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Game Theory is a common approach used to understand attacker and defender motives,

strategies, and allocation of limited security resources. For example, many defense

algorithms are based on game-theoretic solutions that conclude that randomization

of defense actions assures unpredictability, creating difficulties for a human attacker.

However, many game-theoretic solutions often rely on idealized assumptions of decision

making that underplay the role of human cognition and information uncertainty. The

consequence is that we know little about how effective these algorithms are against

human players. Using a simplified security game, we study the type of attack strategy

and the uncertainty about an attacker’s strategy in a laboratory experiment where

participants play the role of defenders against a simulated attacker. Our goal is to

compare a human defender’s behavior in three levels of uncertainty (Information Level:

Certain, Risky, Uncertain) and three types of attacker’s strategy (Attacker’s strategy:

Minimax, Random, Adaptive) in a between-subjects experimental design. Best defense

performance is achieved when defenders play against a minimax and a random attack

strategy compared to an adaptive strategy. Furthermore, when payoffs are certain,

defenders are as efficient against random attack strategy as they are against an adaptive

strategy, but when payoffs are uncertain, defenders have most difficulties defending

against an adaptive attacker compared to a random attacker. We conclude that given

conditions of uncertainty in many security problems, defense algorithms would be more

efficient if they are adaptive to the attacker actions, taking advantage of the attacker’s

human inefficiencies.

Keywords: defense strategies, security games, game theory, human behavior, learning

INTRODUCTION

Security problems involve offensive and defensive actions across nations, institutions, and
individuals. Attackers aim at stealing and getting access to assets, information, and goods while
defenders allocate their limited security resources to prevent attackers from stealing their goods.
In home security for example, a home owner may assign alarm systems to strategic locations of
the house. Yet, attackers foreseeing the way home owners behave, may be able to find simple
and unexpected ways to break into the house (i.e., thorough the front door). Defending against
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intelligent unauthorized intrusions in the cyber world can be
even more challenging, given the hyper-dimensionality of the
environment, the type of digital weapons used, the speed of
operations and large number of nodes to protect against a relative
high number of potential attackers (Gonzalez et al., 2015). In this
research we address a basic question of how do human defenders
behave under several levels of uncertainty and various types of
attack strategies.

Game theory is a common formalized way to inspire the
development of defense algorithms in several security problems
(e.g., Roy et al., 2010; Tambe, 2011; Shieh et al., 2012). For
example, Stackelberg games (i.e., strategic sequential games in
which one’s own strategy is reactive to one’s rival’s actions), are
common in the design of algorithms that help allocating limited
security resources, and results have been successfully applied to
multiple naturalistic settings (e.g., Jain et al., 2010; Fang et al.,
2013). Although these strategies have been mostly demonstrated
in the physical world, a parallel situation occurs in the cyber
world, where there is a need of protecting from electronic
criminal activities. Researchers have also turned to using game
theory to understand security and defense strategies in the cyber
world (Alpcan and Başar, 2010; Dutt et al., 2013; Gonzalez,
2013). Attacks in the cyber world (i.e., cyberattacks) use digital
weapons that are often imperceptible to the human senses; they
are not limited by geography and political boundaries; they
require of highly sophisticated technical knowledge, and they
may be highly dynamic and distributed. Thus, a defender in the
cyber world may need strategies that are dynamic and adaptive
to sophisticated attackers, in contrast to currently common static
and non-adaptive defense algorithms (Bier and Azaiez, 2008;
Abbasi et al., 2015a,b).

To build effective dynamic and adaptive defense algorithms
we need to address at least two strong assumptions in the
science of security games (Nguyen et al., 2016) and behavioral
game theory more generally (Gonzalez et al., 2015): information
certainty and human rationality. Current defense algorithms
inspired by game theory assume that a defender has perfect
information about the payoff matrix and the attacker’s behaviors.
They also often assume that players are perfectly rational and
are able to account and process all information accurately. In a
review of learning models from behavioral game theory, Camerer
(2003) concludes that most models rely on a full information
assumption, and they would not be able to predict behavior
in conditions where this information is not available. Similarly,
most of these models make cognitively implausible assumptions,
such as players being able to remember large amounts of
information (Gonzalez et al., 2015).

