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Hematopoiesis and bone interact in various developmental and pathological processes.
Neurogenic heterotopic ossifications (NHO) are the formation of ectopic hematopoietic
bones in peri-articular muscles that develop following severe lesions of the central
nervous system such as traumatic cerebral or spinal injuries or strokes. This review will
focus on the hematopoietic facet of NHO. The characterization of NHO demonstrates
the presence of hematopoietic marrow in which quiescent hematopoietic stem cells
(HSC) are maintained by a functional stromal microenvironment, thus documenting that
NHOs are neo-formed ectopic HSC niches. Similarly to adult bone marrow, the NHO
permissive environment supports HSC maintenance, proliferation and differentiation
through bidirectional signaling with mesenchymal stromal cells and endothelial cells,
involving cell adhesion molecules, membrane-bound growth factors, hormones, and
secreted matrix proteins. The participation of the nervous system, macrophages and
inflammatory cytokines including oncostatin M and transforming growth factor (TGF)-
β in this process, reveals how neural circuitry fine-tunes the inflammatory response
to generate hematopoietic bones in injured muscles. The localization of NHOs in the
peri-articular muscle environment also suggests a role of muscle mesenchymal cells
and bone metabolism in development of hematopoiesis in adults. Little is known about
the establishment of bone marrow niches and the regulation of HSC cycling during
fetal development. Similarities between NHO and development of fetal bones make
NHOs an interesting model to study the establishment of bone marrow hematopoiesis
during development. Conversely, identification of stage-specific factors that specify HSC
developmental state during fetal bone development will give more mechanistic insights
into NHO.

Keywords: neurogenic heterotopic ossifications, ectopic hematopoietic niche, muscle environment,
inflammation, macrophages
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INTRODUCTION

Heterotopic ossification (HO) is an abnormal development of
bone tissue within soft tissue. HO can be hereditary such
as Fibrodysplasia Ossificans Progressiva (FOP) or acquired
following traumatic injuries and burns (Meyers et al., 2019).
Among acquired HO, neurogenic heterotopic ossifications
(NHO) are pathological formations of ectopic bones in peri-
articular muscles following severe central nervous system (CNS)
lesions such as traumatic brain injuries (TBI), stroke, cerebral
anoxia or spinal cord injuries (SCI) (Genêt et al., 2011). NHOs
develop near or around the hip, knee, elbow, and shoulder
causing decreased range of motion which can extend to complete
joint ankylosis, severe pain, nerve and vessel compression as
it grows (Brady et al., 2018; Figure 1A). Large NHOs hamper
functional recovery after CNS lesion and interfere with the
rehabilitation program delaying potential neurological recovery
(van Kampen et al., 2011). NHO incidence ranges from 10 to
23% in TBI patients, 10–53% in SCI patients (Garland, 1988;
Brady et al., 2018) and up to 65% following blast injuries (Potter
et al., 2007; Forsberg et al., 2009). The only curative option
is surgical excision, but surgery remains challenging, especially
when NHO entraps the affected joint, as well as proximal
vessels and nerves.

Despite identifying NHOs in World War I injured soldiers
(Dejerine and Ceillier, 1918), their pathogenesis is still poorly
understood. Since most of the previous studies in SCI/TBI
patients were retrospective, only a clinically relevant animal
model could provide insights into the early events of NHO
pathogenesis. Until recently there was no animal model that
included the CNS lesions (Brady et al., 2018). Most models of
heterotopic ossification (HO) were based on the activation of
bone morphogenetic proteins (BMPs) pathway or a constitutively
active ACVR1 receptor mutations as found in FOP, an extremely
rare genetic disease caused by activating point mutations of the
ACVR1 gene encoding a type I BMP receptor (Kan et al., 2004;
Shore et al., 2006; Chakkalakal et al., 2012). The relevance of these
models to NHO is questionable because NHOs develop in a broad
range of ethnicities in subjects otherwise genetically normal. To
fill this knowledge gap, we established the first mouse model of
NHO (Genêt et al., 2015). As NHO prevalence is high in multi-
traumatic combat casualties (Forsberg et al., 2009; Citak et al.,
2012), our model combines a SCI with muscle damage induced
by an intramuscular injection of cardiotoxin. NHO only develops
in the injured muscle when SCI is associated to the muscle injury,
suggesting that it requires a dual insult (Alexander et al., 2020).

