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Abstract This paper investigates the phenomenon of compartmentalisation
of knowledge in the teaching and learning of continuous probability distri-
butions and integral calculus at the secondary-tertiary transition in France.
Using the Anthropological Theory of the Didactic (ATD), and in particular
the key notion of praxeology, we investigate in which sense those two sec-
tors may be described as compartmentalised in current textbooks. We then
study, by means of a questionnaire, the educational effects of the compartmen-
talisation: do students’ difficulties in completing ”bridging tasks” (tasks that
require to relate the two sectors) reflect the partial disconnections revealed by
the praxeological analyses? The key notion of ostensive, combined with the
role played by the technology in the sense of ATD, is used to interpret the
data. Altogether, this study sheds light on the deficit of cognitive flexibility
required to change mathematical sectors, which is understood as a result of
deficient praxeologies developed within the institutions.
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1 Introduction

Continuous probability distributions (CPD) and integral calculus (IC) are two
topics that are taught in France during the last year of upper high school (grade
12) in the scientific track (16-18 year olds). They constitute two sectors (in
the sense of the Anthropological Theory of the Didactic, ATD) that belong
to two different but closely related mathematical domains, probability theory
and analysis respectively. Indeed, the continuous probability of an event and
the definite integral with respect to a non-negative function are both defined
as areas of suitable two-dimensional domains in the syllabus (in France; see
section 3.2), and the formula

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx

is the key for solving several standard tasks in CPD, where X represents a
random variable and f its associated density function.

Much research is focused on the study of the teaching and learning of inte-
gral calculus at the end of high school and at the beginning of the university.
Several researchers have worked on the links of the integral concept with the
idea of accumulation (Thompson & Silverman, 2008; Kouropatov & Dreyfus,
2013, 2014), its Riemann sum interpretation (Wagner, 2018) or an introduc-
tion via the Fundamental Theorem of Calculus (Rosenthal, 1992; Thompson,
1994). In comparison, there is very little literature on CPD and, moreover, the
available studies focus mainly on normal distributions (Batanero, Tauber &
Meyer, 1999; Wilensky, 1997; Batanero, Tauber & Sánchez, 2004; Pfannkuch
& Reading, 2006). Therefore, the teaching-learning phenomena generated by
the interrelationship between CPD and IC are still to be investigated. A first
stone was laid by Derouet and Parzysz (2016) and Derouet (2019), who studied
possible ways to introduce the density function at grade 12 such that students
may construct this concept starting from considerations regarding histograms,
and therefore might relate continuous probability to the integral.

In this paper, we consider aspects of interrelation between IC and CPD
knowledge as a phenomenon that takes place within institutions (universities,
schools, etc.) and therefore use ATD1 as theoretical framework (see section 2).
Our goal is to study the impact of choices made at the level of the teaching
institution on the learning of mathematics: are students in France able to
mobilise the IC sector to solve tasks in the CPD sector and vice versa at
the transition from high school to higher education? In other words, may
students’ difficulties be interpreted as consequences of a form of institutional
compartmentalisation of knowledge?

In cognitive psychology, the phenomenon of compartmentalisation of knowl-
edge is generally understood as the composition of knowledge in separate and
not intertwined parts. Mandl, Gruber and Renkl (1993), for example, have

1 This theoretical framework puts into the fore the notion of institution and its consequences on
teaching and learning.
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differentiated between “three types of knowledge compartmentalisation: com-
partmentalisation of incorrect and correct concepts, compartmentalisation of
several correct concepts, and compartmentalisation of symbol systems and real
world entities” (p. 162). Our work relates to the first two types: we examine
through a questionnaire on the one hand if correct concepts and practices from
the two sectors CPD and IC are available and on the other hand if the students
are able to connect these sectors.

In mathematics education research, the phenomenon of compartmentali-
sation has been considered in the context of geometric figures (Schoenfeld,
1988), the concept of addition of fractions (Vinner, Hershkowitz & Bruck-
heimer, 1981), the image and definition of functions (Vinner & Dreyfus, 1989)
and the concept of quadratic functions (Eraslan, 2007). Using the ATD frame-
work, phenomena of compartmentalisation have been investigated in Barbé,
Bosch, Espinoza and Gascón (2005). In the domain of limits of functions, the
authors could identify two completely disconnected mathematical organisa-
tions within the knowledge to be taught in Spanish high schools: a practical
block of the algebra of limits without a technological-theoretical block and a
knowledge block of the topology of limits, where the practical block was absent.
This model was later extended by Winsløw (2015) to the case of the derivative
functions and integrals and emphasised similar disconnections from an analysis
of Danish textbooks. Recently, Wijayanti (2019) investigated compartmental-
isation phenomena in Indonesian college textbooks regarding the two domains
geometry and arithmetic. Finally, Kondratieva and Winsløw (2018) explored
various possibilities in teaching to use theoretical concepts from analysis for a
deeper understanding of somehow compartmentalised calculation objects such
as angle, cosine and sine. The research is driven by Klein’s idea of a “Plan B”
(a more holistic approach to mathematical domains) by opposition to Plan A
which is described as the standard compartmentalised approach to mathemat-
ics into more or less self-contained entities.

As far as we know, there is no work to date offering a detailed ATD
analysis of relationships between CPD and IC and, what is more, combining
such an analysis of knowledge areas with a quantitative empirical analysis of
data from student tests. The present paper expands earlier work presented at
the INDRUM2018 conference (Derouet, Planchon, Hausberger & Hochmuth,
2018) by deepening both the theoretical framework, the praxeological reference
model (in the sense of ATD, see section 2) and the data analysis. Although
the data is limited to the French context, the literature review underlines
that phenomena of compartmentalisation may be observed worldwide. Our
methodology and tools for the analysis and interpretation of data related to
knowledge compartmentalisation (in particular the ATD notion of ostensive
which is new in the literature in such a use) may therefore be applied to a wide
range of contexts. The relevance to university mathematics education research
is not limited to the study of the secondary-tertiary transition as is evidenced
by the works inscribed in the legacy of Klein who alerted to the educational
effects of knowledge compartmentalisation at university level as early as 1908.
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After the presentation of theoretical constructs from ATD, we describe
the praxeological reference model (in the sense of ATD, see section 2) that
we elaborated for the types of tasks in CPD and IC with a view to studying
interrelations of the two sectors and in particular elucidate what is meant by
compartmentalisation of knowledge in this case. We then present our empirical
study: its methodology which builds on the elaboration of a questionnaire,
the analysis of the data and interpretation of results using the theoretical
framework. We finally draw some conclusions and perspectives opened up by
this study.

2 Theoretical framework and research questions

In this section, we present the main theoretical constructs from ATD, namely
the notions of praxeology and praxeological reference model (PRM) for a body
of knowledge, and the notion of ostensive that we will relate to the didac-
tic phenomenon of compartmentalisation. This theoretical background will
provide us with the necessary tools and vocabulary to accurately state our
research questions at the end of the section.

2.1 The modeling of knowledge according to ATD

ATD “postulates that any activity related to the production, diffusion or ac-
quisition of knowledge should be interpreted as an ordinary human activity,
and thus proposes a general model of human activity built on the key notion
of praxeology” (Bosch & Gascón, 2014, p. 68). A praxeology Π is represented
by a quadruple [T/τ/θ/Θ]: its praxis part (or know-how) consists of a type
of tasks T together with a corresponding technique τ (useful to carry out the
tasks t ∈ T in the scope of τ). The logos part (or know-why) includes two levels
of description and justification: the technology θ, i.e. a discourse on the tech-
nique, and the theory Θ, its ultimate foundation, which often unifies several
technologies.