This paper contributes to understanding how to possibly
address these two challenges by learning from a laboratory
experiment how human defenders deal with information
uncertainty in games in which the attacker algorithm is random,
conservative (i.e., minimizes losses) or adaptive (i.e., adapts to
the defender’s behavior), using an adversarial security game with
payoff asymmetry that mimics real life interactions between a
defender and an attacker. The conclusions that we draw from
our study are general in nature and have applications to several
security problems. We discuss the implications our results have

for the design of defense algorithms against adaptive attackers
under conditions of uncertainty.

An Asymmetric Cybersecurity Game,
Attack Algorithms, and Information
Uncertainty
Figure 1 illustrates a generic non-cooperative game with two-
players, each of them being able to take two possible actions.
In the context of cybersecurity, attacker, and defender interact
in non-cooperative ways: The players have conflicting interests
(one’s gains correspond to the other’s losses) characterized by
a zero-sum property. In other words, there is no value in
cooperating in such interactions because no player can win
withoutmaking the other one lose. Furthermore, the game is fully
strategic since any player’s bestmove strictly depends on the other
player’s move.

Consider a simple strategic game where a potential attacker
may either hack the defender’s network (H) or do nothing (N)
and a defender that may either surveil the network (S) or do
nothing (N). In such a scenario, there exists some probability p
(0 < p < 1) that the hack is successful despite surveillance. This
means that there is a probability 1 − p that the hack has been
stopped. The Appendix provides a game-theoretic analysis of this
scenario and discusses the various assumptions of the outcomes
from the strategic actions (x, y, and z), as well as the assumptions
regarding the probability of the hacker’s success (p).

Experimentally controlling for different attack strategies
while investigating human defenders, is a common research
approach (Lieberman, 1962; Messick, 1967; Fox, 1972; Coricelli,
2004; Shachat and Swarthout, 2004, 2012; Dürsch et al., 2006;
Spiliopoulos, 2008). In competitive scenarios, there often exist
well-known simple strategies that vary in the level of rationality
and level of adaptation to the defender’s behavior. A Random
strategy (Fox, 1972) is a fixed and static strategy consisting of
choosing every option with an equal probability. Such rule is
independent of the payoff matrix and the defender’s behavior. A
Minimax strategy implies the minimization of the possible loss
of a worst case scenario (Lieberman, 1962; Messick, 1967; Fox,
1972; Shachat and Swarthout, 2004). When defined as a mixed
strategy in a two-player zero-sum game, this principle guarantees
the same expected payoff independently of the defender’s choice
(see Appendix). An Adaptive strategy may imply that an attacker
accounts for the history of the defender’s actions, estimates

FIGURE 1 | Defender’s payoffs in generic asymmetric security game

(0 < y < x, 0 < z, 0 < p < 1).
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the defender’s most likely move in the current round and
choose a best response accordingly (Brown, 1951; Robinson,
1951; Messick, 1967; Dürsch et al., 2006). Unlike the other
strategies, an Adaptive strategy takes into account the other
player’s past behavior to decide on the own agent’s current
behavior. The specific adaptive strategy that we consider in this
study corresponds to the well-known fictitious play (Brown,
1951; Robinson, 1951).

Uncertainty regarding the attacker’s actions and outcomes
in repeated strategic interactions is of particular interest in
cybersecurity and the lack of explicitly described information
naturally leads people to rely more on their own past experience.
Risky behaviors may be contrastingly different in situations
where people rely on descriptions or experience to make
decisions (Hertwig et al., 2004). This body of research suggests
fundamental psychological differences in how humans make
decisions under uncertainty (Hau et al., 2008; Hertwig and
Erev, 2009). In behavioral game theory, uncertainty effects
are also of great interest (Martin et al., 2014; Gonzalez et al.,
2015). For example, Bereby-Meyer and Roth (2006) have studied
players’ abilities to learn cooperation in a repeated PD game
where the payoff descriptions were more or less noisy: in each
outcome, the payoffs were presented either deterministically
or probabilistically. The speed of individual learning was
substantially diminished when the payoffs were noisy (non-
deterministic), even though players could monitor one another’s
past actions perfectly. More generally, these studies show that
even small changes in payoff environment can have a large
effect on collective behavior. Our main general hypothesis is
that introducing uncertainty in the attacker’s payoffs (through
the probability p) can affect the human defender’s behavior in
different ways depending on the attacker’s strategy: uncertainty
may lead defenders to follow noisier and more unpredictable
behavior unless the attacker’s strategy is sufficiently naive and
exploitable.