In NHO located near the hip, one of the most striking features
is the presence of richly vascularized mature trabecular bones
which contain medullary cavities filled with hematopoietic cells
(HCs) (Davis et al., 2013; Torossian et al., 2017; Figure 1B).
The pathological formation of an ectopic bone containing a
hematopoietic bone marrow tissue in the adult is of foremost
interest and the underlying mechanisms are yet to be fully
elucidated. This review focuses on how animal models and
studies performed with patient-derived cells can help further
understand two key events of the establishment of ectopic
hematopoiesis in NHO: the occurrence of a heterotopic

ossification within skeletal muscle tissue, and the development of
a functional hematopoiesis tissue within this heterotopic bone.

FIBRO-ADIPOGENIC PROGENITORS
AND ALTERED MUSCLE ENVIRONMENT,
TWO MAJOR PLAYERS IN THE
PATHOGENESIS OF NHO

It is currently admitted that NHOs are the result of an
endochondral ossification process although intramembranous
ossification has also been suggested (Cipriano et al., 2009;
Cholok et al., 2018). Foley et al. have highlighted the presence
of chondrocytes and a cartilaginous matrix on NHO biopsies
and pinpointed different stages of NHO development including
lymphocytic infiltration, fibro-proliferation, neovascularization,
cartilage formation, and endochondral bone formation (Foley
et al., 2018). A similar thick cartilaginous matrix displaying
chondrocytes adjacent to cancellous bone and marrow is
described in NHO 3–4 months after initial injury and becomes
thinner at a later stage of NHO development named the
“maturation” stage (Wang et al., 2018). Our group and others
have evidenced the presence of hematopoietic sites associated
with chondrocytes, osteoblasts/osteocytes, and adipocytes in
mature trabecular bone in human NHO biopsies (Davis et al.,
2013; Torossian et al., 2017; Figures 1C,D). Thus, the progressive
formation of a cartilage intermediate maturing into a mineralized
bone matrix associated with a vascularization network offers
a suitable environment for the recruitment and homing of
circulating HCs (Figure 1E; Chan et al., 2009; Kollet et al., 2012).

Muscle Fibro-Adipogenic Progenitors:
The Cells-of-Origin of NHO?
The development of heterotopic bones in muscles after severe
CNS trauma raises interesting stem cell biology questions
particularly regarding the cells-of-origin of NHO. Adult skeletal
muscles contain two major types of progenitor cells participating
in muscle regeneration. Myogenic satellite cells (SCs) are CD56
expressing stem cells located between the basal lamina and
myofiber plasma membrane. To regenerate damaged myofibers,
activated SCs proliferate, differentiate into myoblasts and
fuse to form multinucleated myofibers with the support of
macrophages, endothelial cells (ECs), fibroblasts and pericytes
(see reviews: Collins et al., 2005; Bentzinger et al., 2013). On the
other hand, fibro-adipogenic progenitors (FAPs) are interstitial
mesenchymal stromal cells (MSCs) expressing platelet-derived
growth factor receptor α (PDGFRα). FAPs provide growth
factors and extracellular matrix to support SC proliferation
and myogenic differentiation (see review: Joe et al., 2010;
Wosczyna and Rando, 2018).

The cellular origin of NHO is still under investigation
but numerous arguments incriminate FAPs rather than SCs.
Both human SCs and FAPs show a capacity of osteoblastic
differentiation in vitro, however, only PDGFRα+ FAPs
maintained their osteogenic capacity in an in vivo ectopic
bone model in immune-deficient mice (Oishi et al., 2013). In
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FIGURE 1 | Macroscopic and microscopic views of NHO. (A) 3D scan of a NHO (white arrow) located in the right hip of a patient; (B) NHO biopsy resected during
surgery displaying vascularized medullary cavities (scale bar 1 cm); (C) Alcian Blue-Nuclear Red staining of an NHO section showing the endochondral ossification
process with the presence of chondrocytes (ch) and osteocytes (oc) (scale bar 100 µm). Hematoxylin-Phloxine-Safran staining of an NHO section showing the
presence of (D) osteoblasts (ob), osteocytes (oc), and medullar cavities displaying adipocytes (ad), hematopoietic cells (he) (scale bar 100 µm) and (E) a
megakaryocyte (black arrow) (scale bar 50 µm).

