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A B S T R A C T

This study explored the feasibility of using shared neural patterns from brief affective episodes (viewing affective pictures) to decode extended, dynamic affective
sequences in a naturalistic experience (watching movie-trailers). Twenty-eight participants viewed pictures from the International Affective Picture System (IAPS) and,
in a separate session, watched various movie-trailers. We first located voxels at bilateral occipital cortex (LOC) responsive to affective picture categories by GLM
analysis, then performed between-subject hyperalignment on the LOC voxels based on their responses during movie-trailer watching. After hyperalignment, we trained
between-subject machine learning classifiers on the affective pictures, and used the classifiers to decode affective states of an out-of-sample participant both during
picture viewing and during movie-trailer watching. Within participants, neural classifiers identified valence and arousal categories of pictures, and tracked self-re-
ported valence and arousal during video watching. In aggregate, neural classifiers produced valence and arousal time series that tracked the dynamic ratings of the
movie-trailers obtained from a separate sample. Our findings provide further support for the possibility of using pre-trained neural representations to decode dynamic
affective responses during a naturalistic experience.
1. Introduction

In recent years, numerous studies have attempted to use signals
recorded from the brain to infer affective states (Chikazoe et al., 2014;
Kassam et al., 2013; Kim et al., 2015; Klasen et al., 2011; Knutson et al.,
2014; Kragel and LaBar, 2015; Peelen et al., 2010; Saarim€aki et al., 2018,
2016). Using either a circumplex affect model (Russell, 1980) or discrete
emotion classes (Panksepp, 1982), these functional magnetic resonance
imaging (fMRI) studies have found that neural representations – i.e.,
blood oxygenation level dependent (BOLD) signal patterns – observed in
various brain regions such as subcortical structures (amygdala and
thalamus), precuneus, medial prefrontal, cingulate, temporal and pri-
mary somatosensory cortices are associated with certain emotional ex-
periences (Kragel and LaBar, 2015; Saarim€aki et al., 2016).

What distinguishes more recent studies from the preceding decade of
fMRI research on neural processing of affect (Kober et al., 2008; Lindquist
et al., 2012) is three-fold. First, the increasing popularity of multivariate
pattern analysis (MVPA) (Haxby, 2012; Haxby et al., 2001; Norman et al.,
2006; Nummenmaa and Saarim€aki, 2019) allows for attempts to extract
information from neural activities of distributed brain regions instead of
individual voxels. Second, rather than locating neural substrates associ-
ated with mental processes, there is a shift in focus towards making
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predictions of mental states based on neural patterns (Poldrack, 2011).
Lastly, there has been an increase in the use of naturalistic, complex
stimuli in social and affective neuroscientific studies, which stems from
the recognition that more reliable neural responses are observed with
these stimuli as compared to their well-controlled yet simplified coun-
terparts (Adolphs et al., 2016).

In experimental studies, emotions are often evoked by various stimuli
such as video, music, or pictures. An important question is whether any
neural representations associated with these affective stimuli are specific
within or common across modalities. Recent evidence suggests that
neural representations, at least to some extent, are modality-general and
also individual-invariant. For example, common affective neural patterns
have been found between words and pictures (Kassam et al., 2013),
movies and imagery (Saarim€aki et al., 2016), and faces and situations
(Skerry and Saxe, 2014). Moreover, Chikazoe et al. (2014) found that
participants shared neural patterns of valence evoked by images and
taste, while Kragel and LaBar (2015) observed distinct neural patterns for
various emotions that were shared among participants and across mo-
dalities (music and movies). Recently, Kragel et al. (2019) observed that
neural patterns at the occipital cortex could be used to classify emotional
experience while viewing affective visual stimuli. In that study, they
conducted separate analyses on affective pictures and movie clips, and
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found that in each case there were distinct neural patterns in the occipital
cortex that could be used to identify emotional categories of the stimuli
and that these patterns were shared among participants.

The studies discussed above have provided evidence that individuals
share neural representations of affect and that these representations are
common across modalities. However, emotions are essentially momen-
tary experiences, as evidenced by past studies examining the temporal
changes of affect in an extended period of emotionally varying experi-
ence (Brans and Verduyn, 2014; Frijda, 2009; Mesquita, 2010; Scherer,
2009), and there have also been attempts to map out these dynamics at
the neural level. These earlier studies, however, adopted the classic
univariate approach to the analysis of brain data. For example, an early
approach comparedmodelling brain responses to affective movie clips on
block regressors to individual continuous ratings, and found that
regressing on individual continuous ratings uncovered more frontal,
temporal and subcortical areas associated with positive arousal than
block contrasts did (Goldin et al., 2005). Similarly, Chaplin and col-
leagues found that dynamic changes in arousal elicited by music are
associated with neural activation in the inferior frontal gyrus (Chapin
et al., 2010). More recently, there have been attempts to apply multi-
variate approaches to investigate the temporal patterns of affect. For
example, functional connectivity of the salience network (anterior
cingulate cortex, insula, amygdala) tracked negative arousal during
watching a stressful movie clip (Young et al., 2017). In multiple studies
(Raz et al., 2016b, 2016a, 2012), moment-to-moment functional con-
nectivity of salience and limbic networks has been linked to continuous
intensity ratings of negative emotions such as fear, anger and sadness.
Lastly, Nummenmaa et al. (2012) investigated how inter-subject neural
synchronization tracked continuous changes in valence and arousal
while watching short movie clips, and found that negative valence was
associated with inter-subject synchronization at subcortical regions
(thalamus, nucleus accumbens) and default mode network, while high
arousal was associated with synchronization at somatosensory cortices.

Thus, extant studies suggest that (1) activation of certain brain areas
may track dynamic changes of affect over time, (2) that individuals share
common spatial neural patterns reflecting affective states elicited by brief
exposure to univalent stimuli (ones designed to evoke a specific emotion)
and (3) that these patterns show significant overlap between modalities
(e.g., emotions elicited by pictures, videos, or music). However, whether
these cross-modal, shared affective patterns generalize to time-variable
emotional experiences remains to be examined. Two follow-up ques-
tions would be: (1) Do neural patterns extracted during sustained epi-
sodes of affect generalize to settings where affective states are changing
continuously? (2) Are these neural patterns common across individuals,
also in dynamic settings? In other words, can we decode an individual’s
dynamic changes of affective states, using a model derived from neural
responses elicited by static experiences of affect in different individuals?

In this study we aim to answer these outstanding empirical questions.
In addition, we provide a more methodological contribution by testing
whether the application of functional alignment of fMRI data may
improve the extraction of shared affective neural patterns. Past findings
have shown that functional alignment as a preprocessing step improved
performance of pattern analysis in visual processing (Haxby et al., 2011;
Nishimoto and Nishida, 2016), although its application on higher order
mental processes is less common. Conventionally, inter-subject align-
ment is typically first carried out based on anatomical features, such that
each individual is registered into a common coordinate space, a pro-
cedure commonly referred to as spatial normalization (Gholipour et al.,
2007). However, this procedure alone does not account for individual
variations in the neural encoding of fine-scaled information (Conroy
et al., 2013). To this end, more recent attempts focus on functional
alignment, i.e., maximizing inter-subject alignment based on local brain
functions (Conroy et al., 2013; Haxby et al., 2011; Sabuncu et al., 2010).
For example, Haxby et al. (2011) developed a procedure called hyper-
alignment, which derives inter-subject functional correspondence by
aligning different individuals’ regional neural responses to complex,
2

dynamic stimuli, such as movies. The procedure produces transformation
matrices that project the same brain regions from different individuals
into a shared high-dimensional space based on their common functional
responses. This method has been found to be beneficial to improving
inter-subject classification accuracy of neural patterns in visual process-
ing (Guntupalli et al., 2016; Haxby et al., 2011). The application of
functional alignment to uncover shared affective neural patterns, how-
ever, has been limited so far.

In summary, the aim of the present study is to test directly whether
affective neural representations, based on brief and isolated episodes of
affect (evoked by affective pictures), could be used to decode a time-
variable emotional experience (here, watching movie-trailers). We
investigate whether the use of functional alignment improved the
extraction of affective neural patterns. We examine the validity of af-
fective neural patterns in three steps. First, we verify whether different
individuals indeed shared neural representations when they viewed af-
fective pictures. Second, we examine whether the decoded affective time
series during movie-trailer watching tracked the retrospective summary
ratings of valence and arousal by the participants. Third, we test whether
these affective time series of movie-trailers, in aggregate, tracked the
continuous ratings of affective experience by a separate sample.

2. Materials and methods

2.1. Overview of the study design and analysis

We report findings from a study on video watching during fMRI
scanning, part of which has been previously reported (Chan et al., 2019),
with previously unreported fMRI data of affective picture viewing and
self-report ratings of affect. Whereas the previous report focused on
neural features that predicted out-of-sample, market-level, popularity of
naturalistic stimuli, here we explore individual affective responses to
movie-trailers. In addition, we conducted an online study in which a
separate group of participants provided continuous ratings of the affec-
tive experience of the videos.

