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1.1 A LocicAL FormALISM FOR ARITHMETICAL CONSTRAINTS

Operations in counter machines induce constraints between the current values
of counters and their next values, for instance x++ stands for an increment and
it can be represented by the expression X’ = x + 1 where x' is understood as
the next value for the counter x. Similarly, “x’ = x + 1 and x > y” can be un-
derstood as the same operation on the counter x except that we require that the
guard x > vy is satisfied, namely x is currently strictly greater than y. Updates and
guards used to define operations are expressed in a formal language that is able
to state properties between natural numbers (and more generally between inte-
gers). Presburger arithmetic (Presburger, 1929), introduced by Presburger eighty
years ago, can serve as a logical formalism for expressing constraints on inte-
gers. Roughly speaking, Presburger arithmetic is the first-order theory of the
well-known structure (N, +, <). Nowadays, it is ubiquitous in formal verifica-
tion thanks to its numerous properties: decidability of the satisfiability problem
(which contrasts with Peano arithmetic that includes multiplication) (Presburger,
1929), well-understood expressive power apart from being very expressive (defin-
ing exactly semilinear sets), Presburger arithmetic admits quantifier elimination
and its quantifier-free fragment has a satisfiability problem with relatively low
worst-case complexity, namely it is NP-complete. Finally, Presburger arithmetic
can be understood as a standard first-order theory interpreted over the set of nat-
ural numbers. This makes it a handy formalism for anyone a bit familiar with

Presburger arithmetic
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logical formalisms, but getting used to it does not require any serious prerequi-
sites on logic.

There are numerous motivations for introducing Presburger arithmetic, the
first-order theory of natural numbers with addition. Below, we pick some of them.

e Presburger arithmetic is a language that is useful to write programs. For
instance, expressions from such a language can be used to write guards
(such as “x > 4”), updates (such as “x’ = 2x”) or invariants (such as “x+y =
7”), etc.. As in every programming language, a simple and clear syntax is
required and it is essential that it is effective and executable. Presburger
arithmetic takes advantage of the standard connectives in first-order logic
(negation, conjunction, disjunction) as well as the universal and existential
quantifiers. By way of example, the fact that x is even can be naturally
expressed as “Jy (x = y+y)” where 3 is the standard existential quantifier.

e Presburger arithmetic is a mathematical formalism that is used in many
technical developments in the course. Understanding its underlying theory
(for instance the relationships between Presburger-definability and semi-
linearity) provides general and powerful tools and concepts (decidability,
structural results, etc.). Each Presburger formula defines a set of tuples (the
set of valuations that makes it true) and Presburger arithmetic is therefore
a means to represent and manipulate symbolically infinite sets of tuples of
natural numbers.

e Last but not least, decidability for Presburger arithmetic is used in numer-
ous algorithms, not only for VASS by the way. These algorithms and their
effective implementations are important concepts that are essential to be
aware of. Algorithmic details often need to provide a refined analysis (size
of constants, data structures for quantifier-free formulae, test in NP, etc.)
that can go far beyond the simple decidability result.

In this chapter, we aim at presenting the main definitions and results as well
as hints and proof ideas about the main results. Relevant and typical examples
often replace a proof in due form.

As it will be apparent in the following, the objectives of this chapter are three-
fold. We introduce the first-order theory of natural numbers with addition, known
as Presburger arithmetic; we define the syntax, semantics and we provide expla-
nations about how to use such a formalism. We state its main properties and
provide examples or intuitions for proofs (quantifier elimination, decidability,
equivalence between semilinear sets and relations definable by Presburger arith-
metic, complexity of Presburger arithmetic as well as for fragments). Finally, we
present several applications that illustrate nicely how to take advantage of this
well-known logical formalism.
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1.2 From FORMULAE TO INTERPRETATIONS

We write N [resp. Z] for the set of natural numbers [resp. integers] and [m, m/]
with m, m’ € Z to denote the set {j € Z : m < j < m’}. For x € Z", we write
x(1), ..., x(n) for the entries of x. For x,y € Z", x <y & foralli € [1,n], we
have x(i) < y(i). We also write x < y when x <y and x # y.

1.2.1 SYNTAX AND SEMANTICS

In order to define the formal language for Presburger arithmetic, abbreviated by
FO(N) in the sequel, we need to introduce several types of syntactic objects. The
formulae, i.e. the expressions stating properties about the structure (N, +, <)
such as V x (3 y ((2x + 8) < vy), are built upon a set of atomic formulae and
the full set of formulae is generated from atomic formulae by composing Boolean
connectives and quantifiers. For instance, (2x + 8) < y is an atomic formula in
FO(N). Note that it is also made of terms such as y or 2x + 8. The terms itself are
built from variables by using the addition operator ‘+’. A formula of the form

Vx 3y ((2x+8) <vy)

belongs to the logic FO(N) not only because of the way it is syntactically built
but also because the variables are interpreted by natural numbers, the operator
'+’ is interpreted by the addition in (N, +, <) and the symbol "<’ is interpreted
by the standard linear ordering on N. All of this should sound very familiar to
anyone acquainted with classical predicate logic and the definitions below can be
viewed as an instance of such a standard logical formalism when interpreted over
the structure (N, 4, <).

Now, let us define the formulae and then explain how to interpret such syn-
tactic objects. Let VAR = {x, y, z, .. .} be a countably infinite set of variables. The
variables are interpreted below as natural numbers. Terms are built from constants
in N and variables in VAR, and by making all the possible finite sums from con-
stants and variables. Hence, terms are expressions of the form a;x1+- - - +a,x,+k
where a1, ..., a, are constant coefficients in N, k is in N and the x;’s are variables.
When we write ax or k, we do not bother about the way the natural numbers a or
k are encoded (in unary or in binary). This will have some importance only when
computational complexity issues are considered and in that case, we shall be more
explicit about the type of encoding. By default, we assume a binary encoding of
integers.

Variables and terms come with their interpretations when the variables are
interpreted by natural numbers. A valuation v is a map VAR — N and it can be
extended to the set of all terms as follows:

] U(k) =k,

e v(ax) = a X v(x) and
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e v(t+t')=0(t)+ v(t') for all terms ¢t and ¢'.

For instance, under the valuation v such that v(x) = 3 and v(y) = 27, we can
state that y is greater than 2x + 8, which can be written v | (2x + 8) < y where
’E’ stands for the satisfaction relation. Indeed, v(2x+8) = 14. By contrast, under
the valuation v such that v(x) = 3 and v(y) = 13, y is not greater than 2x + 8,
which we write v [£ (2x + 8) < y. Hence, a valuation is simply an interpretation
for variables and terms that can make true or false relationships between terms.

Atomic formulae are built from terms by expressing relationships between two
terms and they form the most elementary instances of formulae. For example,
(2x + 8) < y is an atomic formula and it cannot be broken down into strictly
smaller (atomic) formulae. Atomic formulae are defined as expressions of the form
t < t'. We also include the truth constants T (true) and L (false) because this can
be useful sometimes. The truth value of an atomic formula under a valuation v is
quite easy to define when ‘<’ is interpreted as the standard ordering: v £ t < ¢/
£ v(t) < v(t'). Note that the first occurrence of ‘<’ refers to a symbol used for
defining atomic formulae whereas its second occurrence refers to the ordering
relation on the set of natural numbers. Hence, that symbol is clearly overloaded
but this should not cause any confusion in the following and we behave similarly
with other well-understood symbols.

Formulae in FO(N) contains atomic formulae and more complex formulae can
be generated by composition with negation (written — as a unary connective),
conjunction (written A as a binary connective) and disjunction (written V as a
binary connective). For example, here is a formula that states that 2x 4+ 8 and y
have identical value.

(2x+8) <y) Ay < (2x+8)).

Boolean connectives such as negation, conjunction or disjunction allow to express
richer properties than those by the atomic formulae only. In the following, we
use abbreviations in order to simplify the presentation of formulae (¢ and t’ are
arbitrary terms):

t=t = (t<t)A{l <)
t<t = t4+1<¢

t>t = <t

t>t = t+1<t

Formulae can be also obtained by using quantifiers such as *3’ (existential quan-
tifier) and ’V’ (universal quantifier). We have seen that (2x + 8) <y is an atomic
formula stating a property betwen x and y. We can build a formula by introducing
an existential quantification providing the formula 3y (2x + 8) < y that states
a property about the variable x, namely that there exists a value for y for which
(2x + 8) < y holds true. Observe that the quantifier 3 is followed by a variable
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(here y) over which the quantification is performed. It would not make sense to
use a quantifier that is not followed by a variable. This process of building formu-
lae can be repeated, for instance by adding a universal quantification, leading to a
formula such as V x (3 y ((2x + 8) <y)). This latter expression states a property
about the structure (N, +, <) rather than a property about variables: for every
value for x, there is a value for y that satisfies (2x + 8) < vy, which is a pretty
valid statement on the structure (N, +, <). So formulae in FO(N) are syntactic
objects built from atomic formulae obtained by combining Boolean connectives
such as =, A and V and quantifiers such as 3 and V. The ability to combine atomic
formulae with logical connectives to generate more complex formulae explains
why Presburger arithmetic is a very rich language, more about it can be found
in the following. To sum up, formulae (usually written with the symbols ¢, 1 or
X possibly decorated with exponents or subscripts) are defined by the grammar
below:

pu=T | L] t<t]| =p | oA | oV | Ixp | Vxop

where ¢ and ¢’ are terms and x € VAR.
By way of example, here is a formula stating that there is an infinite number
of multiples of three:

Vx (3y(y>x)A(Fz(y =32))).

