas away from the reaction wave (overdriven regimes), approaches the exit
of the reaction zone. This mechanism explains the behavior of the trajectories ”propaga-
tion velocity versus radius” observed near criticality in direct numerical simulations of
successful initiation. The detonation velocity decreases well below the CJ velocity like for



30 Paul Clavin, Raúl Hernández Sánchez and Bruno Denet

a failure and reaches a minimum associated with the onset of the sonic condition. This
deceleration phase is followed by a re-acceleration back to the CJ regime corresponding
to an isolated combustion wave whose inner structure is out of equilibrium. During this
nonlinear relaxation, the sonic point stays inside the inner structure of the combustion
wave, close to the end of the reaction zone. Failure is produced if the detonation veloc-
ity decreases so much that the chemical-kinetics quenching occurs in overdriven regimes
when the sonic point is still in the burnt-gas behind the exit of the reaction zone. This
depends on the radius at which the velocity of the overdriven detonation crosses the CJ
velocity for the first time; the smaller the radius, the stronger the damping rate and the
detonation is more likely. Another outcome of the asymptotic analysis is to indicate how
the self-similar CJ solution for the rarefaction wave is reached in the long time limit,
showing a behavior similar to the discontinuous model.

Due to the difficulty pointed out in Clavin & Denet (2020) for strongly unstable det-
onations in the limit of small heat release using the scaling law (4.4), the attention was
limited in this article to a reduced activation energy of order unity b = O(1). This
prevents us to see whether or not the curvature-induced quenching which is predicted
without multiple-step chemistry (no crossover temperature) by a quasi-steady approxi-
mation for large b, can also occur in the unsteady regime after the sonic point has caught
the end of the reaction. Notice however that the radius at the minimum of velocity is of
same order of magnitude as the quasi-steady critical radius. Future works will be devoted
to this question. This should be performed with an unsteady reaction rate different from
the scaling law (4.4). More generally, improvements of the asymptotic analysis in the
limit of small heat release will be sought to provide a better quantitative accuracy with
real detonations. Another point which deserves more investigation is the re-ignition by
shock waves observed when the minimum velocity is very low.

In this paper the analysis of the critical dynamics is limited to a spherical geometry.
The result of plane or cylindrical detonations cannot be conjectured by dimensional ar-
guments, the analysis has to be reconsidered from the beginning. The dynamics of the
sonic point inside the rarefaction wave is expected to also play an essential role.
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Appendix A. Conditions in the burnt gas behind the detonation front

The conditions behind a detonation treated as a discontinuity is obtained by the con-
servation of mass, momentum and energy across a planar detonation in quasi-steady
state. They can be put in the form, see Clavin & Searby (2016),

M >MoCJ > 1 : 1− ρu
ρb

=
1

γ + 1

(M2 − 1)

M2


1 +

√

1−
(
MoCJ −M−1oCJ
M −M−1

)2

 (A 1)

pb
pu
− 1 = γM2

(
1− ρu

ρb

)
,

ub
au

=

(
1− ρu

ρb

)
M, MoCJ −M−1oCJ = 2

√
Q (A 2)
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where the subscripts u and b denote respectively the fresh mixture and the burnt gas,
Q ∝ qm/cpTu is the reduced heat release andM ≡ D/au is the propagation Mach number.
The square root is zero for the CJ regime corresponding to the sonic condition in the
burnt gas M = MoCJ : uboCJ = DoCJ −aboCJ with aboCJ =

√
γpboCJ/ρboCJ . According to

the last equation in (A 2), the CJ Mach number is close to unity in the limit of small heat
release, 0 < (MoCJ − 1)� 1. For weakly overdriven regimes 0 < (M −MoCJ )/MoCJ � 1
the square root in (A 1) is small so that the propagation Mach number is also close to
unity 0 < (M − 1) � 1 for small heat release and the flow velocity in the laboratory
frame is much smaller than the sound speed ub/au = O(M − 1). However the rarefaction
wave is not a spherical acoustic wave even though it is a linear function of the radius
behind a weakly overdriven detonation M > MoCJ , as shown § 2.3, while the rarefaction
wave behind a spherical CJ detonation investigated in § 2.2 is quite different.

