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1
Cartesian motion

The Greek word δυναµις means physical force or power. Dynamics consists of

• kinematics: the study of motion of bodies (κινηµα = motion);

• kinetics: the study of action of forces and resulting motion (κινητικoς =
movable).

Definitions

In kinematics, we define the position, velocity, and acceleration of bodies.

Position x is the location of a body. In dynamics problems, location is usually
a function of time. For 1-dimensional situations, we use x with reference
to some origin, for 3-dimensional situations, we use Cartesian (x , y , z) or
polar (r , ϑ, ϕ) coordinates.

Velocity ~v = ẋ is the rate of change of position x with time. Here, the dot ˙
stands for d

dt
.

Acceleration ~a = v̇ = ẍ is the rate of change of speed with time. Velocity and
acceleration have magnitude and direction, i.e., they are vectors.

Jerk ȧ = v̈ =
...
x is the rate of change of acceleration with time.
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Jounce ä =
...
v =

....
x is the rate of change of jerk with time. So, the jounce

equals the fourth time derivative of the position.

Speed is the magnitude of the velocity.

Deceleration −a = −v̇ = −ẍ is the opposite of acceleration.

Given any acceleration function,

v(t) =

∫
a(t) dt. (1.1)

For constant acceleration, i.e., ȧ = 0,

v(t) =

∫
a dt = v(0) + at (1.2)

and

x(t) =

∫
v(t) dt = x(0) + v(0)t + 1

2
at2. (1.3)

Substituting at = v(t)− v(0) from (1.2) into (1.3) yields

x(t) =
v(t) + v(0)

2
t. (1.4)

Note that

a =
dv

dt
=

dv

dx

dx

dt
= v

dv

dx
. (1.5)

Thus, ∫
a dx =

∫
v dv (1.6)

or

ax =
v 2

2
+ c . (1.7)

If v = v(0) when x = 0, c = − v(0)2

2
. Thus,

v(t)2 = v(0)2 + 2ax . (1.8)
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Projectiles

Consider a projectile launched with a velocity v at an angle θ relative to the
normal of ground level. The vertical component of the velocity at launch is
v sin θ, whereas the vertical component of the velocity at maximum height is
zero. The projectile is subjected to a constant acceleration a = −g , where g is
the gravity acceleration. In the absence of resistive forces, there is no horizontal
acceleration and since the gravity acceleration is perpendicular to the horizontal
component of the velocity, the horizontal component stays constant at v cos θ.

Since the travel time from launch to maximum height is half of the to-
tal travel time t, we consider only this motion to compute the total travelled
distance. Then, assuming no air resistance,

v sin θ − g
(

1
2
t
)

= 0 (2.1)

or

t =
2v sin θ

g
. (2.2)

Hence, the maximum range of the projectile is

x =
2v 2 sin θ cos θ

g
=

v 2 sin 2θ

g
. (2.3)
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Forces and projectiles on inclined planes

Consider an object of mass m on an inclined plane, tilted at an angle θ. If
the object is stationary, the net force on the object must be zero. The weight
component along the plane F‖ = mg sin θ is balanced by the friction. The
weight component perpendicular to the plane F⊥ = mg cos θ.
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Conservation of energy

The potential energy of a ball of mass m on top of a ramp with height h is

EP = m g h, (3.1)

whereas its kinetic energy is zero. At the bottom of the ramp, the kinetic energy
of the ball is

EK = 1
2
m v 2, (3.2)

whereas its potential energy is zero. Hence, if all energy is transferred lossless
into motion, the velocity at the bottom of the ramp must be

v =
√

2 g h. (3.3)

The work done starting from rest equals the integral of the force F to which the
ball has been subjected over the path it has travelled:

∫
F dx =

∫
m

dv

dt
dx =

∫
m

dv

dx

dx

dt
dx

=

∫
mv

dv

dx
dx =

∫
mv dv = 1

2
mv 2 = EK.