The elaboration of a reference epistemological model (Florensa, Bosch &
Gascón, 2015) as sequences of praxeologies, for a given body of knowledge, is
an important step in any research carried out in the ATD framework. It is the
tool that will be used by the researcher to describe, analyse, put in question or
design the specific contents that are at the core of a teaching and learning pro-
cess. In order to build such a model, “mathematical praxeologies are described
using data from the different institutions participating in the didactic trans-
position process, thus including historical, semiotic and sociological research,
assuming the institutionalized and socially articulated nature of praxeologies”
(loc. cit., p. 2637).

The elucidation of conditions that foster or conversely hinder the develop-
ment of mathematical praxeologies within an institution is called, in ATD, the
ecological study. The recognition of a large panel of influences at various levels
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came to the theoretical construct of scale of levels of didactic co-determinacy
(Bosch & Gascón, 2014, p. 73). Restrictions may indeed be related to the
1. subject (e.g. the standard normal distribution) 2. theme (normal distribu-
tions) 3. sector (continuous probability distributions) 4. domain (probability
and statistics) 5. discipline (mathematics) 6. pedagogy (local teaching prin-
ciples) 6. school (teaching institution) 7. society (state, ministry, region) 8.
civilisation (western culture). This scale, below the level of the discipline, ac-
knowledges the standard institutional division of the mathematical knowledge
into a hierarchy of topics. It reflects both the division of mathematics (as a
field of research) into increasingly specialised mathematical domains and sub-
domains (as evidenced by the AMS classification) and the further division
of the knowledge to be taught (the product of the didactic transposition of
the scholarly knowledge) into teaching units. Furthermore, this hierarchy may
be related to the components of praxeologies as follows: the theory usually
gives a sector its unity, and the technology unifies a theme; topics are usually
dedicated to working out a single type of tasks. In other words, the set of
praxeologies that make up a theme may often correspond to what is called in
ATD a local mathematical organisation (praxeologies unified under a common
technology) and the set of all the praxeologies of a sector correspond to a
regional mathematical organisation in the sense of ATD, which means that a
common theory unifies all the praxeologies of the given sector.

In this article, we use this framework and speak of continuous probability
distributions (CPD) and integral calculus (IC) as two sectors of the mathe-
matical domains “probability and statistics” and “analysis”, respectively. This
separation reflects the official syllabus at the last year of upper high school
in France (the equivalent of grade 12) and the division into chapters in cor-
responding standard textbooks. But ATD does not take the knowledge to be
taught for granted: this is where historical epistemology comes into play. In the
context of compartmentalisation of knowledge, the epistemological study aims
at providing a basis that may serve to problematise this division and its effects
on the mathematical praxeologies developed within the teaching institution.
The resulting praxeological reference model will be a sequence of mathemat-
ical praxeologies for the combined sectors CPD and IC that accounts for the
observed existing or missing connectedness in a body of standard textbooks
(see section 3).

2.2 Theoretical ideas on compartmentalisation based on the notion of
ostensive

The ostensive/non-ostensive distinction introduced by Bosch and Chevallard
(1999) is rooted in the modelling of mathematical activity as involving both
signs and concepts. The adjective ostensive refers to any object “having a sen-
sitive nature, a certain materiality, and which, in fact, acquires for the human
subject a perceptive reality” (loc. cit. p. 10, our translation). In mathemat-
ics, signs are often signifying abstract entities: non-ostensive elements such as
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ideas, intuitions and concepts, when they become socially shared, acquire the
status of non-ostensive objects within an institution. This is the case for the
mathematical objects “functions”, “primitive of a function”, “definite integral
of a continuous function between two boundaries” or “probability of an event”
within the school institution.

The distinction, once posed, immediately leads by its very definition to
a dialectical game: non-ostensive objects emerge from the manipulation of
ostensives, while this manipulation is guided and controlled by non-ostensives.
This combined operation takes place at both the praxis and logos level of
praxeologies, as technological discourse is being materialised through language
and in particular mathematical signs.

Ostensive objects have, in institutional practices, “the power to evoke com-
plexes of ostensive and non-ostensive objects with which they interrelate” (loc.
cit., p. 25), what Bosch and Chevallard call “semiotic valence” of ostensive
objects. All the praxeologies of the institution in which the ostensive par-
ticipates as an instrument may be evoked. This is why semiotic valence and
instrumental valence (what the ostensive effectively allows the subjects of the
institution to accomplish) are linked. For example, dy/dx may or may not be
manipulated as a quotient, depending on whether or not such manipulation
techniques are available. The ostensive can therefore acquire instrumentality,
if an appropriate technological work is undertaken to legitimise and control
such techniques, or, on the contrary, lose it if the meaning of such a use is lost,
i.e. if the technologies acquired in relation to this use become obsolete.

ATD thus posits that mathematical knowledge is conveyed through praxe-
ologies that can be seen and accounted for through the ostensives that compose
the tasks, techniques, technologies and theories. Each praxeology has a mini-
mal system of ostensives in which it is set and some of which will serve as an
activator when solving a task or a problem, through the semiotic valence of
the ostensive. Accordingly, techniques that are applicable and known to the
students may not be mobilised, not necessarily because of a loss of meaning,
but because of a lack of activation. It is therefore a question of a loss of the
operative valence of ostensives which is at stake, following a loss of their semi-
otic value. Several situations are conceivable: there may be an absence of one
of the ostensives of the minimal system mentioned above. For example, the
symbol P plays a fundamental role in the activation of praxeologies in prob-
ability theory. Or there may be competition from different ostensives, which
refer to different sectors, therefore to different complexes of praxeologies. The
learner then favours one of the sectors and fails to link the task to the expected
praxeology that comes from the other sector. Such a case of complexification
of the ostensive systems resulting in possible competition occurs, for exam-

ple, with the ostensive
∫ b
a

1√
2π
e−x

2/2 dx which engages the integral concept as

non-ostensive through the symbol
∫ b
a

and, perhaps less visibly or ostensibly,
the non-ostensive “continuous probability distribution” through the density
function 1√

2π
e−x

2/2 of the normal distribution.
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In a similar way to the case of the differential highlighted by Bosch and
Chevallard (1999), it can be hypothesised that technology (in the sense of
ATD) plays a crucial role as a facilitator or inhibitor of the operative valence
of ostensives. In the case described above, the issue is about being able to
motivate the introduction of a missing ostensive (such as the symbol P ), or
to transfer techniques from one sector to another when the work has been
placed by the learner in a given sector following her or his interpretation of
ostensives. Indeed, technology guides and legitimizes the choice of techniques.
It is reasonable to think that work at the level of the technological discourse, or
even at the level of the theory which provides an epistemological foundation to
the various praxeologies, constitutes a major lever for decompartmentalising
praxeologies and encouraging their activation.

2.3 Research questions

We are now ready to set out the research questions that may be organized
around two main issues:

1. Praxeological characterisation of the CPD-IC compartmentalisation.
CPD and IC are taught at the secondary-tertiary transition as two sectors
of different mathematical domains, so they are compartmentalised in an
obvious sense. What can we say on a deeper level? We make the hypoth-
esis that the division of the curriculum in units as a result of the didactic
transposition may lead to the teaching of mathematical organisations that
are partially disconnected. This corresponds to what French sociologist
Verret (1975, p. 140) called the desynchronisation of knowledge. Our first
set of research questions will therefore be: how to characterize the com-
partmentalisation of CPD and IC in terms of praxeologies taught at grade
12 in France? With respect to the 4 components of main praxeologies in
both sectors, what kinds of links are developed and what kinds of partial
disconnections may be revealed?