The Rankine-Hugoniot conditions at the Neumann state of an inert shock corresponds
to (A 1)-(A 2) when the square root on the right-hand side of (A 1) is set equal to unity,

Q = 0 : 1− ρu
ρN

=
2

γ + 1

(M2 − 1)

M2
,

pN
pu
− 1 = γM2

(
1− ρu

ρN

)
, (A 3)

uN
au

= M

(
1− ρu

ρN

)
,

TN
Tu

=
1

M2

[
1 +

2γ

γ + 1
(M2 − 1)

] [
1 +

γ − 1

γ + 1
(M2 − 1)

]
(A 4)

M − 1� 1 :
uN
au
≈ 4

γ + 1
(M − 1),

TN
Tu
− 1 ≈ 4(γ − 1)

γ + 1
(M − 1) (A 5)

pN
pu
− 1 ≈ 4γ

γ + 1
(M − 1) (A 6)

where the subscript N denotes the Neumann state.

Appendix B. Linear solution

A linear solution of the small flow behind a spherical detonation, treated as a discon-
tinuity in the limit of small heat release (0 < MoCJ − 1 � 1), is performed here. By
comparison with the development in § 2, the purpose is to stress the nonlinear character
of the rarefaction wave when approaching the CJ regime.

B.1. Spherical acoustic wave

Let’s first briefly recall the acoustic waves in a spherical geometry. The linear version of
the isentropic Euler equations yields

∂(ρ− ρb)/ρb
∂t

+∇. u = 0,
∂ u

∂t
= −a

2

ρb
∇ρ, (B 1)

where (ρ − ρb)/ρb � 1 with ρb and a = ab ≈ au constant. Introducing the potential ϕ,
equations (B 1) yield

(ρ− ρb)
ρb

=
∂ϕ

∂t
, u = −a2∇ϕ, ∂2ϕ

∂t2
− a2∆ϕ = 0, (B 2)

where ∆ϕ = 1
r2

∂
∂r

(
r2 ∂ϕ∂r

)
in spherical geometry. Introducing the function f(r, t), and

looking for the solution in the form ϕ = f/r ,

∂2f

∂t2
− a2 ∂

2f

∂r2
= 0, (B 3)
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the flow expressed in terms of the non-dimensional the transit time r ≡ r/a is

ϕ =
f1(t− r) + f2(t+ r)

r
⇒ (ρ− ρb)

ρb
=
f ′1(t− r) + f ′2(t+ r)

r
(B 4)

v(r, t) ≡ u(r, t)

a
=
f ′1(t− r)− f ′2(t+ r)

r
+
f1(t− r) + f2(t+ r)

r2
, (B 5)

where f ′1(η) and f ′2(η) denote the derivative of f1(η) and f2(η), f ′1(η) ≡ df1(η)/dη,
f ′2(η) ≡ df2(η)/dη, the unknown functions f1(η) and f2(η) being determined by the
boundary conditions.

Consider the flow behind a supersonic front r = rf (t) propagating with the velocity
D(t) = drf/dt, M(t) = D(t)/a > 1. Denoting ub(t) and ρb(t) the flow velocity and the
density on the lead front and introducing the notations rf (t) = rf (t)/a, drf/dt = M(t)

F1(t) ≡ f1
(
t− rf (t)

)
, Ḟ1(t) ≡ dF1/dt = [1−M(t)] f ′1

(
t− rf (t)

)
, (B 6)

F2(t) ≡ f2
(
t+ rf (t)

)
, Ḟ2(t) ≡ dF2/dt = [1 +M(t)] f ′2

(
t+ rf (t)

)
, (B 7)

the boundary conditions at the front take the form

1

rf (t)

[
Ḟ1(t)

1−M(t)
+

Ḟ2(t)

1 +M(t)

]
=
δρb(t)

ρb
≡
(
ρb(t)− ρb

)

ρb
(B 8)

1

rf (t)

[
Ḟ1(t)

1−M(t)
− Ḟ2(t)

1 +M(t)

]
+
F1(t) + F2(t)

r2f (t)
=
ub(t)

a
(B 9)

where ρb and ub/a are expressed in terms of the propagation Mach number M(t) through
(A 1)-(A 2). The radius at which the flow vanishes u