The semantics for formulae in FO(N) is mainly defined with the help of the
satisfaction relation (below written [) that determines the conditions for the sat-
isfaction of a formula under a given valuation. We write v = ¢ to denote that
the formula ¢ holds true under the valuation v. We have already seen how to
compute the truth value for v | ¢t < t/, i.e. when atomic formulae are involved.
Below, we extend the definition of [ to all formulae by taking advantage of the
decomposition in terms of subformulae:

e vk T &£ true,

e vl & false,

pEt<t & o(t) <o),

e vfk—p £ noto ko,

evkpAyY & vEgpandy ¢,

eV & vEpory ¢,

e vk Ixp £ thereisn € N such that v[x — n] | ¢ where v]x > n] is
equal to v except that x is mapped to n,

e vEVxyp & foreveryn € N, we have v]x — n] E ¢.
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It is the place where the symbols —, A, V, 4 and V are semantically bound
and it is easy to verify that, indeed, — is understood as a negation operator, 3
is understood as an existential quantification etc. It is also the interpretation of
the logical connectives that guarantees that v £ ¢t = ¢’ (where 't = t” is an
abbreviation) iff v(¢) = v(¢'), making sense to the choice of the abbreviation.
A similar reasoning can be done with the other abbreviations introduced earlier.
More shortcuts will be introduced and used in this document but before doing so,
let us present a simple example.

Example 1.1. Let o be the formula stating that (N, <) is a linearly ordered set
(abbreviations are used):

Prot =V xVy (x=y)V(x<y)V(x>y)).

It is worth noting that for every valuation v, we have

bl (x=y)Vx<y)Vx>y),
which is the key argument to see that for every valuation v, we have v | @iot.

The satisfaction relation is defined in such a way that formulae that are syn-
tactically different can be satisfied by exactly the same valuations. For instance,
3 x ¢ and =V x —¢ can be shown to be satisfied by exactly the same valuations,
whatever the formula @ is. This witnesses the standard duality between existential
quantification and universal quantification. Similarly, 1 A 2 and = (=1 V —¢2)
are satisfied by exactly the same valuations (known as one of De Morgan’s laws).
In a sense, this illustrates a slight redundancy in our choice for logical connec-
tives but is has the great advantage to use more concise formulae with, hopefully,
a more straightforward understanding. These observations motivate the follow-
ing definition: ¢ and ¢ are equivalent in FO(N) & for every valuation v, we
have v E ¢ iff v | 9. So, 3 x ¢ and —V x - are equivalent formulae. Similarly,
Vx3Jy(y <x)andVx Iy (x <y) can be shown as non-equivalent.

We have defined formally how to construct terms, atomic formulae and for-
mulae and there is a clear discipline to generate such syntactic objects. However,
in some places, we might be inclined to write expressions a bit differently in or-
der to comply with standard mathematical and logical practice or to use shortcuts
avoiding lengthy developments. Below, we list standard abbreviations.

e A formula of the form V x; - - -V x, @ is also written

YV X1y o oy Xn ©.

e We make use of standard Boolean connectives that can be defined from
negation, conjunction and disjunction such as material implication and equiv-
alence.
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— The expression ¢ = 1) is an abbreviation for the formula (—p) V 1.
It is easy to check that for every valuation v, v F ¢ = ¢ iff (b F ¢
implies v | ).

— Analogously, the expression ¢ < 1) is an abbreviation for the formula
(¢ = ) A (¢ = ). Note that for every valuation v, v F ¢ < o iff
(v E piffv E 9). So, ¢ and v are equivalent formulae whenever for
every valuation v, we have v | ¢ < ).

e Another useful abbreviation consists in writing
Yk X

with some k£ > 0 in place of V x (x < k) = ¢.

The intended semantics of such a construction is indeed clear since for every
valuation v, v E V< x ¢ iff for every n < k, we have v[x — n| [ ¢.
Similarly, we write 3<, x ¢ with some k > 0 in place of I x (x < k) A ¢.

e Strictly speaking, the construction of the terms does not allow to use nega-
tive integers such as in the expression —2x+ 3y — 8. Indeed, the summation
of variables and the summation of the constant one do not permit to obtain
negative coefficients. However, in atomic formulae, we shall permit the use
of negative coefficients because it is indeed equivalent to an expression re-
specting strictly our syntax. For instance, the expression —2x+3y —8 < 5x
is understood as the atomic formula 3y < 7x+8. Similarly, terms are under-
stood modulo associativity and commutativity: for instance, in a formula
we do not distinguish the term 7x 4 8, from 3x +8 4+ 4x or 2+ 6x+ 6+ x. In
the following, the very presentation of specific atomic formulae and terms
is guided by the most handy way to express them.

e Let us conclude this part about abbreviations by introducing a shortcut to
express modulo constraints. We have seen that the formula 3y (x = 3y)
states that x is interpreted by a multiple of three. It is clearly more conve-
nient if we could simply write x =3 0. That is the reason why, we introduce
the following shortcut. We write t =, t’ where ¢ and ¢’ are arbitrary terms
and k > 0, to denote the formula

Ix(t=kx+t)Vv({# =kx+1t)

where x is a new variable not occurring in t and t’. Note that the cases when
k takes the value 0, = corresponds to the equality and ¢t =; t’ corresponds
to T. Modulo constraints are not only handy macros but they will play also
an important role in Section 1.3 when dealing with quantifier elimination.

The combination of all these abbreviations allows us to write the expression
below as a formula from FO(N):

Vx,y (=2x+9=4y+1) & (—y =4 2x — 8)
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1.2.2 DECISION PROBLEMS

The main decision problem for FO(N) is to determine whether a formula admits a
valuation that satisfies it. The atomic formula x 4+ 3 < y admits such a valuation
b, for instance by requiring that v(x) = 12 and v(y) = 219, The interpretation
of the variables different from x and y is not really relevant to check whether a
valuation satisfies x + 3 < y. Note also that the atomic formula can certainly be
satisfied by a valuation for which the values for v(x) and v(y) are much smaller.
So the satisfiability problem for Presburger arithmetic is a decision problem that
takes as input a formula ¢ and asks whether there is a valuation v such that v = .
If such a valuation exists, we say that ¢ is satisfiable. By way of example, let us
consider the formula .., below:

Pexp Exg >2)A(x2 > 2x) A A (X > 2% 1)
It is clearly satisfiable but any valuation that satisfies it requires at least that the
interpretation of x,, is greater than 2" even though the formula is only of size
O(n).

Satisfiability comes with its dual concept known as validity so that the existen-
tial quantification over valuations in the definition for the satisfiability problem is
replaced by a universal quantification. The validity problem for Presburger arith-
metic is a decision problem that takes as input a formula ¢ and asks whether for
every valuation v, we have v |= . If @ is satisfied by every valuation, we say that
 is valid.

The above formula ey, is clearly not valid since any valuation such that x; is
interpreted by zero falsifies ¢ey,. By contrast, the formula below is valid:

(X1 >2Ax2>2x1 A v s AXpy = 2Xp1) = Xy > 27,

Even though validity and satisfiability problems are first-class problems for
FO(N), below we explain the close relationships between them so that in the se-
quel we do not need to really consider validity at all. For instance, it is straight-
forward that every valid formula is satisfiable since a valid formula is satisfied
by every valuation. We have also seen that satisfiability does not imply validity
(see e.g. the formula ¢eyp), which should not come as a surprise since satisfia-
bility asks for the satisfaction by a single valuation. There are also formulae for
which satisfiability is equivalent to validity and it is the purpose of the following
paragraph.

An occurrence of the variable x in the formula ¢ is free if it does not occur in
the scope of either 3 x or V x. For instance, all the occurrences of the variables
in eyp are free since it does not contain any quantification. Otherwise, the oc-
currence is bound. For instance, in x; < xg, all the occurrences of the variables
are free. In (3 x1,x2 (x1 < x2)) A x; < x2, each variable among xi, x2, has a
free occurrence and a bound occurrence. Given a formula ¢, we write free(y) to
denote the free variables occurring in .
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Lemma 1.2 below states how to reduce simply an instance of the validity prob-
lem to an instance of the satisfiability problem and the other way around. Quan-
tifications in formulae (in the object language) are used to perform quantifications
over valuations (in the meta-language).

Lemma 1.2. Let ¢ be a formula whose free variables are among X1, ..., x,. The
propositions below are equivalent:

(D) ¢ is valid.

(II) V x1,...,Xy @ is valid;

(I) V xq,...,xy @ is satisfiable.

(IV) ¥V x1,...,x, @ is equivalent to T.
Similarly, the propositions below are equivalent:
(V) o is satisfiable.

(VI) 3 x1,...,Xy @ is valid.

(VII) 3 xq,...,xp @ is satisfiable.

(VIO) 3 xq,...,x%, @ is equivalent to T.

The proof of Lemma 1.2 is left as an exercise and it uses the duality between
the quantifiers V and 3. That is why, in the sequel, we are mainly interested in
the satisfiability problem. Moreover, when a formula has no free variable occur-
rences, satisfiability is equivalent to validity and therefore the difference is even
less relevant.

We write p(x1, . . . , X, ) to denote a formula with free variables among {x1, . .., X, },
for some n > 1. The formula defines the following set of n-tuples:

[o(x1, .. xa)] = {(0(x1),...,0(x,)) €EN": vk}

The set [¢(x1,...,X,)] contains all the tuples that make true the formula ¢ by
ignoring the irrelevant interpretation of the bound variables and by fixing an
arbitrary ordering between the variables. In that respect, using the notation
©(x1, ..., %) has the advantage to provide an ordering of the variables. When
X1, - - -, Xn is known without ambiguity, the set [o(x1, .. ., X )] is simply denoted
by [¢]. For instance, [x; < x2] = {{n,n’) € N? : n. < n’}. Similarly, the set of
odd natural numbers can be defined by the formula below:

dyx=y+y+1

The set {0} can be defined by the formula x = x + x. Similarly, the set {1} is
definedby Iy (y=y+yAx=y+1).
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Xq1++ Xo++;X1-- Xo++

X1++; Xo++ X1++; Xo++ X1++; Xo++
q1 > G2 >\ g3 >

Figure 1.1: A simple counter machine

Moreover satisfiability of ¢ is equivalent to the nonemptiness of []. Simi-
larly, ¢ is valid iff [¢] = N™.