(3.4)
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4
Mass on a spring

Consider on object of a mass m attached by a massless elastic spring to a
motionless vertical wall and resting on top of a horizontal frictionless surface.
Let us define this equilibrium position as x = 0. The mass is pulled back over
a distance ∆x by a force F . For a stationary mass,

F = s x , (4.1)

where s is the stiffness of the spring. The elastic potential energy gained equals
the work done by stretching the elastic object:

EP =

∫ ∆x

0

F dx =

∫ ∆x

0

s x dx =

[
1

2
s x2

]∆x

0

=
1

2
s ∆x2. (4.2)

After release, we can define the excursion x(t) around the equilibrium by

m ẍ = −s x (4.3)

or
a = − s

m
x . (4.4)

Using (1.5), we get

v
dv

dx
= − s

m
x . (4.5)
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This can be rearranged to ∫
v dv =

∫
− s

m
x dx (4.6)

or
v 2

2
= − s

m

x2

2
+ c . (4.7)

Since v(0) = 0 and x(0) = ∆x , c = s
m

(∆x)2, yielding

v =
dx

dt
=

√
s

m
(∆x)2 − s

m
x2, (4.8)

from which it follows that√
m

s

∫
1√

(∆x)2 − x2

dx =

∫
dt. (4.9)

Using d
dx

arcsin x = 1√
1−x2 , this becomes

√
m

s
arcsin

x

∆x
= t + c (4.10)

or

arcsin
x

∆x
=

√
s

m
(t + c). (4.11)

Hence, a solution for (4.3) is given by

x = ∆x sin

(√
s

m
(t + c)

)
. (4.12)

This can be further simplified to

x = ∆x sin (ω0t + φ) , (4.13)

where

ω0 =

√
s

m
(4.14)

is the natural (or resonance) frequency of the system in radians per time unit,
and

ω0 = 2πf0 =
2π

T0
, (4.15)

where f0 is the resonance frequency in cycles per time unit and T0 is the res-
onance period. Since the excursion is maximal at x = 0, the phase φ = 1

2
π.

Thus, (4.13) becomes
x = ∆x cos (ω0t) . (4.16)
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Circular motion

For circular motion, we can express position, velocity, and acceleration in a
similar way as for Cartesian motion.

Definitions

Angle θ is the difference in angular position with reference to an original at ra-
dius r , usually expressed in degrees (o) or radians (rad). 360o corresponds
to 2π rad.

Angular velocity ω = θ̇ is the rate of change of angle θ with time.

Angular acceleration α = ω̇ = θ̈ is the rate of change of angular velocity with
time.

At a constant angular velocity, the distance travelled around a circle is r θ = rωt.
For constant acceleration, i.e., α̇ = 0, analogous to (1.2),

ω(t) =

∫
α dt = ω(0) + αt. (5.1)

Analogous to (1.3),

θ(t) =

∫
ω(t) dt = θ(0) + ω(0)t + 1

2
αt2. (5.2)
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Circular motion using vectors

Consider a point on a circle of radius r around the origin. The vector describing
this point is given by

~r = r cos θ x̂ + r sin θ ŷ , (5.3)

where θ is the angle between ~r and the x-axis. For constant ω, we can define
θ = ωt. Thus, (5.3) becomes

~r = r cos ωt x̂ + r sin ωt ŷ . (5.4)

The velocity

~v =
d~r

dt
= −ωr sin ωt x̂ + ωr cos ωt ŷ . (5.5)

So,
v = |~v | = ωr (5.6)

or
ω =

v

r
. (5.7)

The inner product of the radius and the velocity is

〈~r ,~v〉 = ~r · d~r

dt
= −ωr 2 cos ωt sin ωt + ωr 2 cos ωt sin ωt = 0. (5.8)

Hence, ~v is at right angles to ~r , i.e., tangential to the circle. The acceleration

~a =
d2~r

dt2
= −ω2r cos ωt x̂ − ω2r sin ωt ŷ = −ω2~r . (5.9)

The acceleration is constant in magnitude and centripetal, i.e., directed towards
the centre. The magnitude of the central force is

Fc = mω2r =
mv 2

r
. (5.10)
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Law of gravitation and geostationary

satellites

The gravitational force is

Fg =
M♁mG

r 2
, (6.1)

where M♁ is the mass of the earth, m is the mass of an object subjected to the
earth’s gravity, G = 6.67× 10−11 m3 kg−1 s−2 is the gravitational constant, and
r is the centre-to-centre distance of the earth and the object.