The overview of the study design and analysis is as follows (Fig. 1). In
the fMRI study, participants viewed affective pictures, then watched the
movie-trailers in random order. They also provided valence and arousal
ratings for each of the trailers. We first determined brain regions sensitive
to affective picture categories by univariate analysis (feature selection).
Then, we built across-participants valence and arousal classifiers based
on these neural responses. Before doing so, we performed a hyperalign-
ment procedure to improve functional alignment between participants
(Haxby et al., 2014). Specifically, we obtained hyperalignment parame-
ters based on neural responses to movie-trailers, then applied the trans-
formation to bothmovie-trailer and affective picture neural data. Valence
and arousal classifiers were built with the hyperaligned affective picture
data from all-but-one participants. Based on these two classifiers, the
remaining out-of-sample participant’s neural responses to affective pic-
tures and movie-trailers were decoded.

To examine the validity of the classifiers, three tests were conducted.
First, we examined whether classifiers correctly identified the affective
categories of the pictures viewed by the participants. Second, valence and
arousal classifications based on the individual’s neural responses to the
movie-trailers were compared to their self-reported valence and arousal
ratings of the corresponding videos. Finally, to determine whether the
neural valence and arousal time series tracked the dynamic affective
profiles of the movie trailers, we asked a separate online sample to
continuously rate the trailers in both valence and arousal dimensions.
The valence and arousal time series from the fMRI and online samples
were then compared.

2.2. FMRI study

2.2.1. Participants
We recruited 31 healthy volunteers via the recruitment system of the



Fig. 1. Overview of the study design and analysis.

Table 1
Movie trailers used in the study (movie information from the International Movie
Database). Genre legend: A ¼ action; B ¼ biography; C ¼ crime; D ¼ drama; F ¼
fantasy; Mu ¼ musical; My ¼ mystery; R ¼ romance; Sf ¼ sci-fi; Sp ¼ sport; T ¼
thriller; W ¼ western.

Title Code Year released Genre Length (s)

The Namesake M1 2006 D 150
Pollock M2 2000 B,D 141
The Town M3 2010 C,D,T 145
Quills M4 2000 B,D 143
Love & Basketball M5 2000 D,R,SP 142
Takers M6 2010 A,C,D 141
Northfork M7 2000 D,F 143
Waist Deep M8 2006 A,C,D 133
Michael Clayton M9 2007 C,D,M 134
The Debt M10 2010 D,T 142
Idlewild M11 2006 C,D,M 130
To Save a Life M12 2009 D 137
Confidence M13 2003 C,T 125
Extraordinary Measures M14 2010 D 147
Impostor M15 2001 D,SF,T 66
Harsh Times M16 2005 A,C,D 131
The Warrior’s Way M17 2010 A,F,W 136
Gracie M18 2007 B,D,SP 131
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university. One participant had to be excluded due to falling asleep in the
scanner, and two more due to excessive head movements (>5 mm
movement in any direction between successive images in one or both
scanning sessions). These are omitted from all behavioral and neural
analyses. The final sample thus consisted of 28 participants (14 women,
mean age 20.9). The study was approved by the local ethics committee,
in line with the Declaration of Helsinki. All participants signed informed
consent prior to participation.
3

2.2.2. Materials and procedures
Participants received a fixed fee of €10 per hour. After signing

informed consent, participants were taken to the MRI scanner, and per-
formed a number of tasks in separate scanning sessions. The two tasks
presented in this report weremovie-trailer watching and picture viewing.

2.2.2.1. Movie-trailer watching. Participants viewed 18 unedited movie
trailers (see Table 1), chosen with the aim to represent a wide range of
genres and commercial successfulness (as measured by box office
returns) while avoiding extreme content (e.g., horror). (See supplemen-
tary material S1 for more details on movie selection.) Participants were
screened prior to inclusion to ensure that they had not seen any of our
selected movies already. The 18 movie trailers were presented to the
participants in random order. (One participant did not watch the movie
trailer M16 due to a technical error.). Presentation of the trailers was
preceded and followed by a picture of the cover (3s) of the DVD to make
clear which movie the trailer belonged to. Immediately following each
movie-trailer, participants were asked to state, via button presses, (1)
their expected liking of the movie on a five-star-scale (zero stars possible
with half-star increments); (2) willingness to pay (WTP) to obtain a DVD
of the movie (€0 - €2.5, with 25 cents increments) under a Becker-
DeGroot-Marschak (BDM) auction procedure (Becker et al., 1964); (3)
valence with the self-assessment manikins (SAM), a nine-point visual
analog scale (Hodes et al., 1985); and (4) arousal with SAM. All of the
ratings were self-paced without time limit. We focused on the self--
reported valence and arousal ratings for this analysis.

Before and after all movie-trailers were shown, we showed
emotionally neutral movie excerpts (scenes from Comment j’ai tu�e mon
p�ere [2001], each 90s in length) for participants to return to baseline
emotional state. In addition, after the fourth and the twelfth trailer, we
showed a scrambled version of trailer of either M5 or M13 by random
shuffling of pixels within each frame and replacing the original sound-
track with white noise of the same dynamic amplitude. (The order was
counterbalanced across participants.) These were not used in the
analysis.

2.2.2.2. Picture viewing. Before movie-trailer watching, in a separate
session, we showed 156 pictures, each for 2s successively, drawn from
the International Affective Picture System (IAPS) database (Lang et al.,
2008), grouped in blocks of the six affective categories in the
valence-by-arousal space: (1) positive valence/high arousal; (2) positive
valence/low arousal; (3) negative valence/high arousal; (4) negative
valence/low arousal; (5) neutral valence/medium arousal; and (6)
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neutral valence/low arousal. They were matched for content of bodies,
faces, animals and plants. (See supplementary material S2 for more
description of the pictures.) Pictures from each of the first five categories
were shown in two 12-picture (24s) blocks (i.e., 5 blocks � 2 runs),
presented in random order within each run. In between blocks, a 4-pic-
ture (8s) block from the last category (neutral valence/low arousal)
were shown to allow the emotional response to return to baseline. Of
interest for the present study were the first four picture categories.1

2.2.3. FMRI acquisition and preprocessing
Subjects were scanned using a Siemens (Erlangen, Germany) Skyra 3

TMRI scanner, with a 32-channel head coil. Subjects could respond using
a right-hand 4-button response device. A mirror mounted on the head
coil ensured that participants could view the projector screen mounted at
the back of the scanner. Functional data was acquired with a T2*-
sensitized parallel imaging multi-echo sequence, with echo times (TE)
at 9, 19.3, 30 and 40 ms. Thirty-four horizontal slices were acquired in
ascending order (3.0 mm slice thickness, 0.5 mm slice gap, 3.5 � 3.5 mm
in-plane resolution, 64 � 64 voxels per slice, flip angle 90�, total repe-
tition time (TR) 2.07 s). The first 30 vol (before the start of each session’s
task) were used for echo-weighting. Prior to preprocessing, the four read-
outs acquired via the multi-echo sequence were combined and realigned
by using standard procedures described by Poser et al. (2006). A
T1-weighted image was acquired for anatomical reference (1.0 � 1.0 �
1.0 mm resolution, 192 sagittal slices, TE 3.03 ms, TR 2300 ms).

Data pre-processing was carried out using SPM12 (Statistical Para-
metric Mapping, Wellcome Department of Imaging Neuroscience, Uni-
versity College London, London, UK). Rigid-body transformations were
applied to realign the volumes to the first echo of the first volume. Images
were then corrected for differences in slice acquisition time. The
anatomical image was co-registered with the mean functional image for
each participant. Functional and anatomic images were then normalised
to Montreal Neurological Institute (MNI) space. Finally, the normalised
functional images were smoothed using a 3 mm full-width-at-half-
maximum (FWHM) Gaussian kernel. The relatively small size of the
smoothing kernel is informed by past literature that showed excessive
smoothing reduced the sensitivity of pattern analysis (Misaki et al.,
2013). Average white matter and out-of-brain signal were calculated by
applying masks derived from the tissue probability maps available in
SPM12 (Ashburner and Friston, 2005); specifically, the masks were
created with probability> 0.75 as threshold on the respective probability
maps. Linear detrending was then carried out using average white matter
and out-of-brain signals as nuisance regressors; afterwards, voxel- and
session-wise z-scoring were performed before analysis. For MVPA anal-
ysis, a time shift of 6s was also added throughout the analysis to account
for hemodynamic response delay.

2.2.4. FMRI data analysis
Multivariate pattern analysis was carried out in Python with PyMVPA

(Hanke et al., 2009) and Nilearn (Abraham et al., 2014) packages.