2. Effects of this compartmentalisation on the learning of mathematics.
As an educational consequence of the partial disconnection of praxeologies,
students may be incapable of transferring a technique from one sector to
the other. We wish to document this phenomenon and provide explana-
tory hypotheses for such difficulties. Specifically, we make the hypothesis
that ostensives play a major role in the activation of sectors and associated
praxeologies. Our second set of research questions is therefore the following:
are students able to use praxeologies from IC in the context of CPD and
conversely (the converse being the more interesting case)? Are the data in
line with the hypothesis that ostensives impact students’ abilities to trans-
fer techniques? Do students’ difficulties reflect the partial disconnections
revealed by the praxelogical analysis?
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3 A praxeological model for the interrelation of IC and CPD

In this section, we begin with an epistemological study on IC and CPD and
their interrelation in the history of mathematics, and then present the results
of our praxeological analyses of the chapters dedicated to IC and CPD in
standard grade 12 textbooks in France. The combination of the two studies
will allow us to draw our praxeological reference model (PRM), which will be
discussed in order to answer the first set of research questions stated above.

3.1 Epistemological study

This study is based on the work of historians, mainly Jahnke (2003), Michel
(1992) and Bourbaki (2007) for IC and Stigler (1986) for CPD. We also refer
to high school curriculum reforms in the last decades to address the didactic
transposition processes.

IC finds its roots in practical problems such as the measurement of agri-
cultural land. These roots are related to what Freudenthal (1983) called “di-
dactical phenomenology of mathematical structures” (although he himself did
not treat the case of IC in that book). As early as 500 BC, Greek geometers
were able to solve problems of quadratures for polygons: the area was deter-
mined by reduction to a square using geometric construction (Jahnke, 2003,
p. 14). The axiom of continuity and the principle of exhaustion were used by
Euclid to show that the disc area is proportional to the square of the diameter.
Archimedes and then Cavalieri have proposed systematic methods for calcu-
lating flat areas by infinitesimal “slicing” and then infinite summation, which
is now interpreted as an integral (Bourbaki, 2007, p. 3).

It was Cauchy who gave the first rigorous definition of the integral of a
continuous function on a segment [a; b], and thus founded the contemporary
theory of integration (Dieudonné, 1992, p. 256). Bringing continuity on the
fore, he provided a converging process for continuous functions by division of
the interval, summing and going to the limit. This also solved the problem of
existence of primitives for continuous functions. Indeed, Cauchy proved that
the “area function” of a continuous function may serve as anti-derivative. This
area function is the limit of the so-called Cauchy sums. This thus formalises the
link between the area under the curve and the definite integral. The Cauchy
integral of continuous functions easily extends to the case of piece-wise con-
tinuous functions. It is the integral that is taught in high school.

Riemann further investigated the type of functions for which the Cauchy
process converged. He found a necessary and sufficient condition and stated
what is nowadays called the Riemann criterion for integrability (Dieudonné,
1992, p. 259). This was a kind of culmination of the theory of integration,
but at the same time it opened up a perspective of important development
for the newborn measure theory. Indeed, the generalisation of the Riemann
integral to multivariate functions was not straightforward, which prompted
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Peano and Jordan to develop a new theory of measurement to address this
problem (Michel, 1992).

The emergence of CPD may be situated in the 18th century with the the-
ory of errors of measures in physics. In fact, the first explicit links between

integrals and stochastics appeared in Laplace’s works: the integral
∫ T
0

e−t
2

dt
was used to express the probability that the success in a Bernoulli test lies
within a given interval centred on the observable frequency. Since a primitive
was not known in terms of elementary functions, the values of the function
were approximated using Daniel Bernoulli’s table. But, although this has es-
tablished a link between IC and CPD, we cannot consider that the notion of
probability density function emerged from this work.

In 1757, Simpson introduced a link between the notions of area and prob-
ability, in relatively contemporary terms (Stigler, 1986, p. 96). He presented a
geometrical model for the law of errors related to a measuring device. Laplace
later formalised the relation between probability distribution and area under
the curve. He highlighted conditions that nowadays define a density function.
During the 19th century, histograms were drawn, which led to new curves
of probability density functions. The Gaussian distribution was proposed by
Gauss in 1809.

It was the development of measure theory which allowed the modern the-
ory of probability to emerge. In fact, Borel pointed out in 1905 applications
to probability theory the axiomatic definition of which was established later
by Kolmogorov in 1933 (Jahnke, 2003, p. 282). It was Lebesgue, a student of
Borel, who extended Borel’s measure and drew connections between the Rie-
mann integral and the newborn Lebesgue integral. As Bourbaki (2007, p. 287)
pointed out, the progress of integration theory has allowed the development
of probability theory: “formerly a pretext for riddles and paradoxes, proba-
bility has become a branch of integration theory since its axiomatisation by
Kolmogorov, but an autonomous branch with its own methods and problems”.

To summarise, the history of mathematics reveals close links between IC,
CPD, and the measurement of magnitudes. The latter has served to problema-
tise the development of IC and CPD and measure theory may be seen as a
unifying axiomatic theory of both mathematical sectors. Let us now conclude
by showing how these connections are reflected in the curriculum in France.

Since the “modern math” reform in the 1960s, the upper high school cur-
riculum on IC has evolved in several steps. Since 2002, the definition of the
integral of a positive continuous function has been the area under the curve.
The current 2011 official syllabus2 further specifies: “We rely on the intuitive
notion of area encountered in lower high school and on the properties of addi-
tivity and invariance by translation and symmetry” (p. 7). Continuous random
variables and associated probability density distributions are also defined in
the 2011 syllabus from the notion of area. Thus, the notion of area has become
central in the interrelation of IC and CPD.

2 https://cache.media.education.gouv.fr/file/special 8 men/98/4/mathematiques S 195984

.pdf
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3.2 Identification of praxeologies in standard textbooks

In France, students encounter both integrals and continuous probability distri-
butions for the first time in grade 12. We begin by analysing the official syllabus
(published in 2011) that follows a division into mathematical domains such as
analysis (essentially calculus) and probability and statistics, and then provides
a further division into two levels of headings. By a cross-analysis with text-
books, we relate this divisions to the ATD model of subjects/themes/sectors.
Finally, we give a detailed account of the main praxeologies in IC and CPD en-
countered in the 12 textbooks that were in use in French classrooms at the time
our experiment was conducted (2018). In particular, solved exercises allowed
us to identify the specific techniques and related technological discourses.

The domain “analysis” contains several headings: sequences, limits of func-
tions, continuity, complements in differential calculus, the sine and cosine
functions, the exponential, the logarithm, and finally integration. In every
textbook, integration is a full chapter. We consider it as a sector in the sense
of ATD and call it IC, since we will see that types of tasks are mostly com-
putational. Differential calculus is another sector, and both are related by the
fundamental theorem of calculus (FTC) that is a major technological element
of the IC logos.

The main subheadings of integration are the following: definition of the
definite integral of a continuous and positive function (as the area under the
curve), the FTC, primitive functions, extension to the case of general contin-
uous functions, properties of the integral (linearity, positivity, additivity on
intervals), mean value of a function (with application to extra-mathematical
contexts). These subheadings suggest an organisation of the IC sector into 3
main themes. A first theme is dedicated to the definition of the definite integral
in relation with areas. A second theme relates to anti-derivatives and their cal-
culation. Both themes are connected by means of the FTC the proof of which
uses the definition of the integral and properties of areas, thus technological
elements that belong to theme 1. The third theme concerns the extension to
continuous functions without restriction on the sign. The syllabus suggests
that types of tasks should remain centred on the exact and approximate com-
putation of integrals (or areas), yet powered by tools from the second theme.
The subheading “properties of the integral” is related to the approximation of
integrals: in ATD terms, these properties belong to the technology that justi-
fies the praxis of approximation. Finally, the last subheading “mean value of
a function” may lead to a last topic of theme 3 or to a new theme, depending
on the emphasis given to applications outside mathematics.