METHODS

We examine the combined effects of (1) the attacker’s
preprogrammed strategy and (2) the level of uncertainty in the
outcome description, on a defender’s behavior in the asymmetric
security game (Figure 1), using a 3 (Information Level: Certain,
Risky, Uncertain) × 3 (Attacker’s strategy: Minimax, Random,
Adaptive) between-subjects experimental design.

Under Certain information, participants have complete
information about all possible outcomes; they receive the game
as in Figure 2A, corresponding to a certainty case of the game
presented in Figure 1. For example, when the defender chose S
and the potential attacker chose N, the outcome (S,N) indicates a
payoff of−2 points to the defender and 2 points to the attacker.

Under Risky information (Figure 2B), participants only have
partial information about possible payoffs they can obtain as the
defender chooses S and the attacker selects H. Under Uncertain
information (Figure 2C), participants are never informed about
the actual value of probability p that determines the (S,
H) consequence. In this case, participants only know that
one player will win while the other will lose depending on
the unknown probability p. Importantly, the games in all
information conditions are theoretically equivalent in the sense
that the same cells of the game carry the same expected payoffs:
the value of p in Figures 2B,C is 0.35; the deterministic payoffs
in the case of the (S,H) outcome from the Certain conditions
correspond to the expected payoffs in the same outcome (where
p = 0.35) in the two other conditions (Risky and Uncertain
descriptions).

The attacker’s strategy is manipulated into three algorithms:
Minimax, Random, and Adaptive. In Minimax, the attacker
always follows the Minimax principle by selecting H with 2

15

probability (and therefore N with 13
15 probability) in every

round (see Appendix). These values derive from the payoffs in
the baseline setting of Figure 2A. In this strategic game, the
defender’s Minimax strategy is to select S with a 2

3 probability

and N with a 1
3 probability (in each round, the defender’s

corresponding expected payoff is −
4
3 and potential attacker’s

corresponding expected payoff is 4
3 ). Note that this particular

game allows for a clear distinction between both players’ optimal
and the Random strategy, which consists of a purely random
choice where the attacker selects H or N with equal probability
(0.5) at every round. The Adaptive algorithm is as follows: in the
very first round of the game, the attacker selects H orNwith equal
probability (as with the Random strategy), and in all subsequent
rounds, its choice is based on the defender’s history of past moves
(see Appendix).

In all conditions, participants are asked to repeatedly play
against the same attacker strategy for 100 rounds (the participants
are not informed about the exact number of rounds). At every
round r > 1, participants receive feedback indicating the actual
outcome in the previous round.

FIGURE 2 | Asymmetric security game in various conditions with x = z = 10, y = 2, and probability p = 0.35. (A) Shows the certain condition in which participants

have complete information about all possible outcomes. (B) Shows the risky condition in which participants receive explicit probabilities of possible outcomes. (C)

Shows the uncertain condition in which participants are not informed about the values of the probability p.
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Participants
Nine Hundred and Twenty Seven American individuals
(61% male; Mage = 30.8, SDage = 9.3) were recruited
through Amazon Mechanical Turk. Participants were randomly
assigned to one of the 9 different conditions previously
described: N(Minimax-Certain) = 107, N(Minimax-Risky)
= 99, N(Minimax-Uncertain) = 101, N(Random-Certain)
= 103, N(Random-Risky) = 102, N(Random-Uncertain) =

105, N(Adaptive-Certain) = 110, N(Adaptive-Risky) = 100,
and N(Adaptive-Uncertain) = 100. Upon completion of the
experiment, each person was paid based on their performance
in the task. The average time spent to complete the task was
5min 09 s, and the average amount of total payment was $0.88,
including a fixed participation fee of $0.3. This research complied
with the American Psychological Association Code of Ethics and
the tenets of the Declaration of Helsinki and it was approved by
the Institutional Review Board at Carnegie Mellon University.
Informed consent was obtained from each participant.