Let us conclude this section by a definition for sets in N" that can be defined
from formulae in FO(N).

Definition 1.3 (Presburger set). Let ¢ be a formula ¢(x1,...,x,) withn > 1
free variables among xi, ..., x,,. We say that [¢] is a Presburger set.

The characterization of Presburger sets by means different from the use of
FO(N) is discussed in Section 1.5. It is clear that Presburger sets are closed un-
der intersection, union and complementation because of the presence of Boolean
connectives in the logical formalism FO(N).

By way of example, let us consider the counter machine presented in Figure 1.1
with two counters and four control states.

We write X; to denote the set {(n,m) | (q1,0,0) = (gi,n,m)} for every
i € [1,4]. One can show that all the sets X1, ..., X4 included in N? are Presburger
sets; more precisely

X1 == [[X1:X2:0]]

X9 = [[X2:1/\X121:[|

X3 = [[XQZQ/\X1+X224]]

Xy = [[Xlzl/\X223/\X1+X226]].

An alternative formula (with quantifiers) to define X is provided below. For
each self-loop, a quantifier variable is introduced that corresponds to the number
of times the self-loop is visited.

dz1,29,123 (X]_:3+Zl—22)/\(x2:3+22+23)/\ (2—{—21—2220).

1.2.3 FRAGMENTS

In this section, we introduce several syntactic fragments of FO(N) by restricting
the use of syntactic resources or by imposing constraints on the form of the terms,
formulae, etc.

First, we need to provide a few more explanations about the formal differences
between abbreviations and built-in predicate symbols or atomic formulae. Above,
the syntax for terms, atomic formulae and formulae in FO(N) has been extended
in order to admit several abbreviations that are helpful to write formulae. For
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instance, (x = y) = (y = x) use abbreviations and strictly speaking, should be
understood as the formula below:

((x<y)Aly <x)VI([y <x)A(x<y)).

b

Indeed, ’=" is not a built-in logical connective whereas "=’ is not the built-in
equality predicate symbol; these symbols are used for the sake of conciseness
and simplicity. It is also possible to consider these symbols as primitive in the
syntax by extending the set of logical connectives or by extending the set of atomic
formulae. This would not make any essential difference with the current version
since material implication or equalities can be expressed in it.

By contrast, the use of new built-in symbols would make a difference when
fragments of FO(N) are involved because we do not have access to the full power
of the logical formalism. By way of example, let us consider the expression t =, t/
that is a shortcut for

Ix (t=kx+t)V (' =kx+t).

Even though t =, ¢’ does not make apparent the presence of quantifiers, it does
contain an existential quantification. However, it is also possible to extend the
set of formulae by considering ¢ =, t' as a new primitive atomic formula with
the following semantics: v £ t =, t' £ v(t) is equal to v(¢') modulo k. In
that latter case, t = t’ is quantifier-free. Below, we define fragments of FO(N)
by imposing syntactic restrictions but at the same time, we add new primitive
predicate symbols. Unless otherwise stated, we assume that the set of primitive
atomic formulae is extended as follows:

T|Llt<t |ttt | t=t | t<t | t>t | t>T (PAF)

with £ > 2. The semantics of the new binary predicate symbols is without any
surprise, for instance v £ ¢ >t/ £ v(t) > v(t). We know that adding these
symbols does not increase the expressive power of FO(N) since we were able to
find equivalent formulae in the original version of FO(N).

From now on, we assume that FO(N) contains all the above-mentioned atomic

formulae.

Definition 1.4 (Quantifier-free fragment). A formula ¢ is quantifier-free & ¢
is a Boolean combination of atomic formulae (i.e. without quantifiers).

For instance (x+y =5 z) V (y > 23) is a quantifier-free formula that contains
exactly four occurrrences of free variables. It is clear that, in a quantifier-free
formula, all the variable occurrences are free.

Definition 1.5 (Linear fragment). A formula ¢ is in the linear fragment & pis
a Boolean combination of atomic formulae of one of the forms below:

T|lLlt<t |t=t]t<t | t>t | t>1 (LIN)



12 Chapter 1. Rudiments of Presburger Arithmetic

So, ¢ is in the linear fragment of FO(N) when it is in the quantifier-free frag-
ment and it does not contain any periodicity constraint.

Definition 1.6 (Difference fragment). A formula ¢ is in the difference fragment
£ belongs to the linear fragment and the terms are either of the form x + &
or k.

For instance =(x = y+8) Ay > 7 belongs to the difference fragment whereas
2x = 6 or x +y > 3 do not. Indeed, the difference fragment can only compare a
variable or a difference between two variables with a constant value.

Let us conclude the presentation of fragments, by introducing a fragment of
FO(N) in which quantifications are performed at the beginning of the formula.

Definition 1.7 (Prenex normal form). A formula ¢ in FO(N) is in prenex normal
form whenever it is of the form below

Qi x1 - Qn X Y

where 1) is in the linear fragmentand {Q1, ..., Q,} C {3,V}. Q1 --- Q, iscalled
the quantifier prefix and its quantifier alternation is the number of positions 7 such

that O, and 9, are different.

Even though formulae in prenex normal form strongly restrict the use of quan-
tifiers, one can show that every formula in FO(N) is equivalent to a formula in
prenex normal form. The proof is left as an exercise and it is very similar to the
proof of the similar property for classical predicate logic. A first step in the proof
consists in showing that without any loss of generality, we can assume that two
distinct quantifier occurrences such as @ x and Q' X’ in the original formula ver-
ifies that x is a variable different from x’. Duality between quantifiers as well as
duality between logical connectives need also to be used.

Let us consider the formula ¢ below:

~(Ixx>3)V(Vyy >4).
@ is equivalent to the following formula in prenex normal form:
VxVy(=(x>3)Vy >4).

Definition 1.8 (Extended prenex normal form). A formula ¢ in FO(N) is in ex-
tended prenex normal form whenever it is of the form below

(Q1)<ky X1+ (Qn) <k, Xn ¥

where 1) is in the linear fragment, {Q1,...,Q,} C {3,V} and ky,...,k, € N.
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1.2.4 DECIDABLILITY OF THE SATISFIABILITY PROBLEM

Designing a decision procedure for checking the satisfiability problem for FO(N)
is known to be a difficult task because the domain of interpretation for variables
is infinite (namely, the set of natural numbers) and therefore quantifications are
performed over an infinite set. By comparison, designing a decision procedure for
propositional calculus is much easier because each propositional variable is inter-
preted by either true or false (or equivalently by either 1 or 0) and therefore there
is a finite set of relevant propositional valuations for checking the satisfiability
status of a given propositional formula. Moreover, checking whether a proposi-
tional valuation satisfies a propositional formula can be done in polynomial time,
which guarantees the existence of a simple algorithm for checking satisfiability
(even though it may require exponential time in the worst case).

By contrast, checking whether a valuation v satisfies a formula ¢, even when
the valuation is restricted to the variables occurring in ¢ is as hard as the satis-
fiability problem itself. Indeed, suppose that ¢ contains the variables xi, ..., xy,.
We have ¢ is satisfiable iff vy | d x1, ..., X, where vg is a valuation such that
all the variables from ¢ are interpreted by zero.

Quantifier-free fragment of FO(N) admits a simpler satisfiability problem since
quantifications are disallowed but still one needs to determine whether a valua-
tion can satisfy the formula. Assume that terms in quantifier-free formulae can be
written as (), a;x;) +k where the a;’s and k belong to N and the natural numbers
are encoded in binary. This is indeed a place where we have to be precise about
the encodings but note that the current option is to encode concisely the natural
numbers. The size of a formula, written ||, is roughly defined as the number of
symbols occuring in it, which is a reasonably succinct encoding.

Theorem 1.9. Let ¢ be a quantifier-free formula with variables x1, ..., x,,. The
formula ¢ is satisfiable iff there is a valuation satisfying ¢ and each variable is
interpreted by a natural number whose value is bounded by 2PU?) where p(-) is a
polynomial independent of p and x1, ..., X

Theorem 1.9 states that to determine the satisfiability status of a quantifier-
free formula, it is sufficient to inspect values interpreting variables below a bound
2P(I#) (see bibliographical references in Section 1.6.2). It is possible to refine this
bound by taking into account in a more precise way, the number of variables, the
maximal size of a constant occurring in ¢ or the number of connective occur-
rences with a conjunctive polarity. Moreover, this is sufficient to prove the NP
upper bound.

Corollary 1.10. The satisfiability problem for the quantifier-free fragment of FO(N)
is NP-complete.

NP-hardness can be easily shown by defining a straightforward reduction
from the satisfiability problem for propositional calculus known as SAT. Indeed,
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given a formula ¢ with propositional variables p1, ..., p,, one can build a quantifier-
iV = yi®V such that ¢ is

i
s and y’“"’s are new and they

(3

free formula ¢’ obtained from ¢ by replacing p; by x
satisfiable iff ¢’ is satisfiable. The variables x!"’
serve the purpose of encoding propositional variables.

In order to obtain the NP upper bound, it is sufficient to guess

<0417 SR an> S [0’ 2p(|§0|)]n

and then check that v | ¢ where v(x;) = «; for every ¢ € [1,n]. Such a check
should be done in polynomial time in the size of the formula, which is the case
for the following reasons.

1. {aq,...,ay) is of polynomial size in |¢]|.
2. Computing v(¢) for any term ¢ in ¢ can be done in polynomial time in |¢p|.

3. Similarly, determining the truth value of any atomic formula under v can
be done in polynomial time in |¢p|.

4. Finally, replacing all the atomic formulae from ¢ by either T or L (depend-
ing on the truth value under v) and then simplifying using the semantics of
Boolean connectives, leads to T or L and this can be done in polynomial
time.