(
r0(t), t

)
= 0, du/dr|r−r0=0+ > 0

should be a weak discontinuity,

r = r0(t) : u(r, t) = 0, r − r0(t) = 0+ : dr0/dt = a < D. (B 10)

B.2. Solution

We look for the linear solution for the flow behind a CJ regime in a spherical geometry
treated as a discontinuity propagating with the constant velocity of the planar wave in
steady state D = DoCJ (constant Mach number M = MoCJ ≡ DoCJ/a > 1)

rfoCJ (t) = DoCJ t+ rfoi, rfoCJ (t) = MoCJ t+ rfoi, rfoi = cst. (B 11)

According to (A 1) and (A 2) for the square root =0, the right-hand side of (B 8) and
(B 9) are constant,

1− ρu
ρboCJ

=
1

MoCJ

uboCJ
a

,
uboCJ
a

=
1

γ + 1

(M2
oCJ − 1)

MoCJ

. (B 12)

Taking ρb = ρboCJ , the right-hand side of (B 8) is zero,

r = rfoCJ (t) : ub = uboCJ , ρb − ρ = ρb − ρboCJ = 0. (B 13)

For small heat release ε ≡ (MoCJ − 1)� 1, uboCJ/a� 1 ⇒ u/a� 1, the linear solution
(B 4)-(B 5) with (B 8)-(B 9) satisfying the boundary conditions (B 12)-(B 13) is

r0(t) 6 r 6 rfoCJ :
u(r, t)

uboCJ
=

[
1− 1

M2
oCJ − 1

(
r2foCJ (t)

r2
− 1

)]
, r 6 r0(t) : u = 0,

1− ρ(r, t)

ρboCJ
=
uboCJ
a

2MoCJ

M2
oCJ − 1

(
rfoCJ (t)

r
− 1

)
, r 6 r0(t) : ρ = ρu(B 14)
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where, according to (A 1), uboCJ/a = (M2
oCJ −1)M−1oCJ/(γ+1). The solution also satisfies

the downstream condition (B 10) of a weak discontinuity provided r0(t) ≡ a t+rfoi/MoCJ

r0(t) ≡ a t+ rfoi/MoCJ ⇒ rfoi(t)/r0(t) = MoCJ ⇒ r = r0(t) : u = 0, ρ = ρu, (B 15)

the last relation being valid to leading order in the limit ε → 0, (γ − 1) → 0. Therefore
the thickness of the rarefaction wave rfoCJ − r0 increases also linearly with the time

rfoCJ (t)− r0(t)

r0(t)
= MoCJ − 1,

1

a

d

dt
(rfoCJ − r0) = MoCJ − 1, (B 16)

The calculation proceeds as follows. Using (B 10) and (B 13) integration of (B 8) yields

F1(t)

1−M +
F2(t)

1 +M
= A′ ⇒ F2 = −1 +M

1−MF1 + (1 +M)A′ (B 17)

where A′ is a constant. In order to save the notation the subscript oCJ has been omitted
in MoCJ which is replaced by M . Adding (B 8) and (B 9) yields a differential equation
for F1(t) when F2(t) is eliminated by using (B 17)

(t+ rfoi/M) Ḟ1 − F1 = −A+ (t+ rfoi/M)
2

(ub/a)(1−M)M/2 (B 18)

where A = (1−M2)A′/(2M) is constant. Equation (B 18) is easily integrated

F1(t) = A+ (t+ rfi/M)B + (t+ rfi/M)
2

(ub/a)(1−M)M/2, (B 19)

where B is another constant and F2(t) is obtained from (B 17). According to (B 6)-
(B 7), f1(t − r) and f2(t + r) are obtained from F1(t) and F2(t) by the substitution
t→ [(t− r) + rfi]/(1−M) and t→ [(t+ r) + rfi]/(1 +M) respectively,

f1(t− r) = A+
B

1−M
[
(t− r) +

rfi
M

]
+ (ub/a)

M/2

1−M
[
(t− r) +

rfi
M

]2
(B 20)

f2(t+ r) = −A− B

1−M
[
(t+ r) +

rfi
M

]
− (ub/a)

M/2

1 +M

[
(t+ r) +

rfi
M

]2
. (B 21)

The constants A and B disappear from (B 5) leading to (B 14).
Because of the sonic condition at the front this linear solution is not self-consistent

since the nonlinear terms are essential near the sonic condition as discussed now.