A geostationary satellite is one that orbits once a day, i.e., its period is
T = 24 × 60 × 60 s. The gravitational force on the satellite must equal the
radial force required to keep it in circular orbit:

m ω2r =
M♁mG

r 2
. (6.2)

Hence, given M♁ = 5.977× 1024 kg,

r =
3

√
M♁G
ω2

=
3

√
M♁GT 2

4π2
= 4.22× 107 m. (6.3)

Since the radius of the earth at the equator is 6378 km, the height of a geosta-
tionary satellite must approximate 35,900 km.
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7
Vehicles on bends and bumps

On a circular bend, the acceleration towards the centre is provided by the friction.
Vertically there is a reaction force equal to the weight. The horizontal friction
force is given by µmg , where µ is the coefficient of friction. To avoid skidding,
the horizontal friction force has to be greater than the centripetal force in the
opposite direction, i.e.,

µmg ≥ mv 2

r
. (7.1)

The resultant force on the tyres has a direction

θ = arctan
µmg

mg
= arctan µ. (7.2)

By banking the road or track at this angle, the resultant force appears perpen-
dicular to the road or track.

Consider a vehicle moving at a constant horizontal speed v that encounters
a bump in the track with a profile given by

y(x) =
h

2

(
1− cos

2πx

L

)
, 0 ≤ x ≤ L. (7.3)

After substitution x = vt this becomes

y(t) =
h

2

(
1− cos

2πvt

L

)
, 0 ≤ t ≤ L

v
. (7.4)
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Hence, the vertical component of the velocity

ẏ(t) =
h

2

2πv

L
sin

2πvt

L
=

hπv

L
sin

2πvt

L
(7.5)

and the vertical acceleration owing to the path

ÿ(t) =
2hπ2v 2

L2
cos

2πvt

L
. (7.6)

The vertical force balance is

mÿ = −mg + Fr, (7.7)

where Fr is the reaction force. So, the total vertical force exerted on the vehicle
is given by

Fr = mg + m
2hπ2v 2

L2
cos

2πvt

L
= mg

(
1 +

2hπ2v 2

gL2
cos

2πvt

L

)
. (7.8)
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Motion on a vertical circle

Consider a vehicle moving downhill and accelerating by gravity without any
braking or rolling friction. If the hill is described by a semicircle of radius r , then
at a certain angle, the vehicle leaves the circular path and becomes a projectile.
Assume the path is frictionless. The change in potential energy between the top
and in intermediate point on the path at θ rad is given by

EP = mgr(1− cos θ). (8.1)

Conservation of energy gives

1
2
mv 2

0 + mgr(1− cos θ) = 1
2
mv 2, (8.2)

where v0 is the initial velocity. The force balance along the normal is given by

Fg − Fn = Fc, (8.3)

where Fn is the resultant normal force. Hence,

Fn = mg cos θ − mv 2

r
= mg cosθ − m

r

(
v 2
0 + 2gr(1− cos θ)

)
. (8.4)

At the critical angle where the vehicle leaves the circular path, Fn = 0. There-
fore, (8.4) simplifies to

v 2
0 + 2gr = 3gr cos θ (8.5)
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and the critical angle is

θ = arccos

(
v 2
0

3gr
+

2

3

)
. (8.6)
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Tangential acceleration

When the angular velocity varies, there is a tangential acceleration

at =
dv

dt
= r ω̇ = rα. (9.1)

Since the acceleration towards the centre is

ac =
v 2

r
= rω2, (9.2)

the resultant acceleration is

a =
√

a2
t + a2

c = r
√

ω̇2 + ω4 (9.3)

at an angle

θ = arctan
ac

at
= arctan

ω2

α
. (9.4)
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10
Gear wheels and belt drives

Consider two gear wheels with numbers of teeth N1 and N2, and angular rotation
velocities ω1 and ω2, respectively. Since the same number of teeth must pass
per unit of time,

ω1N1 = ω2N2 (10.1)

or

ω2 =
N1

N2
ω1. (10.2)