Hence, the verification phasis for b | ¢ requires only polynomial time. Even
though the values in v can be of exponential magnitude with respect to the size
of ¢, their encoding requires only polynomial space which is useful to perform
the final check in polynomial time.

Let us come back to our original main question. What about the decidability
status of the satisfiability problem for FO(N)? It would be nice if Theorem 1.9 can
be adapted to full Presburger arithmetic. Actually, it can but with much higher
upper bounds as stated later on (see Theorem 1.12). Indeed, the key argument is to
show that every formula ¢ admits an equivalent quantifier-free formula ¢’ such
that ¢’ can be effectively built from . Equivalence implies that the satisfiability
status of formulae is identical. Since the reduction is effective, we can then invoke
Corollary 1.10 and get decidability.

Theorem 1.11 (Decidability). The satisfiability problem for FO(N) is decidable.

It should not come as a surprise that the elimination of quantifiers is com-
putationally expensive and the construction of ¢’ from ¢ is done via a lengthy
process. Section 1.3 is actually dedicated to quantifier elimination.

We have seen that disjunctions can be defined from conjunctions and nega-
tions, and therefore the connective for disjunction V is a built-in connective that
does not add any expressive power to FO(N). Similarly, quantifier elimination
implies that the built-in quantifiers do not add any expressive power to FO(N)
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when the atomic formulae are of the form either t < ' or t =, t’. Indeed, period-
icity constraints enter into the play here and this is necessary as briefly explained
in Section 1.3. So, even though universal and existential quantifiers do not add
any new expressive power to the quantifier-free fragment, such binders are useful
to express concisely properties on natural numbers. This is also reflected by the
fact that the satisfiability problem for FO(N) is clearly not in NP and somewhere
between 2ExPTIME and 2ExpPSPACE. More precisely, the satisfiability problem for
FO(N) is complete for the class of alternating Turing machines working in dou-
ble exponential time with at most a linear amount of alternations. This looks like
a scary statement but this provides a complete complexity characterization and
most of the time, we will be happy with the respective bounds 2ExpTIME and
2EXPSPACE.

One can also observe that decidability is a straightforward consequence of
quantifier elimination and there is no need to invoke the NP-completeness of
the quantifier-free fragment. Indeed, let  be a formula whose free variables are
among X, ..., X,. We have seen that o is satisfiable iff 3 xy, . . . , x,, ¢ is equivalent
to T (see Lemma 1.2). Satisfiability of ¢ is checked by eliminating quantifiers in
the formula 3 x1, ..., X, ¢ and verify that the quantifier elimination procedure
leads to T. Hence, quantifier elimination is a sufficiently strong property to entail
decidability.

The procedure for eliminating quantifiers, and its improvements, is also at the
heart of optimal complexity results for checking satisfiability, as stated below.

Theorem 1.12. Let ¢ be a sentence in FO(N) (no free variables) of the form

Q1x1 -+ Qs xs Y(X1,.-.,Xs)

of lengthn and with m quantifier alternations such that 1 is quantifier-free. Then, in

; . . s+3)m T2
the quantification we can restrict ourselves to values bounded by w = 9Cxnll=H2

for some constant C. This means that ¢ is satisfiable iff

(Q1)<w X1 -+ (Ds)<w Xs (X1, .., Xs)
is satisfiable.

Bounding the quantifications allows to decide the satisfiability status of the
formula by running over all the possible values for the variables and check how
the matrix formula t)(x1, . . ., xs) is satisfied. A bit of care is needed because quan-
tifiers are either existential or universal but a simple nondeterministic algorithm
can easily handle that.

VARIANTS. Let FO(Z) be the variant of FO(N) in which variables are interpreted
in Z and quantifications are performed over Z. FO(Z) share with FO(N) all its
nice properties: decidability, quantifier elimination, complexity, etc.
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Theorem 1.13. The satisfiability problem for FO(Z) is decidable.

Exercise 1.15 presents a reduction from the satisfiability for FO(Z) to the satis-
fiability for FO(N) by proposing a simple encoding of integers within the natural
numbers (parity of a natural number determines whether it encodes a negative
integer).

Besides, it is also worth noting that the first-order theory of (N, <, x) is decid-
able too (known as Skolem arithmetic) whereas the first-order theory of (N, <, x, +)
is undecidable.

1.3 QUANTIFIER ELIMINATION

In this section, we briefly explain what is quantifier elimination and how it can
be proved for FO(N). Roughly speaking, quantifier elimination means that every
formula in FO(N) admits an equivalent formula without quantifiers, i.e. quan-
tifiers can be eliminated. A quantifier-free formula can be viewed as a Boolean
combination of atomic formulae of the form ¢t < t/, ¢t =, ¢/, T or L. Moreover,
we require that the equivalent quantifier-free variant has no more free variables
than the original formula. In particular, this means that if the original formula is

a sentence, i.e. without free variable occurrences, then its equivalent formula is
either T or L.

1.3.1 THE MAIN STATEMENT

At first glance, it is rather disturbing to discover that the quantifier-free fragment
of FO(N) is as expressive as full FO(N). Indeed, this might imply that quantifi-
cations in FO(N) are dummy and that they do not serve any purpose. This is
not quite the case because eliminating quantifiers can be computationnally ex-
pensive and therefore the use of quantifiers is justified by the need to write con-
cise formulae to express simple properties. This is different from the situation in
which disjunction can be expressed by negation and conjunction. A better anal-
ogy would be to note that linear-time temporal logic LTL and first-order logic on
w-sequences are equally expressive logical formalisms by Kamp’s Theorem but
the two formalisms have distinct conciseness and admit satisfiability problems
with very different complexity (PSPACE-completeness versus non-elementarity in
the present case).

As a starter, let us provide a few examples of formulae in which quantifiers
can be (easily) eliminated:

e Jx (x> 3)isequivalentto T,
e Jz(x<zAz<y)isequivalenttox+2 <y,

e Jz(x<zVz<y)isequivalentto T,
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o Vz(x<z=y<7z)isequivalenttoy < x,
e Jzx = 2zis equivalent to x = 0.

Below, we present more systematic ways to produce quantifier-free formu-
lae. In the meantime, let us see why we need modulo constraints in equivalent
quantifier-free formulae; after all, 3 z x = 2z might admit another quantifier-free
formula without modulo constraints. We explain below why it is impossible.

Let AT(x) be the set of atomic formulae of the form

ax+b<ax+V,

where a, d/, b and V' are natural numbers. Because x is interpreted by a natural
number, every atomic formula ax + b < a’x + V' of that form is equivalent to an
atomic formula of the form either T, L, x < k or x > k with £ € N. For instance
3x 4+ 5 < x+ 8 is equivalent to x < 1. Now, one can show that for every formula
1) that is a Boolean combination of atomic formulae of the form either T, | or
x < k, [¢] is a set of natural numbers equal to a finite union of intervals |, I;
such that each I; is of the form either [k, k2| or [k1, +oo[ with k1, k2 € N. Asa
consequence, 3 z x = 2z cannot be equivalent to a formula 1) of the above form
because [3 z x = 2z] is obviously not equal to a finite union of intervals of the
form J; I;. Exercise 1.4 is dedicated to such a proof.
Now, let us provide the formal statement about quantifier elimination.

Theorem 1.14 (Quantifier elimination). For every formula o, there exists an equiv-
alent quantifier-free formula ¢’ such that ¢’ can be effectively built from . More-

over, free(yp') C free(y).

In order to show that quantifiers can be eliminated, it is sufficient to establish
quantifier elimination for formulae of the form 3 x 1) where v is a quantifier-free
formula, i.e. a Boolean combination of atomic formulae of the form either ¢t < ¢/
or t = t'. We call this property (QE*). For example, let us consider the formula
© below:

Ix (Yo(x) A Ty (Y1(x,y) AT zea(x,y,2,7))))

where the 1);’s are quantifier-free formulae. If 3 z ¥5(x,y,z,Z) is equivalent to
the quantifier-free formula 1} (x, y, '), then ¢ is equivalent to

Ix (Yo(x) ATy (¥1(x,y) As(x,y,2)))).

Indeed, the equivalence relation for formulae is a congruence for the logical con-
nective (Boolean operators and quantifiers). Again, if 3y (¢1(x,y) A ¥5(x,y,2')
is equivalent to the quantifier-free formula ] (x, Z'), then ¢ is equivalent to

3x (tho(x) A1 (x, 7).
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Finally, if 3 x (100 (x) A} (x,Z’)) is equivalent to the quantifier-free formula v, (z'),
then ¢ is equivalent to it and v(,(z') is quantifier-free.

So, given an arbitrary formula ¢ in FO(N) a way to compute an equivalent
quantifier-free formula is the following. First, replace in ¢ every subformulae
of the form V x 1) by = 3 x =% (in order to have only existential quantifications,
possibly negated). Say, we get the formula ¢'. If ¢’ is quantifier-free, we are done.
Otherwise pick an innermost subformula of the form 3 x y where Y is quantifier-
free and substitute it by an equivalent quantifier-free formula thanks to (QE*),
leading to the new formula ¢” (equivalent to ¢). The number of quantifiers in "
is strictly less than the number of quantifiers in ¢’. By repeating this process (at
most || times), we can compute a quantifier-free formula that is equivalent to
the original formula ¢.

1.3.2 INGREDIENTS TO ELIMINATE QUANTIFIERS

Below, we explain how to eliminate quantifiers in formulae of the form used in
(QE™). To do so, we start by a simple example.