B.3. Inconsistency of the linear approximation behind a CJ detonation

The flow (B 14) is effectively small for r0(t) 6 r 6 rfoCJ (t) when the heat release is small

ε2 ≡ [qm/cpTu](γ + 1)/2� 1, (MoCJ − 1) ≈ ε, DoCJ ≈ (1 + ε)a (B 22)

because the flow increases from 0 to its value at the leading edge of the rarefaction wave
uboCJ which is, according to (B 12), smaller than the sound speed uboCJ/a ≈ ε

rfoCJ (t)− r0(t)

r0(t)
= ε, rfoCJ (t) = (1 + ε)r0(t),

rfoCJ (t)

r
− 1 = O(ε), (B 23)

uoCJ (r, t)

a
=

2

γ + 1

[
ε−

(
rfoCJ (t)

r
− 1

)]
+O(ε2), (B 24)

1

a

∂uoCJ
∂t

= − 2

γ + 1
(1 + ε)

a

r
≈ (1 + ε)

a

r
,

1

a

∂uoCJ
∂r

≈ rfoCJ (t)

r2
. (B 25)

Inside the rarefaction wave, r0(t) 6 r 6 rfoCJ (t), r/r0(t)− 1 = O(ε), to leading order in
the limit ε� 1, the velocity profile is linear since, according to (B 23)-(B 16)

r0(t) 6 r 6 rfoCJ (t) :
(γ + 1)

2

uoCJ (r, t)

a
=

(1 + ε)[r − r0(t)]

r
∈ [ 0, ε ], (B 26)
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neglecting terms of order ε2, one has

r0(t) 6 r 6 rfoCJ (t) :
(γ + 1)

2

uoCJ (r, t)

a
≈ r − r0(t)

r0(t)
∈ [ 0, ε ]. (B 27)

The physical interpretation is simple, the numerator on the right-hand side of (B 27)
describes a propagation at the speed of sound while the denominator is the geometrical
damping in a spherical geometry. The linear solution (B 27) is different from the self-
similar solution in figure 1. It is also different from the rarefaction wave (2.51)-(2.52),
even though they are both linear in space. The flow (B 27) is effectively solution of the
linear version of (2.9) for u� a and rf (t)− r0(t) = εr0(t), r ≈ r0(t),

∂u

∂t
+ a

∂u

∂r
= −a u

r0(t)
, r0(t) = a t+ r0i, (B 28)

as verified by the general solution of (B 28) for the initial condition u(r, t = 0) = ui(r),
u = ui(r − at)r0i/r0(t), leading to (B 27) if the initial flow increases linearly in space
ui(r) = a (r − r0i)/r0i. The inconsistency of the linear solution (B 27) is pointed out by
computing the nonlinear term u∂u/∂r = a2(r−r0)/r20 = au/r0 which has the same order
of magnitude as the right-hand side. This illustrates that the nonlinear term u∂u/∂r plays
an essential role in the transonic flow relative to the front.

Appendix C. Details of calculation

C.1. Equation (2.31)

Using the notations (2.28), equation (2.10) takes the form
[
ε

tr

∂

∂τ
+

1

tr

(
u

a
+ 1− D

a

)
∂

∂ξ

]
µ = −a (1 + µ)

r
, (C 1)

DoCJ/a = 1 + ε ⇒
[
ε
∂

∂τ
+

(
u

a
− ε− (D −DoCJ )

a

)
∂

∂ξ

]
µ = − l

r
(1 + µ), (C 2)

[
ε
∂

∂τ
+

(
εµ− (D −DoCJ )

a

)
∂

∂ξ

]
µ = − l

r
(1 + µ), (C 3)

[
∂

∂τ
+

(
µ− (D −DoCJ )

εa

)
∂

∂ξ

]
µ = − l

εr
(1 + µ). (C 4)

This is equation (2.31).