2.2.4.1. Selecting voxels responsive to affective picture categories. We first
located voxels responsive to affective picture categories, i.e., those which
showed differential activations between positive and negative valence
pictures, and between high and low arousal pictures. This was done by
univariate analysis with general linear models defined for each subject
using a box-car function to model the picture blocks, with one regressor
1 It is possible to express the affective space in bipolar valence and arousal
(Colibazzi et al., 2010) or unipolar positivity and negativity (Knutson et al.,
2014), although there is insufficient evidence to determine which one better
reflects the brain system (Lindquist et al., 2016). For the purpose of this study,
we adopted the bipolar valence and arousal system since it did not involve
transformation of the normed categories of the affective pictures nor trans-
formation of the self-report ratings of the movie-trailers.
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for each of the six picture categories detailed above. Two regressors of
non-interest, average white matter signal and average out-of-brain
signal, were entered together with a constant. Bidirectional t-contrasts
were created for each subject comparing: (1) positive versus negative
valence (collapsing over high and low arousal); (2) positive versus
negative valence (high arousal only); (3) positive versus negative valence
(low arousal only); and (4) high versus low arousal (collapsing over
positive and negative valence). The first level maps were then entered
into a random effects second-level analysis.

2.2.4.2. Inter-subject hyperalignment. Since we aimed to uncover shared
neural representations of affective states across individuals, before doing
so we considered ways to optimize brain alignment across individuals. To
this end, we used functional response tuning as an extra step in addition
to anatomical alignment (Haxby et al., 2014). Based on this particular
approach called ‘hyperalignment’ (Haxby et al., 2011), individual sub-
jects’ voxel spaces were transformed into a common model space by
comparing inter-subject neural responses to identical stimuli. For each
subject, spatio-temporal responses to common stimuli (i.e., during
movie-trailer watching) were treated as a single n-dimensional vector
with t time points (where n is the number of voxels to be analysed). Using
Procrustean transformation, these vectors were rotated to obtain optimal
alignment (i.e., smallest Euclidean distances) among subjects with a
three-pass procedure (Haxby et al., 2011): (1) begin with a randomly
drawn pair of participants and obtain initial alignment, apply alignment
iteratively by pairing the latest aligned average with a new participant,
and obtain the average of all transformed vectors as new reference; (2)
align all participants with the new reference, and generate the average of
all transformed vectors as final reference; and (3) align all participants
with the final reference. The procedure created, for each subject, a
transformation matrix which could be applied on the corresponding
voxel space. The transformation from individual voxel space to a com-
mon space has been shown to improve between-subject classification
accuracy (Haxby et al., 2011).

Specifically, each participant’s scan volumes of the 18 movie trailers
(35 min 47 s in total) were re-sliced in the same order, resulting in a
1168-vol vector. (For the participant who did not watch the movie trailer
M16 due to technical error, mean responses of that 63 vol from other
participants were used instead.) Transformation matrices were estimated
separately for each contiguous cluster, after which hyperalignment was
applied to both picture viewing and movie-trailer watching data such
that all participants’ voxel responses were transformed to a common
space.

2.2.4.3. Training and using valence and arousal classifiers based on shared
patterns. After hyperalignment, two linear support vector machine
(SVM) classifiers (one for valence and one for arousal) were trained on
the picture viewing data. A leave-one-subject-out approach was used
here, such that training data came from all-but-one participants. Then,
the trained classifiers were used to decode the valence (positive or
negative) and arousal (high or low) states of the remaining participant
during picture viewing and movie-trailer watching. We decoded both the
picture viewing data and the movie-trailer watching data volume-by-
volume.

For the picture-viewing data, classification accuracy was defined as
the percentage of volumes correctly categorized according to the valence
and arousal categories of the pictures. Statistical significance of classifi-
cation accuracy was evaluated based on the binomial distribution (Per-
eira and Botvinick, 2011).

For the movie-trailer data, the classifiers yielded for each movie-
trailer two time series of classification probabilities (a continuous mea-
sure ranging 0–1), one for valence and one for arousal. The valence and
arousal time series were then used in two ways. First, for each participant
and each movie-trailer, we obtained the average classification proba-
bility for valence and arousal. We then entered the average probabilities



Fig. 2. Pre-defined regions of interest for mean activation analysis. NAcc ¼ nucleus accumbens; aIns ¼ anterior insula; PCC ¼ posterior cingulate cortex; mPFC ¼
medial prefrontal cortex.
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to mixed effect regression models to examine the statistical relationship
between self-report valence and arousal ratings and neural classification
probabilities. Second, for each movie-trailer, we obtained the group
average valence and arousal time series and compared them to the
continuous self-report ratings obtained from a separate sample (details
below).

2.2.4.4. Pre-defined regions of interest associated with affective proc-
essing. In addition to multivariate pattern analysis described above, we
compared our findings with analysis based on mean activations at brain
regions traditionally associated with affective processing (Knutson et al.,
2014; Kober et al., 2008; Lindquist et al., 2012). We chose six regions of
interest (ROIs) documented in extant literature for our analysis: amyg-
dala, thalamus, nucleus accumbens (NAcc), anterior insula (aIns), pos-
terior cingulate cortex (PCC), and medial prefrontal cortex (mPFC). The
masks were defined from Automated Anatomical Labelling (amygdala
and thalamus; Tzourio-Mazoyer et al., 2002), or created with 8 mm-ra-
dius spheres at published coordinates of NAcc [�11, 13, �6] and aIns
[�35, 27, �9] (Knutson et al., 2014), and PCC [1, �54, 25] and mPFC
[–2, 51, 29] (Kober et al., 2008). Using the category labels by Kober et al.
(2008), we organized the six ROIs under three groups: core limbic, lateral
paralimbic and medial (Fig. 2).
2 https://github.com/chanhangyee/affect_decoding.
2.3. Online study

To further examine whether the valence and arousal time series from
the neural data tracked the affective profiles of the videos, we recruited
51 U.S. participants through Amazon Mechanical Turk (29 women, mean
age 38.0). They were paid at an hourly rate of $10. In this online study,
they were asked to watch a random subset of the 18 movie trailers while
providing continuous ratings of either valence (n ¼ 24) or arousal (n ¼
27) for each of the videos. Continuous rating was achieved by using
either a track pad or the scroll wheel of a mouse to control a vertical
slider along the SAM visual analog scale (see Fig. 3 for a screenshot of the
5

valence rating). Participants first practiced using the interface with an
unrelated short video, then rated the movie-trailers in random order. The
real-time movement of the slider was recorded and time-stamped with
reference to the start of the video playback by the computer browser, and
resampled at 1/TR (2.07s) Hz. On average, each movie trailer had 17
individual time-series in each affective dimension (valence and arousal;
min ¼ 14, max ¼ 21). By averaging across participants, the valence and
arousal self-report time series of the videos were obtained.

2.3.1. Examining correlations of affective time series between fMRI and
online study

In the fMRI sample, we calculated the group average of valence and
arousal classification probabilities at each time point of the videos,
resulting in a single time series per movie-trailer. In the online sample,
we calculated the group average at each corresponding time point of the
movie-trailers. Concatenating the 18 movie-trailers, we obtained 1168-
point time series of valence and arousal from each of the samples, and
calculated the correlations between them. Due to the temporal autocor-
relation structure inherent in the time series, we ascertained the statis-
tical significance by permutation tests, in which the null correlation was
calculated 10,000 times with the order of the 18 movie-trailers randomly
shuffled at each time before concatenation (while keeping the time series
within each movie-trailer intact). Empirical p-values were obtained by
comparing the correlation with the null distribution.

2.4. Code accessibility and data availability

The data that support the findings of this study, including pre-
processing and analysis scripts, are available in an open repository.2

https://github.com/chanhangyee/affect_decoding


Fig. 3. Example screenshot of the online rating task (screen was blurred due to copyright reasons).

Table 2
Clusters found in the thresholded maps (cluster size k > 20).

Cluster Cluster size tmax X y z

Valence 126 5.58 �43 �69 �7
(negative > positive, high arousal) 59 6.18 6 �82 19

47 4.74 44 �69 �10
Arousal 251 7.67 44 �68 0
(high > low) 219 7.97 �42 �75 1
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3. Results

3.1. Self-report ratings of movie-trailers

The 18 movie-trailers evoked a range of valence and arousal re-
sponses, based on participants’ self-report ratings (group-average valence
[1–9, negative to positive] for movie-trailers: min¼ 4.60, median¼ 5.27,
max ¼ 6.35; group-average arousal [1–9, low to high]: min ¼ 2.79,
median ¼ 4.77, max ¼ 6.18; see supplementary material S3 for detailed
descriptive statistics).