Let ¢ = 3 x ¢ be a formula such that ¢ is a quantifier-free formula that is a
Boolean combination of atomic formulae of one of the forms below: T, 1, ¢t < x,
t < t'. We assume that the terms ¢, ¢’ are of the extended form (>, a;x;) + k
where the a;’s and k belong to Z (and not only to N) and x does not occur in the
terms ¢ or t’. This means that we have isolated x at one side of the inequalities.
We have seen that it is harmless to use such extended terms since this is just a
syntactic convention.

So, v is a formula built from the grammar below:

xu=T | L] t<x|t<t' | ~x | xAx @)

where ¢, t' are extended terms without occurrences of the variable x. Note that
there is no formula of the form ¢ > x since that is equivalent to =(t + 1 < x).

Let us start by noticing that any variable valuation v : VAR — N, can be
generalized to extended terms such that

U((Z aixi) + ]C) = (Z a; U(XZ')) + k.

Terms can be interpreted by values in Z (but not the variables). Let T" be the set
of terms ¢ occurring in v (excluding x) in atomic formulae of the form ¢ < x, and
(possibly) augmented with 0.

Given a valuation v : VAR — N, there is a term t)ofy € T such that v(te) <
v(x) and there is no term ¢ in 7" such that v(tjer) < 0() < 6(X). tient is called the
closest left term. Note that ¢ always exists because 0 is in 7" but it may not be
unique.

A key observation is that for any value n € [v(teq), 0(x)], 0 and v[x — 7]
verifies exactly the same atomic formulae from ¢ and therefore v | ¢ iff v[x —
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n] | 1. Consequently, for the satisfaction of ¢, we can always assume that x is
equal to some term ¢ with ¢ € T'.

Below we write 1)(x < t) to denote the formula obtained from 1) by replacing
every occurrence of x by the term . Now, one can show that ¢ is equivalent to
the disjunction below:

\ v(xt)at>o0.

teTl
Note that the disjunction can be computed in polynomial time in the size of ¢. It
is also worth observing that the existential quantification is replaced by a gener-
alized disjunction, which is the way it should be conceptually.

Example 1.15. By way of example, let us consider the formula
Jdz(x<zAz<y)

that has been already considered at the beginning of Section 1.3. First, we slightly
update it to get an equivalent formula

p=3z(x+1<zA=(y <z)).

The set of terms 7 is equal to {x + 1,y, 0}. We get the following disjunction:

IN p-

-
(x+1>0AXx+1<x+1A(y <x+1)V

=4 o)

~
(y=0Ax+1<yA=(y<y))V
———

v

(0>0Ax+1<0A(y<0))
\—(T

which is equivalent to =(y < x + 1). This formula is equivalent to x + 2 < y.

Let us extend a little bit what we have done with formulae of the form 3 x v
when 1) respects (}). Indeed, quantifier-free formulae are much more general. For
instance, inequalities may involve the terms ax with a > 1.

Let us consider ¢ = 3 x ¥ when 1) follows the grammar below:

xu=T | L] t<ax | t<¢ | =x | xAx )

where ¢, t’ are extended terms without occurrences of the variable x and a > 1.
Let [ be the least common multiple (Icm) of all the coefficients occurring in
front the variable x in v and let ¢}’ to denote the formula obtained from 1) by

replacing every atomic formula of the form ¢t < ax by ¢ x é < Ix. Multiplying by
l

= each side of an inequality provides an equivalent formula. Now, let 1" be the
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formula obtained from 1)’ by replacing every occurrence of Ix by x. It is easy to
show that ¢ and 3 x (x =; 0) A ¢” are equivalent. Hence, we consider ¢ = I x ¢
when v follows the grammar below:

xu=T | L] t=pt' | x=pt | t<x|t<t | ~x | xAx (tth

where t, t' are extended terms without occurrences of the variable x, and k£ > 1.
This clearly allows us to deal with the formula (x =; 0) A ¢” described above.
Quantifier-free formulae respecting (71t) are almost of the general form except
that modulo constraints or inequalities may involve the terms ax with a > 1,
which is disallowed in (f{t). Such inequalities have been considered earlier, but
let us consider modulo constraints of the form ax = t. If [ is the lcm of all the
coefficients occurring in front the variable x, ax =, t is equivalent to Ix =(kx L) ét
and therefore we can proceed as above. ’

Now, let us explain how to compute a quantifier-free formula equivalent to
3 x 1 when 9 belongs to (11); we know now that it entails (QE*) and therefore,
quantifier elimination for FO(N) as well as its decidability.

Let I’ be the least common multiple of all the coefficients occurring in modulo
constraints in 7). The developments below are obtained by slightly adapting what
has been done for the case with (f) and by recalling that for all n,n’ € N,n =y n’
iff (n =, n’ and ...and n =, n'), which is a key property to deal with modulo
constraints. Herein, !’ is the lcm of the values k1, ..., kg.

Additionally, given a valuation v defining a term . € 71" (see definition
above), then for any value n € {m € [o(tien),0(x)] : m =p v(x)}, v and
b[x — n] verifies exactly the same atomic formulae from ¢ and therefore v | v
iff v[x — n] | ¥. Consequently, for the satisfaction of ¢, we can always assume
that x is equal to some term t + j with ¢ € T and j € [0,1' — 1].

Now, one can show that ¢ is equivalent to the disjunction below:

\V vt A+ >0)
teT,j€[0,I'—1]

Again, the very idea for eliminating the quantification over the variable x consists
in considering a limited amount of values (obtained from terms that do not contain
x) and to use a disjunction instead of a first-class quantification.

We wish to emphasize that this way to eliminate quantifiers is not completely
optimal (even though the exponential blow-up is unavoidable in full generality)
but it has allowed us to present the main ideas for the proof of (QE*).

Example 1.16. Let us consider the formula 3 z x = 2z. In order to apply the
above method, let us start by rewriting the formula in order to remove the equality
predicate:

p=3z(x<22) A (=(x+ 1< 22)).
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Let us first eliminate the coefficient in front of z leading to the formula
e=3z(z=20)AKXx<z)A(=(x+1<72)).

The set of terms 7T is {0,x,x + 1}. So !’ = 2 and now we can introduce the
generalized disjunction equivalent to ¢:

-
0A(0 =2 0 x <0)A (=(x+1<0))]Vv
/\1—20 x<DA(x+1<1)V

-
T T

x> 0Ax=20)A(x <x)A(=(x+1<x)]V
Xx+12>20Ax+1=20)A(x<x+1)A(x+1<x+ 1)V

T M
X+12>20Ax+1=0)AX<x+1)A(~(x+1<x+1))V
T 1
X+2>0Ax+2=20) A (x<x+2)A(=(x+1<x+2))]
T 1

which is equivalent to (x < 0) V (x =2 0) and therefore is equivalent to x =2 0.
This sounds as a lot of efforts for an obvious outcome but it has been done by
following a systematic decision procedure that can be then automated.

1.4 AUTOMATA-BASED APPROACH FOR PRESBURGER ARITHMETIC

In the previous section, we have seen that the satisfiability problem for Presburger
arithmetic is decidable. In this section, we shall informally describe the decid-
ability of satisfiability problem for Presburger arithmetic by translation into the
non-emptiness problem for finite-state automata. This section is essentially bor-
rowed from (Demri and Poitrenaud, 2011) following the developments in (Boudet
and Comon, 1996). The use of automata for logical decision problems goes back
to (Biichi, 1960a) and we shall provide below the approach by automatic struc-
tures developed in (Boudet and Comon, 1996) (see also (Wolper and Boigelot,
1995)). The seminal paper (Buichi, 1960b) describes how to use the automata-based
approach to deal with Presburger arithmetic. Of course, other decision proce-
dures exist for Presburger arithmetic: for instance, quantifier elimination method
from (Reddy and Loveland, 1978) improves the method developped in (Cooper,
1972).

Before presenting the principles of the automata-based approach for Pres-
burger arithmetic, let us mention that, in general, the automata-based approach
consists in reducing logical problems into automata-based decision problems in
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order to take advantage of known results from automata theory. Alternatively,
this can be viewed as a means to transform declarative statements (typically for-
mulae) into operational devices (typically automata with sometimes rudimentary
computational power). The most standard target problems in automata used in
this approach is the non-emptiness problem that checks whether an automaton
admits at least one accepting computation. A pioneering work by Biichi (Biichi,
1960a) shows that Biichi automata are equivalent to formulae in monadic second-
order logic (MSO) over (N, <); models of a formula built over the second-order
variables Py, . .., Py are w-sequences over the alphabet P({ Py, ..., Py}). In full
generality, the following are a few desirable properties of the approach.

e The reduction should be conceptually simple, apart from being semantically
faithful.

e The computational complexity of the automata-based target problem should
be well-characterised. In that way, a complexity upper bound is obtained
to solve the source logical problem.

e Last but not least, the reduction should preferably allow the optimal com-
plexity for the source logical problem to be obtained. (In the construction
provided below, this last property is not satisfied.)

We have seen that each Presburger formula ¢ with n > 1 free variables de-
fines a subset of N”, namely [¢] C N", that corresponds to the set of variable
valuations that make ¢ true. For instance, [x = y + z] = {(k1, k2, k3) € N3 :
k1 = ko + ks3}. The automata-based approach for Presburger arithmetic consists
of representing the tuples in [¢] by a regular language that can be effectively
defined, for instance with the help of a finite-state automaton. In that way, satis-
fiability of o, which is equivalent to the non-emptiness of [ ], becomes equivalent
to the non-emptinesss of a finite-state automaton (which is an easy problem to
solve once the automaton is built). In order to define regular languages, first we
need to specify how natural numbers and tuples of natural numers are encoded
by words over a finite alphabet. Numerous options are possible (see e.g. (Leroux,
2003; Klaedtke, 2004a)) and below we adopt a simple and standard encoding in
which natural numbers are viewed as finite words over the alphabet {0, 1} by
using a binary representation in which the least significant bit is first.