Let us now describe the syllabus corresponding to the probability and
statistics domain. It comprises 4 main headings: conditioning and indepen-
dence, continuous probability distributions from examples, fluctuation inter-
vals3, estimation. What we call the CPD sector thus corresponds to the second

3 The syllabus makes the distinction between “fluctuation” and confidence intervals. In the former,
the frequency is to be estimated from the probability which is given; in the latter, the
situation is reversed.
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heading. We chose to call the sector CPD rather than “continuous probabil-
ity theory” since the official syllabus insists on a bottom-up approach that
focuses on concrete examples and their use to model phenomena rather than
theoretical development. The subheadings are the following: continuous prob-
ability distribution on a bounded interval, the uniform distribution, its ex-
pectancy, exponential distributions, their expectancies (defined in terms of
integrals), the standard normal distribution, the de Moivre-Laplace theorem
(the Gauss distribution is introduced as a reasonable approximation of the bi-
nomial distribution B(n, p) for large n), normal distributions in general. The
Gauss distribution is used later to introduce students to inferential statistics
(under the heading “fluctuation”): in ATD terms, it is – together with the de
Moivre-Laplace theorem – a crucial element of the technology related to the
praxeology the type of task of which is the determination of a confidence inter-
val with confidence level 95%. In fact, the main types of tasks underlined in the
syllabus (in terms of competencies) with respect to the uniform and exponen-
tial distributions is the (exact) calculation of a probability or an expectancy,
which gives theme 1. Formulas are known, so the techniques can be directly
borrowed from IC and the definition of continuous probability distributions in
relation with areas (thus integrals) mainly serves as a logos. By contrast, in the
case of the normal distributions, the types of tasks deal with the approximate
computation of the probability of events and the syllabus mentions the use of
software, thus a radical change in the techniques. The normal approximation
of a binomial distribution is also a new type of task. These comments justify
to call “normal distributions” a separate theme 2.

Let us now formulate more precisely the preceding discourse and account
for the praxeologies as they are encountered in the textbooks. Let us also recall
that our main goal is to study the interrelation of IC and CPD, which explains
why we omit praxeologies that are not relevant. In coherence with the analysis
of the syllabus, we denote TI and TP (related to IC and CPD respectively)
the following main general types of tasks:

– TI : compute an integral
∫ b
a
f(x) dx for a positive continuous function f ;

– TP : compute a probability P (a ≤ X ≤ b) for a random variable X endowed
with a density function f .

The two types of tasks are immediately related by the well-known formula:

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx. (FFCPD)

We call it the fundamental formula of CPD (FFCPD). In view of the syllabus
and the epistemological study, we also introduce a third main type of task,
related to the measurement of magnitudes :

– TA: compute an area.

The type of tasks TI may be further split into two types of tasks, de-
pending on the expected result: an exact value (TI,exact) or an approximation
(TI,approx), and the same holds for the types of tasks TP and TA. In fact, there
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is an interplay between the three types of tasks and their variants throughout
the chapters on IC and CPD. We elaborate on this in the following section.

In the first theme of IC, TA,exact comes first in the fore, with elementary
techniques that involve the formulae for elementary geometrical domains (e.g.
a trapeze, a half disk). We call ΠA,elem the corresponding praxeology. In order
to compute an approximate value for the area under a curve, textbooks (e.g.
“Math’x”, p. 245) emphasize the “rectangle method” that is thus taught as
the standard technique τrect for the type of task TA,approx. In view of the
definition of the integral that is introduced in the context of such tasks, it is
equivalent to compute either the definite integral or the area. We will thus call
the praxeology Πrect without reference to integration or areas. Whenever the
limit of Riemann sums may be computed (e.g. in the case of the parabola),
τrect may be enriched to produce an exact value. Otherwise, it is possible
to implement the method in a software program. We will call Πinstr

rect this
instrumented variant.

By contrast, TI,exact is the dominant type of task in the third theme of
IC. The corresponding technique may be denoted τI,prim since it resorts to
praxeologies dedicated to the computation of primitive functions. The stan-
dard technique at high school level is to use the “tabular of anti-derivatives”;
the technology comprises the properties of the derivative and the theory is
that of differential calculus. We call ΠI,prim the praxeology corresponding to
TI,exact and τI,prim. Although its technology comprises properties of the defi-
nite integral such as additivity on the interval, the logos remains largely hidden
under the algebraic computational aspects. This resonates with the findings
of Winsløw (2015) in his analysis of Danish textbooks. As an application, the
type of task TA,exact then reappears with more advanced examples such as
domains delimited by two curves of given functions. This means that TI,exact
is a sub-type of task used to solve these tasks, with technique τI,prim. We
shall denote ΠA,prim the corresponding praxeology. Approximate values for
such areas may also be obtained by means of a calculator (or software), more
or less a blackbox, used to compute approximations of definite integrals. This
instrumented praxeology will be denoted Πinstr

I,approx. We note that there is also

an instrumented version Πinstr
I,exact of ΠI,prim, that again relies on a blackbox

(the algorithm used by the computer algebra system). Figure 1 provides an
excerpt of a textbook and illustrates the hermeticity of such techniques that
amount to clicking on specific buttons.

An interesting example of work on Πrect and Πinstr
rect can be found in the

textbook “Transmath” (figure 2). A specific meta-discourse on the function

f(t) = e−t
2/2 underlines both that this function admits anti-derivatives since

it is continuous but that primitive functions F cannot be expressed in terms
of standard functions. Therefore, the computation of areas under the curve for
different segments [0;x] is a way to draw a table of values for F (x). This gives a
new scope to the technique τrect. Nevertheless, authors of the textbook labelled
this work “research exercise” and did not refer to this curve as the Gauss curve,
pointing towards a forthcoming chapter on probability and statistics. This is



Compartmentalisation of continuous probability distributions and integrals 13

Figure 1 Instrumental techniques for TI (textbook “Math’x”, p. 237)

Figure 2 An advanced usage ofΠrect: computing a table of values for an unknown primitive
function (textbook “Transmath”, p. 212)

certainly an institutional sign of knowledge compartmentalisation. Although
the official syllabus requires pointing out that no explicit formula is known
for the anti-derivatives of e−x

2

, this is the only instance we could find of a
textbook in which this instruction leads to an exercise.

Regarding CPD, types of tasks related to theme 1 include “show that a
given function is a probability density function”. Density functions have been
introduced as continuous functions the curve of which “fits” the histogram.
An introductory activity on histograms thus serves as a heuristic to justify
the definition of the probability of an event X ∈ J for an interval J as the
area under the curve of f , and also the condition that the total area under the
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Figure 3 Instrumental techniques for TP,norm (textbook “Math’x”, p. 407)

curve is 1. These definitions make up the theory for the main type of tasks TP .
Two cases need to be distinguished, depending on whether a primitive of the
density function f is known (TP,exact) or not. In theme 1, the generic technique

τP,prim which consists in computing
∫ b
a
f(x) dx by means of the praxeology

ΠI,prim, is always applicable. The technology θP,prim is mainly composed of
the FFCPD. As usual, we shall call ΠP,prim the full praxeology. Moreover in
theme 1, two particular cases are emphasised and lead to local techniques, as
concrete formulas are available for P (a ≤ X ≤ b) in the case of the uniform and
exponential distributions. For instance, the technique τP,exp may be reduced
to computing eλa−eλb with technological argument P (a ≤ X ≤ b) = eλa−eλb
(praxeology denoted ΠP,exp). Altogether, the techniques are based on calculus,
except in the case of a piece-wise affine density function f for which it is
also possible to use ΠA,elem. This is the only case that connects to TA. In
fact, much time is dedicated in theme 1 to the interpretation of the uniform
and exponential distributions as models related to probabilistic phenomena.
Modelling praxeologies are not described in this article since they are out of
our scope.