a burn injury/tenotomy mouse model, parabiosis experiments
highlighted the involvement of circulating PDGFRα+ FAPs
in the development of burn-induced HO in tendons (Loder
et al., 2018). Another study combining parabiosis and a BMP-2-
induced HO mouse model reported an abnormal accumulation
PDGFRα+ FAPs associated with an in vivo osteogenic potential,
although no circulating FAPs were detected (Eisner et al.,
2020). In lineage-tracing experiments in which either SCs (via
the endogenous Pax7 gene promotor) or FAPs (via a Prrx1
gene enhancer transgene) are specifically labeled, we find that
following SCI, NHO are derived from Prrx1 expressing FAPs, not
from Pax7 expressing SCs (Tseng et al., 2019).

The involvement of pericytes in HO remains debated
(Matthews et al., 2016; Dey et al., 2017). Interestingly, a pericyte
population expressing Glast was identified in a BMP-4-induced
HO model with a subset co-expressing PDGFRα (Kan et al.,
2013). Scleraxis (Scx)+ PDGFRα+ tenocytes are also involved
in HO development in tendons using burn/tenotomy and BMP-
induced mouse models and represent another interesting lead
(Agarwal et al., 2017; Giordani et al., 2019). However, this model
of burn-induced calcifying tendinopathy may be different from
intramuscular NHO.

Hypoxia and Inflammation as Drivers of
NHO Development in Skeletal Muscles?
The molecular microenvironment of the muscle can dramatically
affect the behavior and fate of SCs and FAPs (Malecova
et al., 2018). A hypoxic microenvironment, mainly linked to
inflammation and vascular damage, is an initiator and driver of
ossification in acquired HO and FOP mouse models through the
activation of Hypoxia Inducible Factor-1α (Agarwal et al., 2016;

Wang et al., 2016). The local or systemic production of
inflammatory mediators that stimulate the recruitment of
MSCs, endothelial progenitors or other stem cells from the
bone marrow and alter tissue repair have been proposed to
provide a microenvironment/matrix supporting mineralization
(Wang et al., 2004; Davis et al., 2013). Signaling molecules
including BMPs and TGF-β could contribute in this altered
microenvironment (Dey et al., 2017; Wang et al., 2018).
Mononucleated phagocytes recruited in the injured muscle play
a key role, as treatment with clodronate loaded liposomes,
which deplete phagocytes in vivo, abolished NHO onset (Genêt
et al., 2015). In contrast, polymorphonuclear (neutrophils) and
polynucleated (osteoclasts) phagocytes are not necessary for
NHO development (Genêt et al., 2015; Tseng et al., 2020).
SCI exacerbates macrophage infiltration into injured muscles
with increased and persistent expression of oncostatin M
(OSM) (Torossian et al., 2017), a cytokine participating in both
inflammation and hematopoiesis (Tanaka and Miyajima, 2003;
Stawski and Trojanowska, 2019). The persistent OSM expression
in injured muscles was associated with a constant activation of
JAK1/2-STAT3 signaling pathway in muscles developing NHO
(Alexander et al., 2019). Conversely, NHO development was
attenuated in OSM receptor deficient mice (Torossian et al.,
2017) or after inhibition of JAK1/2-STAT3 signaling with the
small JAK1/2 tyrosine kinase inhibitor ruxolitinib (Alexander
et al., 2019). Likewise, over secretion of TGF-β1 by myeloid
cells via CD47 in response to extended body burns has been
shown to promote burn-induced HO development (Wang et al.,
2018). The increased prevalence of NHO in SCI/TBI patients with
infections or concomitant inflammation (Hendricks et al., 2007;
Citak et al., 2012; Reznik et al., 2014) as well as the occurrence
of peri-articular HO in mechanically ventilated and immobilized
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severe cases of COVID-19 further support the crucial role of
inflammation in this process (Meyer et al., 2020; de l’Escalopier
et al., 2021; Stoira et al., 2021).