Here, N1

N2
is referred to as the gear ratio. Similarly, for a belt drive with wheels

of radii r1 and r2, respectively,

ω2 =
r1
r2

ω1. (10.3)
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Rolling

Consider a wheel of radius r rolling on a horizontal surface in positive direction
(clockwise) at constant speed without slipping. Let’s define A as the point that
touches the surface, B as the point 1

2
π rad further on the wheel in clockwise

direction, C as the top of the wheel, and O as the centre of the wheel, as
schematically represented in Fig. 11.1. The velocities of these points are defined
as vA, vB, vC, and vO, respectively. The wheel must move at a velocity vO. The
velocity of points A, B, and C relative to O is ω~r and its direction perpendicular to
~r . Thus, for each point, the velocity vector equals ω~r +~vO, e.g., vA = −ωr +vO.
Since the wheel does not slip, vA = 0. Thus,

vO = ωr . (11.1)

In B, ω~r and ~vO are perpendicular. Therefore,

vB =
√

(ωr)2 + (ωr)2 =
√

2 ωr . (11.2)

Obviously, at C,

vC = 2 ωr . (11.3)

If the wheel is accelerating in positive direction,

vO = ω(t) r (11.4)

25
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and

aO =
dvO

dt
= ω̇r = αr . (11.5)

The acceleration of points A, B, C relative to O is α~r +~ac = α~r + ω2~r . At A,
the horizontal acceleration is −αr +αr = 0. So only the centripetal acceleration
remains.

y

x

B

A

C

O v
O

Figure 11.1: A wheel rolling on a horizontal surface in positive direction (clock-
wise) at constant speed without slipping.
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Moment of a force

The moment of a force about a point is the product of the force and the
perpendicular distance from the point of reference to the line of action of the
force.

Centre of mass or centroid

The centre of mass G of n elemental masses mi at fixed positions (~ri)G relative to
G is such, that the sum of the products of mass and distance, i.e., the moments
of the masses about G,

n∑
i=1

mi (~ri)G = 0. (12.1)

For an arbitrarily shaped body,

∫
~r dm = 0. (12.2)

Consider some external coordinate origin at ~rG from G. Then, the positions of
the element masses relative to the origin is

~ri = ~rG + (~ri)G . (12.3)
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Applying Newton’s second law to all of the elemental masses yields a resultant
force

~F =
n∑

i=1

mi ~ai =
n∑

i=1

mi ~̈ri =
n∑

i=1

mi ~̈rG +
©©©©©©©*0n∑
i=1

mi

(
~̈ri

)
G

= ~̈rG

n∑
i=1

mi . (12.4)

This means that the translational motion of a rigid body can be modelled as the
motion of the total mass at the centroid. The force acting on a body relates to
the moment by

~F ×~r = ~M . (12.5)
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Moment of inertia

The rotational motion of a system is related to the moment of forces as follows:

M = I α, (13.1)

where I is the moment of inertia about a certain origin, M is the moment of
forces about the origin, and α is the angular acceleration relative to the origin.
For a system containing n elementary masses mi ,

I =
n∑

i=1

mi r
2
i . (13.2)

Since I = (mr)r , the moment of inertia is also referred to as the secondary
moment of mass. For an arbitrarily shaped body,

I =

∫
r 2 dm. (13.3)

Cylindrical shaft

Consider a cylindrical shaft length L, radius R , and density ρ rotating about its
length axis. The mass of the shaft is

m = πR2Lρ. (13.4)
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The mass of an elementary tube of radius r and thickness dr

dm = 2πr L drρ. (13.5)

The moment of inertia for the elementary tube is

dI = r 2δm = 2πr 3L drρ. (13.6)

Integrating over all elemental tubes from 0 to R gives

I =

∫ R

0

2πr 3L ρ dr = 2πLρ

[
r 4

4

]R

0

= 1
2
πR4Lρ = 1

2
mR2. (13.7)

Moments of inertia for some simple shapes

The moment of inertia of a body rotating about the i -axis is given by Ii .

1. Solid cylinder of mass m, radius R , and length in z-direction L
Ix = Iy = 1

12
m(3R2 − L2);

Iz = 1
2
mR2.

2. Thin wheel of mass m and radius R rotating about the z-axis
Ix = Iy = 1

4
mR2;

Iz = 1
2
mR2.