C.2. Solution to equation (2.55)

The attention is focused on

0 < µfi � 1 with ξ̃0i < 0

and one considers the positive solution τt > 0. Equation (2.55) can be put in the form

τ̃t

[
1− |ξ̃0i|

1 + µfi

]
+ |ξ̃0i|

µfi
(1 + µfi)

= (1 + τ̃t) ln(1 + τ̃t). (C 5)

A graphical representation of the solution is plotted in Figure 14 showing that τ̃t � 1 if
0 < µfi � 1. To leading order, a Taylor expansion in powers of τ̃t then leads to

τt(1− |ξ̃0i|) + |ξ̃0i|µfi ≈ τ̃t ⇒ τ̃t ≈ µfi. (C 6)
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which is also right for ξ̃0i = −1 that is, according to the definition (2.36), for (rfi−r0i) =
εr0i which is valid in the self-similar solution of the CJ detonation (2.26). In this particular
case, equation (C 5) yields

(1 + τ̃t)
µfi

(1 + µfi)
= (1 + τ̃t) ln(1 + τ̃t) ⇒ τ̃t = eµfi/(1+µfi) − 1 ≈ µfi. (C 7)

C.3. Simplified expression for the external flow

Discarding the integral term Y (τ)/b = O(yi/b), the timescale of the external flow (4.15)
is larger than the response of the inner structure of the detonation by a factor r̃fi.
According to (2.56), the time τt, solution to the equation µextf (τt) = 0, is close to µextfi r̃fi
if µextfi is sufficiently smaller than unity,

µextfi � 1 ⇒ τt ≈ µextfi r̃fi ∀ξ̃0i. (C 8)

Consider a large radius r̃fi and an initial propagation velocity close to the CJ velocity
as in (2.41), for which

r̃fi � 1, µextfi � 1, r̃fiµ
ext
fi � 1, (C 9)

so that the time τt ≈ r̃fiµextfi is larger than the characteristic time of the linear response

of the inner structure which is of order unity, but τ̃t ≡ τt/r̃fi ≈ µextfi � 1 is small. For a
lapse of time τ of the same order as τt, using (4.12),

τ = O(τt), r̃f (τ) = r̃fi(1 + τ/r̃fi) ≈ r̃fi, (C 10)

the instantaneous reduced curvature 1/r̃f does not vary much and can be considered
as a constant in (4.10). Under the condition (C 9), the thickness of the boundary layer
(2.58) ∆|ξ̃| ≈ µextfi , ∆|ξ| = O(µextfi r̃fi), is larger than the thickness of the inner structure

which is of order unity for e−y = O(1), so that the outer flow of an overdriven detonation
reduces to (2.59),

µext(ξ, τ) ≈ 1

r̃fi

[
ξ

−ξ̃0i
+ (τt − τ)

]
, µextf (τ) ≈ (τt − τ)

r̃fi
, (C 11)

with a length-scale larger than the detonation thickness by a factor r̃fi|ξ̃0i| and a time
scale larger than the response time of the inner structure by a factor r̃fi � 1.

C.4. Motion of the sonic point

In overdriven regimes, the position of the sonic point ξ = ξs(τ) is related to the evolu-
tion of the detonation velocity y(τ)/b. Introducing the relation µext(ξs(τ), τ) = y(τ)/b
into(4.15) and using (4.17) yields

1 +
y(τ)

b
=

ξs(τ)

r̃f (τ)[(−ξ̃0i)/(1 + µextfi ) + ln(r̃f/r̃fi)]
+ (1 + µextf (τ)), (C 12)

[
1 +

y(τ)

b

] [
r̃f (τ))

(−ξ̃0i)
(1 + µextfi )

+ r̃f ln(r̃f/r̃fi)

]
= ξs(τ) + τ [1 + Y (τ)] + (−ξ̃0i)r̃fi.

According to (4.12), the relation r̃f (τ) = τ + r̃fi leads to

ξs(τ) =





y(τ)
b

[
(τ + r̃fi)

(−ξ̃0i)
(1+µextfi )

+ r̃f ln(r̃f/r̃fi)
]

τ (−ξ̃0i)
(1+µextfi )

− τ − 1
b

∫ τ
0
y(τ ′)dτ ′ + r̃f ln(r̃f/r̃fi)

r̃fi
(−ξ̃0i)

(1+µextfi )
− (−ξ̃0i)r̃fi

(C 13)
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τ̃t

(1 + τ̃t) ln(1 + τ̃t)

0−1

|ξ̃0i|µfi/(1 + µfi)