3.2. Brain areas responsive to affective picture categories

Significant results from t-contrasts, defined as p < .001 uncorrected
and with minimum cluster extent of 20 voxels, revealed clusters with
higher activation associated only with negative valence and high arousal.
In addition, contrasts of valence yielded significant results only when
high arousal pictures were used (Table 2). In both valence and arousal
contrasts, we observed significant clusters at the lateral occipital cortex
(LOC) (see Fig. 4A), while no significant voxels were found within the six
pre-defined affective ROIs. (We further examined activations at those
affective ROIs during picture viewing in a supplementary analysis S5.)
We therefore targeted that area by creating a union of the two maps and
applying light smoothing (3 mm FWHM) in order to obtain a LOC mask
with two contiguous clusters (left: 340 voxels, right: 390 voxels)
(Fig. 4B). Hyperalignment was conducted separately for each of the two
clusters. The two corresponding transformation matrices were then
applied on each participant’s picture viewing and movie-trailer watching
data.
6

3.3. Decoding affective categories of pictures using shared response
classifiers

For each participant, linear SVM classifiers for valence and arousal
were trained with picture viewing data pooled over the other 27 par-
ticipants within the bilateral LOC. The classifiers were then applied on
the remaining participant’s picture viewing data to obtain valence and
arousal classifications for each of the volumes under different picture
categories. In the previous section, significant clusters for valence con-
trasts were only found in high arousal pictures; therefore, to optimize the
valence classifiers, only neural responses to high arousal pictures (of
positive and negative valence) were used (i.e., 1299 vol from the 28
subjects), whereas the arousal classifier was built with neural responses
to all pictures (i.e., 2605 vol from the 28 subjects).

Using this leave-one-subject-out classification, the overall valence
classification accuracy rate was 81.1% (chance: 50%), while the overall
arousal classification accuracy rate was 67.2% (chance: 50%). Both fig-
ures were statistically significant (p < 10�10) under the binomial test
(Pereira and Botvinick, 2011). To ascertain whether the hyperalignment
procedure boosted classification performance, we repeated the analysis
without the procedure and found that classification accuracies were
lower (valence: 70.4%, arousal: 62.3%) (Fig. 5A). The classification
performance was comparable to the performance reported in a previous
study with a similar design (Baucom et al., 2012). We further compared
individual classification accuracies before and after hyperalignment.
Wilcoxon signed-rank test showed that hyperalignment boosted perfor-
mance (valence: WilcoxonW¼ 10, p< .0001; arousal: W¼ 96, p¼ .015).
After hyperalignment, classification accuracies for valence and arousal
significantly exceeded the 50% chance level (p < .05) for the majority of
participants (median accuracy for valence: 78.5%; arousal: 69.9%;
Fig. 5B).

3.4. Decoding affective time series of movie-trailers using shared response
classifiers

After training the valence and arousal classifiers based on affective
pictures, they were applied on neural responses during movie-trailer
watching in order to obtain valence and arousal time series, i.e.,
volume-by-volume classification probabilities for valence (negative-
positive) and arousal (high-low).



Fig. 4. (A) Statistical parametric maps thresholded at p < .001 uncorrected. (B) Bilateral regions of interest, defined by the union of voxels from the two statisti-
cal maps.
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3.4.1. Validation with individual summary self-report ratings
Within a participant, the valence and arousal classification time series

based on neural responses to each movie-trailer were averaged along the
time axis. These average classification probabilities were then compared
against the individual’s own summary ratings of the corresponding
Fig. 5. (A) Overall and (B) individual leave-one-subject-out classification acc
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movie-trailers (Fig. 6). The mean Fisher-transformed within-participant
correlations between neural classification probability and self-report
rating was 0.098 for valence (one-sample t-test against zero t ¼ 2.014,
p¼ .054), and 0.153 for arousal (t¼ 3.671, p¼ .001). We then examined
the association between neural and self-report variables by using linear
uracies of affective picture categories with and without hyperalignment.



Fig. 6. Self-report ratings and neural classification probabilities of (A) valence and (B) arousal by movies (error bars represent standard error).
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mixed-effects models with participant as random intercepts. Neural
valence classification had a significant and positive effect on self-report
valence rating, and neural arousal classification had a significant and
positive effect on self-report arousal rating (Table 3A and B, models 1).

We further verified whether mean activations at pre-defined affective
ROIs also predicted self-reported valence and arousal (Table 3A and B,
models 2). Higher activation at medial ROIs was associated with more
positive valence and higher arousal rating of the videos. Importantly,
neural valence and arousal classifications remained significant predictors
of self-report ratings after taking into account the ROI-based activations,
and improved model fit as indicated by reduced Akaike’s information
criterion (AIC) (Table 3A and B, models 3). In order to verify that neural
valence and arousal classifications based on LOC activity pattern were
not driven by the mean activation level, we conducted a separate analysis
where mean activation level at LOC was also entered as regressor. We
Table 3
Mixed effect regression models (from left to right, Model 1: neural classification only;
report summary valence and arousal ratings, respectively, with participant as rando
mPFC ¼ medial prefrontal cortex; PCC ¼ posterior cingulate cortex.

A. Self-reported valence Coef SE p Coef

Neural classification
Valence 0.733 0.439 .094
Arousal 0.151 0.661 .819
Core limbic
Amygdala 0.745
Thalamus 1.317
NAcc �0.723
Lat. paralimbic
aIns �1.442
Medial
mPFC 0.060
PCC 1.814
AIC 1989.5

B. Self-reported arousal Coef SE p Coef

Neural classification
Valence �0.656 0.495 .185
Arousal 1.887 0.747 .011
Core limbic
Amygdala �0.71
Thalamus 0.396
NAcc 0.286
Lat. paralimbic
aIns 0.706
Medial
mPFC �1.15
PCC �0.02
AIC 2126.4

8

found that LOC activation was not a significant predictor for self-reported
arousal but was marginal for self-reported valence, and in either model
the neural valence and arousal classification regressors remain signifi-
cant after taking into account LOC activation (see supplementary analysis
S6A). Mindful that activations at different ROIs could be correlated and
thus posed an issue of collinearity, we repeated the analysis by entering
regressors one at a time in a supplementary analysis (S6B) and found that
the relationships between medial ROI activation and valence and arousal
ratings remain significant. We also repeated the analysis without the
hyperalignment procedure and found that with untransformed data,
neural valence and arousal classifications were not significant predictors
(supplementary analysis S6C). We further found that the time series of
the valence and arousal classifications themselves contain movie-trailer-
specific information that was shared across participants (supplementary
analysis S7).
Model 2: mean activations at pre-defined affective ROIs; Model 3: both) on self-
m intercepts. NAcc ¼ nucleus accumbens; Lat. ¼ lateral; aIns ¼ anterior insula;

SE p Coef SE p

0.991 0.447 .027
�0.218 0.664 .742

0.701 .288 0.941 0.710 .185
0.816 .107 1.341 0.825 .104
0.680 .287 �0.787 0.683 .250

0.843 .087 �1.192 0.855 .163

0.429 .888 �0.077 0.435 .860
0.563 .001 2.047 0.577 <.001
1978.2 1977.2

SE p Coef SE p

�0.659 0.513 .199
1.945 0.762 .011

1 0.809 .379 �0.744 0.818 .363
0.941 .674 0.114 0.949 .904
0.784 .715 0.294 0.785 .708

0.971 .467 0.363 0.983 .712

5 0.495 .020 �1.060 0.500 .034
2 0.654 .973 �0.331 0.669 .621

2135.1 2131.2



Fig. 7. Correlations between time-series of self-report ratings from online
sample and neural scores from fMRI sample, with null distribution plot of the
correlations from 10,000 permutations. The empirical p-values reported here are
one-tailed.
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3.4.2. Validation with aggregated continuous self-report ratings
For each movie-trailer, we obtained the average valence and arousal

classification time series, and compared these with the continuous rat-
ings by a separate online sample (see supplementary material S4 for the
average continuous ratings for each movie-trailer). Time series correla-
tion between neural classification of the fMRI sample and self-report
ratings by the online sample was .134 (one-tailed empirical p value ¼
.078) for valence and 0.222 (p ¼ .003) for arousal, respectively (Fig. 7).
These results suggest that the decoded time series of valence and arousal
did indeed track the temporal profile of the movie-trailers, although the
evidence was less strong for valence. (See supplementary analysis S8 for
an analysis on activation time series extracted from affective ROIs.) As an
illustration of how the classified affect time series might track narrative
content, Fig. 8 shows the time series of one movie-trailer.

4. Discussion

In this study, we first identified that lateral occipital cortex contained
information about valence and arousal evoked by IAPS pictures. We then
showed that neural representations of affect within these brain areas
were shared across participants, as evidenced by results from leave-one-
subject-out classifications of the affective pictures. We also verified that
functional alignment improved model performance. Using the classifiers
trained on neural responses to these pictures, we then obtained moment-
by-moment valence and arousal time series during movie-trailer watch-
ing. We showed that neural valence and arousal classifications were
associated with self-report summary ratings of the individual. In addi-
tion, neural arousal classification time series tracked the continuous
ratings of arousal of a separate sample, while weaker but consistent ev-
idence was also found for valence classification.