3. Hollow cylinder of mass m, external radius R , internal radius r , and length
in z-direction L
Iz = 1

2
m(3R2 + r 2).

4. Solid sphere of mass m and radius R
Ix = Iy = Iz = 2

5
mR2.

5. Rectangular bar of mass m, width in x-direction b, height in y -direction
h, and length in z-direction L
Ix = 1

12
m(h2 + L2);

Iy = 1
12

m(b2 + L2);
Iz = 1

12
m(b2 + h2).
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Parallel axis theorem

Consider an axes of rotation parallel to the axes of rotation through the centroid
G. Consider the plane perpendicular to both axes and through G. We define C
as the point where the new axis of rotation cuts the plane, which has a distance
rG to G. The distance from C to an elemental mass mi in the plane is ri , whereas
the distance from G to mi is (ri)G. We define ~xi and ~yi such, that

~xi + ~yi = (~ri)G ,

#                ”

(rG + xi) + ~yi = ~ri ,

~xi · ~yi = 0.

(14.1)

Furthermore, we define the angle θi between (~ri)G and the line
#                ”

(rG + xi) through
C and G. Here,

yi

xi
= tan θi ,

xi = (ri)G cos θi ,

yi = (ri)G sin θi .

(14.2)
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According to the Pythagorean theorem,

r 2
i = (rG + xi)

2 + y 2
i

=
(
r 2
G + 2rG (ri)G cos θi + (ri)

2
G cos2 θi

)
+ (ri)

2
G sin2 θi

= r 2
G + (ri)

2
G + 2rG (ri)G cos θi .

(14.3)

Now we can reformulate the inertia moment for rotation about C with respect
to the inertia moment about G for n elemental masses:

IC =
n∑

i=0

r 2
i mi =

n∑
i=0

(
(ri)

2
G + r 2

G + 2rG (ri)G cos θi

)
mi

=
n∑

i=0

(ri)
2
G mi +

n∑
i=0

r 2
G mi +

©©©©©©©*0

2rG

n∑
i=0

xi mi

= IG +
n∑

i=0

r 2
G mi = IG + r 2

G

n∑
i=0

mi .

(14.4)

Thus, for an arbitrarily shaped body of mass m,

IC = IG + r 2
G

∫
dm = IG + m r 2

G. (14.5)

Rotation energy

Combining (3.4) and (5.10), the work done during rotation is

∫
F dr =

∫
mω2r dr = 1

2
mω2r 2 = 1

2
Iω2. (14.6)

Thus, the total kinetic energy of a body translating at a velocity v and rotating
at an angular velocity ω is

EK = 1
2
mv 2 + 1

2
Iω2. (14.7)
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Momentum and impulse

Momentum is the product of mass and velocity:

~G = m~v . (15.1)

Because of the conservation of (linear) momentum,

∑
i

~Gi =
∑

i

mi ~vi = constant. (15.2)

Impulse is defined by

~J =

∫
~F dt =

∫ ~v2

~v1

m
d~v

dt
dt = m [~v ]~v2

~v1
= m~v2 −m~v1. (15.3)

Hence, impulse is the change in momentum, whereas force is the rate of change
of momentum:

~F =
d~J

dt
=

d

dt
(m~v2 −m~v1) . (15.4)

Momentum and impulse are useful concepts in problems that involve time-
varying forces, e.g., impacts, as long as the force variation is known. Alter-
natively, the impulse can be used for finding average forces in the velocities are
known.
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Impact

Impact problems involving separation tend to be situations in which force vari-
ations are difficult to specify. Consider an object of mass m1 travelling at a
velocity u1 and an object of mass m2 travelling over the same path at a velocity
u2. Assume that u2 > u1. After impact, the respective velocities are v1 and v2.
However, v2 < v1. Conservation of (linear) momentum gives

m1u1 + m2u2 = m1v1 + m2v2. (15.5)

For given masses and initial velocities, there are two unknowns. Another re-
lationship is the coefficient of restitution. It gives the ratio of the separation
velocity to the approach velocity

CR =
v1 − v2

u2 − u1
. (15.6)

Table 15.1 shows typical coefficients of restitution for some materials.

Table 15.1: Coefficients of restitution.