Procedure
Starting with an initial capital of 200 points, participants
were instructed to repeatedly play a game with an unknown
preprogrammed attacker strategy, where each round would
determine either a gain of extra credits or a loss of points from
their capital. They were informed that the immediate outcome of
each round depended on their own choice between two options
(A and B), as well as on the attacker’s decision. Note that the
labeling of the players and their actions were different from those
shown in Figure 2, in order to avoid uncovering any focal point
that may bias people’s behavior (“opponent” instead of “attacker,”
option “A” instead of “S” or “H,” and option “B” instead of
“N”). Participants were told that their income by the end of the
experiment (inUS dollars) would be calculated based on the value
of their remaining total capital (if any) with a conversion rate of
US$0.01 for every point.

Participants were not provided with any information
regarding the attacker’s strategy, except that the attacker was
motivated to steal as many points as possible from their capital.
They were provided with the payoff matrix corresponding to the
experimental condition (as in Figure 2). The display of the payoff
matrix was determined randomly from four combinations of
actions [i.e., (A,A), (A,B), (B,A), or (B,B)] to control for possible
effects of the game’s display and the buttons’ labels. In every
round, feedback was provided about what choice each player
made in the previous round together with the resulting payoffs.

RESULTS

The maximum expected final payoff for the defender was
obtained when playing optimally against the Adaptive strategy
(395.5 pts, see Appendix), and playing against Random (250 pts)
or Minimax (66.7 pts) strategies was less beneficial. Figure 3
provides a summary of the corresponding final payoffs that
participants obtained in each condition. Note that although
participants did not lose money in this experiment (any final
negative final payoff was simply reduced to a zero gain), the

FIGURE 3 | Final payoffs in each condition across 100 rounds. Initial

endowment = 200 pts. The dotted lines represent the corresponding final

payoff when the optimal solution is applied consistently.

values used in Figure 3 are based on raw data that potentially
include negative final payoffs.

All payoffs can be compared to a reference payoff of 66.7 pts,
which can be guaranteed to the defender against the Minimax
strategy in every round, because the game is zero-sum. We
observe in Figure 3 that this reference payoff is reached under
the Minimax strategy in all uncertainty conditions. Average final
payoffs from all conditions are at least as good as this reference
payoff. Also, defenders’ behavior appear better when the
attacker’s strategy is Adaptive or Random, compared toMinimax.
However, the defenders’ behavior is suboptimal compared to the
maximum expected payoff they could have obtained against a
Random and Adaptive strategy over 100 rounds.

Looking at the interaction effect between the attacker’s strategy
type and the level of uncertainty on the participant’s final
payoff, Table 1 provides evidence that those factors significantly
influence people’s payoffs in the game (after playing 100 rounds).

Figure 3 and Table 1 reveal an effect of the attacker’s strategy:
the best final payoffs are obtained when playing against Random
(N = 310,M = 156 pts, SD= 125), which are significantly better
than when playing against Adaptive [N = 310, M = 132 pts, SD
= 87; two sample t-test: t(552) = 2.8, p < 0.01, d = 0.22]. Playing
against Adaptive is, however, still more significantly beneficial
than playing against Minimax [N = 307, M = 67 pts, SD = 35;
two sample t-test: t(408) = 12, p < 0.001, d = 0.98]. However,
outcome uncertainty is also significant: playing in the Certain
condition (N = 320, M = 129 pts, SD = 89) is significantly
more profitable than playing in the Uncertain condition [N =