Overall, these data provide a mechanistic link between
persistent inflammation driving FAPs into an osteogenic fate
and NHO development. Interestingly, histological sections of
these ectopic bones reveal the presence of hematopoietic
cells suggesting causality between abnormal FAP activation,
inflammation and hematopoiesis within an osteogenic muscle
microenvironment (Figure 2).

CNS Lesion and NHO Development
Both peripheral (denervation) and central (SCI) neurologic
lesions have an effect on FAPs, inducing STAT3 activation,
high IL-6 secretory activity and abnormal proliferation (Madaro
et al., 2018). Furthermore, CNS lesions deregulate the neuro-
endocrine system causing the abnormal systemic release of
a number of mediators that may trigger NHO development
such as substance P (SP) or TGF-β (Genêt et al., 2015).
High CNS lesions can also cause autonomic dysreflexia (AD),
a life-threatening complication caused by the loss of the
central control of the post-ganglionic sympathetic flow below
the SCI. In retrospective studies, AD has been associated
with higher prevalence of NHO in SCI and TBI patients
(Hendricks et al., 2007; van Kampen et al., 2011; Putz et al.,
2014). AD causes a major physiological challenge with high
norepinephrine release, extreme hypertension combined with
bradycardia. Whether any of the systemic drivers of AD lead
to NHO development remain unexplored (Alexander et al.,
2020). Severe CNS trauma also profoundly changes muscle
spasticity and physical environment. The resulting mechanical
stress and downstream mechano-transduction signals could
facilitate NHO development because of their known effect on
MSC osteogenic fate (Frith et al., 2018; Sun et al., 2018).
Evidence of an abnormal activation of mechano-transductive
effectors Rho/ROCK and YAP1 has recently been reported
in a FOP model (Stanley et al., 2019). More interestingly,
Daud et al. (1993) have shown that delayed start of passive
movements to paralyzed limbs in SCI patients correlates with
increased NHO occurrence.

NHO, A FAVORABLE ENVIRONMENT
FOR THE DEVELOPMENT OF
HEMATOPOIETIC STEM CELL NICHES
IN ADULTS

The presence of ectopic hematopoietic bones developing in
muscles following CNS injuries is puzzling for the hematologist
since, in adults, hematopoiesis is physiologically restricted to the
BM of skeletal bones.

During fetal development, blood formation occurs in
discrete anatomical extraembryonic and intraembryonic niches,
generating different hematopoietic cell (HC) types (Dzierzak
and Speck, 2008; Waas and Maillard, 2017). First HCs emerge
in the yolk sac (YS) and generate primitive erythroblasts,

macrophages and megakaryocytes. A second wave of erythro-
myeloid progenitors also derived from the YS gives rise to
definitive erythroid, megakaryocyte, myeloid, and multipotent
progenitors initiating fetal liver (FL) hematopoiesis (Luckett,
1978; Silver and Palis, 1997). Bona fide definitive HSCs
emerge by budding from specialized ECs, known as hemogenic
endothelium, in the dorsal aorta, vitelline and umbilical arteries
(Oberlin et al., 2002, 2010; Boisset et al., 2010). These definitive
HSCs then migrate to the FL where they undergo significant
proliferation (Rybtsov et al., 2016; Zhang et al., 2019) and
finally reach the fetal bones and especially the BM, their life-
long residence, where they become predominantly quiescent in
adults (Bowie et al., 2007; Copley and Eaves, 2013). In adults,
BM HSCs act as a reserve for the blood system, remaining
dormant for months or years, and yet can rapidly proliferate
when needed following inflammatory or cytotoxic/radiotoxic
challenges (Wilson et al., 2008; Batsivari et al., 2020). Apart
from some pathological situations, the BM will remain the only
hematopoietic tissue in healthy adults.

