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ABSTRACT

The extent to which brains respond similarly to a specific stimulus, across a small group of individuals, has been previously found to predict out-of-sample aggregate
preference for that stimulus. However, the location in the brain where neural similarity predicts out-of-sample preference remains unclear. In this article, we attempt
to identify the neural substrates in three functional magnetic resonance imaging (fMRI) studies. Two fMRI studies (N = 40 and 20), using previously broadcasted TV
commercials, show that spatiotemporal neural similarity at temporal lobe and cerebellum predict out-of-sample preference and recall. A follow-up fMRI study (N = 28)
with previously unseen movie-trailers replicated the predictive effect of neural similarity. Moreover, neural similarity provided unique information on out-of-sample
preference above and beyond in-sample preference. Overall, the findings suggest that neural similarity at temporal lobe and cerebellum - traditionally associated with

sensory integration and emotional processing — may reflect the level of engagement with video stimuli.

1. Introduction

Recent neuroscientific research, using electroencephalography (EEG)
(Barnett and Cerf, 2017; Boksem and Smidts, 2015; Dmochowski et al.,
2014) or functional magnetic resonance imaging (fMRI) (Berns and
Moore, 2012; Couwenberg et al., 2017; Falk et al., 2012; Genevsky et al.,
2017; Scholz et al., 2017; Venkatraman et al., 2015), has shown the
possibility of using neural signals from a small group of individuals to
predict the aggregate preference of a separate and larger group of in-
dividuals (hereafter population or out-of-sample preference). In most
fMRI studies linking brain signals to out-of-sample preference, re-
searchers have focused on signal intensity, i.e. the magnitude of blood
oxygenation level dependent (BOLD) signal during exposure to the
stimulus. Activation at nucleus accumbens (NAcc), medial prefrontal
cortex (mPFC), or a combination of both, was found to be predictive of
population preference such as, e.g., song downloads, funding success,
and advertising elasticities (Knutson and Genevsky, 2018).

A separate body of neuroimaging studies in recent years is concerned
with signal consistency across individuals’ brains. Referred to as either
inter-subject correlation (Nummenmaa et al., 2012), similarity (Barnett
and Cerf, 2017), synchronization (Hasson et al., 2004), alignment (Gol-
land et al., 2017), consistency (Lankinen et al., 2014), or reliability
(Dmochowski et al., 2014), researchers found that (a) dynamic natural

stimuli (such as videos, narratives, or speeches) evoke similar neural
responses across individuals, not only at sensory cortices but also tem-
poral and frontal areas (Hasson et al., 2010); and (b) such neural simi-
larity appeared to be modulated by stimulus quality, such as emotional
arousal (Nummenmaa et al., 2012), rhetorical strength (Schmalzle et al.,
2015), and humor (Jaaskelainen et al., 2016). Recent EEG studies (Bar-
nett and Cerf, 2017; Christoforou et al., 2017; Dmochowski et al., 2014)
went further by testing market-level outcomes and found whole-brain
neural similarity predicted online ratings of TV commercials, real-time
tweet frequency during TV shows, and box office sales of movies.

Why would neural activation and similarity predict preference not
only of the individual, but also of the population? Knutson and Genevsky
(2018) posit that neural activation in certain parts of the brain (e.g.,
NAcc) captures positive arousal to stimuli, a reliably predictive compo-
nent of choice across different individuals. On the other hand, it is less
clear which antecedent of aggregate preference neural similarity might
be measuring. Previous studies on neural similarity have shown that
synchronized activities across individuals at different brain regions can
be induced by various conditions. For example, stronger neural similarity
is observed at mPFC and anterior insula when receiving shared emotional
information (Golland et al., 2017); superior temporal gyrus (STG) when
receiving shared linguistic information (Dikker et al., 2014); STG, tem-
poral pole (TP) and parahippocampus when forming episodic memory

* Corresponding author. Department of Marketing Management, Rotterdam School of Management, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the

Netherlands.
E-mail address: chan@rsm.nl (H.-Y. Chan).

https://doi.org/10.1016/j.neuroimage.2019.04.076

Received 24 October 2018; Received in revised form 24 April 2019; Accepted 29 April 2019

Available online 1 May 2019

1053-8119/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ne-nd/4.0/).



H.-Y. Chan et al.

from shared experience (Hasson et al., 2008). Finally, whole-brain sim-
ilarity, measured by EEG, is higher when individuals pay attention to the
same content (Ki et al., 2016) and when the content is less complex
(Barnett and Cerf, 2017).

An outstanding question is whether the predictive power of neural
similarity on out-of-sample preference is concentrated in particular areas,
or distributed all over the brain. Areas typically found to display syn-
chronized activities during video watching (Hasson et al., 2010) involve
sensory processing (visual and auditory cortices), comprehension (tem-
poral and parietal cortices), and valuation (prefrontal cortex). However,
at which stage (or stages) in mental processing, from perception to
integration to evaluation, a relationship between neural similarity and
aggregate preference can be observed remains elusive.

In addition, recent studies have shown that neural and self-report
information may each contain non-redundant signals predictive of out-
of-sample preference, such that neural activation improves market-
outcome prediction over using self-report measures alone (Berns and
Moore, 2012; Boksem and Smidts, 2015; Genevsky et al., 2017; Venka-
traman et al., 2015). It remains an open question whether the same
non-redundancy can also be observed for neural similarity.