306, M = 105 pts, SD = 101; two sample t-test: t(606) = 3.1, p
< 0.01, d = 0.25]. The interaction effects presented in Figure 3

suggest that uncertainty only has a significant effect on the
overall payoff when playing against Adaptive strategy. Increasing
uncertainty significantly decreases efficiency: final payoffs in the
Adaptive-Certain condition (N = 110, M = 163 pts, SD = 68)
are significantly better than Adaptive-Risky [N = 100, M = 124
pts, SD = 78; two sample t-test: t(198) = 3.8, p < 0.001, d =

0.53] and Adaptive-Uncertain [N = 100, M = 107 pts, SD =
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TABLE 1 | Factorial analysis of variance for final payoffs.

Source ANOVA tests

Df F Eta-Squared

(A) Attacker’s strategy 2 82.39** 0.15

(B) Outcome uncertainty 2 6.11* 0.01

A × B (interaction) 4 3.44* 0.01

Error (within groups) 918

**p < 0.001; *p < 0.01.

104; two sample t-test: t(169) = 4.5, p < 0.001, d = 0.64]. On the
other hand, increasing uncertainty has no significant effect when
playing against Random and Optimal.

Moreover, when the payoffs are all known and deterministic,
people are as efficient against Random as against Adaptive (M
= 159 pts in Random-Certain condition, and M = 163 pts in
Adaptive-Certain condition). One could even argue that people
play better against Adaptive because of the slightly higher final
payoff on average and the smaller standard deviation (SD = 113
in Random-Certain condition, and SD= 68 in Adaptive-Certain
condition). This observation is particularly surprising because
of the very different complexity in computing the best response
in both of these conditions: learning to play optimally against
Random (by always playing S) is easier as it is shown when risky
or uncertain information is introduced.

Choice Behavior
Figure 4 shows that playing the game in the Certain condition
leads to an average behavior that closely approaches the
prediction of the Optimal principle (selecting S with a 2

3
probability, as shown earlier). The rate of selecting S in the
Certain condition is 65% (N = 320), which is not significantly
different from the theoretical Minimax solution of 66.66%
[t(319) =−0.74, p= 0.46, d = 0.08].

However, participants’ behavior differed significantly in the
first round [F(2, 616) = 4.22, p = 0.015). Introducing some
uncertainty in the (S,H) outcome leads to a significant increase
in the rate of selecting S: 75% of participants (N = 301)
chose S during the first round in the Risky condition, which
is significantly different from the Certain condition at the 1%
level [t(618) = −2.84, p = 0.005, d = 0.23]. Similarly, 72% of
participants (N = 306) chose S during the first round in the
Uncertain condition, which is significantly different from the
Certain condition at the 5% level [t(624) = −2.03, p = 0.04, d =

0.16].
Table 2 shows the effect of the attacker’s strategy. Uncertainty

level has no significant effect. Results indicate a significant effect
of rounds on average behavior, but the interaction between
uncertainty and attacker’s strategy is not significant.

Figure 5 illustrates the differences in overall average choices
depending on the attacker’s strategy over the 100 rounds, and also
reveals different levels of heterogeneity in individual behavior
across conditions. The highest proportion of selecting S is
reached when playing against Random (N = 310, M = 82%, SD
= 19), which is significantly higher than when playing against the

FIGURE 4 | Average initial behavior across information conditions.

TABLE 2 | Factorial analysis of variance for average choice over blocks of 10

rounds.

Source ANOVA tests

Df Dferror F Eta-Squared

(A) Attacker’s strategy 2 918 245.24** 0.21

(B) Outcome uncertainty 2 918 0.89 <0.01

(C) Blocks of 10 rounds 7.43 6,820.28 9.45**† <0.01

A × B (interaction) 4 918 0.93 <0.01

A × C (interaction) 14.86 6,820.28 14.04**† 0.01

B × C (interaction) 18 8,262 1.42 <0.01

A × B × C (interaction) 36 8,262 1.00 <0.01

**p < 0.001;
†
Greenhouse, Geisser corrected.

Adaptive [N = 310, M = 67%, SD = 6; t(364) = 12.9, p < 0.001,
d = 1.06]. Playing against Adaptive, however, leads to a more
frequent selection of S than when playing against the Minimax
strategy [N = 307, M = 47%, SD = 28; t(332) = 12.6, p < 0.001,
d = 0.99].