HSC Niches and Their Main Players
Along Development and in Adult BM
Schofield first used the term “niche” to describe a putative HSC-
specific environment in the BM that “preserved the reconstituting
ability of stem cells” (Schofield, 1978). Successive specialized
niches were identified during development, from the emergence
of functional HSCs in the dorsal aorta, amplification in the FL
and homeostasis in the adult BM (Gao et al., 2018; Daniel et al.,
2020). The formation of the BM niche during fetal development
has not been fully investigated, and the impact of specific niche
components on fetal BM HSC phenotype, proliferation and
function has still to be deciphered. In the adult, the precise nature
of BM HSC niches has long been debated (Morrison and Scadden,
2014). The presence of two anatomically different niches was
initially suggested: the central and the endosteal niches. Such
a distinction is more and more challenged since HSCs tend
to be more frequent in perivascular areas of the BM, in close
proximity to ECs and perivascular stromal cells (Kokkaliaris et al.,
2020) that are particularly numerous in the endosteal region
(Nombela-Arrieta et al., 2013).

Within these niches, HSCs are maintained quiescent by a
complex molecular interplay between cells from mesenchymal
origin, ECs, neuronal cells and HSC progenies, such as
megakaryocytes and macrophages. Diffusible factors including
inflammatory cytokines and extra-cellular matrix components
perfect this molecular network, subtly controlling the fate of
HSCs (Méndez-Ferrer et al., 2020).

Apart from stromal cells, macrophages are essential to
HSC regulation within niches. They are the most abundant
HCs in the dorsal aorta when the number of intra-aortic
hematopoietic cluster peaks, and are suggested to promote
definitive HSC formation from the dorsal aorta hemogenic
endothelium through pro-inflammatory signaling cascades
(Yokomizo and Dzierzak, 2010). Among these pro-inflammatory
signals (Luis et al., 2016; Hayashi et al., 2019), tumor necrosis
factor (TNF) (Espín-Palazón et al., 2014), interferons (IFN)
(Sawamiphak et al., 2014), IL-1 (Orelio et al., 2009), and OSM
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FIGURE 2 | Schematic representation of mechanisms involved in ectopic hematopoietic bone development in NHO pathology. NHOs are the results of an
endochondral ossification within peri-articular muscles of TBI/SCI adult patients. NHOs are characterized by the formation of a trabecular bone tissue housing HSC
niches. A wide range of regulatory mechanisms are suggested to be involved in NHO pathogenesis including altered neuronal control, inflammation, macrophages
and profound changes in muscle tissue environment. The singular localization of NHOs suggests a role of muscle-resident mesenchymal cells such as PDGFRα+

FAPs and bone metabolism in the development of ectopic hematopoiesis in adults. CNS, central nervous system; ECM, extra-cellular matrix; ECs, endothelial cells;
FAP, fibro-adipogenic progenitor; HPA, hypothalamic-pituitary-adrenal; HSC, Hematopoietic stem cells; MSC, mesenchymal stromal cells; NHO, neurogenic
heterotopic ossification; PR, peripheral response; SCI, spinal cord injury; SNS, sympathetic nervous system; TBI, traumatic brain injury.

(Miyajima et al., 2000) play a major role in the regulation
of embryonic and fetal hematopoiesis. Macrophages are also
initiators of the endothelial-to-hematopoietic transition since
hemogenic ECs that receive these cues, undergo endothelial-
hematopoietic transition and form HSCs (Mariani et al., 2019). In
adult hematopoiesis, macrophages exert several other functions
in the BM niches. They participate in the retention of HSCs
through their interactions with MSCs and possibly ECs and
the modulation of the expression of proteins such as CXCL12
(Winkler et al., 2010), VCAM-1 and KIT ligand. Furthermore,
supraphysiological expansion of the monocyte/macrophage
compartment by prolonged administration of a stable
recombinant form of macrophage colony-stimulating factor
(CSF-1) expand the HSC compartment in the BM (Kaur et al.,
2021). Reciprocally, BM-resident macrophages are necessary
to reconstitute HSC niches after lethal irradiation and support
HSC engraftment (Kaur et al., 2017, 2018). The stromal
expression of CXCL12 follows a circadian regulation that is
under the control of sympathetic nerve fibers, connecting
macrophages and the nervous system in the regulation of HSC
trafficking (Katayama et al., 2006; Méndez-Ferrer et al., 2020).
In the context of infections or inflammatory stresses,
macrophages and ECs produce G-CSF that participates in
the mobilization of HSCs from the BM into the circulation while