The current findings provide supportive evidence that affective neu-
ral representations extracted from episodic affective states are similar to
those of time-variable, and more naturalistic, emotional experiences.
This is important, because it suggests that neural models constructed in a
more controlled environment are also applicable in more realistic set-
tings, where emotional states are changing rapidly. While behavioral
studies have documented patterns of dynamic changes in emotions
(Kuppens and Verduyn, 2017; Nielsen et al., 2008; Pe and Kuppens,
2012), the way in which these self-reported changes manifest at a neural
level remained unknown. This study represents an effort into under-
standing dynamic emotional changes with neuroimaging (Spiers and
Maguire, 2007).

It should be noted that, while the neural arousal classifications were
strongly associated with self-reportratings of the affective experience
during watching of the movie-trailers, this association was less strong for
valence, even though the classification accuracy for valence within the
affective pictures was relatively high (~80% after functional alignment).
Thus, it seems that either our classifier for valence was less able to pick up
subtle changes in valence during video watching, or that participants’
self-reported evaluations for valence are somehow less accurate or more
noisy. The current study does not allow for distinguishing between these
two interpretations.

We identified the LOC as responsive to affective pictures, while the
same GLM analysis did not reveal brain areas traditionally associated
with affective processing, such as the amygdala, thalamus, aIns and
NAcc. This result aligns with a previous study using a similar set of
stimuli (IAPS pictures) and paradigm (block design) (Sabatinelli et al.,
2006), which identified LOC activation, but not other affective regions,
during viewing of affective pictures. More broadly speaking, LOC (among
other affective brain regions) was identified in extant studies using af-
fective visual stimuli (Aldhafeeri et al., 2012; Baucom et al., 2012; Bush
et al., 2018b; Gerber et al., 2008; Kassam et al., 2013; Klasen et al., 2011;
Nielen et al., 2009; Sabatinelli et al., 2005) but not in other modalities
(Chikazoe et al., 2014; Colibazzi et al., 2010; Posner et al., 2009).
Additional analysis of pre-defined affective ROIs (core limbic, lateral
paralimbic and medial areas) showed that while negative valence-high
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arousal pictures drove up activation intensity in many of these areas,
voxels in those areas did not survive statistical thresholding in a
whole-brain analysis.

We speculate there may be several reasons for not finding these areas
traditionally associated with affect. First, our preprocessing procedure
deviated from previous studies. In order to retain spatial pattern infor-
mation (Misaki et al., 2013), we chose a relatively light smoothing kernel
(3 mm FWHM) as opposed to more commonly used kernels (6–8 mm).
This decreased the sensitivity of locating significant voxels in
second-level analysis, although for the purpose of this study the aim of
the procedure was not localization but feature selection. We also
restricted our feature selection to contiguous clusters (k > 20) since we
planned for cluster-wise hyperalignment in later stages. (In additional
analyses, we tested anatomically defined ROIs at amygdala and thalamus
for neural pattern extractions but failed to obtain significant results.)
Second, we adopted a block design for picture viewing, i.e., presenting
successive pictures of the same affective categories within a block, and
treat the block as having a homogenous affective state. This was in
contrast with other studies where pictures were presented individually,
separated by inter-trial intervals (Bush et al., 2018b, 2018a). It is likely
that during a picture block (12 same-category pictures in 24s) partici-
pants experienced affective adaptation (Wilson and Gilbert, 2008) and
thus attenuated their affective response towards the end of the block.
Lastly, there is a distinction between emotion perception and experience
(Wager et al., 2008). In the current study, participants were asked to
observe affective stimuli (perception) instead of generate the feelings
themselves (experience). A meta-analysis has shown that experience
triggered a stronger reaction in the frontal cortex and subcortical struc-
tures, while perception accentuated activation in the sensory cortex
(Wager et al., 2008). In sum, given the evidence that there exist both
modality-general and modality-specific neural coding of affective states
(Miskovic and Anderson, 2018), we speculate that the affective neural
patterns we extracted in this study were specific to visual stimuli andmay
not be transferable to other modalities.

We also found that inter-subject functional alignment increased



Fig. 8. This figure shows group-averaged neural
(from fMRI sample) and self-report (from online
sample) valence and arousal for the trailer of The
Town (2010). For illustrative purposes, the series
are rescaled to range from �0.5 to 0.5 and gaussian-
smoothed with 1 TR sigma along the time axis.
Shaded regions represent standard error. Notable
moments in the video: A – Bank robbery and hos-
tage taking; B – Studio vanity card; C – First
romantic meeting between male and female leads
(Ben Affleck and Rebecca Hall); D – Reveal that the
male lead turns out to be kidnapper of the female
lead; E � Title card and credits.
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performance in classification accuracy. This confirms previous results on
its use for improving cross-participant classification (Haxby et al., 2011).
(In a supplementary analysis S6C, we repeated the procedure without
hyperalignment and found that decoded valence and arousal during
movie-trailer watching did not track self-report ratings.) However, most
of the past applications were limited to visual and auditory processing
circuits to uncover a common representational space for sensory percepts
(Guntupalli, 2013; Haxby et al., 2011; Nishimoto and Nishida, 2016).
More recent studies are expanding towards a whole-brain approach in a
search of common space for higher-order processes (Guntupalli et al.,
2016). While we applied hyperalignment closer to the original approach
by Haxby et al. (2011), our findings suggest that this technique is also
beneficial to decoding other mental processes such as emotions.

Some limitations of this study should be mentioned together with
pointers for future research direction. First, the fact that only neural re-
sponses at LOC were used to predict affective content might suggest that
the neural representations might be tied to specific low-level visual fea-
tures instead of affective content. Although recent studies have shown
that affective information could be uncovered based on occipital cortex
activity (Bush et al., 2018a; Kragel et al., 2019), given the fact that we
only used LOC and no other brain networks, further research should
focus on establishing whether modality-general representations are
capable of tracking dynamic change of specific emotions as well. Second,
we did not obtain continuous self-report ratings of valence and arousal
within the fMRI sample (Hutcherson et al., 2005; Nummenmaa et al.,
2012; Raz et al., 2016b; Young et al., 2017), thus we could not compare
neural and self-report time series within the same participant in the fMRI
sample. Future research should verify if the current approach could also
be used to study the individual variability in affective responses. Lastly,
we adopted a dimensional model of core affect (Russell, 1980) in our
study and the block design for presenting affective picture (Sabatinelli
et al., 2006) collapsed the valence and arousal dimensions into binary
categories. This prevented us from building a model that generates
valence and arousal predictions on a continuous scale. Future research
should therefore look into ways to: (a) develop models with continuous
valence and arousal predictions, and (b) use categorical emotions for
classification, which may reveal finer-grained affective changes across
time that could not be captured by valence and arousal alone, such as
co-existence of multiple emotions (Larsen and McGraw, 2011).

In summary, this study explored the feasibility of using neural rep-
resentations from brief, stable affective episodes (picture viewing) to
decode extended, dynamic affective sequences in a naturalistic
10
experience (movie-trailers watching). Our findings demonstrate the po-
tential of using pretrained neural representations to decode affective
responses to naturalistic stimuli of an independent sample. Moreover, by
extending affective neuroscience research from discrete states to dy-
namic sequences, this study highlights the possibility of augmenting
behavioral studies of temporal changes of affect, which rely mostly on
self-report measures, with neuroimaging data.

Declaration of competing interest

The authors declare no competing financial interests.

CRediT authorship contribution statement

Hang-Yee Chan: Conceptualization, Methodology, Software, Formal
analysis, Writing - original draft, Writing - review & editing. Ale Smidts:
Conceptualization, Methodology, Writing - original draft, Writing - re-
view & editing, Supervision. Vincent C. Schoots: Conceptualization,
Methodology, Investigation, Writing - original draft. Alan G. Sanfey:
Conceptualization, Methodology, Supervision. Maarten A.S. Boksem:
Conceptualization, Methodology, Writing - original draft, Writing - re-
view & editing, Supervision.

Acknowledgement

The authors gratefully acknowledge financial support from the Eras-
mus Research Institute of Management (ERIM) and the Dutch national e-
infrastructure with the support of SURF Cooperative.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2020.116618.

References

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J.,
Gramfort, A., Thirion, B., Varoquaux, G., 2014. Machine learning for neuroimaging
with scikit-learn. Front. Neuroinf. 8 https://doi.org/10.3389/fninf.2014.00014.