Materials CR

Glass on glass 0.95
Steel on steel 0.7
Wood on wood 0.5
Lead on lead 0.15
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Free vibrations

Consider an undamped horizontal mass m on a spring with stiffness s (4.3):

m ẍ + s x = 0 (16.1)

or
ẍ + ω2

0 x = 0, (16.2)

where ω0 =
√

s
m

is the resonance frequency of the system (4.14). The general
solution of this ordinary differential equation is

x = A cos ω0t + B sin ω0t. (16.3)

If x(0) = x0 and ẋ(0) = ẋ0,

x = x0 cos ω0t +
ẋ0

ω0
sin ω0t

= C sin (ω0t + φ)

= C (sin ω0t cos φ + cos ω0t sin φ)

= C sin φ cos ω0t + C cos φ sin ω0t.

(16.4)

Since C sin φ = x0 and C cos φ = ẋ0

ω0
,

x =

√
x2
0 +

ẋ2

ω2
0

sin

(
ω0t + arctan

x0 ω0

ẋ0

)
. (16.5)
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Damped free vibrations

Consider a mass-spring-dashpot system, for which the damping force is propor-
tional to the velocity. Then (16.1) becomes

m ẍ + βẋ + s x = 0, (16.6)

where β is the mechanical resistance. Using (4.14) and the damping coefficient

ζ =
β

2mω0
, (16.7)

we can express the system in terms of its damping and resonance frequency:

ẍ + 2ζω0ẋ + ω2
0x = 0. (16.8)

Assume x = Aeλt . Then,

λ2 + 2ζω0λ + ω2
0 = 0. (16.9)

Thus,

λ =
−2ζω0 ±

√
4ζ2ω2

0 − 4ω2
0

2
= ω0

(
−ζ ±

√
ζ2 − 1

)
(16.10)

and

x = A1e

(
−ζ+

√
ζ2−1

)
ω0t + A2e

(
−ζ−

√
ζ2−1

)
ω0t . (16.11)

Now, different forms of motion result from different ζ values and this is the
reason for the assumed form of ζ. The following three conditions of damping
exist:

1. Overdamped condition ζ > 1
Since

√
ζ2 − 1 is real, (16.9) has two distinct roots.

2. Critically damped condition ζ = 1
There is only one root: λ = −ω0. Therefore,

x = Ae−ω0t . (16.12)

3. Underdamped condition ζ < 1
Since

√
ζ2 − 1 is imaginary, the solution is complex:

x = A1e

(
−ζ+j

√
1−ζ2

)
ω0t + A2e

(
−ζ−j

√
1−ζ2

)
ω0t

=
[
A1e

jω0t
√

1−ζ2
+ A2e

−jω0t
√

1−ζ2
]
e−ζω0t .

(16.13)
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Making use of e jθ = cos θ + j sin θ, we can reformulate this to

x =
[
A1e

jωdt + A2e
−jωdt

]
e−ζω0t

= [A1 (cos ωdt + j sin ωdt) + A2 (cos ωdt − j sin ωdt)] e
−ζω0t

= [(A1 + A2) cos ωdt + j (A1 − A2) sin ωdt] e
−ζω0t

= [B1 cos ωdt + B2 sin ωdt] e
−ζω0t

= Ce−ζω0t sin (ωdt + φ) ,
(16.14)

where, ωd is the damped natural frequency

ωd = ω0

√
1− ζ2. (16.15)

So the excursion amplitude decays by e−ζω0t . The damped period is

Td =
2π

ωd
. (16.16)

The damping coefficient can be deduced by measuring the excursion ampli-
tudes x1 = x(t1) and x2 = x(t2) at two times whose difference t2−t1 = Td:

δ ≡ loge

x1

x2
= ζω0Td =

2πζ√
1− ζ2

. (16.17)

Thus,

ζ =
δ√

(2π)2 + δ2

. (16.18)
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17
Forced vibrations

Consider a mass-spring-dashpot system, whose mass is subjected to a periodic
force F with amplitude F0

F = F0 sin ωt. (17.1)

The excursion of the mass can be described by adding F into (16.6):

−s x − βẋ + F0 sin ωt = m ẍ . (17.2)

Using (4.14) and (16.7), we can express the mass-forced system in terms of its
damping and resonance frequency:

ẍ + 2ζω0ẋ + ω2
0x =

F0 sin ωt

m
. (17.3)

Now consider a mass-spring-dashpot system, whose end is subjected to a periodic
excursion xb with amplitude b

xb = b sin ωt. (17.4)

The excursion of the mass can be described by

−s (x − xb)− βẋ = m ẍ (17.5)

or

ẍ +
β

m
ẋ +

s

m
x =

s b sin ωt

m
. (17.6)
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A base-forced system can be expressed in terms of its damping and resonance
frequency by

ẍ + 2ζω0ẋ + ω2
0x =

s b sin ωt

m
. (17.7)

Undamped forced vibrations

Consider a mass-forced mass-spring-dashpot system. If the system is undamped,
(17.3) reduces to

ẍ + ω2
0x =

F0 sin ωt

m
. (17.8)

The solution consists of the complementary function and the particular integral.
The complementary function is the solution of

ẍ + ω2
0x = 0, (17.9)

which has been shown in (16.4) and (16.5):

x = x0 cos ω0t +
ẋ0

ω0
sin ω0t

=

√
x2
0 +

ẋ2

ω2
0

sin

(
ω0t + arctan

x0 ω0

ẋ0

)
.

(17.10)

This is called the transient solution. The particular integral represents the
steady-state solution. It can be determined assuming the same form as the
driving function

x = X sin ωt. (17.11)

Hence, substituting in (17.8) gives

−ω2X sin ωt + ω2
0X sin ωt =

F0 sin ωt

m
. (17.12)

Dividing through by ω2
0 sin ωt and rearranging results into
(

1−
(

ω

ω0

)2
)

X =
F0

m ω2
0

=
F0

s
(17.13)

or

X =

F0

s

1−
(

ω

ω0

)2 . (17.14)



41

So the steady-state solution of (17.8) is

x =

F0

s

1−
(

ω

ω0

)2 sin ωt. (17.15)

The static deflection of a mass under a static load F0 is denoted by

δs =
F0

s
. (17.16)

Now, the severity of the vibration can be expressed in terms of the amplitude
ratio or magnification factor

M =
X

δs
=

1

1−
(

ω

ω0

)2 . (17.17)

Damped forced vibrations

Consider a damped mass-forced mass-spring-dashpot system. The excursion
around equilibrium is given by (17.3)

ẍ + 2ζω0ẋ + ω2
0x =

F0 sin ωt

m
. (17.18)

The complimentary function is a solution of

ẍ + 2ζω0ẋ + ω2
0x = 0, (17.19)

which has been shown in (16.14):

x = Ce−ζω0t sin (ωdt + φ) . (17.20)

The transient part of the solution damps out. The particular integral can be
determined assuming the form

x = A cos ωt + B sin ωt = X sin (ωt − φ) . (17.21)

Substituting in (17.18) gives

−ω2X sin (ωt − φ) + 2ζω0 ωX cos (ωt − φ)

+ω2
0X sin (ωt − φ) =

F0 sin ωt

m
.

(17.22)
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Dividing through by ω2
0 and rearranging results into

(
1−

(
ω

ω0

)2
)

X sin (ωt − φ) + 2ζ
ω

ω0
X cos (ωt − φ) =

F0 sin ωt

m ω2
0

. (17.23)

This can be rewritten as
(

1−
(

ω

ω0

)2
)

X (sin ωt cos φ− cos ωt sin φ)

+2ζ
ω

ω0
X (cos ωt cos φ + sin ωt sin φ) =

F0 sin ωt

m ω2
0

(17.24)

or
[
−

(
1−

(
ω

ω0

)2
)

X sin φ + 2ζ
ω

ω0
X cos φ

]
cos ωt

+

[(
1−

(
ω

ω0

)2
)

X cos φ + 2ζ
ω

ω0
X sin φ

]
sin ωt =

F0 sin ωt

m ω2
0

.