In theme 2 dedicated to the normal distributions, the type of tasks TP
takes the form TP,norm, which is dealt with using a calculator or software.
The corresponding praxeology should therefore be denoted Πinstr

P,norm. Students
do not use the same button on calculators in IC and in CPD (Fig. 1 and 3),
which may hinder the possibility for them to interpret the result of such a
calculation as an approximate value of an area under the Gauss curve (thus
the connection with Πrect). To the exception maybe of the software Geogebra
the environment of which combines a graphical representation of the curve
and the relevant statistical parameters, we can make the hypothesis that the
digital tools will mainly be used as a blackbox by students, and therefore
the connections with IC are likely to be lost. In fact, the relationship with
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Figure 4 Praxeology of normal approximation (textbook “Transmath”, p. 411)

Πrect is crucial throughout the theme at the logos level (through the notion
of area). This is visible for instance in the praxeology Πnorm approx of normal
approximation of a binomial probability distribution (figure 4). But since the
technique restricts to the verification that conditions for an application of
Πinstr
P,norm hold, students may not develop any knowledge on the interrelation

of IC and CPD.

3.3 Our praxeological reference model and answers to the first set of research
questions

Let us recall that our model is based on the study of standard textbooks used
in grade 12 in France and is dedicated to the description of the teaching-
learning of CPD and IC as it actually is (we do not plan any intervention at
this stage).

Table 1 summarises the main local mathematical organisations (LMO)
of the IC and CPD sectors which have been identified and described in the
previous section. Each theme gives birth to a single LMO, which means that
a shared technology unifies the different praxeologies included in the theme,
except in the case of instrumented praxeologies the technologies of which are
more or less a black box (underlying algorithms are not described; we thus
call them “blind”, which results in a feeble control on the technique), to be set
apart. In the case of CPD theme 2, the mathematical organisations presented
in the table are centred around a main praxeology and therefore should be
rigorously called punctual rather than local. In fact, our model is simplified
and a more detailed account of variants of these main praxeologies may reveal
that it is justified to call them local. In all cases, this is not our main point.
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Table 1 Local mathematical organisations (LMO) of the IC and CPD sectors, with a focus
on the logos blocks

Theme Name of LMO Praxeologies Technology Theory

IC
theme
1

def. of the integral ΠA,elem

Πrect Π
instr
rect

def. of the definite
integral and proper-
ties of areas

intuitive theory of areas

IC
theme
3

exact calculation
of integrals and
areas

ΠI,prim
ΠA,prim

FTC, properties of
the definite integral

differential calculus, def. of
the definite and indefinite
integrals

“blind” instrumen-
tation of IC

ΠinstrI,approx

ΠinstrI,exact
CPD
theme
1

exact calculation
of probabilities

ΠP,prim (uses

ΠI,prim)

ΠP,exp

FFCPD integration theory, proba-
bility theory, def. of den-
sity function and continuous
probability distributions in
terms of areas

CPD
theme
2

instrumented cal-
culation of normal
distributions

ΠinstrP,norm probability theory, def. of
normal distributions

normal approxima-
tion

Πnorm approx de Moivre-Laplace
theorem

In this model, we note the following two main links between CPD and IC:

– at the level of the logos blocks, praxeologies in both sectors are anchored
on the intuitive notion of area;

– at the level of the technique, ΠP,prim uses ΠI,prim, so that, from an ecolog-
ical point of view, CPD contributes to the thriving of such IC praxeologies.

Moreover, the measurement of magnitudes is not restricted to the logos: types
of tasks in IC theme 1 are dedicated to the development of techniques to
compute areas, leading to the praxeology Πrect which is fundamental to con-
ceptualise both the definite integral as the limit of sums of rectangular areas
(Riemann sums) and the concept of area. The didactic transposition of CPD
and IC operated in the syllabus thus follows the historical common roots of
CPD and IC.

In fact, the links with the notion of area is much less developed in the
CPD syllabus than in the case of IC: the main praxeology of CPD theme 1
is ΠP,prim. In the CPD sector, the notion of area is essentially part of the
logos, whereas work on histograms (Derouet & Parzysz, 2016) could be an
opportunity to deepen the relationships by introducing new types of tasks and
techniques (for example, “Estimate a probability that models a situation from
empirical data represented by a frequency histogram”). But such a “histogram
praxeology” is missing in current textbooks, together with the opportunity to
emphasise relationships with the praxeology Πrect from IC and between both
sectors.

Our model also shows signs of compartmentalisation. Contrary to ΠI,prim,
Πrect is not reinvested in CPD whereas the computation of a probability of the
Gaussian distribution could be a great opportunity for that. This is due to the
choice to emphasise instrumental techniques (Πinstr

P,norm) that we have described
as blind due to a lack of technological discourse. The normal distribution is a
prototypical example of a function a primitive of which cannot be expressed
in terms of available elementary functions. This fact explains the choice of
techniques to solve TP,norm and contributes also to the logos of ΠI,prim (by
complementing the statement that every continuous function admits a prim-
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itive function). Textbooks more or less assume that this theoretical content
belongs to the IC sector, and do not refer to a forthcoming study of the Gaus-
sian distribution whenever it is presented. We argue that CPD would provide

a relevant context to problematise the computation of
∫ b
a
e−x

2/2 dx. In a more
spiralling approach, a praxeology dedicated to the calculation of values of
anti-derivatives that cannot be computed using standard algebraic techniques
from IC, based on Πrect, could be developed fruitfully when the Gaussian
distribution is brought forward in the context of probabilistic and statistical
investigation of phenomena. Our model therefore reveals both a deficient logos
for Πinstr

P,norm and a second missed opportunity for de-compartmentalisation of
IC and CPD.

This study therefore indicates how to enrich our model in view of the sur-
vey presented in section 4 by introducing the type of tasks TI,norm: compute∫ b
a
e−

(x−m)2

2σ2 dx. As seen above, TI,norm can be solved in the IC sector through
Πrect but the most efficient technique consists in using P (a ≤ X ≤ b) =∫ b
a
f(x) dx from right to left, thus Πinstr

P,norm. How would students react in front
of such a task that asks to bridge CPD and IC, yet in an unusual way? Indeed,
the FFCPD is mainly used from left to right in relation to ΠP,prim. Such a
task thus reverses the main ecological chain (IC is applied to CPD). Moreover,
although the equality is symmetrical as an equivalence relation, it is not sym-
metrical as a sign which denotes a succession of operations in performing a
computation. This reveals a further cognitive obstacle. Finally, this task is sit-

uated by its main ostensive
∫ b
a

in the IC sector. The deficient logos of Πinstr
P,norm

may hinder the possibility for students to connect the task with CPD. This
questioning was a starting point for the elaboration of our questionnaire.

4 Empirical study

We conducted an empirical study in order to answer research question 2 on
effects of the institutionalised compartmentalisation between the two sectors
CPD and IC on students’ learning. Our main approach is the interpretation of
data obtained from students’ work on a paper-pencil questionnaire, the items
of which are built on the results of the praxeological analysis presented in
section 3. The questionnaire covers tasks addressing techniques from praxe-
ologies living within IC and CPD as well as tasks that require techniques (and
technologies) from one sector to be transferred to the other sector. Since the
textbook analysis shows almost no such migration of praxeological blocks (ex-
cept the obvious connection between ΠP,prim and ΠI,prim), we expect students
to encounter difficulties in successfully completing the latter type of tasks. In
the construction of items, we have paid particular attention to ostensives be-
cause, as explained in section 2, we expect that they play a significant role in
students’ mobilisation of techniques and praxeologies. Thus, we have elabo-
rated a questionnaire both to check the availability of standard praxeologies
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Question 1

Compute the exact value of the integral

∫ 4

−1
e−2x dx.