Adolphs, R., Nummenmaa, L., Todorov, A., Haxby, J.V., 2016. Data-driven approaches in
the investigation of social perception. Philos. Trans. R. Soc. B Biol. Sci. https://
doi.org/10.1098/rstb.2015.0367.

https://doi.org/10.1016/j.neuroimage.2020.116618
https://doi.org/10.1016/j.neuroimage.2020.116618
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.1098/rstb.2015.0367
https://doi.org/10.1098/rstb.2015.0367


H.-Y. Chan et al. NeuroImage 216 (2020) 116618
Aldhafeeri, F.M., Mackenzie, I., Kay, T., Alghamdi, J., Sluming, V., 2012. Regional brain
responses to pleasant and unpleasant IAPS pictures: different networks. Neurosci.
Lett. https://doi.org/10.1016/j.neulet.2012.01.064.

Ashburner, J., Friston, K.J., 2005. Unified segmentation. Neuroimage 26, 839–851.
https://doi.org/10.1016/j.neuroimage.2005.02.018.

Baucom, L.B., Wedell, D.H., Wang, J., Blitzer, D.N., Shinkareva, S.V., 2012. Decoding the
neural representation of affective states. Neuroimage 59, 718–727. https://doi.org/
10.1016/j.neuroimage.2011.07.037.

Becker, G.M., Degroot, M.H., Marschak, J., 1964. Measuring utility by a single-response
sequential method. Behav. Sci. 9, 226–232. https://doi.org/10.1002/
bs.3830090304.

Brans, K., Verduyn, P., 2014. Intensity and duration of negative emotions: comparing the
role of appraisals and regulation strategies. PloS One. https://doi.org/10.1371/
journal.pone.0092410.

Bush, K.A., Gardner, J., Privratsky, A., Chung, M.-H., James, G.A., Kilts, C.D., 2018a.
Brain states that encode perceived emotion are reproducible but their classification
accuracy is stimulus-dependent. Front. Hum. Neurosci. 12, 262. https://doi.org/
10.3389/fnhum.2018.00262.

Bush, K.A., Privratsky, A., Gardner, J., Zielinski, M.J., Kilts, C.D., 2018b. Common
functional brain states encode both perceived emotion and the psychophysiological
response to affective stimuli. Sci. Rep. 8, 15444. https://doi.org/10.1038/s41598-
018-33621-6.

Chan, H.-Y., Smidts, A., Schoots, V.C., Dietvorst, R.C., Boksem, M.A.S., 2019. Neural
similarity at temporal lobe and cerebellum predicts out-of-sample preference and
recall for video stimuli. Neuroimage 197, 391–401. https://doi.org/10.1016/
j.neuroimage.2019.04.076.

Chapin, H., Jantzen, K., Scott Kelso, J.A., Steinberg, F., Large, E., 2010. Dynamic
emotional and neural responses to music depend on performance expression and
listener experience. PloS One 5, e13812. https://doi.org/10.1371/
journal.pone.0013812.

Chikazoe, J., Lee, D.H., Kriegeskorte, N., Anderson, A.K., 2014. Population coding of
affect across stimuli, modalities and individuals. Nat. Neurosci. 17, 1114–1122.
https://doi.org/10.1038/nn.3749.

Colibazzi, T., Posner, J., Wang, Z., Gorman, D., Gerber, A., Yu, S., Zhu, H., Kangarlu, A.,
Duan, Y., Russell, J.A., Peterson, B.S., 2010. Neural systems subserving valence and
arousal during the experience of induced emotions. Emotion 10, 377–389. https://
doi.org/10.1037/a0018484.

Conroy, B.R., Singer, B.D., Guntupalli, J.S., Ramadge, P.J., Haxby, J.V., 2013. Inter-
subject alignment of human cortical anatomy using functional connectivity.
Neuroimage. https://doi.org/10.1016/j.neuroimage.2013.05.009.

Frijda, N.H., 2009. Emotions, individual differences and time course: Reflections. Cognit.
Emot. https://doi.org/10.1080/02699930903093276.

Gerber, A.J., Posner, J., Gorman, D., Colibazzi, T., Yu, S., Wang, Z., Kangarlu, A., Zhu, H.,
Russell, J., Peterson, B.S., 2008. An affective circumplex model of neural systems
subserving valence, arousal, and cognitive overlay during the appraisal of emotional
faces. Neuropsychologia 46, 2129–2139. https://doi.org/10.1016/
j.neuropsychologia.2008.02.032.

Gholipour, A., Kehtarnavaz, N., Briggs, R., Devous, M., Gopinath, K., 2007. Brain
functional localization: a survey of image registration techniques. IEEE Trans. Med.
Imag. https://doi.org/10.1109/TMI.2007.892508.

Goldin, P.R., Hutcherson, C.A.C., Ochsner, K.N., Glover, G.H., Gabrieli, J.D.E., Gross, J.J.,
2005. The neural bases of amusement and sadness: a comparison of block contrast
and subject-specific emotion intensity regression approaches. Neuroimage. https://
doi.org/10.1016/j.neuroimage.2005.03.018.

Guntupalli, J.S., 2013. Whole brain hyperalignment: inter-subject hyperalignment of local
representational spaces. Dartmouth College. https://doi.org/10.1349/ddlp.964.

Guntupalli, J.S., Hanke, M., Halchenko, Y.O., Connolly, A.C., Ramadge, P.J., Haxby, J.V.,
2016. A model of representational spaces in human cortex. Cerebr. Cortex 26,
2919–2934. https://doi.org/10.1093/cercor/bhw068.

Hanke, M., Halchenko, Y.O., Sederberg, P.B., Olivetti, E., Fründ, I., Rieger, J.W.,
Herrmann, C.S., Haxby, J.V., Hanson, S.J., Pollmann, S., 2009. PyMVPA: a unifying
approach to the analysis of neuroscientific data. Front. Neuroinf. 3, 3. https://
doi.org/10.3389/neuro.11.003.2009.

Haxby, J.V., 2012. Multivariate pattern analysis of fMRI: the early beginnings.
Neuroimage. https://doi.org/10.1016/j.neuroimage.2012.03.016.

Haxby, J.V., Connolly, A.C., Guntupalli, J.S., 2014. Decoding neural representational
spaces using multivariate pattern analysis. Annu. Rev. Neurosci. 37, 435–456.
https://doi.org/10.1146/annurev-neuro-062012-170325.

Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P., 2001.
Distributed and overlapping representations of faces and objects in ventral temporal
cortex. Science 80. https://doi.org/10.1126/science.1063736.

Haxby, J.V., Guntupalli, J.S., Connolly, A.C., Halchenko, Y.O., Conroy, B.R.,
Gobbini, M.I., Hanke, M., Ramadge, P.J., 2011. A common, high-dimensional model
of the representational space in human ventral temporal cortex. Neuron 72, 404–416.
https://doi.org/10.1016/j.neuron.2011.08.026.

Hodes, R.L., Cook, E.W., Lang, P.J., 1985. Individual differences in autonomic response:
conditioned association or conditioned fear? Psychophysiology 22, 545–560. https://
doi.org/10.1111/j.1469-8986.1985.tb01649.x.

Hutcherson, C.A., Goldin, P.R., Ochsner, K.N., Gabrieli, J.D., Barrett, L.F., Gross, J.J.,
2005. Attention and emotion: does rating emotion alter neural responses to amusing
and sad films? Neuroimage 27, 656–668. https://doi.org/10.1016/
j.neuroimage.2005.04.028.

Kassam, K.S., Markey, A.R., Cherkassky, V.L., Loewenstein, G., Just, M.A., 2013.
Identifying emotions on the basis of neural activation. PloS One 8, e66032. https://
doi.org/10.1371/journal.pone.0066032.
11
Kim, J., Schultz, J., Rohe, T., Wallraven, C., Lee, S.-W., Bulthoff, H.H., 2015. Abstract
representations of associated emotions in the human brain. J. Neurosci. 35,
5655–5663. https://doi.org/10.1523/JNEUROSCI.4059-14.2015.

Klasen, M., Kenworthy, C.A., Mathiak, K.A., Kircher, T.T.J., Mathiak, K., 2011.
Supramodal representation of emotions. J. Neurosci. 31, 13635–13643. https://
doi.org/10.1523/JNEUROSCI.2833-11.2011.

Knutson, B., Katovich, K., Suri, G., 2014. Inferring affect from fMRI data. Trends Cognit.
Sci. 18, 422–428. https://doi.org/10.1016/j.tics.2014.04.006.

Kober, H., Barrett, L.F., Joseph, J., Bliss-Moreau, E., Lindquist, K.A., Wager, T.D., 2008.
Functional grouping and cortical–subcortical interactions in emotion: a meta-analysis
of neuroimaging studies. Neuroimage 42, 998–1031. https://doi.org/10.1016/
j.neuroimage.2008.03.059.

Kragel, P.A., LaBar, K.S., 2015. Multivariate neural biomarkers of emotional states are
categorically distinct. Soc. Cognit. Affect Neurosci. 10, 1437–1448. https://doi.org/
10.1093/scan/nsv032.