promoting myelopoiesis. G-CSF also contributes in suppressing
osteoblast function by directly down-regulating CXCL12
expression in the endosteal niche or by indirect mechanisms
including signals from the sympathetic nervous system (SNS)
(Winkler et al., 2010; Christopher et al., 2011) (for review:
Mitroulis et al., 2020).

Neuronal and Neuroendocrine
Regulation of Bone and HSC Niche
In the context of NHO, it is noteworthy to integrate the role of
the nervous system as an important regulator of bone remodeling
and hematopoiesis homeostasis. Since the discovery of skeleton
innervation by Calvo (1968), other groups including that of Paul
Frenette have further explored from this pioneering observation
and described the neuronal regulation of bone and BM (see
for review: Maryanovich et al., 2018). In addition to a mineral
constituent regulation, bone homeostasis is controlled by long-
range signals such as leptin, glucocorticoids and parathyroid
hormone produced by the adipose tissue, the adrenal glands, and
the parathyroid glands, respectively, and by signals originating
from the nervous system.

Besides its role in energy homeostasis, leptin plays a major
role in neuroendocrine regulation and bone metabolism. The
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expression of leptin receptor on adult MSCs, osteoblasts and
chondrocytes, suggests direct effects on bone growth and
metabolism. Leptin can also indirectly modulate bone formation
through effectors downstream of the hypothalamus such as
estrogen, cortisol, IGF-1 and parathyroid hormone, and through
activation of local adrenergic signaling at the osteoblast level
via β2 adrenergic receptors (AR) (Upadhyay et al., 2015; Wang
et al., 2020 for review). Leptin also inhibits the neuronal
activity of serotonergic neurons and decrease brain-derived
serotonin synthesis (see for review: Maryanovich et al., 2018;
Karsenty, 2020). Sensory and sympathetic nerves also participate
in bone homeostasis through neurotransmitters including nerve
growth factor (NGF), calcitonin gene-related peptide (CGRP), SP,
and semaphorin 3A and through norepinephrine/noradrenaline
released by the SNS (Wang et al., 2020).

As reported above, HSCs are mainly located in perivascular
areas of the adult BM, comprising both sinusoidal and arteriolar
blood vessels. The arteriolar structures are highly innervated
by SNS fibers. The neuroreticular complex formed by SNS
nerves and perivascular MSCs has been reported to be a central
regulator of HSC quiescence within BM niches (see for review:
Maryanovich et al., 2018). Interestingly, a variable proportion of
these perivascular stromal cells expressed neural-related markers
such as LepR, NG2, and Nestin.

The close relationship between CNS, SNS, Parasympathetic
Nervous System, bone metabolism and HSC migration,
differentiation and self-renewal is illustrated by the important
role of the circadian norepinephrine release by SNS nerves
which triggers β3 AR and β2 AR expressed by BM mesenchymal
cells and osteoblasts in both humans and mice (Golan et al.,
2018, 2019). Cholinergic signaling in the BM via neurons from
both the PNS and SNS in tandem with adrenergic signaling
derived from the SNS is also reported to contribute to regulate
the circadian regulation of CXCL12 expression in the BM
(García-García et al., 2019; García-García and Méndez-Ferrer,
2020). Likewise, the CNS exerts long range regulation of HSCs.
For instance, muscarinic type 1 acetylcholinergic receptors in
the brain regulate HSC mobilizing response by stimulating the
hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid
secretion (Pierce et al., 2017). Similarly, afferent sensory
nociceptive nerves in the BM have been found to regulate HSC
expansion, differentiation and mobilization in concert with SNS
nerves via CGRP release (Gao et al., 2020).