We aimed at answering these questions with three fMRI studies. We
examined whether neural responses, in terms of activation and similarity,
predicted out-of-sample preference for videos. We then examined if these
responses explained additional variance after taking into account self-
reported preference of the participants. Finally, we provided more
insight into the potential mechanism of neural similarity as an indicator
of preference by looking into the covariation of moment-by-moment
neural similarity and activation at the individual level.

2. Materials and methods

We present results from three original studies. The first two involved
the same set of 35 commercials (Study la and 1b), while the third
involved 18 movie-trailers (Study 2), totaling 88 participants in the
scanner. In all three studies, participants inside the scanner watched
videos once in randomized order, followed by evaluation after each
presentation (see Table 1 for an overview of the three studies). Our main
dependent variable (DV) is out-of-sample preference reported by a
separate and larger group of raters for each set of stimuli (117 raters for
TV commercials and 96 raters for movie-trailers). For a subset of TV
commercials (24 out of 35), we have obtained contemporaneous aided

Table 1
Summary of studies.
Study 1a Study 1b Study 2
Stimulus
N and type 35 previously 18 previously unseen movie-
broadcast TV trailers
commercials
Length (s) 25-60 (M =41; 66-150 (M =134; SD =18.3)
SD=9.4)
Dependent variable
Main: Out-of- 117 external raters on 96 external raters on an 11-point
sample preference 2 items of 7-point scale(5-star rating in half-star
Likert scale increments)
Secondary: Aided Aided recall (%) by -
recall online panel at time of
broadcast
(for a subset of 24
commercials)
Scanning participants
N 40 20 28
Mean age 35.1 39.1 20.9
Sex 56% 55% 50% female
female female
Scanning parameters
Scanner type 1.5T 3T 3T
Repetition time 3000 ms 2140 ms 2070 ms

(TR)
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recall data collected by a marketing research company during the rollouts
of the respective commercials, which serves as our secondary DV.

2.1. Experimental design and statistical analysis

Our approach to the three studies was (a) to investigate which brain
areas were associated with out-of-sample aggregate preference using the
first study (Study 1a), and (b) to replicate these findings with the second
study (Study 1b). After locating the relevant brain areas in Study 1a and
1b, we extracted neural information from these regions from all three
studies (Study la, 1b and 2), and investigated to what extent neural
similarity information could explain variance in aggregate preference.
We then examined to what extent neural similarity in these regions
explained additional variance on top of self-report measures and neural
activation.

The studies were approved by the institutional review board in line
with the Declaration of Helsinki. All participants signed informed con-
sent prior to participation.

2.2. TV commercial study (study 1a and 1b)

2.2.1. Stimuli

Thirty-five commercials from seven well-known telecommunication
brands, aired on national TV networks during 2009-2015, were used as
stimuli (see supplementary material S1 for details). Their lengths varied
from 25s to 60s (Miength = 40.58; SDjength = 9.4s). On average, the com-
mercials appeared on air for 7.4 weeks (SDproadcast = 2.2 weeks).

2.2.2. Main DV

Out-of-sample aggregate preference was measured by obtaining re-
sponses from 117 individuals not involved in the fMRI scanning
(Mage = 32.9; SDyge = 12.3; 56% female). They watched the commercials
in randomized order, and then gave a general evaluation (‘how much did
you like this video?’) and rated them on four aspects on a 7-point Likert
scale: whether they were entertaining, informative, relevant, and
convincing. To find out if the five items measured the same latent
construct, we used factor analysis, which revealed two factors — a first
factor consisting of the general evaluation and the entertaining score, and
a second factor with the remaining three items. Since the second factor
involves more cognitive judgment instead of preference, we used the
average of the general evaluation and the entertaining score as the liking
score (responses to the two items were highly correlated, r=0.85).
Converting the score onto a 0-1 scale with a mid-point at .5, the mean
rating of the 35 commercials was 0.575 (SDpating=0.115,
range = 0.322-0.697). (We present results of the analysis of the
remaining items in supplementary material S2.)

2.2.3. Secondary DV

For a subset of commercials (24 out of 35), contemporaneous market
level data on aided recall at the time of broadcast (2009-2015) were
available. A marketing research company systematically tracked aided
recall for each of the subset commercials over the duration of their
broadcasts. In each given week when a certain commercial was aired, a
fresh panel of 100 online respondents aged 16-65 drawn from a repre-
sentative national sample saw a few screenshots of that commercial and
were asked to report if they had definitely seen it, might have seen it, or
did not recall seeing it in the past 4 weeks. Aided recall was the ratio of all
respondents who reported having definitely seen the commercial during
its entire broadcast period.

2.2.4. Participants and procedure

Participants (Study 1a: N = 40; Mage = 35.1; SDage = 9.7; 56% female;
Study 1b: N = 20; Mage = 39.1; SDage = 11.1; 55% female) were recruited
from the general public by a marketing research company. Potential
subjects responded to an online MRI screening questionnaire which
ensured they had no history of neurological illness or damage, were not
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using drugs or psychiatric medication, and had normal or corrected-to-
normal vision. Those who were found suitable for scanning were con-
tacted, and written informed consent was obtained in advance. For their
participation, each participant was paid €60. They were invited to the
scanning facility, where they watched the 35 commercials, presented in
randomized order, during fMRI scanning. Immediately after each com-
mercial, participants indicated their liking via button presses without
time limit, then waited for 6-10s with a blank screen before another
commercial began. (See supplementary material S3 for detailed task
procedure.) The scanning lasted about 35 min. Within three days after
scanning, they completed an online survey which contained the same 5-
item questionnaire for each of the commercials, again presented in
random order. We used their responses to the same 2 items (entertaining
and general evaluation) to compute their individual rating for each of the
35 commercials (in-sample preference).