Figure 14. Graphical solution of (C 5) for 0 < µfi � 1 and ξ̃0i < 0. The thick straight line is

the left-hand side of (C 5) plotted for |ξ̃0i| < 1 + µfi

Using d[r̃f ln(r̃f/r̃fi)]/dτ = ln(r̃f/r̃fi) + 1, derivation of (C 13) yields

dξs
dτ

=





1
b
dy
dτ

[
(τ + r̃fi)

(−ξ̃0i)
(1+µextfi )

+ r̃f ln(r̃f/r̃fi)
]

y(τ)
b

[
(−ξ̃0i)

(1+µextfi )
+ ln(r̃f/r̃fi) + 1

]

(−ξ̃0i)
(1+µextfi )

− 1− y
b + ln(r̃f/r̃fi) + 1

(C 14)

to give

dξs
dτ

=





1
b
dy
dτ r̃f

[
(−ξ̃0i)

(1+µextfi )
+ ln(r̃f/r̃fi)

]

y(τ)
b

[
(−ξ̃0i)

(1+µextfi )
+ ln(r̃f/r̃fi)

]

(−ξ̃0i)
(1+µextfi )

+ ln(r̃f/r̃fi)

(C 15)

yielding

1

(−ξ̃0i)/(1 + µextfi ) + ln(r̃f/r̃fi)

dξs
dτ

= r̃f
1

b

dy

dτ
+

[
1 +

y(τ)

b

]
(C 16)

The coefficient of dξs/dτ on the left-hand side being positive, the sign of dξs/dτ is the
same as r̃fd [1 + y(τ)/b] /dτ + [1 + y(τ)/b] in the right-hand side.

Appendix D. Relaxation of spherical shock waves in open space

Introducing the reduced propagation velocity α̇τ defined in (2.30), 1+α̇τ ≈ (D−a)/εa,
the relaxation of an inert shock wave in spherical geometry corresponds to

D > a ⇔ α̇τ > −1, (D − a)/a→ 0+ : (α̇τ + 1)→ 0+. (D 1)

Therefore the end of the decay cannot be described by the approximation |α̇τ | � 1 used
in (2.39). At the Neumann state (ξ = 0), the flow is subsonic with respect to the shock
(D− uf ) 6 a, and, according to the Rankine-Hugoniot condition for (D− a)/a� 1, the
boundary condition at the shock front reads uf ≈ 2(D − a) see (A 1)-(A 2) for Q = 0,
which, using µ+ 1 ≡ u/εa in (2.28), corresponds to µf = 1 + 2α̇τ . Focusing the attention
to an initial velocity Di > a close to the sound speed, the function D(t) is decreasing
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monotonously from an initial value (Di − a)/a � 1 to a. This is an eigenvalue problem
consisting in determining the decreasing function α̇τ (τ̃)→ −1 (µf (τ̃)→ −1), solution of

∂µ

∂τ̃
+ (µ− α̇τ )

∂µ

∂ξ̃
= − (1 + µ)

τ̃ + 1
, (D 2)

satisfying the boundary condition

ξ̃ = 0 : µ = µf (τ̃), µf = 1 + 2α̇τ , (D 3)

for a given initial condition

τ = 0 : α̇τ = α̇τi, α̇τi > −1 ⇒ µfi > −1. (D 4)

The flow of the rarefaction wave decreases from its Neumann value at the shock to u = 0
when the distance from the shock increases, so that the instantaneous flow field µ(ξ̃, τ̃)
decreases from 1+2α̇τ (τ̃) at ξ̃ = 0 to µ = −1 at ξ̃ = ξ̃0(τ̃) < 0 corresponding to the radius
of the sphere of quiescent gas (u = 0). This point is a weak discontinuity propagating
with the speed of the sound in the laboratory frame, according to (2.33),

ξ̃ = ξ̃0(τ̃) : µ = −1, dξ̃0/dτ̃ = − (1 + α̇τ ) , (D 5)

since dξ̃0/dτ̃ = dξ0/dτ . As before, equation (D 5) is automatically satisfied by the solution
of (D 2) which reduces to ∂µ/∂τ̃ − (1 + α̇τ ) ∂µ/∂ξ̃ = 0 at µ = −1. Notice that the scalar
field [µ(ξ̃, τ̃) − α̇τ (τ̃)] decreases from a positive value 1 + α̇τ at the shock ξ̃ = 0 to a
negative value −(1 + α̇τ ) at ξ̃0(τ̃) < 0 so that there should be a sonic point (relative to
the shock) inside the rarefaction wave at the point where (µ− α̇τ ) = 0 ⇔ (D − u) = a.