Beside its role in adult stem cell niche homeostasis, the
neural system is also an early regulator of the embryonic niches
when stem cells are specified. Apart from a direct innervation
of the HSC niche, recent findings show different modes of
neural control, including systemic delivery of CNS-derived
hormones, locally by neural crest-derived MSCs, and intrinsically
by HCs expressing neural receptors and neurotransmitters (Fitch
et al., 2012; Damm and Clements, 2017). During development,
hypoxia-induced neuronal synthesis of serotonin is a key process
for embryonic HSC production in the aorta region. Neuronal
serotonin activates the HPA axis and glucocorticoid receptor
activity, which in turn, induces HSC production (Kwan et al.,
2016). Although hypoxia was the only stress-inducing stimulus
tested, it is conceivable that other common stresses that the
embryo experiences such as temperature, metabolic, or oxidative

stress would also promote blood cell formation through the
HPA axis. Such mechanisms were also described in adults, where
muscarinic acetylcholine receptors in the brain regulate HPA axis
and glucocorticoid release by the adrenal glands that impact HSC
trafficking (Pierce et al., 2017).

NHO: An Osteogenic Muscle Tissue That
Houses HSC Niches!
Addressing whether HOs form bona fide HSC niches is
challenging since these ectopic bone tissues develop in inflamed
muscles following severe neurological lesions. Few groups
have reported the presence of marrow-like tissue in HOs.
Histological descriptions are reported after abdominal surgery
(Wang et al., 2004; Christofi et al., 2008), aortic valve graft
(Lis et al., 2009; Singh and Fleshman, 2011) or cervical
spine meniscoid (Farrell et al., 2017). Furthermore, clonogenic
hematopoietic progenitors associated with histologically-defined
stromal cells have been described in HOs from severe combat-
injured orthopedic patients (Davis et al., 2013). However, the
evidence for functional HSC niches comes from studies in
SCI and TBI patients (Torossian et al., 2017). These studies
identified phenotypic CD34+ hematopoietic stem/progenitor
cells in NHO marrows. Depending on patients, their level
was equivalent or slightly lower than in the healthy BM.
Some of those CD34+ cells were quiescent, expressed a side-
population phenotype (Goodell, 2005) and were capable of long-
term human hematopoietic reconstitution when transplanted
into immunodeficient mice, thus meeting the functional
definition of HSCs. NHO marrow also contained functional
CD45−CD34−CD73+CD90+CD105+MSCs able to differentiate
in osteoblasts, adipocytes and chondrocytes and to support
long-term human hematopoiesis in culture. More importantly,
when seeded on hydroxyapatite scaffolds and implanted into
nude mice, NHO-derived MSCs created a supportive osteogenic
microenvironment for murine hematopoiesis (Torossian et al.,
2017). In agreement with these results, their transcriptomic
signature showed a molecular network required for HSC
support. Intriguingly, this signature was associated with a
neuronal imprinting, arguing in favor of the brain-bone-
blood triad concept proposed by Lapidot (Lapidot and Kollet,
2010). ECs and their progenitors could also be isolated from
NHO marrow according to their CD45−CD31+CD144+CD34+
phenotype. They were functional as demonstrated by colony
formation on plastic, expansion in culture as a cobblestone
monolayer, vascular network development in matrigel and
overexpression of VCAM-1 and ICAM-1 after TNFα stimulation
(Torossian et al., 2017).

By demonstrating that NHOs contain a marrow tissue
in which HSCs can proliferate and differentiate within a
suitable and functional osteogenic/mesenchymal and vascular
microenvironment, these studies acknowledge that NHO ectopic
bones house HSC niches. It is noteworthy that, in NHO patients,
the altered neuronal control most likely contributes to the
generation of hematopoietic bones comparable to the BM, in
muscles. More importantly, the NHO paradigm emphasizes the
role of muscle microenvironment and inflammation in their
development (Figure 2).
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Intriguingly, while the role of central, sympathetic and
parasympathetic nervous systems in regulating hematopoiesis
in the BM of skeletal bones is well described, it is not known
whether the hematopoietic BM of NHOs is actually innervated,
and if so, what roles these nerves would play in establishing,
maintaining and regulating hematopoiesis in the NHO
marrow.