2.2.5. FMRI acquisition

For Study 1a, the functional magnetic resonance images were ob-
tained using a 1.5T (Siemens) MRI system. Functional scans were ac-
quired by a T2*-weighted gradient-echo, echo-planar pulse sequence in
ascending interleaved order (35 slices, 3.0 mm slice thickness, 0.6 mm
slice gap, 3.0 x 3.0 mm in-plane resolution, 80 x 80 voxels per slice, flip
angle = 90°). Echo time (TE) was 40 ms and repetition time (TR) was
3000 ms. A T1-weighted image was acquired for anatomical reference
(1.0 x 1.0 x 1.0 mm resolution, 176 sagittal slices, flip angle = 15°, TE =
3.93 ms, TR = 2040 ms).

In Study 1b, a different scanner was used with modified acquisition
parameters. The functional magnetic resonance images were obtained
using a 3T (Siemens) MRI system. Functional scans were acquired by a
T2*-weighted gradient-echo, echo-planar pulse sequence in ascending
interleaved order (35 slices, 3.0 mm slice thickness, 0.6 mm slice gap,
3.0 x 3.0 mm in-plane resolution, 64 x 64 voxels per slice, flip angle =
90°). Different echo time (TE = 25 ms) and repetition time (TR = 2140
ms) were used. A T1l-weighted image was acquired for anatomical
reference (1.0 x 1.0 x 1.0 mm resolution, 192 sagittal slices, flip angle =
9°, TE = 2.98 ms, TR = 2300 ms).

2.3. Movie-trailer study (study 2)

2.3.1. Stimuli

The stimuli were 18 movie trailers selected from a larger database of
168 movies (see supplementary material S1 for more details on movie
trailers). In short, the movies were released in the US between 2000 and
2010 with varying levels of commercial success (box office receipts be-
tween $4.4 million and $121 million; Mpoxoffice = $47 million). The
trailers of these movies are 66-150s long (Miength = 134s;
SDjength = 18.3s). Importantly, a screening procedure during subject
recruitment confirmed that none of the movies had been seen by any of
the participants.

2.3.2. Main DV

Out-of-sample ratings were collected from a separate group of uni-
versity students from the same population (N =96) who watched the
movie trailers in a randomized order. Immediately after each movie-
trailer, they rated liking on a 5-star rating scale (from O to 5 stars in
half-star increments). The average rating was 2.45 stars
(range = 1.16-3.51 stars; SDggar = 0.71).

2.3.3. Participants and procedure

Thirty-one participants were recruited from the university population
and paid a fixed fee of €10 per hour for their participation in the fMRI
scanning session. Potential subjects responded to an online MRI screening
questionnaire which ensured they had no history of neurological illness or
damage, were not using drugs or psychiatric medication, and had normal
or corrected-to-normal vision. One participant had to be excluded due to
falling asleep, and two more due to excessive head movements. These are
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omitted from all behavioral and neural analyses. The final sample con-
sisted of 28 participants (Mage = 20.9; SDage = 3.2; 14 female).

Participants underwent fMRI scanning while watching the 18 movie
trailers, presented in randomized order, together with one practice video
at the beginning (30s). For each movie-trailer, the poster of that movie
appeared before and after the video for 3.5s. After that, they had to
provide different ratings immediately after viewing, such as liking,
willingness to pay, valence and arousal without time limit. A blank screen
would appear for 3.5s before the next movie-trailer. (See supplementary
material S3 for detailed task procedure.) We used their responses to the
5-star liking scale (same as the main DV) as in-sample preference for each
of the movie-trailers.

2.3.4. FMRI acquisition

The functional magnetic resonance images were obtained using a 3T
MRI system (Siemens). Functional data was acquired with a T2*-
sensitized parallel imaging multi-echo sequence with echo times (TE)
at 9, 19.3, 30 and 40 ms in ascending order (34 slices, 3.0 mm slice
thickness, 0.5 mm slice gap, 3.5 x 3.5 mm in-plane resolution, 64 x 64
voxels per slice, flip angle = 90°). Repetition time (TR) was 2070 ms.
Prior to preprocessing, the four read-outs acquired via the multi-echo
sequence were combined and realigned by using standard procedures
described by Poser et al. (2006). A T1-weighted image was acquired for
anatomical reference (1.0 x 1.0 x 1.0 mm resolution, 192 sagittal slices,
flip angle = 8°, TE = 3.03 ms, TR = 2300 ms).