Question 2
What are the properties that a function f must satisfy to be a probability density
function associated to a random variable X with values in an interval I ?

Question 3
Give the domain of definition and the algebraic expression of the density function asso-
ciated to:
a) the exponential distribution of parameter λ;
b) the normal distribution of parameters 0 and 1.

Question 4
Let X be a random variable with exponential distribution of parameter 3.
a) Compute the probability P (1 6 X 6 5).
b) Give a graphical interpretation of this probability. A picture may be drawn by hand.
Reminder: the density function associated to an exponential distribution of parameter
3 is the function defined by f(x) = 3e−3x, x ∈ [0; +∞[.

Question 5

a) Do you know a continuous function over an interval that does not admit primitives?
If so, give an example. If not, justify.

b) Do you know a continuous function over an interval that admits a primitive of
which you do not explicitly know an expression? If so, give an example. If not, justify.

Question 6
Explain all the methods that you can use to determine an exact and/or approximate

value of the following integral: I =

∫ 1

−0,5

1
√

2π
e

−x2
2 dx. You may restrict to give an

idea of the method if its implementation is too complicated.

Question 7

Let A be the function defined on [0,+∞[ by A(λ) =
∫ λ
0 f(x) dx with f(x) = xe−x. It

can be proved that lim
λ−→+∞

∫ λ

0
xe−x dx = 1. Based on this result, write down everything

you can say about the function A and the function f .

Figure 5 Questionnaire submitted to students

of CPD and IC in the praxeological equipment of students and the capacity
of students to complete bridging tasks.

In section 4.1, we present an a priori analysis of the items in view of the
PRM worked out in section 3. Data collection and the sample are described in
section 4.2. The results of the survey are analysed in section 4.3. Section 4.4
then summarises our answers to research question 2.

4.1 A priori analysis of the questionnaire

The questionnaire includes seven items (see Figure 5). The first group of items
(from question 1 to 5) intend to “activate” the sectors CPD (questions 2, 3
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and 4) and IC (questions 1 and 5). The second group of questions (6 and 7)
represents bridging tasks: regarding ostensives they are located within the IC
sector, but are aimed to mobilise the CPD sector. Thus questions 6 and 7 allow
us to study the possible but questionable transfer of praxeologies from one
sector to another in view of praxeologies the availability of which to students
is checked by the first group of questions.

In the following, for each question we first clarify the relation to the PRM.
Then, we describe the categories on which our preparation of the data from
the survey and the subsequent analyses in section 4.2 are based.

Question 1
The routine task of type TI,exact aims at a straightforward calculation of a
definite integral by FTC with respect to a standard function. We expect that
students know a primitive and use the technique τI,prim. The word “compute”
rules out the technique τ instrI,exact. We distinguish the following four categories
of responses:

– FTC is mobilised with a valid primitive;
– the same with an invalid primitive;
– an incorrect technique is applied;
– no answer.

Question 2
This item asks for a characterisation of a density function on an interval I,
which is a positive function with an area under the curve equal to 1. The latter
property can be expressed in terms of “area under a curve” or by using the
term “integral”. We distinguish five categories of responses:

– a complete characterisation of a density function is given;
– only the positivity of the function is mentioned;
– only the area or the integral equal to 1 is mentioned;
– irrelevant properties are mentioned;
– no answer.

Moreover, we distinguish whether students use ostensives related to the notion
of area (the word “area”) or related to IC (the word “integral” or the sign

∫
).

We do not take into account whether the students mention the continuity
property of the density function, since rigour with respect to conditions for
integrability of functions is not our focus.

Question 3
By asking for domains of definition and algebraic expressions, this item ad-
dresses elements of the logos block of ΠP,exp and Πinst

P,norm. It especially checks
whether students have necessary prerequisites regarding semiotic valences of
ostensives in bridging tasks 6 and 7. Availability of the algebraic expression of
the exponential distribution will be an important indication for question 7 and
of the normal distribution for question 6. We notice that question 4 provides
the expression of the exponential distribution for λ = 3. We distinguish three
categories for each sub-question:
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– correct expression;
– false expression;
– no answer.

Question 4
Question 4a is a routine task of type TP in the case of an exponential distri-
bution. Two techniques can be used: τP,prim, which applies τI,prim, or τP,exp.
Thus, the item verifies whether students can mobilise IC praxeologies within

the CPD sector, i.e., if they are able to mobilise the absent ostensive

∫
in the

context of a routine task. We distinguish four categories of responses:

– τP,prim with a valid or invalid primitive mobilised;
– τP,exp with the correct or incorrect formula mobilised;
– an incorrect technique is used;
– no answer.

In question 4b, students are asked for a graphical interpretation of the prob-
ability P (1 ≤ X ≤ 5) which is essential for linking the logos of ΠP and of
ΠI . According to our PRM, this task should not be difficult for students. We
distinguish two categories of responses:

– a correct (graphical or verbal) answer is given;
– an incorrect answer or no answer is given.

Question 5
This item aims to activate the IC sector, more precisely elements of the logos of
ΠI,prim about primitives. We have also in mind the praxeology ΠP,norm which
relates to the bridging question 6. The correct answer to question 5a refers to
the theorem that every continuous function admits a primitive function. For
question 5b, there are in principle many examples that could be mentioned by
the students, like for example sin(1/x), which are in the realm of high school
mathematics but tend not to be mentioned there in lessons and textbooks. But
the function x 7→ exp(−x2) is mentioned as an example for functions which
does not admit “explicit” primitives by standard functions in the curriculum.
That is why we are looking by this question if the students propose this func-
tion or mention words like “density function of the normal distribution” in
their answers. Question 5 is linked to the exercise in figure 2 which relates to
the logos of ΠI,prim and the praxeology Πrect. If such a task has been dealt
with in class, students could be able to answer the question with the normal
density function. Unfortunately the formulation of question 5b is ambiguous:
students could understand that they have to provide a continuous function
which admits a primitive function for which they do personally not know an
expression in terms of standard functions instead of that there is in general
no such expression. It is therefore possible that they give examples such as
x 7→ ln(x).
The response categories for question 5a are:
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– the theorem is referred to;
– a function is proposed that, according to them, do not admit primitives;
– no answer or false justifications;

and for question 5b:

– an example related to the normal distribution is proposed;
– other examples;
– no example.

Question 6
The open stated item represents an instance of the non routine type of task
TI,norm. It asks for any method to compute an exact or an approximate
value for the Gaussian integral. Within the IC sector this item relates to
TI,prim and/or TI,approx. According to our PRM the techniques τrect, τ

instr
rect

and τ instrI,approx could be available. We can also expect that a few students may

use the technique τI,prim with a false primitive, or propose to use τ instrI,exact. On
the one hand this can be attributed to a deficient logos regarding ΠI,prim.
On the other hand it illustrates a deficient logos regarding Πinstr

P,norm as it is
not recognised that the related technique could be applied here. If it is recog-
nised that the integral is equal to P (−0, 5 ≤ X ≤ 1) (apply the FFCPD from
right to left) with X a reduced centered normal random variable then also the
technique τ instrP,norm could be used. The latter includes a sector change in which

the student mobilises the ostensive P when the ostensive

∫
is present. We

therefore distinguish three categories:

– students change the sector to CPD;
– students stay in the IC sector;
– no answer.

Let us now link answers to this question with answers to the items 3, 4 and
5. Item 3b allows to identify students who know the algebraic expression of
the density function of the normal distribution. Within this group of students,
we distinguish between students who change from the IC to the CPD sector
and students who do not. In particular, we want to know whether knowing the
normal density function is sufficient for connecting both sectors and to mobilise
τ instrP,norm in an IC context. Moreover, we assume that if students can link the
notions of area and probability, i.e. provide correct answers to question 4b,
and can identify the normal density function as an example of a function with
a primitive function which cannot be expressed in terms of standard functions,
i.e. provide correct answers to question 5b, then they are more likely to mobilise
the CPD sector.