Kragel, P.A., Reddan, M.C., LaBar, K.S., Wager, T.D., 2019. Emotion schemas are
embedded in the human visual system. Sci. Adv. 5, eaaw4358. https://doi.org/
10.1126/sciadv.aaw4358.

Kuppens, P., Verduyn, P., 2017. Emotion dynamics. Curr. Opin. Psychol. 17, 22–26.
https://doi.org/10.1016/j.copsyc.2017.06.004.

Lang, P.J., Bradley, M.M., Cuthbert, B.N., 2008. International Affective Picture System
(IAPS): Affective Ratings of Pictures and Instruction Manual, Technical Report A-8.
Center for Research in Psychophysiology, University of Florida, Gainesville, FL.

Larsen, J.T., McGraw, A.P., 2011. Further evidence for mixed emotions. J. Pers. Soc.
Psychol. 100, 1095–1110. https://doi.org/10.1037/a0021846.

Lindquist, K.A., Satpute, A.B., Wager, T.D., Weber, J., Barrett, L.F., 2016. The brain basis
of positive and negative affect: evidence from a meta-analysis of the human
neuroimaging literature. Cerebr. Cortex 26, 1910–1922. https://doi.org/10.1093/
cercor/bhv001.

Lindquist, K.A., Wager, T.D., Kober, H., Bliss-Moreau, E., Barrett, L.F., 2012. The brain
basis of emotion: a meta-analytic review. Behav. Brain Sci. 35, 121–143. https://
doi.org/10.1017/S0140525X11000446.

Mesquita, B., 2010. Emoting: a contextualized process. In: Mesquita, B., Barrett, L.F.,
Smith, E.R. (Eds.), The Mind in Context. Guilford Press, pp. 83–104.

Misaki, M., Luh, W.M., Bandettini, P.A., 2013. The effect of spatial smoothing on fMRI
decoding of columnar-level organization with linear support vector machine.
J. Neurosci. Methods. https://doi.org/10.1016/j.jneumeth.2012.11.004.

Miskovic, V., Anderson, A.K., 2018. Modality general and modality specific coding of
hedonic valence. Curr. Opin. Behav. Sci. 19, 91–97. https://doi.org/10.1016/
j.cobeha.2017.12.012.

Nielen, M.M.A., Heslenfeld, D.J., Heinen, K., Van Strien, J.W., Witter, M.P., Jonker, C.,
Veltman, D.J., 2009. Distinct brain systems underlie the processing of valence and
arousal of affective pictures. Brain Cognit. 71, 387–396. https://doi.org/10.1016/
j.bandc.2009.05.007.

Nielsen, L., Knutson, B., Carstensen, L.L., 2008. Affect dynamics, affective forecasting, and
aging. Emotion 8, 318–330. https://doi.org/10.1037/1528-3542.8.3.318.

Nishimoto, S., Nishida, S., 2016. Lining up brains via a common representational space.
Trends Cognit. Sci. 20, 565–567. https://doi.org/10.1016/j.tics.2016.06.001.

Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V., 2006. Beyond mind-reading: multi-
voxel pattern analysis of fMRI data. Trends Cognit. Sci. 10, 424–430. https://doi.org/
10.1016/j.tics.2006.07.005.

Nummenmaa, L., Glerean, E., Viinikainen, M., Jaaskelainen, I.P., Hari, R., Sams, M.,
J€a€askel€ainen, I.P., Hari, R., Sams, M., 2012. Emotions promote social interaction by
synchronizing brain activity across individuals. Proc. Natl. Acad. Sci. Unit. States Am.
109, 9599–9604. https://doi.org/10.1073/pnas.1206095109.

Nummenmaa, L., Saarim€aki, H., 2019. Emotions as discrete patterns of systemic activity.
Neurosci. Lett. 693, 3–8. https://doi.org/10.1016/j.neulet.2017.07.012.

Panksepp, J., 1982. Toward a general psychobiological theory of emotions. Behav. Brain
Sci. 5, 407–422. https://doi.org/10.1017/S0140525X00012759.

Pe, M.L., Kuppens, P., 2012. The dynamic interplay between emotions in daily life:
augmentation, blunting, and the role of appraisal overlap. Emotion 12, 1320–1328.
https://doi.org/10.1037/a0028262.

Peelen, M.V., Atkinson, A.P., Vuilleumier, P., 2010. Supramodal representations of
perceived emotions in the human brain. J. Neurosci. 30, 10127–10134. https://
doi.org/10.1523/JNEUROSCI.2161-10.2010.

Pereira, F., Botvinick, M., 2011. Information mapping with pattern classifiers: a
comparative study. Neuroimage 56, 476–496. https://doi.org/10.1016/
j.neuroimage.2010.05.026.

Poldrack, R.A., 2011. Inferring mental states from neuroimaging data: from reverse
inference to large-scale decoding. Neuron 72, 692–697. https://doi.org/10.1016/
j.neuron.2011.11.001.

Poser, B.A., Versluis, M.J., Hoogduin, J.M., Norris, D.G., 2006. BOLD contrast sensitivity
enhancement and artifact reduction with multiecho EPI: parallel-acquired
inhomogeneity-desensitized fMRI. Magn. Reson. Med. 55, 1227–1235. https://
doi.org/10.1002/mrm.20900.

Posner, J., Russell, J.A., Gerber, A., Gorman, D., Colibazzi, T., Yu, S., Wang, Z.,
Kangarlu, A., Zhu, H., Peterson, B.S., 2009. The neurophysiological bases of emotion:
an fMRI study of the affective circumplex using emotion-denoting words. Hum. Brain
Mapp. 30, 883–895. https://doi.org/10.1002/hbm.20553.

Raz, G., Shpigelman, L., Jacob, Y., Gonen, T., Benjamini, Y., Hendler, T., 2016a.
Psychophysiological whole-brain network clustering based on connectivity dynamics
analysis in naturalistic conditions. Hum. Brain Mapp. 37, 4654–4672. https://
doi.org/10.1002/hbm.23335.

Raz, G., Touroutoglou, A., Wilson-Mendenhall, C., Gilam, G., Lin, T., Gonen, T., Jacob, Y.,
Atzil, S., Admon, R., Bleich-Cohen, M., Maron-Katz, A., Hendler, T., Barrett, L.F.,
2016b. Functional connectivity dynamics during film viewing reveal common