Figure 6 depicts the overall effect of the number of rounds
over the proportion of S choices. The main observation is that
only the Random opponent’s strategy leads defenders to adapt
and increase their proportion of selecting S over time. In this
case, participants learn to play the best response against the
Random strategy (which corresponds to always selecting S).
Also, average behavior drifts away from the theoretical Minimax
solution (playing S with probability 0.67). Instead, when playing
against the Minimax opponent strategy, we observe rather stable
behavior across time. Average selection of S is above 65% in the
first round and drops to 44% within the first 20 rounds before
stabilizing for the remaining rounds. As a consequence, during
the very first rounds, people’s behavior again drifts away from
the theoretical Minimax solution, but in a different direction as
compared to the previous condition (playing against Random).
This observation indicates that people do not learn to minimize
the variance of their payoff (which consists in always playing T).
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FIGURE 5 | Average selection of S action in each condition.

FIGURE 6 | Average proportion of choice (S) over time. Each block is 10

rounds.

Instead, they quickly become more indifferent between their
options, regardless of the level of uncertainty.

Finally, when playing against Adaptive strategy, there is no
learning effect. The standard deviation of the attacker’s average
behavior is, however, larger than in the Random condition (SD
in Adaptive = 19; SD in Random = 5), suggesting that react
to Adaptive strategy, but do not follow an adaptive strategy
themselves (if they did, the attacker’s average behavior would then
converge toward the Nash equilibrium).

Switching Behavior
We analyzed the number of times that participants switch
decisions from one option to the other in the course of 100
rounds. This analysis is relevant as it is possible that two
individuals who share the same choice proportion of S reach
that stage through different exploration strategies. As shown in

TABLE 3 | Factorial analysis of variance for switching behavior over blocks of 10

rounds.

Source ANOVA tests

Df Dferror F Eta-Squared

(A) Attacker’s strategy 2 918 191.20** 0.17

(B) Outcome uncertainty 2 918 5.06** <0.01

(C) Blocks of 10 rounds 7.40 6,791.28 20.09**† 0.01

A × B (interaction) 4 918 10.52** 0.02

A × C (interaction) 14.80 6,791.28 16.96**† 0.02

B × C (interaction) 18 8,262 0.76 <0.01

A × B × C (interaction) 29.59 6,791.28 2.01**† <0.01

**p < 0.001;
†
Greenhouse, Geisser corrected.

in Table 3, there is a clear effect of both outcome uncertainty
and the attacker’s strategy on switching behavior. Furthermore,
the interaction effect between the two factors is significant, as
illustrated in Figure 7.

Switching occurs more often when playing against Adaptive
(N = 310, M = 36%, SD = 16) than when playing against
Minimax [N = 307,M = 20%, SD= 15; t(614) = 13.06, p< 0.001,
d = 1.03], which is also significantly more than when playing
against Random [N = 310, M = 14%, SD = 15; t(615) = 5.38, p
< 0.001, d = 1.42]. We also observe a main effect of uncertainty:
switching in the Certain condition (N = 320,M= 26%, SD= 19)
is higher than in the Risky condition [N = 301, M = 22%, SD =

17; t(613) = 2.64, p < 0.01, d= 0.22] and the Uncertain condition
(N = 306,M = 22%, SD = 17; t(622) = 2.64, p = 0.02, d = 0.22].
These results suggest an interaction effect of the two variables
(type of attacker strategy and outcome uncertainty). Indeed,
when playing against Random, participants alternate significantly
more (at the 5% level) under the Uncertain condition (N = 103,
M = 17%, SD = 18) than under the Certain condition [N = 105,
M = 12%, SD = 13; t(190.6) = 2.08, p = 0.039, d = 0.32]. On the
other hand, when playing against Adaptive, participants alternate
significantly less under the Uncertain condition (N = 100, M =