Question 7
The ostensives of this item live apparently in the IC sector. We want to check
whether students restrict their answer to the IC sector, for example with an
interpretation related to areas, or if they recognise that A is both a primitive
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for f and a probability (P (0 6 X 6 λ)) associated with the random variable
X of the density function f . In the latter case, students are able to change the
sector. We distinguish three categories:

– students change the sector to CPD;
– students stay in the IC sector;
– no answer.

Moreover, answers to question 2 can be linked to answers to question 7: if
students do not know the definition of a density function, then it is not very
likely that they mobilise the CPD sector in question 7. On the other hand,
a correct answer to question 2 may not be sufficient for mobilising the CPD
sector.

4.2 Data collection and sample

The survey was launched in early September 2017 (the first week of classes) in
two first year “higher education preparatory classes”. These classes which are
part of the post-secondary education system aim at training selected students
for enrolment in the grandes écoles (mainly engineering schools). The cohort
under study is composed of students from a MPSI (mathematics, physics and
engineering science) (n1 = 40) and a PCSI (physics, chemistry and engineering
science) (n2 = 42) class of fairly prestigious institutions. Since the students are
in selective classes, we assume that they are “good” students, i.e., if they have
difficulties in answering the items correctly, this should also be the case for
other students. In our data, we only considered students who have studied in
French high schools during the past year because the constructed questionnaire
takes into account the specific institutional context of French secondary educa-
tion. The following analysis is based on a total of 82 completed questionnaires
(N = 82). Students were given 40 minutes to complete the questionnaire.

4.3 Data analysis

In this section, we present the results of a descriptive data analysis of the
survey and interpret them against the background of our a priori analysis
of the items. We group the results according to the sector to which the items
belong. We begin with the IC sector (questions 1 and 5), then go on to the CPD
sector (questions 2, 3 and 4) and finally discuss the bridging items (questions
6 and 7).

IC sector (Questions 1 and 5)
The results regarding question 1 are presented in Table 2: 81 students use FTC
and apply the technique τI,prim. 84% provide a valid primitive and 77% obtain
the correct result in the end. Only one student uses an incorrect technique.
For the item in the IC sector, the technique τI,prim is well mastered by the
students.
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Table 2 Results on question 1

FTC No FTC

99% 1%

valid primitive invalid primitive incorrect technique no answer

84% 15% 1% 0%

Table 3 Results on question 5a

cite the theorem propose a function (incorrect) no answer or an incorrect justification

30% 23% 47%

Regarding question 5a (see Table 3) only 30% of the students cite the
appropriate theorem (“every continuous function admits a primitive function”)
to justify their answer. 23% of the students propose a function that, according
to them, does not have a primitive, notably the absolute value function. The
other students do not answer or give another false justification. The requested
logos element of ΠI,exact is therefore not well acquired by the students.

With respect to question 5b, overall 68% of the students propose examples,
but a large part of these are irrelevant, for instance the functions

√
x or |x|.

Only 18% of the students mention the density function of the normal distri-
bution (either by verbal citation or by its algebraic expression). Among these
15 students, 9 explicitly refer to the normal distribution. The others give only
the algebraic expression. 32% do not propose any example.

These results show that the logos of ΠI,prim is incomplete for the majority
of students although those elements are present in textbooks (see section 3).
Moreover, since only 9 students explicitly refer to the normal distribution, we
conclude that the majority of students do not mobilise knowledge from the
CPD sector to enrich the IC sector, in this case the logos of ΠI,prim.

CPD sector (questions 2, 3 and 4)
Table 4 shows that only 35% of the students provide a complete list of proper-
ties characterising density functions. Among these students, only three (4% of
the whole sample) refer to the area. The others express the related property
by referring to the integral (most often with the ostensive

∫
). 31% mention

only one of the properties. The rest of the students note irrelevant properties
(18%) such as monotony or differentiability or do not give any answer (16%).
Summarising, the definition of density functions is part of the logos of ΠP

for only one third of the students approximately. At least two thirds of the
students can come up with partial definitions.

On question 3 (see Table 5), at least 60% of the students can give the
algebraic expression of the exponential distribution. However, in the interpre-
tation of this rather high rate of success, one should take into account that the
correct expression is mentioned for a specific case in question 4. For the nor-
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Table 4 Results on question 2

complete defi-
nition

only positive
function

only area under the
curve or integral
equal to 1

irrelevant
properties

no answer

35% 8% 23% 18% 16%
(4% area/ (2% area/
31% integral) 21% integral)

Table 5 Results of question 3

Correct expression False expression No answer

Exponential distribution 60% 22% 18%
Normal distribution 27% 62% 11%

Table 6 Results on question 4a

τP,prim τP,exp incorrect technique no answer

71% 6% 7% 10%
correct answer 59% 4% 0% 0%

mal distribution, the rate of correct answers is significantly lower (only 27%).
Interestingly, data on question 6 show that a few students who do not provide
the formula for the normal distribution on question 3 are able to recognise
the expression when it is presented. Given that this expression is mentioned
explicitly in the syllabus and in textbooks, the low rate raises questions. We
suppose that students’ inability to recollect the formula is related to the fact
that only the parameters of the distribution play a role in the application of
the technique τ instrP,norm which is usually used. Thus, also in view of the an-
swers to question 3, we note that the logos related to ΠP , i.e. the CPD sector,
available to students seems rather fragile.

To the question 4a (see table 6) 63% of the students give a correct answer.
71% of the students mobilise the technique τP,prim, with 83% finding the cor-
rect answer and the rest determining an incorrect primitive. 6% of students
activate the technique τP,exp. Among the students who mobilise τP,prim, eight
students apply an incorrect primitive, half of them also give an incorrect prim-
itive in question 1. Four students try to mobilise τP,exp but use an incorrect
formula. In total, the type of task TP for exponential distribution is quite
well mastered by the students. The technique τP,prim is mainly used. We can
conclude that the FFCPD is well known. Its application “from left to right”
provides a solid basis for a move from the ostensive P to the ostensive

∫
.

Regarding question 4b, 68% of the students are able to provide a graphical
interpretation of the probability. They refer to the area under a curve either by
a graphic or a verbal remark. This means that the link between the ostensive
P and the ostensive area is also mastered by the majority of students.
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Table 7 Results on question 6

CPD sector IC sector only No answer

20% 71% 9%
(with the ostensive P : 13%)

Question 6
When working on this task, 71% of the students stay in the IC sector, 20%
change the sector and 9% do not answer (see table 7). The majority of students,
who remain in the IC sector, use FTC (46%) and 42% of them, i.e. 20% of
the whole sample, mobilise τI,prim with an incorrect primitive. With a view to
question 5, we can assume gaps in the logos of ΠI,prim because these students

are not able to identify the function x 7→ 1√
2π
e

−x2
2 as a particular case of a

function that does not possess an explicitly known expression for its primitive.
From students changing sectors, 69% (13% of the whole sample) mention that
the given integral is equal to the probability P (−0, 5 6 X 6 1), i.e. clearly
apply FFCPD from right to left. Of this group, 64% (9% of all) refer to an
application of the calculator, i.e. to the technique τ instrP,norm.