https://doi.org/10.1016/j.neulet.2012.01.064
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1016/j.neuroimage.2011.07.037
https://doi.org/10.1016/j.neuroimage.2011.07.037
https://doi.org/10.1002/bs.3830090304
https://doi.org/10.1002/bs.3830090304
https://doi.org/10.1371/journal.pone.0092410
https://doi.org/10.1371/journal.pone.0092410
https://doi.org/10.3389/fnhum.2018.00262
https://doi.org/10.3389/fnhum.2018.00262
https://doi.org/10.1038/s41598-018-33621-6
https://doi.org/10.1038/s41598-018-33621-6
https://doi.org/10.1016/j.neuroimage.2019.04.076
https://doi.org/10.1016/j.neuroimage.2019.04.076
https://doi.org/10.1371/journal.pone.0013812
https://doi.org/10.1371/journal.pone.0013812
https://doi.org/10.1038/nn.3749
https://doi.org/10.1037/a0018484
https://doi.org/10.1037/a0018484
https://doi.org/10.1016/j.neuroimage.2013.05.009
https://doi.org/10.1080/02699930903093276
https://doi.org/10.1016/j.neuropsychologia.2008.02.032
https://doi.org/10.1016/j.neuropsychologia.2008.02.032
https://doi.org/10.1109/TMI.2007.892508
https://doi.org/10.1016/j.neuroimage.2005.03.018
https://doi.org/10.1016/j.neuroimage.2005.03.018
https://doi.org/10.1349/ddlp.964
https://doi.org/10.1093/cercor/bhw068
https://doi.org/10.3389/neuro.11.003.2009
https://doi.org/10.3389/neuro.11.003.2009
https://doi.org/10.1016/j.neuroimage.2012.03.016
https://doi.org/10.1146/annurev-neuro-062012-170325
https://doi.org/10.1126/science.1063736
https://doi.org/10.1016/j.neuron.2011.08.026
https://doi.org/10.1111/j.1469-8986.1985.tb01649.x
https://doi.org/10.1111/j.1469-8986.1985.tb01649.x
https://doi.org/10.1016/j.neuroimage.2005.04.028
https://doi.org/10.1016/j.neuroimage.2005.04.028
https://doi.org/10.1371/journal.pone.0066032
https://doi.org/10.1371/journal.pone.0066032
https://doi.org/10.1523/JNEUROSCI.4059-14.2015
https://doi.org/10.1523/JNEUROSCI.2833-11.2011
https://doi.org/10.1523/JNEUROSCI.2833-11.2011
https://doi.org/10.1016/j.tics.2014.04.006
https://doi.org/10.1016/j.neuroimage.2008.03.059
https://doi.org/10.1016/j.neuroimage.2008.03.059
https://doi.org/10.1093/scan/nsv032
https://doi.org/10.1093/scan/nsv032
https://doi.org/10.1126/sciadv.aaw4358
https://doi.org/10.1126/sciadv.aaw4358
https://doi.org/10.1016/j.copsyc.2017.06.004
http://refhub.elsevier.com/S1053-8119(20)30105-1/sref36
http://refhub.elsevier.com/S1053-8119(20)30105-1/sref36
http://refhub.elsevier.com/S1053-8119(20)30105-1/sref36
https://doi.org/10.1037/a0021846
https://doi.org/10.1093/cercor/bhv001
https://doi.org/10.1093/cercor/bhv001
https://doi.org/10.1017/S0140525X11000446
https://doi.org/10.1017/S0140525X11000446
http://refhub.elsevier.com/S1053-8119(20)30105-1/sref40
http://refhub.elsevier.com/S1053-8119(20)30105-1/sref40
http://refhub.elsevier.com/S1053-8119(20)30105-1/sref40
https://doi.org/10.1016/j.jneumeth.2012.11.004
https://doi.org/10.1016/j.cobeha.2017.12.012
https://doi.org/10.1016/j.cobeha.2017.12.012
https://doi.org/10.1016/j.bandc.2009.05.007
https://doi.org/10.1016/j.bandc.2009.05.007
https://doi.org/10.1037/1528-3542.8.3.318
https://doi.org/10.1016/j.tics.2016.06.001
https://doi.org/10.1016/j.tics.2006.07.005
https://doi.org/10.1016/j.tics.2006.07.005
https://doi.org/10.1073/pnas.1206095109
https://doi.org/10.1016/j.neulet.2017.07.012
https://doi.org/10.1017/S0140525X00012759
https://doi.org/10.1037/a0028262
https://doi.org/10.1523/JNEUROSCI.2161-10.2010
https://doi.org/10.1523/JNEUROSCI.2161-10.2010
https://doi.org/10.1016/j.neuroimage.2010.05.026
https://doi.org/10.1016/j.neuroimage.2010.05.026
https://doi.org/10.1016/j.neuron.2011.11.001
https://doi.org/10.1016/j.neuron.2011.11.001
https://doi.org/10.1002/mrm.20900
https://doi.org/10.1002/mrm.20900
https://doi.org/10.1002/hbm.20553
https://doi.org/10.1002/hbm.23335
https://doi.org/10.1002/hbm.23335


H.-Y. Chan et al. NeuroImage 216 (2020) 116618
networks for different emotional experiences. Cognit. Affect Behav. Neurosci. 16,
709–723. https://doi.org/10.3758/s13415-016-0425-4.

Raz, G., Winetraub, Y., Jacob, Y., Kinreich, S., Maron-Katz, A., Shaham, G., Podlipsky, I.,
Gilam, G., Soreq, E., Hendler, T., 2012. Portraying emotions at their unfolding: a
multilayered approach for probing dynamics of neural networks. Neuroimage.
https://doi.org/10.1016/j.neuroimage.2011.12.084.

Russell, J.A., 1980. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178.
https://doi.org/10.1037/h0077714.

Saarim€aki, H., Ejtehadian, L.F., Glerean, E., J€a€askel€ainen, I.P., Vuilleumier, P., Sams, M.,
Nummenmaa, L., 2018. Distributed affective space represents multiple emotion
categories across the human brain. Soc. Cognit. Affect Neurosci. 13, 471–482.
https://doi.org/10.1093/scan/nsy018.

Saarim€aki, H., Gotsopoulos, A., J€a€askel€ainen, I.P., Lampinen, J., Vuilleumier, P., Hari, R.,
Sams, M., Nummenmaa, L., 2016. Discrete neural signatures of basic emotions.
Cerebr. Cortex 26, 2563–2573. https://doi.org/10.1093/cercor/bhv086.

Sabatinelli, D., Bradley, M.M., Fitzsimmons, J.R., Lang, P.J., 2005. Parallel amygdala and
inferotemporal activation reflect emotional intensity and fear relevance. Neuroimage
24, 1265–1270. https://doi.org/10.1016/j.neuroimage.2004.12.015.

Sabatinelli, D., Lang, P.J., Keil, A., Bradley, M.M., 2006. Emotional perception:
correlation of functional MRI and event-related potentials. Cerebr. Cortex 17,
1085–1091. https://doi.org/10.1093/cercor/bhl017.

Sabuncu, M.R., Singer, B.D., Conroy, B., Bryan, R.E., Ramadge, P.J., Haxby, J.V., 2010.
Function-based intersubject alignment of human cortical anatomy. Cerebr. Cortex.
https://doi.org/10.1093/cercor/bhp085.
12
Scherer, K.R., 2009. The dynamic architecture of emotion: evidence for the component
process model. Cognit. Emot. https://doi.org/10.1080/02699930902928969.

Skerry, A.E., Saxe, R., 2014. A common neural code for perceived and inferred emotion.
J. Neurosci. 34, 15997–16008. https://doi.org/10.1523/JNEUROSCI.1676-14.2014.

Spiers, H.J., Maguire, E.A., 2007. Decoding human brain activity during real-world
experiences. Trends Cognit. Sci. 11, 356–365. https://doi.org/10.1016/
j.tics.2007.06.002.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,
Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage 15, 273–289. https://doi.org/10.1006/nimg.2001.0978.

Wager, T.D., Barrett, L.F., Bliss-moreau, E., Lindquist, K.A., Duncan, S., Kober, H.,
Joseph, J., Davidson, M.L., Mize, J., 2008. The neuroimaging of emotion. In:
Lewis, M., Haviland-Jones, J.M., Barrett, L.F. (Eds.), Handbook of Emotions. Guilford
Press, New York, pp. 249–271. https://doi.org/10.2307/2076468.

Wilson, T.D., Gilbert, D.T., 2008. Explaining away: a model of affective adaptation.
Perspect. Psychol. Sci. 3, 370–386. https://doi.org/10.1111/j.1745-
6924.2008.00085.x.

Young, C.B., Raz, G., Everaerd, D., Beckmann, C.F., Tendolkar, I., Hendler, T.,
Fern�andez, G., Hermans, E.J., 2017. Dynamic shifts in large-scale brain network
balance as a function of arousal. J. Neurosci. https://doi.org/10.1523/
jneurosci.1759-16.2017.

https://doi.org/10.3758/s13415-016-0425-4
https://doi.org/10.1016/j.neuroimage.2011.12.084
https://doi.org/10.1037/h0077714
https://doi.org/10.1093/scan/nsy018
https://doi.org/10.1093/cercor/bhv086
https://doi.org/10.1016/j.neuroimage.2004.12.015
https://doi.org/10.1093/cercor/bhl017
https://doi.org/10.1093/cercor/bhp085
https://doi.org/10.1080/02699930902928969
https://doi.org/10.1523/JNEUROSCI.1676-14.2014
https://doi.org/10.1016/j.tics.2007.06.002
https://doi.org/10.1016/j.tics.2007.06.002
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.2307/2076468
https://doi.org/10.1111/j.1745-6924.2008.00085.x
https://doi.org/10.1111/j.1745-6924.2008.00085.x
https://doi.org/10.1523/jneurosci.1759-16.2017
https://doi.org/10.1523/jneurosci.1759-16.2017

	Decoding dynamic affective responses to naturalistic videos with shared neural patterns
	1. Introduction
	2. Materials and methods
	2.1. Overview of the study design and analysis
	2.2. FMRI study
	2.2.1. Participants
	2.2.2. Materials and procedures
	2.2.2.1. Movie-trailer watching
	2.2.2.2. Picture viewing

	2.2.3. FMRI acquisition and preprocessing
	2.2.4. FMRI data analysis
	2.2.4.1. Selecting voxels responsive to affective picture categories
	2.2.4.2. Inter-subject hyperalignment
	2.2.4.3. Training and using valence and arousal classifiers based on shared patterns
	2.2.4.4. Pre-defined regions of interest associated with affective processing


	2.3. Online study
	2.3.1. Examining correlations of affective time series between fMRI and online study

	2.4. Code accessibility and data availability

	3. Results
	3.1. Self-report ratings of movie-trailers
	3.2. Brain areas responsive to affective picture categories
	3.3. Decoding affective categories of pictures using shared response classifiers
	3.4. Decoding affective time series of movie-trailers using shared response classifiers
	3.4.1. Validation with individual summary self-report ratings
	3.4.2. Validation with aggregated continuous self-report ratings


	4. Discussion
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgement
	Appendix A. Supplementary data
	References