We adopt a representation of natural numbers that is not unique, for instance
the number five can be encoded by 101 or by 101000. Tuples of natural numbers
of dimension 7 are represented by finite words over the alphabet {0, 1}" by using
an equal length representation for each number (padding).

Typically, the pair ( . ) can be represented by the word

(o) (o) (o) (2)(0)
over the alphabet {0,1}*. So, we introduce the map f : N — P({0,1}*) such
that f(0) = 0* and for k& > 0, f(k) = by - 0* where by, is the shortest binary
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representation of k (least significant bit first). The map f is extended to subsets
of N in the obvious way as well as to n-tuples of natural numbers with alphabet
{0,1}" such that f(x) € P(({0,1}")*) withx € N*andb € f(x) iff fori € [1,n],
the projection of b on the ith row belongs to f(x(7)). The map f is typically a state-
encoding schema in the sense of (Legay, 2008).

Given a Presburger formula ¢ with n > 1 free variables and a finite-state
automaton A over the alphabet {0,1}", we write ¢ =~ A whenever L(A) =

f(leD).

Theorem 1.17. (see e.g. (Boudet and Comon, 1996)) Given a Presburger formula o,
we can build a finite-state automaton Ay, such that ¢ ~ A,.

We also have [¢] C [¢] iff L(A,) € L(Ay) (see e.g., (Legay, 2008, Theorem
3.22)).

The finite-state automaton A, can be built recursively over the structure of
. For instance, conjunction is handled by the product construction, existen-
tial quantifier is handled by projection, negation is handled by the complement
construction, see details below. Nevertheless, a crude complexity analysis of the
construction of A, reveals a non-elementary worst-case complexity. Indeed, for
every negation, a complementation needs to be operated. However, developments
related to the optimal size of automata can be found in (Klaedtke, 2004b).

The recursive definition is based on the following properties. Let ¢ and v be
Presburger formulae with free variables x, ..., xy,.

conjunction If p ~ A and ¢y =~ B, then ¢ A ) =~ A N B where N is the product
construction computing intersection;

negation If o ~ A, then —¢ =~ A where - performs complementation, which
may cause an exponential blow-up;

quantification If ¢ ~ A, then 3 x,, ¢ ~ A’ where A’ is built over the alphabet
{0,1}"~! by forgetting the nth component. Typically, ¢ LN ¢’ in A" when-

. e b’ .
ever there is a transition ¢ — ¢’ in A such that b and b’ agree on the n — 1
first bit values.

In the above construction, we assumed that (¢ and 1) share the same set of free
variables, which does not always hold true for arbitrary formulae. If it is not the
case, ¢ ~ A and ¢ ~ B, then we perform an operation that consists of adding
dummy bits. For instance, suppose that ¢ contains the free variables x1, . . ., x;.
We can build the automaton A’ over the alphabet {0, 1}"*! obtained by adding

the (n + 1)th component. Typically, ¢ LN ¢’ in A’ whenever there is a transition

q b—/> ¢’ in A such that b and b’ agree on the n first bit values. It remains to deal
with atomic formulae to achieve the inductive building of the automaton.

The proof of theorem 1.17 is clearly based on the above constructions but we
need to complete the argument in order to deal with atomic formulae. Without
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(G () ()

Figure 1.3: Automaton for x; = x2 + X2

any loss of generality, we can restrict ourselves to equalities of the form x =
y + z (at the cost of introducing new variables in order to deal with sums made
of more than two variables). Such a restriction is only helpful to simplify the
presentation of the method but it makes sense to consider the full language with
linear constraints in order to optimize the reduction to automata, see e.g. (Boigelot
and Wolper, 2002; Boudet and Comon, 1996). The variables in x = y + z are not
necessarily distinct.

The automaton for x; = x2+x3 is described in Figure 1.2 where ¢ is the initial
state as well as the final state. The state q; represents a carry-over of 0 whereas
the state go represents a carry-over of 1. We can check that (x; = x2 + x3) =~ A.
The Figure 1.2 describes the automaton for x; = x2 + xa.

By projection, the encoding for 3 x2 (x; = x2 + x2) is presented in Figure 1.4.
Note that the automaton recognizes preciely the encodings of even numbers.

(0) (1)

B g

(1)

Figure 1.4: Encoding for 3 xo (x1 = x2 + x2).
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The automata-based approach for Presburger arithmetic can be extended to
richer theories such as (R, Z, +, <), see e.g. (Boigelot and Wolper, 2002), or can
be refined by providing other reductions, see e.g. (Leroux, 2003; Klaedtke, 2004b;
Schuele and Schneider, 2007). An overview of automata-based decision proce-
dures for Presburger arithmetic and related formalisms can be found in (Klaedtke,
2004b).

In (Durand-Gasselin and Habermehl, 2010), it is also shown that the transla-
tion from formulae in FO(N) to finite-state automata can be done in triple expo-
nential time, when the reduction from (Boudet and Comon, 1996), that is simpler
conceptually, would lead to a non-elementary bound since each negation may
cause an exponential blow-up. Automata constructions for fragments of FO(N)
are also studied in (Durand-Gasselin and Habermehl, 2010).

1.5 SEMILINEAR SETS

In this section, we present a standard characterization for the Presburger sets, i.e.
for the sets that are equal to [¢(x1, . .., xq)] for some formula in FO(N) with free
variables included in xy, ..., x4, d > 1. Before presenting the correspondence, let
us deal with the one-variable case, that will be then extended.

1.5.1 FORMULAE WITH AT MOST ONE FREE VARIABLE

Formulae with at most one free variable can use more than one variable but those
variables need to be quantified and therefore to be in the scope of a quantifier. By
way of example, let us consider the formula ¢(x) below:

(x#LIAXx#2)A(x=0V (x>3ATy(x=342y))).

It is easy to show that [¢(x)] = {0} U {3 + 2n : n > 0} and therefore after
the value 3, every two values belongs to the set [ (x)]. Such a regularity can be
slightly generalized leading to the definition below.

Definition 1.18 (Ultimately periodic set). A set X C N is ultimately periodic
& there exist N > 0, and P > 1 such that for all n > N, we have n € X iff
n+PeX.

The set of even numbers is ultimately periodic (with N = 0 for instance and
P = 2) as well as the set of odd numbers (with N = 1 and P = 2 too). More
generally, one can easily show that [x = k'] is ultimately periodic (with N = 0
and P = k).

Ultimately periodic sets satisfy nice closure properties thanks to their regu-
larity.

Proposition 1.19. Ultimately periodic sets are closed under union, intersection and
complementation.
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For instance, suppose that X is ultimately periodic and let X = N\ X. The
statements below are equivalent for n > N:
e neX,
n ¢ X (by definition of X),
n+ P ¢ X (X is ultimately periodic with parameters N and P),
e n+ P € X (by definition of X).

So X is ultimately periodic too and the same parameters N and P can be used.
The proof for union and intersection is left as an exercise.

Moreover, ultimately periodic sets can be easily defined by formulae with at
most one free variable as shown below. Indeed, let X be such a set defined with
the help of N and P (that are not unique). The formula ¢ x below verifies that

[ex] = X.
( AN\ x#BAlC \  x=kv

ke[O,N—1]~\X kelo,N—1]NX

(x=N)AQy V (x =k + Py)))]
kE[N,N+P—-1]nX

The converse is also true as stated below.

Proposition 1.20. For every formula p(x) in FO(N) with a unique free variable x,
[¢] is an ultimately periodic set.

Proof. Let ¢(x) be a formula with a unique free variable and ¢’ be an equiva-
lent quantifier-free formula (by Theorem 1.14). ¢’ can be shown equivalent to a
Boolean combination of atomic formulae of one of the forms below: T, L, x < k,
x = k’. Each atomic formula defines an ultimately periodic set and ultimately
periodic sets are closed under union, intersection and complementation. So [¢']
is ultimately periodic and since ¢ and ¢’ are equivalent formulae, [¢] is ultimately
periodic too. ]

What has been done with ultimately periodic sets can be generalized with
semilinearity sets and semilinearity sets will also satisfy nice closure properties
(a must to capture logical connectives from FO(N)). This is the subject of the next
section.

1.5.2 SEMILINEAR SETS

A linear set X (of dimention d > 1) is defined as a subset of N? for which there
exists a basisb € N? and a finite set of periods P = {p1,...,pm} C N such that

X={b+> Api: M,-.., Am €N}

=1
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For example, the set of even numbers {0 + i x 2 : i € N} is a linear subset of N
(dimension 1). Similarly, {1 +¢ x 2 : i € N} is a linear set with b = 1 and with
unique period 2. A semilinear set is defined as a finite union of linear sets. Each
semilinear set can be represented by a finite set of pairs of the form (b, J3). Here
is a linear set of dimension 2:

{(3)+ix(3)+ix(7):iien).

Remark 1.21. Semilinear sets generalize the notion of ultimately periodic sets in
dimension 1 since every ultimately periodic set X is a semilinear set of dimension
1. Indeed, suppose that X is characterized by the parameters N and P. The
equality below is easy to show:

x=( U {nphul U {n+AP:)eN})

ne0,N—-1]NX n€[N,N+P—-1]NnX

Note that each singleton set {n} is a linear set (with no period, or equivalently
with all periods equal to zero) as well as each set {n + AP : A € N} (with basis n
and period P).

Semilinear sets satisfy nice closure properties.

Theorem 1.22. The class of semilinear sets are effectively closed under union, in-
tersection and complementation.

Closure by union is immediate from the definition of semilinear sets. The class
of semilinear sets happen to be more interesting since it corresponds exactly to
the Presburger sets (see Theorem 1.23). Observe that if X; and X9 are semilinear
subsets of N such that X; = [p1] and Xo = [2], then X1 N X5 = 1 A o]
and N? \ X7 = [~¢1]. For example, let us consider the following semilinear set:

((2) e (2)win(4) 10sen).