31%, SD = 15) than under the Certain condition [N = 110,M =

44%, SD= 14; t(201.3) = 6.12, p < 0.001, d = 0.90].
Moreover, Table 3 shows the existence of a significant

temporal effect: participants tend to switch less over time,
and there is also a significant interaction between outcome
uncertainty, the attacker’s strategy, and time. Participants switch
more over time when they play against Adaptive, whereas they
switch less often over time when they play against Random or
Minimax opponent’s strategy. Furthermore, the switching rate
over time depends on outcome uncertainty: people learn to
switch more in Adaptive-Certain condition than in the Adaptive-
Risky and Adaptive-Uncertain conditions, where the switching
rate remains constant over time. Similarly, when playing
against Random, the decreased switching rate is also different
depending on outcome uncertainty: people learn to alternate
slightly less in both the Random-Risky and Random-Uncertain
conditions than in the Random-Certain condition. No difference
is found across conditions when playing against Minimax
strategy.
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FIGURE 7 | Average switching behavior in each condition.

Subjective Randomization
A possible explanation for the increased rate of exploration over
time against an Adaptive strategy and with full information may
be a reflection of players’ attempt to become unpredictable. Such
explanation suggests that people may deliberately try to behave
more randomly themselves when they play against an Adaptive
strategy than when they play against other types of attackers.
Intentional random behavior is difficult for humans to detect and
perceive (e.g., Rapoport and Budescu, 1997), and many current
defense strategies rely on randomization of defense resources
based on game-theoretic results (Nguyen et al., 2016). To test
for this explanation we used a common non-parametric test for
randomness to measure independent and identically distributed
(i.i.d) behavior: the Wald-Wolfowitz runs test. This test relies
on the number of runs found in a time series. It compares
the observed number of runs of a dichotomous variable (e.g.,
participant’s choice between S and N in the above asymmetric
security game) against the expected number of runs. More
(less) runs than expected indicate the existence of over (under)
alternation in the time series. Figure 8 presents the proportion
of participants for whom the subjective randomization is not
supported in the first (left panel) and the last (right panel) 50
rounds.

In general, a majority of participants (>50%) do not exhibit
subjective random behavior and the level of uncertainty has
a clear influence when playing against an Adaptive strategy,
particularly in the initial rounds. Higher subjective randomness
is observed in Adaptive-Certain than in either Adaptive-Risky
or Adaptive-Uncertain in the first 50 rounds (p < 0.001),
but not in the last 50 rounds. Also, in the Certain condition,
subjective randomization is more common in the first 50 rounds
if playing against Adaptive (26% of participants do not exhibit
i.i.d.) than when playing against Minimax (55% of participants
do not exhibit i.i.d.) or Random opponent strategy (63% of
participants do not exhibit i.i.d.). Together with the results in
the previous section, these results suggest that when playing

against an adaptive strategy, more certainty leads people to
behave intentionally more randomly at first (first 50 rounds),
before they uncover the benefits of regular alternations (last 50
rounds).

DISCUSSION

Perhaps the most surprising finding is that defenders behave
more optimally and with less effort (switching) when confronting
attackers represented by random strategies. Defenders seem to
focus their attention on how to maximize their payoffs in the
long run, even if it implies losses once in a while. They seem
to gradually learn that the attacker’s strategy is unchanging
over time. These observations are interesting as they suggest
that unpredictable or random strategies often used as defense
mechanisms such as “moving target defense” (Evans et al., 2011;
Zhuang et al., 2013) may not be as effective against human
attackers.We also find that stochastic conservative strategies such
as the Minimax attack strategy are easy to exploit by human
defenders, and this is relevant because such attack strategies
are commonly used to generate defense schedules in real life
scenarios in Stackelberg security games (Pita et al., 2010, 2012;
Yang et al., 2011). Our results suggest however, that humans
are able to learn to exploit this opponent’s strategy, and that an
adaptive strategy, which accounts for the opponent’s dynamics of
behavior, would be more efficient.