2.4. Data preprocessing, extraction and visualization

We preprocessed the neuroimaging data using standard software
(SPM12, Wellcome Department of Cognitive Neurology, London, UK). To
correct for head motion, the functional images were realigned to the
mean image. Functional images were slice-time corrected, coregistered
to the anatomical image, spatially normalized to the Montreal Neuro-
logical Institute (MNI) template and lightly smoothed with a Gaussian
kernel (3 x 3 x 3mm full width at half maximum). In all studies, we
verified that acquired images cover the whole brain, including cere-
bellum (supplementary material S4). Whole-brain activation analysis
was conducted with SPM12. Neural similarity analysis was conducted
with the PyMVPA toolbox (Hanke et al., 2009) and custom Python
scripts. In both cases, spatially normalized neuroimaging data were
regressed with average global signals and white matter signals. A
high-pass filter implemented by discrete cosine transform (1/128 Hz for
TV commercials and 1/256 Hz for movie-trailers) was applied, and each
voxel was z-scored within the scanning session. We extracted brain vol-
umes during stimuli viewing between 3s after stimulus onset and 3s after
stimulus offset. To ensure the onset time relative to the acquisition time
of the first extracted volume was the same across participants, temporal
interpolation between volumes was carried out. Resultant brain maps are
visualized using the Caret software (Van Essen et al., 2001), with addi-
tional images produced by Nilearn (Abraham et al., 2014).

2.5. Calculating neural similarity

We calculated neural similarity for each stimulus as follows (Fig. 1).
For a stimulus v seen by n participants, we had spatiotemporal matrices
M, ;---M,,,, each with t volumes x k voxels. Scaling was first performed
by subtracting the mean (voxel-wise) and then dividing by the matrix
norm (i.e., the root of sum of squares of all elements) within each matrix.
The neural similarity s, of that stimulus is defined as the negative of the
average pairwise Euclidean distance (i.e., the root of sum of squares of
differences of all elements) of matrices M, ;---M,,, i.e.,

n

DM =M | #

j=i+1

S = - (€Y
n(n—1) &
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Fig. 1. Schematic diagram of neural similarity calculation.

2.6. Whole-brain analysis of neural similarity

To create whole-brain maps of neural similarity for each stimulus, we
used the searchlight approach, employing a spherical searchlight of 2-
voxel radius (k =33 voxels). At each voxel, we extracted from partici-
pants the spatiotemporal matrices of neural responses using the spherical
searchlight mask, then calculated neural similarity using the above
equation (Equation (1)). Each stimulus had therefore a whole-brain
similarity map.

In order to determine which brain areas had a significant similarity
score during stimulus presentation (i.e., exhibited synchronized neural
activities across participants), we implemented the following testing
procedure: As we calculated the inter-subject pairwise distances (— ||
M,; — M,; ||, for a given pair of participants i and j) for each stimulus v,
we also randomly rolled one of the matrices along the time-axis (Mf, J-)
then calculated the similarity (s, n.1) again under this null condition (—
| My; — M, ; 1)- Out of the %n(n—1) inter-subject pairwise distances, a
paired t-test (s, — s, nu1) Was conducted at each voxel for each stimulus.
The t maps were then averaged across stimuli.

To investigate whether neural similarity correlates with out-of-
sample preference, we calculated at each voxel a Pearson's correlation
while partialling out stimulus length to minimize potential confounding
effect of time. Similarly, we estimated statistical significance by permu-
tation testing. We shuffled the stimuli ratings 10,000 times and obtained
null correlation maps, then derived the empirical p value at each voxel
from the voxel's own null distribution.

2.7. Whole-brain analysis of neural activation

To study the relationship between neural activation and out-of-
sample preference, we estimated for each participant a general linear
model (GLM) containing the following: a boxcar regressor to indicate
whenever a video was presented, and an additional parametrically
modulated regressor of out-of-sample preference. The design matrix was
then convolved with canonical hemodynamic response function (HRF),
and average global signal and white matter signal were entered as re-
gressors of no interest. Based on these estimated beta images, second-
level random-effects group contrast maps were then created in both di-
rections (i.e., positive and negative correlation between activation and
out-of-sample preference).

2.8. Region-of-interest (ROI) analysis of neural similarity and activation

Having identified voxels in whole-brain analysis, we proceeded to use
the areas identified in Study 1a and 1b as regions-of-interest (ROIs) and
recalculated neural similarity and activation. Given the high spatial
correlation among voxels, we first reduced the data dimension by con-
ducting principal component analysis (PCA) on time series data from
Study 1a. Specifically, we concatenated ROI-extracted fMRI time series
from all 40 participants, choosing only sections where the stimuli were
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presented (mean-centering was done within each stimulus), resulting in a
time series of 20,680 volumes. The first 100 PCA components (explaining
62.8% of the total variance) were selected. Component weights obtained
in Study 1a were used to transform the data in Study 1b and 2. (Addi-
tional PCA analyses showed component weights obtained within each
dataset were highly similar.) Neural similarity was calculated using the
Euclidean distances of the PCA-transformed matrices (t volumes x 100
components, c.f. Equation (1)). Same as in whole-brain analysis, neural
similarity and activation scores were first adjusted for stimulus length
(obtaining residuals by regression) to minimize potential confounding
effect of time.

Knowing that the ROIs were themselves derived from the results
obtained in Study 1la and 1b, we then attempted to replicate the effect
with secondary DV (aided recall) and a new set of stimuli (Study 2). We
also entered neural similarity, neural activation and in-sample preference
into a regression model to see if neural similarity provides a unique
contribution in explaining the variance of out-of-sample preference.

2.9. Robustness analysis on neural similarity calculation

Calculation of neural similarity involves determining the number of
PCA components and the choice of distance metric. We have redone the
analysis using 50 and 200 components (accounting for 45% and 82% of
the total variance, respectively), and also untransformed raw voxels; we
have also tested different distance metrics (cosine and city block).