The Presburger formula below can define it (and its principle can be generalized
to any linear set):

Jy,y (x1 =342y +4y Axo =4+ 5y +7y").
Theorem 1.23. Semilinear sets coincide with Presburger sets, i.e.

() for every formula p(x1,...,xq) withd > 1, [¢] is a semilinear set and its
representation can be effectively computed,

(I) for every semilinear set X C N, there is a formula ¢ (and it can be computed)
such that X = [¢].
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Since checking whether a linear set given as a basis and a finite set of peri-
ods is empty can be easily checked, Theorem 1.23 entails the decidability of the
satisfiability problem for FO(N).

Proof. (sketch) (I) Let ¢ be a formula with free variables xi,...,x4. By Theo-
rem 1.14, there is a quantifier-free formula 1) equivalent to . By Theorem 1.22,
the set of semilinear sets is closed union, intersection and complementation. So,
it remains to show that atomic formulae define semilinear sets too, which is left
as an exercise. (II) Every linear set can be easily shown to be a Presburger set by
generalizing the above construction. Disjunction in FO(N) allows to deal with
finite union of linear sets. ]

Example 1.24. Let us show that the set Y = {n? : n € N} is not a Presburger set
by showing that Y is not semilinear. The proofis ad absurdum. Since Y is infinite,
there are b > O and py1,...,pm > 0 (m > 1)such that Z = {b+ > \ip; :
A,...,Am € N} C Y and 7 is infinite. Let N € N be such that N> € Z and
(2N + 1) > p;. The value N always exists since Z is infinite. Since Z is a linear
set, we also have (N2 + p1) € Z. However (N + 1)2 — N2 = (2N + 1) > p1.
Hence N? < N? + p; < (N + 1)2, which leads to a contradiction since there is
no square value strictly before N2 and (N + 1)2.

Example 1.25. Let us show that X = {2’ : i € N} is not semilinear. The proof
is also ad absurdum. Suppose that X is semilinear. Since X is an infinite set,
there exist a basis b € N and period(s) p1,...,pm € (N~ {0}) (m > 1) such
that Y = {b+ > ", \ipi : M,..., A € N} C X and Y is infinite. There
exists 2% € Y such that p; < 2%. By definition of Y, we have 2% + p; € Y but
2% < 2% 4+ p1 < 2971 which leads to a contradiction.

Example 1.26. Let us consider the VASS in Figure 1.5 with six counters and two
control states. Actually, the VASS weakly computes multiplication and one can
establish the following result.

(I

>i> <Q17
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) S N37 <QO7
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Figure 1.5: Hopcroft & Pansiot’s VASS for weak multiplication

Let us show that there is no formula ¢(x1, . .., xg) such that
a 0 a
b 0 b
c 0 * c
ot oxe)l ={] 4 | | {2, | o [P = (e | 4 )}
e 0 e
f 0 f

The proof is simple and ad absurdum. Suppose that ¢(X) exists. Then, the formula
¥(x) defined below verifies [1)(x)] = {n? | n € N}

Y(x) gElxl,...,xkr, O(X1y -y X5,X) A X1 = XA

VX (X' >x) = =3 x3,%4,%5 (X1, ..., x5,%)

which leads to a contradiction since {n? | n € N} is not a Presburger set.

1.6 APPLICATION: PARIKH IMAGE OF REGULAR LANGUAGES

In this section, we show that the commutative image of a regular language can be
characterized by a formula in FO(N).
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1.6.1 PARIKH IMAGE

Let ¥ = {ai,...,a;} equipped with an arbitrary linear ordering of the letters,
say a1 < --- < ag. Given a word u € ¥, its Parikh image is defined as a tuple
II(u) € N* such that for every i € [1, k], II(u)(4) is the number of occurrences
of the letter a; in the word u. For instance, the Parikh image of the word abaab

under the ordering a < b is the tuple < g > Naturally, the Parikh image of the

language L C X* is the set {II(u) € N* : u € L}. Parikh’s remarkable result
states that the Parikh image of any context-free language is semilinear and that
its representation is effectively computable from pushdown automata or from a
context-free grammar. Below, we present a proof for this result for the class of
regular languages by introducing the class of bounded and regular languages.

1.6.2 SEMILINEARITY BY BOUNDED LANGUAGES

The goal of this section is to show that the Parikh image of regular languages is
definable by a formula in FO(N). To do so, we show a nice result about the fact
that every regular language contains a bounded and regular language with the
same Parikh image. First, let us recall what are bounded languages.

Let 3 be a finite alphabet. A language L C ¥* is called bounded & there ex-
ists a finite sequence uy, . . ., u, of words in ¥* such that L C ] - - - u};. Since reg-
ular languages are recognized by deterministic finite-state automata, a language
L C X* is bounded and regular if, and only if, L is a finite union of languages of
the form ugvjuy - - - vyuy where ug, vi,ug, ..., vk, uy are words in 3*.

The Parikh images of bounded and regular languages can be easily shown
semilinear and therefore they are Presburger sets.

Lemma 1.27. For every bounded and regular language L, I1(L) is semilinear.

Indeed, the Parikh image of any language ugvju; - - - v;uy is equal to the linear
set {b+ A\ip1+ - M\ePr : A1, -5 A € N} with

e b= H(UO) + -+ H(uk),

o p; = II(v;) for every i € [1, k].

We recall that a finite-state automaton is a tuple A = (X, Q, Qo, 0, ') such
that

e ) is a finite alphabet,

e () is a finite set of states,

e Qo C Q is the set of initial states,

e the transition relation J is a subset of () X ¥ X @),

o I C () is aset of accepting states.
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A run p of A is a sequence qq B g D ga... such that for every v > 0,
(Giyai,qiv1) € 6 (also written g; SN ¢i+1)- The finite run p = qo Bn B
@ ... 225 g, is accepting if g9 € Qo and g, € F. The label of p, written lab(p),
is the finite word u = agpay ---an—1. The automaton A accepts the language
Lan(.A) of finite words u € X* such that there exists an accepting run of A on
the word u, i.e., with label u. Regular languages are those definable by finite-state
automata.

Theorem 1.28. For every regular language L, there is a bounded and regular lan-
guage L’ such thatL' C L and II(L") = TI(L).

This is probably more than what we need to show that the Parikh image of
regular languages is semilinear but the proof technique for the above theorem
will be reused.

Proof. Let A = (3, Q, Qo, 6, F') be a finite-state automaton accepting L. Without
any loss of generality, we can assume that Qo N F’ # () (otherwise add the empty
string ¢ to the bounded language). A path  is a finite sequence of transitions from
0 corresponding to a path in the control graph of A. So, paths are essentially runs
but we wish to emphasize here that we are only taking care of the graph structure
of A.  We write lab(7) to denote its label as a word of X*. A simple loop sl is
a non-empty path that starts and ends by the same state and these are the only
states that are repeated in sl. We say that sl loops on its first state (equal to its last
state). The number of simple loops is therefore bounded by card(§)®4(@), We
assume an arbitrary total linear ordering < on simple loops. An extended path P
is an expression of the form below:

71'()5'171'1 Saﬂ'a

where the S;’s are non-empty sets of simple loops, the 7;’s are non-empty paths
and

1. if S occurs just before a path 7, then all the simple loops in S loops on the
first state of

2. similarly, if S occurs just after a path 7, then all the simple loops in S loops
on the last state of 7.

An extended path generalizes the notion of path in which simple loops in the S;’s
can be visited an arbitrary number of times but respecting the arbitrary linear
ordering on simple loops. Note also that alternative definitions are possible, for
example by allowing that S; is empty and by allowing that an extended path starts
or ends by a set of simple loops. However, the definition below will be convenient
for the forthcoming developments.

Given an extended path P, we introduce a few more notions.
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e The skeleton of P is the path 7g - - - 74,

e Given a set of simple loops S = {sl1,...,sly,} with sl < -+ < sl
(remember, we fixed an arbirary ordering on simple loops), we write e(.5)
to denote the regular expression

lab(sly)™ - - -lab(sly,) ™"

So, each simple loop is taken at least once. Indeed, we want to make explicit
that each simple loop sl is used in S, otherwise it is always possible to
exclude sl from S, leading to another legitimate extended path. We write
e(P) to denote the regular expression defined as follows (if s is not the only
element in 5):

lab(mg) - €(S1) - - - e(Sq) - lab(my,).

We write Lan(e) to denote the language defined by the regular expression e. Note
that when the first state occuring in the skeleton of P is in (g and the last state
is in F, then Lan(e(P)) C Lan(A). In that case, we say that the extended path
is accepting. One can observe that Lan(e(P)) is a bounded and regular language
for any extended path P. For the sake of simplicity, we write Lan(P) instead of

Lan(e(P)).
An alternative notion of extended path would be to define them as sequences
of the form P = mg,sly,m1,. .., Sla, Ta, Where the 7;’s are (possibly empty)

paths and the sl;’s are simple loops and to define e(P) as lab(mg) - lab(sly)™ -
lab(my) - - - lab(sly)™ - lab(m,). The developments below, could be adapted to this
slight variant. The current definition of extended paths with sets .S of simple loops
allows to restrict ourselves to sequences of the form

1 1 1 1
705 Sl vy Sl s Ty o vy Sloy ooy Sl T

with additional constraints, for instance slg and sl? loop on the same control state

and slg < sl{ "if j < j'. Note also that the linear ordering < is arbitrary.
A small extended path is an extended path such that

1. mp and 7, have at most 2 X card((Q) transitions,
2. 71, ..., To—1 have at most card(Q) transitions,

3. for each state ¢ € (), there is at most one set .S containing simple loops on
q.

So, the length of the skeleton is bounded by card(Q)(3 + card(Q@)). Note that the
set of small extended paths is finite, even though its cardinal can be exponential in
the size of .A. We also consider degenerated small extended paths made of paths
of length at most 3 x card((@). Usually, this case is omitted in the proofs since it
can be easily derived from the non-degenerated case.
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tQ: ¢ t5: b

Figure 1.6: A simple finite-state automaton.