What are the links with students’ answers to the questions 3, 4 and 5?
Among the students who know the algebraic expression of the normal density
function (question 3b), however, 45% change the sector (mention the normal
distribution), although only 27% of those students introduce the ostensive P
(see table 8). Overall, this highlights that knowing the normal density function
is not enough to connect both sectors in answering question 6. On the other
hand, 10 out of the 15 students who change the sector know the algebraic ex-
pression of a normal density function. This means that this knowledge seems
at least helpful for a sector change.
Regarding question 5b, 53% of the students who mention the normal density
function (i.e. 8 students out of 15) activate the CPD sector in question 6.
Moreover, 7 out of the 9 students who explicitly argue about the normal dis-
tribution change the sector. In addition, 7 students out of 15 change the sector
without mentioning the normal density function in question 5b.
In view of the data, we managed to detect further links that were not envis-
aged in the a priori analysis. Regarding question 4b, all students (15) who do
not provide the interpretation of probability as area under a curve remain in
the IC sector. Likewise, all students (13) who do not know the properties of a
density function in question 2 remain in the IC sector.
We interpret all those observations as evidence that a deficient logos in stu-
dents’ praxeologies hinders their ability to change sectors in question 6. The
deficiency may concern the foundations of both CPD and IC on the notion of
area, or the technological knowledge on the anti-derivative of normal distri-
butions that orients the choice of the technique towards a sector change. In
other words, the deficient logos is an explanatory factor for the compartmen-
talisation of students’ knowledge.
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Table 8 Links between results of question 6 and results of questions 3b and 5b

Q3b : able to recollect the
expression of the normal
density function

Q5b : able to state that the
anti-derivative of the normal
distribution is unknown

22/82 ' 27% 15/82 ' 18%

Change of sector in Q6 10/22 8/15
(with presence of the
ostensive P )

(6) (5)

Remark 4/15 propose to compute an
exact value of the integral

Table 9 Results of question 7

CPD sector IC sector only No answer

48% 37% 16%

Question 7
We note that 48% of the whole sample (39 students) mobilise the CPD sector
(see table 9). However, only 31 students (38% of all) actually mention that f
is a density function. There are 13 students (16% of all) who interpret A as a
probability and all of them but one have also identified f as a density function.
The remaining 12 students who change the sector but neither interpret A nor f
properly have in fact mistaken A as a probability density function (a confusion
of the continuous probability with its density function).

Let us now discuss the links with the answers to question 2. We note that
34 out of the 39 students who change the sector in question 7 (87%) provide
a (partially) correct answer to question 2. Reciprocally, only 5 out of the 38
students who do not answer or give an incorrect answer to question 2 change
the sector in question 7. This means that a certain knowledge about density
functions seems to be necessary to mobilise the CPD sector in view of question
7. On the other hand, knowledge of the definition of a density function is not
a necessary precondition for mobilising the CPD sector.

4.4 Discussion of the results and answers to research question 2

Overall, the analyses of the data in section 4.3 largely coincide with the obser-
vations and conclusions drawn from the praxeological analysis in section 3. In
the following, we summarise these results with a clear reference to the PRM,
and then, against this background, we finally address the research question 2.

The results for questions 1 and 2 confirm for the IC sector that the students
have solid knowledge of the technique τI,prim, but that the logos of the related
praxeology ΠI,prim is underdeveloped. This assessment is further supported
by the results for question 6: many students have not identified the normal
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distribution as an example for a function that has a primitive, which cannot be
expressed only by means of the standard functions. Furthermore, they have
misapplied the technique to this non-standard case which relies outside the
scope of the technique. This is a clear evidence of a difficiency of the technology
in the sense of ATD.

Regarding the questions 2 to 4 from the CPD sector we can note the fol-
lowing. The data on 4a and 3a show that students master both techniques
τP,prim and τP,exp and also the application of FFCPD from left to right. Item
4b also shows that the concept of area is available in the students’ knowledge.
Considering that area is an important unifying element of the logos regarding
TP , TI and TA, mathematics teaching seems to have at least laid a foundation.
With regard to questions 6 and 7, it can already be concluded that the logos
blocks are weak in terms of the probability density function (results for ques-
tion 2) and normal distributions, in particular regarding Πinst

P,norm (results for
question 3). This points to rather weak semiotic valences with respect to those
ostensives in the IC sector which were identified as important for bridging to
the CPD sector in questions 6 and 7.

In working on question 6, only a few students have moved from the IC
sector, where the ostensives of the item are mainly located, to the CPD sector.
The application of FFCPD from right to left seems not to be part of the
students’ repertoire. In view of the special case of normal distribution, this
deficit can also be related to a weakly developed logos with regard to the
technique τ instP,norm. In this respect, it probably also has an effect that in the
context of normal distributions the possibility to mobilise ΠI,rect in CPD
is obviously not used in classrooms (see section 3.2). Moreover, there is an
ultimately fragile logos with respect to ΠI,prim, which can be stated in view
of the many incorrect solutions that have tried to apply the technique τI,prim
out of its scope.

A comparison with the results for questions 3b and 5 confirms once again
the importance of the logos regarding the normal distribution: knowing it is
helpful, almost necessary, but not sufficient for a change of sectors. This can
be stated analogously with regard to the logos element area (question 4b),
which links the types of tasks TP , TI and TA.

In question 7, a change from the IC to the CPD sector can be observed
in almost half the students’ solutions. Last but not least, we have found that
a trained logos with regard to probability density functions is more likely to
lead to a change of sectors, the lack of which severely hinders it.

Regarding research question 2, about effects of the institutionalised praxe-
ologies on the compartmentalisation of learned knowledge, we may conclude as
follows: students can mobilise IC sector practices in standard situations of the
CPD sector. However, this application reveals the fragile logos of IC praxeolo-
gies. The reverse mobilisation of CPD praxis for IC tasks, however, is rarely
successful. The data are also consistent with our theoretical analyses regarding
the significance of ostensives. The disconnections shown in the praxeological
analyses are clearly evident in the students’ work on the tasks. In addition,
fragile logos is generally observable in all task types and praxeologies.
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5 General conclusion and ways forward

In this study, we have made the assumption that a lack at the level of the
technology (in the sense of ATD) hinders students’ ability to transfer tech-
niques: in other words, a deficient logos may lead to a loss of the operative
valence of ostensives, following the instability or loss of their semiotic value.
As main results, we have found out that students can mobilise the IC sector
praxis in standard situations of the CPD sector but that the converse, in the
context of the bridging tasks where the ostensive P is absent, is rarely suc-
cessful. Our ananalysis of the acquisition of crucial elements of the logos of
CPD and IC supports the hypothesis that the deficiency of the logos plays a
role regarding the missing links. These results coincide with the observation
in textbooks that “blind” instrumented techniques (devoid of proper technol-
ogy) are taught and connections between the notion of area and the concept
of probability distribution are insufficiently developed.

In view of the theoretical elements that support the links, we are rea-
sonably confident that extending the questionnaire to a wider population of
students should make it possible to establish findings regarding the represen-
tativeness of the observations reported here. Another way of extending this
research would consist in contrasting the results with a population of stu-
dents that would be equipped, previously to taking the questionnaire, with
the “histogram praxeology” (identified at the end of section 3.3). It is a ma-
jor opportunity, yet underdeveloped in the current curriculum in France, to
deepen the relationships between CPD, areas and integrals. An original teach-
ing sequence introducing the integral concept by probability modelling tasks
is designed and studied in (Derouet & Parzysz, 2016) and (Derouet, 2019).
This can be seen as a first pioneering approach in this respect.

On a more general level, our study opens the road to similar works on
other mathematical topics: students’ difficulty in crossing mathematical sec-
tors, which may be seen at first sight as a problem of cognitive flexibility, is un-
derstood as a result of deficient praxeologies developed within the institution.
The institutional analyses are thus a first step in pointing to concrete proposals
to improve the teaching with respect to a key aspect of the secondary-tertiary
transition, if it is assumed that students’ capacity to integrate compartmen-
talised knowledge in a coherent and operative whole is an important skill to
be successful in post-secondary studies.
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