2.10. Code accessibility and data availability

The data that support the findings of this study, including pre-
processing and analysis scripts, are available in an open repository.'

3. Results

Since we did not have a priori assumptions about whether, or where,
we might find (a) significant neural similarity during stimulus presen-
tation, and (b) significant relationship between this neural similarity and
out-of-sample aggregate preference, we first conducted a whole-brain
analysis on Study 1a. We then repeated the analysis on Study 1b. With
a conjunction analysis of Study 1a and 1b, we located brain regions
where neural similarity was found to have a significant effect on out-of-
sample aggregate preference. We then extended the analysis, using the
brain areas identified in Study 1, to a different stimulus type (Study 2).
For neural activation, we repeated the same approach (whole-brain
analysis and conjunction analysis in Study 1a and 1b, then replication in
Study 2). (Scatterplots and correlations of variables are shown in sup-
plementary material S5.)

! https://github.com/chanhangyee/neural_similarity.



H.-Y. Chan et al.
3.1. Synchronized neural activities during video viewing

Similar to previous studies of video viewing, we observed synchro-
nized neural activity at visual and auditory cortices, as well as superior
temporal cortex, anterior and posterior cingulate cortices and cerebellum
(Fig. 2). In addition, amygdala and thalamus also displayed synchronized
neural activity. Results found in both Study la and 1b were largely
comparable; the resultant t maps from the two studies were highly
correlated (r=0.905, p < .001). These areas were also highly similar to
past studies involving naturalistic stimulus viewing (Lahnakoski et al.,
2017; Nummenmaa et al., 2012).

3.2. Neural similarity and activation correlate with out-of-sample
preference

With whole-brain analysis of the TV commercials (Study la), we
located anatomical areas where neural similarity and activation corre-
lated with out-of-sample aggregate preference. We then replicated the
findings in Study 1b, and further tested the robustness with movie trailers
in Study 2.

3.2.1. Whole-brain analysis

We investigated if there were brain regions where neural similarity in
spatiotemporal neural patterns during video watching covaried with out-
of-sample aggregate preference. We conducted whole-brain analysis in
both Study 1a and 1b, then obtained an intersection of the thresholded
statistical maps (p < .05 FDR corrected) to look for conjunction voxels
(Nichols et al., 2005). Conjunction analysis revealed that neural simi-
larity at bilateral temporal poles (TPs), temporoparietal junctions (TPJs)
and cerebellum was positively associated with out-of-sample aggregate
preference (Fig. 3, left panel). Conjunction of significant brain areas from
Study 1la and 1b encompasses 653 voxels, or 21.2 cm® (Table 2A). In
other words, when participants showed more similar spatiotemporal
neural patterns at those regions during watching of a certain video, that
video tended to be more preferred by out-of-sample raters. Largely
overlapping results were found between Study la and 1b, and the
resultant Fisher-transformed z maps were highly correlated between the
two studies (r=0.561, p <.001), despite the fact that the two studies
differed in scanner type (1.5T vs 3T) and repetition time (3.0s vs 2.14s).

Conjunction analysis of the whole-brain activations in Study 1a and

Study 1a (Participant N = 40)
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1b revealed regions where stronger neural activation among participants
was associated with greater out-of-sample aggregate preference (Fig. 3,
right panel). Significant voxels were found in bilateral superior temporal
gyri (STG), as well as precuneus and the left inferior frontal cortex (pars
triangularis, Broca's area). Conjunction of significant brain areas from
Study 1a and 1b encompasses 723 voxels, or 23.4 cm?® (Table 2B). The
resultant group contrast z maps were again highly correlated between the
two studies (r=.624, p <.001). In a supplementary analysis we per-
formed a significance test on both similarity and activation conjunction
sizes by permutation (see supplementary material S6 for details).

Comparing the whole-brain maps of similarity and activation (both
transformed to z) yields only moderate correlations of 0.306 and 0.323
for Study 1a and 1b respectively (both ps < .001). In addition, it should
also be noted that whole-brain analysis of similarity and activation un-
covered largely distinct brain regions (similarity region = 20.5cm?,
activation region = 26.3 cm®, overlap =5.7 cm® or 13.8%, see supple-
mentary material S7 for the extent of overlap).

3.2.2. ROI analysis

We examined to what extent neural information, in terms of both
activation and similarity, could predict out-of-sample aggregate prefer-
ence for different stimuli (movie-trailers). Selecting the voxels in the
conjunction areas of the two TV commercial studies (i.e., red in Fig. 3A
encompassing bilateral TP, TPJ and cerebellum; and blue in Fig. 3B
encompassing STG and precuneus), we re-calculated neural similarity
(using the red voxels) and activation (using the blue voxels) for the third
dataset involving movie-trailers (Study 2). (For the sake of completeness,
the whole-brain analysis on Study 2 is included in supplementary ma-
terial S8.)

Across the three studies, neural similarity at TP/TPJ/cerebellum
correlated with out-of-sample preference. Notably, the effect was robust
for using different stimuli (movie-trailers) using the voxels identified in
TV commercials. Correlation between neural activation at STG/pre-
cuneus and out-of-sample preference for the movie-trailers were similar
to the commercials (r=0.434), but just failed to reach the 0.05 signifi-
cance level, p =.072. We also extended the findings to a market level DV,
i.e., aided recall, for a subset of TV commercials. Both neural similarity in
TP/TPJ/cerebellum and activation in STG/precuneus correlated with
aided recall (r=0.617-0.805, all ps < .005, see Fig. 4 for a summary of
findings).