Another surprising finding suggests that a reduction of
outcome uncertainty did not necessarily lead defenders to
execute more optimal actions. Unlike Bereby-Meyer and
Roth (2006), we found no significant effect of uncertainty
on the speed of learning. Furthermore, this observation
distinguishes asymmetric security games from existing games
against nature (individual non-strategic decision problems) that
reveal significant behavioral differences depending on whether
information is descriptive or experiential (Hau et al., 2008;
Hertwig and Erev, 2009). Defenders learn to reach good
performance when playing against a random attacker where the
level of outcome uncertainty seems to have only little effect.
In other words, people are no more or less efficient against a
random attacker when there is no uncertainty. In contrast, under
uncertainty, defenders have difficulty behaving more accurately
against an adaptive attacker, and they exert more effort in
their attempts. Because playing optimally against a random
strategy (selecting the same fixed action at every trial) can be,
in principle, more accessible than playing optimally against an
adaptive strategy (regularly switching actions in a precise way),
one would reasonably expect the former to be more profitable.
Instead, we observe that playing against these two different attack
strategies can be similarly profitable under certainty. A possible
interpretation is that people are naturally more reluctant to play
a very basic strategy, which can be easily exploited (e.g., always
playing the same action could be easily learned by the opponent),
rather than amore complex one, which appears to bemore robust
to protect them from any type of exploitation (e.g., dynamic
behavior makes it more difficult for the opponent to anticipate
one’s future behavior).
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FIGURE 8 | Proportion of players not exhibiting i.i.d behavior across conditions in first and last 50 rounds (Wald-Wolfowitz runs tests, p < 0.05).

Finally, we find that when defenders interact with adaptive
strategies and are given full information, they exert more effort
to behave more intentionally in a “random manner,” as a
possible attempt to be unpredictable to the attacker. This effect
is particularly relevant in early interactions. Initial intentional
random behavior and the following transition toward more
predictable behavior may also be seen as a smooth learning
exploratory strategy that helps people detect some behavioral
pattern approaching actual optimal play. This may be related to
a known transition from exploration to exploitation in decisions
under risk (Abbasi et al., 2016).

In conclusion, our study provides helpful insights regarding
the effects of uncertainty and attack behavior on a human
defender behavior. Currently, most defense mechanisms inspired
on game-theory assume complete information, and make
unreasonable assumptions regarding rationality and cognitive
plausibility of the defense mechanisms (Abbasi et al., 2015a,b).
Our results suggest that humans’ main defense vulnerability lies
in their performance against adaptive attackers in conditions
of uncertainty. Surprisingly, humans are able to handle
random attacking behavior better than they are at handling
adaptive attackers, suggesting that common randomized security
algorithms might be less effective than adaptive human-inspired
strategies for defense.

On a more practical ground, this study suggests the need to
provide human defenders with more unambiguous information

about possible outcomes. However, it is clear that such precise
information can hardly be obtained in many real life security

scenarios that strongly rely on uncertainty. To illustrate this,

consider again the above situation involving a security analyst

in charge of protecting a firm’s network infrastructure that
may be hacked by some unknown individual. In this case, the
analyst has no way to know beforehand how likely a potential
attacker is to counteract a defense action. The analyst simply

ignores the payoffs that can result from tracking an individual
that hacks the network: the hacker may indeed be more or
less prepared to protect himself/herself from being identified. In
order to improve the analyst’s behavior in this case, our study
suggests the help of a decision support system, which would
provide an estimated deterministic value of the various payoffs
for each possible outcome (such expected payoffs could simply
be determined based on statistical data). This way, the human
analyst would perceive the situation as if its description were
fully known and would be more efficient at defending the firm’s
network. This study therefore suggests the need for increasing
efforts in designing more and more efficient decision support
systems that take into account the complexity of human behavior
in such complex situations.

This work is only a first step toward a more general
cybersecurity science. An obvious direction for future research
relates to investigating behavior of trained analysts and hackers
(e.g., experts) in more concrete security scenarios. Such analyses
would undoubtedly help us uncover more sophisticated ways
to help people protect themselves in the highly uncertain cyber
world.
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