Equation (D 2) has solutions in the same form as (2.43) and (2.45)-(2.47) are still
valid since α̇τ is eliminated from (2.44) when using ∂µ/∂τ̃ = Ȧ + (1 + α̇τ )AB′ and
(µ− α̇τ )∂µ/∂ξ̃ = (AB−1− α̇τ )AB′. Then, following the same development as in (2.45)-
(2.48), the solution to equation (D 2), µ(ξ̃, τ̃) and µf (τ̃), expressed in terms of ξ̃0(τ̃) and

the initial values ξ̃0i and µfi, take the same form as (2.49)-(2.50), obtained without using
the boundary condition at the front. Using the boundary condition (D 3) at the front and
equation (D 5) in the form

−dξ̃0/dτ̃ = (1 + α̇τ ) = [µf (τ̃) + 1]/2, (D 6)

the expression of µf (τ̃) in (2.50) yields an ordinary differential equation for ξ̃0(τ̃)

1

ξ̃0(τ̃)

dξ̃0(τ̃)

dτ̃
=

1

2(1 + τ̃)[θi + ln(1 + τ̃)]
where θi ≡ −

ξ̃0i
(1 + µfi)

> 0. (D 7)

This equation can be integrated by considering the integral

I(τ) =

∫ τ

0

dτ̃ ′

(1 + τ̃ ′)[θi + ln(1 + τ̃ ′)]
= ln

[
1 +

1

θi
ln(1 + τ̃)

]
(D 8)

obtained by the change of variable Y = ln(1 + τ̃ ′) leading to

ξ̃0(τ̃)/ξ̃0i =

√
1 +

1

θi
ln(1 + τ̃), ⇒ dξ̃0

dτ̃
=
ξ̃0i
2

1

θi(1 + τ̃)
√

1 + 1
θi

ln(1 + τ̃)
.(D 9)

Putting together (D 6) and (D 9) provides us with the propagation velocity α̇τ (τ̃)

1 + α̇τ (τ̃) =
−ξ̃0i/2

θi(1 + τ̃)
√

1 + 1
θi

ln(1 + τ̃)
(D 10)
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showing a relaxation toward the sound speed in the long time limit in the form

lim
τ̃→∞

[
1 + α̇τ (τ̃)

]
=

cst.

τ̃
√

ln τ̃
⇒ lim

t→∞
D(t)− a

a
=

cst.

t
√

ln t
. (D 11)

Appendix E. Steady-state approximation for large activation energy

The quasi-steady approximation pointed out a curvature-induced quenching which is
worth comparing with the unsteady trajectories. The steady-state approximation is not
expected to be an accurate approximation in the direct initiation of spherical gaseous
detonation, because the unsteady terms are of the same order of magnitude as the curva-
ture term, see the discussion in Clavin & Denet (2020). In this appendix the quasi-steady
approximation of the inner structure is revisited in the limit of small heat release for large
activation energy when the unsteady gradient of the burnt gas flow of overdriven det-
onations is taken into account. Then, when the unsteady term on the left-hand side of
(4.21) is neglected, the problem reduces to

(
µ− y

b

) ∂µ
∂ξ
−
(
µext − y

b

) ∂µext
∂ξ

=
1

2
ey(τ)ωoCJ (ξ ey(τ))− µ̂

r̃f
, (E 1)

ξ = 0 : µ = 1 + 2y(τ)/b; ξ 6 −e−y(τ) : µ̂ = 0. (E 2)

Equations (E 2)-(E 2) correspond to a better quasi-steady approximation than in Clavin &
Denet (2020), because here, the unsteady effect of the external flow is retained, assuming
a steady-state approximation only for the inner structure of the overdriven detonation.
Equation (E 2) can be written

∂

∂ξ

[(
µ− y

b

)2
−
(
µext − y

b

)2]
=

∂

∂ξ
[µoCJ (ξey)]