Study 1b (Participant N = 20)

Fig. 2. Brain regions showing significant synchronized activities during TV commercial watching (p < .05 FDR corrected).
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Fig. 3. Voxels with significant correlation between neural similarity and out-of-sample preference (left); and between neural activation and out-of-sample preference

(right) (p < .05 FDR corrected).

Table 2
Coordinates and sizes of conjunction clusters (only cluster size k > 5 shown here).

A. Similarity (Study 1a N 1b) Cluster size Cluster center

3

in voxel in cm x y z
Temporal Pole R 229 7.42 52 -5 -21
Temporal Pole L 172 5.57 —54 —53 12
Temporoparietal Junction L 165 5.35 —-49 9 -28
Cerebellum R 56 1.81 23 -76 -35
Cerebellum L 11 0.36 —-23 -75 -32
Temporal Mid L 9 0.29 —49 —25 -8
Temporal Mid R 7 0.23 57 —52 17
B. Activation (Study 1a N 1b) Cluster size Cluster center

in voxel in cm® x y z
Superior Temporal Gyrus R 338 10.95 53 -31 2
Superior Temporal Gyrus L 304 9.85 —53 -36 4
Precuneus 172 5.57 0 —54 40
Frontal Inf Tri L 9 0.29 —-49 19 18

In a supplementary ROI analysis (supplementary material S9), we did
not obtain a consistent relationship between out-of-sample preference
and activation at known subjective valuation areas, such as amygdala,
anterior insula, anterior cingulate cortex (ACC), mPFC and NAcc (Bartra
et al., 2013; Samanez-Larkin and Knutson, 2015).

Robustness analysis (supplementary material S10) shows that find-
ings were robust to changing both PCA component number and metric
choice. In addition, our neural similarity measure incorporates all voxels
from the bilateral regions of TP, TPJ and cerebellum. To understand the
importance of individual areas, we calculated neural similarity for each
separate cluster (using raw voxels instead of component weights) and
found similar results (see supplementary material S11), underlining the
role of each of the three areas in the processing and evaluation of videos.

To illustrate how neural similarity differs between stimuli of high and
low out-of-sample preference, Fig. 5 shows the time-course plots of the
most- and least-liked stimuli using the first two PCA components. In both
Study 1a and 1b, inter-subject time-course Euclidean distances of the
most-liked commercial were significantly smaller than those of the least-
liked commercial, indicating that participants on average had more
similar neural responses during the viewing of the most-liked
commercial.
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3.3. Additional variance in out-of-sample preference explained by neural
signals

Next, we examined whether neural similarity and activation provided
distinct information in addition to in-sample self-report preference in
predicting out-of-sample preference (Table 3). We combined results from
the three studies and conducted mixed-effect regression models, using
study as random intercept. We compared a reduced regression model
with stimulus length and self-report preference entered as regressors
(Model 1), and a full model with the additional neural regressors. When
either neural similarity (Model 2) or activation (3) or both (4) were
entered into the regression model, model performance improved signif-
icantly, showing that both neural similarity and activation independently
contribute to improved prediction of out-of-sample preference, above
and beyond in-sample self-reported preference.

3.3.1. Potential confounding effects of previous exposure and memory for TV
commercials

In Study 1a and 1b, like a previous study (Dmochowski et al., 2014),
we used previously broadcasted materials. Contemporaneous aided
recall data might be confounded by the size of the advertising campaigns
at that time (such that bigger campaigns had more media exposure thus
might lead to higher recall in the population); current out-of-sample
preference might be confounded by the campaign size, and the time
lapsed since first exposure (such that more recently broadcast commer-
cials might be liked more). We attempted to find out their potential ef-
fects by repeating the analysis with two additional regressors: weeks
since initial broadcast, and gross rating points for age group 20-49 (i.e.,
number of cumulative impressions as a percentage of target population
during the advertising campaign). Regression results were robust to the
two additional regressors (see supplementary material S12).

4. Discussion

Across different participants, scanning parameters, video lengths and
types, we uncovered neural information that predicted out-of-sample
aggregate preference of naturalistic dynamic stimuli. With respect to
the research questions set forth in the introduction, we present the
following findings:



H.-Y. Chan et al. NeuroImage 197 (2019) 391-401

1. Whole-brain analysis — Locating voxels which covary with main DV (out-of-sample liking)
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Fig. 4. Schematic diagram of analysis and summary of results. TP = temporal pole; TPJ = temporoparietal junction; STG = superior temporal gyrus.
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Fig. 5. Time-course plots of neural activities at TP/TPJ/cerebellum for most- and least-liked commercials. Statistical comparisons between most- and least-liked
commercials are Wilcoxon signed-rank tests. TP = temporal pole; TPJ = temporoparietal junction.

Table 3

Mixed-effect regression models predicting out-of-sample preference with different regressors, with study entered as random intercepts. Model comparisons were done

with the baseline model (1).