(17.25)

This can be split up into two equations:
[
−

(
1−

(
ω

ω0

)2
)

X sin φ + 2ζ
ω

ω0
X cos φ

]
cos ωt = 0 (17.26)

and
[(

1−
(

ω

ω0

)2
)

X cos φ + 2ζ
ω

ω0
X sin φ

]
sin ωt =

F0 sin ωt

m ω2
0

. (17.27)

From (17.26), it follows that

φ = arctan




2ζ
ω

ω0

1−
(

ω

ω0

)2


 . (17.28)

After dividing through by sin ωt, (17.27) is simplified to
(

1−
(

ω

ω0

)2
)

X cos φ + 2ζ
ω

ω0
X sin φ =

F0

m ω2
0

=
F0

s
. (17.29)
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Combining (17.28) and (17.29) yields

X =

F0

s√√√√
(

1−
(

ω

ω0

)2
)2

+

(
2ζ

ω

ω0

)2

. (17.30)

Hence, the magnification factor

M =
1√√√√

(
1−

(
ω

ω0

)2
)2

+

(
2ζ

ω

ω0

)2

. (17.31)

Similarly, for a damped base-forced mass-spring-dashpot system, the steady-
state excursion amplitude is given by

X =

b

(
ω

ω0

)2

√√√√
(

1−
(

ω

ω0

)2
)2

+

(
2ζ

ω

ω0

)2

. (17.32)
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A
List of symbols

M L T Θ dimensions

~a acceleration L T−2

ȧ jerk L T−3

ä jounce L T−4

ac central acceleration L T−2

ai acceleration of point i L T−2

at tangential acceleration L T−2

A oscillation amplitude L
b base-forced amplitude L
B oscillation amplitude L
c constant L2 T−2

c constant T
C oscillation amplitude L
CR coefficient of restitution
EK kinetic energy M L2 T−2

EP potential energy M L2 T−2

f0 resonance frequency T−1

~F force M L T−2

F0 driving force amplitude M L T−2
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Fc central force M L T−2

Fg gravitational force M L T−2

Fn normal force M L T−2

Fr reaction force M L T−2

F‖ force parallel to a plane M L T−2

F⊥ force perpendicular to a plane M L T−2

g gravity acceleration L T−2

G gravitational constant M−1 L3 T−2

~G momentum M L T−1

~Gi momentum of element i M L T−1

h height L
I moment of inertia M L2

IC moment of inertia about C M L2

IG moment of inertia about G M L2

Ii moment of inertia about axis i M L2

j complex number with the property j2 = −1
~J impulse M L T−1

L length L
m mass M
mi elemental mass i M
~M moment M L2 T−2

M♁ mass of the earth M
M magnification factor
n number of elements
Ni number of teeth of gear wheel i
~r radius L
ri radius of wheel i L
~ri position of element i L
(~ri)G position of element i relative to centroid G L
~rG distance from centroid G L
R radius L
s spring stiffness M T−2

t time T
T period T
T0 resonance period T
Td damping period T
ui velocity of element i L T−1

v velocity L T−1
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~v directed velocity L T−1

v̇ acceleration L T−2

v̈ jerk L T−3

...
v jounce L T−4

v0 initial velocity L T−1

vi velocity of point i L T−1

x position L
∆x step size L

x̂ unit vector in x-direction
ẋ velocity in x-direction L T−1

ẍ acceleration L T−2

...
x jerk L T−3

....
x jounce L T−4

x0 initial position L
ẋ0 initial velocity L T−1

xb base excursion L
~xi x-distance to to element i L
X excursion amplitude L
y position L
ŷ unit vector in y -direction
ẏ velocity in y -direction L T−1

ÿ acceleration in y -direction L T−2

~yi y -distance to to element i L
z position L

α angular acceleration T−2

β mechanical resistance M T−1

δ excursion amplitude decay
δs static deflection L
ζ damping coefficient
θ angle

θ̇ angular velocity T−1

θ̈ angular acceleration T−2

θi angle between (~ri)G and
#                ”

(rG + xi)
ϑ azimuth

λ ω0

(
−ζ ±

√
ζ2 − 1

)
T−1

µ coefficient of friction
ρ density M L−3
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φ phase
ϕ zenith
φ phase
ω angular velocity T−1

ω̇ angular acceleration T−2

ω0 angular resonance frequency T−1

ωd damped natural frequency T−1

ωi angular frequency of wheel i T−1

〈~r ,~v〉 inner product of vectors ~r ,~v L2 T−1
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