Lessons From NHO for a Better
Understanding of HSC Development
Independent studies of vertebrate hematopoietic development
(Waas and Maillard, 2017; Dzierzak and Bigas, 2018) and NHO
pathogenesis (Davis et al., 2013; Torossian et al., 2017) reveal
that embryonic and adult NHO HSCs share similarities. Both
develop in soft tissues within niches under the control of
regulatory mechanisms including macrophages, inflammation,
and the nervous system. However, significant changes in the
composition of the HSC pool, as well as in their cell cycling
properties and repopulating abilities are observed between the
fetal hematopoietic tissues and the adult BM (Copley and Eaves,
2013; Mirshekar-Syahkal et al., 2014).

In Osterix-null (Osx−/−) mice that lack osteoblasts and
osteolineage cells, the vasculature within the nascent bones and
bone marrow can sustain multilineage proliferative progenitors
but not long-term HSCs. As a result, wild-type HSC transplanted
in Osx embryos engraft the liver but not the nascent BM.
Therefore, interactions with osteoblasts within fetal bone regulate
HSC quiescence and homing ability (Coşkun et al., 2014).
In the adult BM, the role of osteolineage cells is more
questionable since the deletion of Cxcl12 or Kitl gene from Osx+
osteoprogenitors has more effect on hematopoietic progenitors
than on proper HSCs (Ding and Morrison, 2013). In contrast,
both genes need to be expressed in ECs and in immature
Lepr+ MSCs (that form osteoprogenitors) for HSCs to be
maintained (Greenbaum et al., 2013). These results emphasize
the importance of osteolineage cells, and most likely other
cells from mesenchymal origin, in establishing and sustaining
HSC phenotype, cell cycling balance and function during
development and adult life.

Understanding the development of hematopoiesis in an adult
osteogenic muscle environment as observed in NHO could help
gain further insights on the role of bone forming cells in this
process. Identification of stage-specific factors that orientate
HSC developmental state during fetal bone development must
be harnessed to gain more mechanistic insights into NHO
development. Similarly, understanding the cellular origin of
NHO, the role of inflammation and muscle environment might
contribute to a better understanding of the impact of specific
niche components on fetal BM HSC properties.

CONCLUSION

In the recent few years, knowledge about NHO pathogenesis
has been considerably improved as accredited by the rapidly
increasing number of publications in the field. These progresses
were mainly due to the development of more suitable animal
models and to the availability of patient samples thanks
to well organized cohorts. The current review focusing on

the hematopoietic features of NHO ossifications, attempts to
recapitulate how a favorable environment for the development
of bone with HSC niches can develop in adult muscles following
central neurological lesions. It emphasizes the role of a persistent
inflamed muscle environment driving FAPs to an osteogenic
fate initiating the development of ossification followed by the
establishment of a mature hematopoietic bone tissue.

However, there are still numerous questions in respect
to the molecular mechanisms underlying this complex
and multifactorial pathological process. Among those, the
potential differences between normal endochondral ossification
and neurogenic HO in terms of signaling events, cell type
involvement and environment remains unanswered. Likewise,
how an inflamed adult muscle environment becomes pro-
osteogenic and thereafter hematopoietic, and what is the
influence of altered nervous and neuroendocrine systems
as well as hypoxia in this process? Does the neoformation
of hematopoietic bones in muscles mimic what happens
during development and can we learn from NHO for a
better identification of stage-specific factors that specify HSC
developmental state during fetal bone development? Is the
impaired mobility of patients a trigger in the development of
NHO and does an early and adequate mobilization of patients
can avoid or at least reduce its evolution?

Gathering surgeons, clinicians, specialists in physical
medicine/rehabilitation and researchers within a
European/International consortium would be a provocative
initiative for developing translational collaborative projects to
better understand NHO pathogenesis and, armed with this
knowledge, enable the identification of new targets to treat and if
possible prevent NHO development. Moreover, such knowledge
may also provide new insights for cell therapy needs and for
improving treatment of blood and bone disorders.
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