DV: Out-of-sample preference (N = 88™) (€8] 2 3) @

p p p p p p p p
Video length 0.238 .001 0.339 <.001 0.197 .001 0.261 <.001
In-sample preference 0.686 <.001 0.522 <.001 0.558 <.001 0.499 <.001
Neural similarity 0.288 <.001 0.153 .028
Neural activation 0.331 <.001 0.257 <.001
AIC 158.1 142.1 132.9 130.1
$? 18.0 <.001 27.2 <.001 32.0 <.001

@ N denotes total number of stimuli (Study 1a: 35, Study 1b: 35, Study 2: 18)

4.1. Neural similarity in the TP, TPJ and cerebellum predicts out-of-sample
preference

We found that the synchronized neural activity across participants at
the TP, TPJ and cerebellum was associated with out-of-sample preference
for videos, in terms of liking and recall. TP and TPJ have been described
as the association cortex (Olson et al., 2007), due to their extensive
connections with the sensory systems. TP is interconnected with the
amygdala and orbital frontal cortex, and the suggested role of TP as a
midway station between multi-modal perceptual inputs and emotional
responses (Wong and Gallate, 2012) is consistent with our current find-
ings that video watching evoked similar neural responses in these areas.
A meta-analytic review of activation-based studies also found the
involvement of bilateral temporal poles in the evaluation of emotional
content from stimuli (Lindquist et al., 2012). TPJ, on the other hand, has
been linked to multiple functions pertinent to the emotional processing of
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complex stimuli, from general cognitive functions (e.g., attention, lan-
guage processing, and episodic memory encoding) to more selective ones
(e.g., mentalizing and social cognition) (Carter and Huettel, 2013).

In the smaller body of literature on neural similarity, right TP was
found to be part of the brain network whose inter-subject synchronicity
covaried with self-report arousal during film watching (Nummenmaa
et al., 2012), while left TP synchronicity correlated with syntactic
complexity during story listening (Brennan et al., 2012). There is also
evidence that neural activities at TPs and TPJs during narrating and
listening to the same story are synchronized (Silbert et al., 2014); more
interestingly, neural similarity at TP and TPJ has previously been found
to predict successful content recall after watching a video (Hasson et al.,
2008). In brief, neural similarity at those areas may signal engagement
and effective/successful communication.

Lastly, the inclusion of cerebellum in our findings provides further
evidence on its role in emotional processing (Schmahmann and Caplan,
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2006). In fact, a number of studies found the involvement of cerebellum
during video watching (Franklin and Adams, 2011; Han et al., 2011;
Mathiak and Weber, 2006). We considered the possibility that synchro-
nized cerebellar activities might be driven by perceptual processes such
as eye movement. In a supplementary analysis (supplementary material
S13), we compared activation maps associated with movement and
emotion obtained from Neurosynth (Yarkoni et al., 2011), and found that
the cerebellum ROI in the current study contains voxels included in the
emotion-related association map but not the movement-related map,
suggesting that the effect is likely to be driven by emotional processing at
cerebellum.

In the current study, we revealed for the first time that neural simi-
larity at TP, TPJ and cerebellum within a small group can predict out-of-
sample preference. This finding, together with the fact that we found no
significant effect in sensory or prefrontal cortices, suggests that aggregate
preference of the population may be related to the interpersonal con-
sistency in higher-order comprehension, instead of sensory processing or
valuation. This echoes past findings on neural activation that, while
video advertisements with more attention-grabbing features produced
higher activation in occipital cortex, they were associated with decreased
activation in temporal and prefrontal cortices, and lower recall rate
(Langleben et al., 2009).

4.2. Neural activation in the STG and precuneus predicts out-of-sample
preference

In addition to our findings on neural similarity, we found that neural
activation at STG and precuneus consistently predicted preference across
stimulus types. Precuneus is known to be associated with self-
consciousness (Cavanna and Trimble, 2006) and valuation (Litt et al.,
2011). On the other hand, the role of STG in the integration of sounds and
images in audiovisual stimuli, especially those involving speech, is
well-documented (Beauchamp et al., 2004; Noesselt et al., 2012). One
plausible interpretation may be that preference is related to attention,
which in turn modulates STG activation during audiovisual integration
(Moris Fernandez et al., 2015). On the other hand, precuneus has long
been associated with self-consciousness (Cavanna and Trimble, 2006),
and a recent study suggested it may also have a role in attention (Klasen
et al., 2012). These findings point to the speculation that neural activa-
tion in STG and precuneus may be an indication of engagement, although
further study is needed before any definitive conclusion can be drawn.

Our study did not find activation at known subjective valuation areas,
such as amygdala, anterior insula, anterior cingulate cortex (ACC), mPFC
and NAcc (Bartra et al., 2013; Samanez-Larkin and Knutson, 2015) to be
predictive of out-of-sample preference. Among studies involving dy-
namic stimuli, there are conflicting findings on the relationship between
self-report enjoyment and activation in these areas. For example, the
amygdala was found to correlate with liking in comedy movies (Franklin
and Adams, 2011; Jaaskelainen et al., 2016) and TV commercials (Ven-
katraman et al., 2015), while no such effect was found for liking of dance
video clips (Cross et al., 2011). In one study, decreased mPFC activity was
related with humor rating of comedy videos (Franklin and Adams, 2011),
while increased NAcc activity was found to predict market-level success
of songs (Berns and Moore, 2012) and TV commercials (Venkatraman
et al., 2015) but not in others that measured self-report liking (Cross
et al.,, 2011; Franklin and Adams, 2011; Jaaskeldainen et al., 2016).
Overall, it seems that activations at brain areas traditionally associated
with reward such as NAcc and mPFC may not offer a reliable signal of
out-of-sample preference for dynamic stimuli.