2 − 2
µ̂

r̃f
(E 3)

and its integration from the end of the reaction zone where, according to (4.23) or (E 2)
ξ = −e−y: µ = µext (µ̂ = 0), leads to

(
µ− y

b

)2
−
(
µext − y

b

)2
= µ 2

oCJ (ξey)− 2

r̃f

∫ ξ

−e−y
µ̂(ξ′, τ)dξ′. (E 4)

Then, the boundary condition on the lead shock in (4.11) or (E 2), ξ = 0 : µ = 1+2y(τ)/b,
µext = µextf (τ), µoCJ = 1, provides us with an implicit relation for y(τ) involving the
solution µ̂(ξ, τ)

2(1 + µextf )
y

b
= (µextf )2 − 2

r̃f

∫ 0

−e−y
µ̂(ξ′, τ)dξ′, (E 5)

A closed equation relating y(τ) and µextf (τ) is obtained for a large activation energy
b� 1, since µ̂(ξ, τ) can be replaced by µoCJ (ξey) in the integral term

b� 1 : 2(1 + µextf )
y

b
≈ (µextf )2 − 2e−y

r̃f

∫ 0

−1
µoCJ (ξ)dξ, (E 6)

as shown now. Looking for a solution corresponding to y of order unity and r̃f of order
b, rfi/l = O(b/ε), one is led to consider (µextf )2 = O(1/b) in (E 6). This is consistent with
the simplified expression (C 11) of the rarefaction wave behind a overdriven detonation

µextf (τ) =
(τt − τ)

r̃fi
= O(1/

√
b), µextfi =

τt
r̃fi

= O(1/
√
b), (E 7)
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leading to

b� 1, r̃f ≈ r̃fi = O(b), τ = O(τt), τt = O(
√
b). (E 8)

Then, the zeroth-order µ̂o(ξ
′, τ) of µ̂(ξ′, τ) in the limit b� 1 can be used in the integral

term on the right-hand side of (E 5). This zeroth-order solution µ̂o(ξ
′, τ) is solution to

the steady version of (4.21)-(4.23) when the terms smaller than unity are neglected,

µ̂o
∂µ̂o
∂ξ

=
1

2
eyωoCJ (ξ ey), ξ = 0 : µ̂o = 1, ξ 6 −e−y : µ̂o = 0, (E 9)

yielding, according to (4.6)-(4.7), µ̂o(ξ
′, τ) = µoCJ (ξ′ey(τ)). This leads to the transcen-

dental equation for y in (E 6) which, neglecting the term µextf on the left-hand side in
front of unity, can be written in the form

b� 1 : y +
e−y

x
=

1

2
b[µextf (τ)]2 where x ≡ r̃f

b

1∫ 0

−1 µoCJ (ξ′)dξ′
= O(1), (E 10)

and b[µextf (τ)]2 = O(1), see (C 10) and (E 7), the integral
∫ 0

−1 µoCJ (ξ′)dξ′ being close to

1/2. Using (4.12) r̃f ≈ τ + r̃fi and the simplified expression µextf (τ) in (E 7) to eliminate
τ in favor of x, equation (E 10) yields the leading order in the limit b � 1 of the quasi-
steady trajectories in the phase-space “velocity-radius” y − x. Using the substitutions√
b/2µextf →

√
b/2µb ≡ mb and

∫ 0

−1 µoCJ (ξ′)dξ′ → 1 +
∫ 0

−1 µoCJ (ξ′)dξ′, equation (E 10)
takes the same form as (7.1a) in Clavin & Denet (2020) and the trajectories have a form
similar to figure 1 ibid. with a definition of x which differs by a factor of order unity,
compare (4.20a-b) ibid. with (E 10). In particular, the critical radius r∗f at the turning
point (y = −1, x = e) of the C-shaped curve “CJ velocity - radius”, obtained from (E 10)
for b[µextf (τ)]2 = 0, is

b� 1 :
r∗f
l

=
b

ε
e

∫ 0

−1
µoCJ (ξ′)dξ′ (E 11)

while it was r∗f/l = (b/ε) e
[
1 +

∫ 0

−1 µoCJ (ξ′)dξ′
]

in (4.20c) of Clavin & Denet (2020)

where the gradient of the burnt-gas flow was ignored. In any case the critical radius
corresponds to a non-dimensional radius r̃f/b of order unity.
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