4.3. Overlap in ROIs associated with similarity and activation

While studies on neural similarity and activation often identify
different but overlapping brain regions involved in the same task or
observation (e.g., Hasson et al., 2008; Nummenmaa et al., 2014), it is
unclear whether the similarity- and activation-based measurements offer
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the same or distinct information. In a supplementary analysis (supple-
mentary material S14) we computed both similarity and activation
within each individual ROI and found that both similarity and activation
in the temporal lobe (TP, TPJ and STG) predict out-of-sample preference,
while only similarity (but not activation) measured at cerebellum and
only activation (but not similarity) measured at precuneus predicts
out-of-sample preference. These findings are perhaps not that surprising,
given the close proximity of the ROIs situated in the temporal lobe, and
the smoothing kernel used in preprocessing of the data. Importantly, they
do not take away from the result that there is unique information in
similarity measures that is not present in activation measures (see
Table 3), even if similarity and activation are observed in the same/si-
milar brain areas. Indeed, the finding that aggregate preference can be
predicted from similarity and activation in areas that are at least partly
distinct supports the view that information from pattern similarities and
magnitude differences may have separate neural substrates.

4.4. Neural similarity as a distinct information source

We replicated past findings that neural activation offers unique in-
formation about aggregate preference in addition to self-report responses
(Berns and Moore, 2012; Boksem and Smidts, 2015; Genevsky et al.,
2017; Venkatraman et al., 2015). Here, we showed that neural similarity
also provides unique information, above and beyond self-report. As such,
it adds to the growing literature of neural prediction which demonstrates
that brain imaging provides additional predictive power on top of
self-report measures.

Why does neural similarity from a group of individuals improve out-
of-sample preference prediction, even after taking into account the stated
preference of those individuals? We posit that similar to the case of
neural activation (Knutson and Genevsky, 2018), neural similarity may
capture aspects of individual choice that scale better to forecast aggregate
choice. Specifically, neural similarity at TP/TPJ/cerebellum may mea-
sure the level of sustained engagement with the videos, which results in
enhanced understanding of the content (‘I understand what the video is
about’), one of the components for liking that may generalize more
across individuals compared to more idiosyncratic components such as
personal values (‘I find the video suits my needs/tastes’).

4.5. Measuring spatiotemporal similarity in neural activities

Unlike many studies on temporal synchronization of brain activities
(Golland et al., 2017; Hasson et al., 2004; Lankinen et al., 2018, 2014;
Nummenmaa et al., 2012; Silbert et al., 2014), we did not compute our
neural similarity measure using single-voxel time series. Instead, we
made use of BOLD signals spanning across both space and time to
calculate a multi-voxel, spatiotemporal similarity measure. We believe
that this type of approach is particularly well suited for analysis of neural
responses when complex, dynamic stimuli are involved. In a supple-
mentary analysis, we indeed found that using single-voxel time series to
compute neural similarity failed to uncover significant brain areas, and
we observed similar anatomical findings with varying searchlight radius.
(Results are available upon request.) Discussions about ways to find out
the optimal shape and size of searchlight for this type of multi-voxel
analysis have not reached a consensus yet (Etzel et al., 2013), and it is
likely to be dependent on the nature of the stimuli and the task. Further
research is required to determine the best practice.

4.6. Further research questions

To further extend this line of research, there are two questions that
would be of interest. First, can neural similarity be applied to static
stimuli (i.e., spatial instead of spatiotemporal similarity)? Recent ad-
vances in representational similarity analysis (Kriegeskorte et al., 2008)
allow researchers to apply this kind of analysis in studies involving
consumer ratings or choosing products based on static stimuli. Second,
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beyond aggregate preference, can neural similarity predict actual choices
made by consumers in the market (as measured by, for example, sales)?
Again, more data on market-level effectiveness is needed before we un-
derstand the potential and limits of neural similarity.

Lastly, our three studies used video stimuli (TV commercials and
movie trailers) originally designed to appeal to a broad audience. While
we found that popular videos were the ones which evoked most similar
responses among individuals, it is unclear if such findings are restricted
to a certain genre of stimuli. For example, one may speculate that for
cultural products meant to provoke discussion and stimulation (such as
documentaries or debates), neural dissimilarity may actually a more
suitable predictor of preference.

4.7. Conclusion

In summary, across multiple studies we found that neural similarity is
arobust signal of preference, and that it provides meaningful information
in addition to both neural activation and self-report measures. This study
provides several novel contributions. First, we found that neural simi-
larity at temporal lobe and cerebellum - areas involved in sensory inte-
gration and emotional processing — predicted out-of-sample preference.
Second, while prior research demonstrated the link between neural
similarity and preference, this is the first study that demonstrates its
robustness across scanning settings, outcome measurements and video
types. Third, it showed the additional predictive power of neural simi-
larity above and beyond self-report measures, and showed the value of
harnessing this measure for the purpose of ‘neuroforecasting’ (Knutson
and Genevsky, 2018). More research is needed in order to shed light on
the interplay between activation and similarity within an individual.
Whether the predictive effect of neural similarity on aggregate prefer-
ence is specific to a certain type of stimuli (e.g., genre catered to mass
entertainment) remains to be studied.
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