Example 1.29. Figure 1.6 presents a simple finite-state automaton; the edges are
labelled by the name of the transition and by the letter. Here is an example of
small extended path P:

to-t1-{ti,ta} -tz {ta,t5} -ta-t5-ts5

Note that e(P) is equal to the regular expression below assuming that ¢; < ¢5 and
ts < t4:
a-b-b"-ct-b-bt-at-a-b-b

Let X be the set of accepting and small extended paths from 4. Below we
show that

U Lan(P II(Lan(A)).

We already observed that (| Jp. x Lan(P)) C Lan(.A) and therefore

U Lan(P)) C II(Lan(A)).

Let p be an accepting run of A and therefore lab(p) € Lan(.A) and II(lab(p)) €
II(Lan(.A)). We shall build a small and accepting extended path P such that
II(lab(p)) € II(Lan(P)). To do so, we define a sequence of accepting extended
paths Py, Py, ..., Pg such that

e all the P;’s are accepting extended paths,
e Py is equal to p viewed as an extended path,
e Pjis a small and accepting extended path,

e P, isobtained from P; by removing a simple loop on ¢q and possibly adding
it to a set of simple loops S already in P; or by creating one if none, and
II(Lan(P;)) C II(Lan(P;41)).

So, at the end of this process, II(lab(p)) € II(Lan(Pg)) and II(Lan(Pg)) C
II(Lan(A)).
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It remains to explain how to build P;;; from P;. We assume that P; has the
form below
7T()517T1 Saﬂ'a

where
(a) a < card(Q),
(b) each path in 7y, ..., m,—1 have length less than card(Q),
(c) each state has at most one \S; containing simple loops on it.

Obviously, Py verifies these conditions. P; 1 will satisfy the same condition ex-
cept that we require that the length of the final path of P;; strictly decreases.
Now, let us define P;; from P;.

Case 1: P; is a small extended path. We are done and P; is the final extended path
of the sequence.

Case 2: mo = 7 - sl - ' where sl is a simple loop on ¢, 77’ # ¢ and S, already
contains simple loops on ¢ (v < «). Then, P;11 is equal to the extended
path below:

o+ Syo1 Ty (SyU{sl}) - ma—1 So (77)

Case 3: o = 7 - sl - ™ where sl is a simple loop on ¢ and the first one occurring
in - sl, 7n’ # € and no S, already contains simple loops on g. Then, P; ;1
is equal to the extended path below:

o -+ S {sl}n’
In that case, we create a new (singleton) set of simple loops.

It remains to show the following properties, which is left as an exercise:

1. II(Lan(P;)) C II(Lan(P;+1)).
2. P, satisfies the conditions (a), (b) and (c).
3. Lan(P;41) C Lan(A). O

By way of example, suppose that Py is equal to the (extended) path below
from the finite-state automaton defined in Figure 1.6:

to- (t1)" - (2)"(t1)* 13- (t)" - (t5)" - (ta)®
We obtain the following extended path with the procedure described above:

o Poy =to-{tr,ta} - t3- (ta)" - (t5)" - (ta)®,
o P3s =to- {t1,t2} - t3- {ts,t5} - (t4)® and P3g is a small extended path.
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Corollary 1.30. Let A be a finite-state automaton over the alphabet 3, equipped
with a linear ordering of the letters, say with k letters. Then, one can compute a
formula p o(x1, . ..,xg) in FO(N) such that II(Lan(A)) = [p.]-

Indeed, by Theorem 1.28, Lan(.A) includes a bounded and regular language L
with the same Parikh image. Note that L can be computed for instance by enumer-
ating the regular expressions obtained from small and accepting extended paths
and then check inclusion with Lan(.A). Then, we compute a disjunction made of
the formulae obtained for each bounded and regular language included in Lan(.A)
and obtained from small and accepting extended paths, by using Lemma 1.27.
When Qo N F' # (), we include a disjunct stating that all the values are equal to
zero.

EXERCISES

Exercise 1.1. Show Lemma 1.2.

Exercise 1.2. Show that every formula in Presburger arithmetic is equivalent to a formula
in prenex normal form, by using an algorithm that runs in polynomial time in the size of
the input formula.

Exercise 1.3. Let ¢ be a Presburger formula with more than one free variable. Define a
Presburger formula 1) such that v is satisfiable iff [¢] is finite.

Exercise 1.4. Let AT(x) be the set of atomic formulae of the form
ax+b<ax+?d

where a, a’, b and b’ are natural numbers.

1. Show that every atomic formula ax + b < a’x + b’ is equivalent to an atomic
formula of the form either T, 1, x < k,orx > k with k € N.

2. Show that for every formula v that is a Boolean combination of atomic formulae
of the form either T, L or x < k, [¢] is a set of natural numbers equal to a finite
union of intervals | J; I; such that each I; is of the form either [k1, k2] or [k1, +00]
with k1, ko € N.

3. Conclude that 4z x = 2z cannot be equivalent to a Boolean combination of atomic
formulae of the form ax + b < a’x + ¥’
Exercise 1.5. Let us consider the following fragment of FO(N):
pu=T | Ll x=py| x=pc| x<clx=y[ 9| oAy | Ixp
where x, y are variables, k > 2 and ¢ > 0.

1. Show that every formula in that fragment is equivalent to a Boolean combination
of atomic formulae of one of the forms below: x =, ¢, x < cand x =y.
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2. Show that the satisfiability problem is PSpAack-hard.

3. What about PSpACE-easiness?

Exercise 1.6. Show that ultimately periodic sets are closed under union, intersection and
complementation.

Exercise 1.7. Compute a quantifier-free formula equivalent to the formula below follow-
ing the procedure to eliminate quantifiers.

Jz1,29,23 (x1 =3+z1 —z2) A(xa =3+ 2z2+23) AN (2421 — 22 > 0).

Exercise 1.8.Let X C N? be a semilinear set. Show that {k € N : (k, k') € X}
(projection) is a semilinear subset of N.

Exercise 1.9. Define a Presburger formula ¢ such that [¢] = {(n1,n2) € N x N :
ny X ng is odd}.

Exercise 1.10. Show that any arithmetic progression (viewed as a set of natural numbers)
can be defined in Presburger arithmetic.

Exercise 1.11. Show that semilinear sets are Presburger definable.

Exercise 1.12. Let X, Y C N". We define X + Y astheset {x+y:x€ X, y € Y}.
Show that if X and Y are semilinear, then X + Y is also semilinear.

Exercise 1.13. Let X C N be a set of natural numbers such that there are a,b € N and
b > 0 such that for every n € X such that n > a, we have n + b € X. Show that X is
semilinear.

Exercise 1.14. As stated in the proof of Theorem 1.23, show that every atomic formula
from Presburger arithmetic defines a semilinear set.

Exercise 1.15. FO(Z) is defined as FO(N) except that variable valuations have domain Z
instead of N. In particular, terms, atomic formulae and formulae are identical.

The goal of this exercise is to show decidability of FO(Z) by translating the satisfia-
bility problem for FO(Z) to the satisfiability problem for FO(N). A negative integer n is
encoded by —2n + 1 whereas a non-negative integer m is encoded by 2m.

1. Show in FO(Z) that every atomic formula ¢ < ¢’ has an equivalent formula that
uses only atomic formulae (or abbreviations) of the form either (1) x > 0 or (2)
t=t.

2. Let us define a map g from FO(Z) restricted to atomic formulae of the form (1) or
(2) that is homomorphic for Boolean connectives and quantifiers such that x > 0
is translated into x =5 0. It remains to define the translation for atomic formulae
of the form (2).
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An atomic formula of the form

Z a;X; =b

J€[1,n]

with a; € Z and b € Z is encoded by the following disjunction:

Vo 3y (NeGp@)) A Y elp(i),a))y; =b
pe{0,1}" @ JE,n]
where

e ¢(1,a)is equal to a and £(0, a) is equal to —a.

e (j,0) ="x; =2y; + I"and ¢(j,1) ="x; = 2y;’.

Evaluate the size of g() with respect to the size of .

3. Given a formula ¢(xq, . .., X, ) and its translation 1 (xq, . . . , X,, ), show that

[o(x1,....x,)] = {f(x) € Z" : x € [(x1,...,xx)]}

x(1)—1
o -

4. Conclude that the satisfiability problem for FO(Z) is decidable.

where f(x)(i) = % if x(7) is even, otherwise f(x)(i) = —

BiBLiOGRAPHICAL NOTES

Presburger arithmetic (FO(N)) has been introduced by Mojzesz Presburger in (Presburger,
1929) where it is shown decidable by quantifier elimination. This decidability result on
the theory of addition is regarded today as a major result in mathematics and computer
science.

QUANTIFIER ELIMINATION The approach presented in Section 1.3 is inspired from Cooper’s
elimination procedure (Cooper, 1972) in which when considering 3 x ¢ with quantifier-
free 1), we do not assume that 1) is in disjunctive normal form (a disjunction of conjuncts,
with conjuncts made of literals). This is a remarkable difference with the original algo-
rithm presented in (Presburger, 1929), apart from the fact that it was also required that
the quantified formula has to be in prenex normal form. Indeed, transforming a propo-
sitional formula into an equivalent formula in disjunctive normal form may cause an
exponential blow-up. As noted in (Stansifer, 1984) that contains a translation in English
of Presburger’s paper (Presburger, 1929), Presburger’s procedure is very close to an algo-
rithm that can be implemented even though Cooper’s algorithm is much more efficient. A
more advanced improvement of the procedure can be found in (Reddy and Loveland, 1978)
whereas recent developments propose a lazy approach for quantifier elimination (Monni-
aux, 2010) (by contrast to the standard eager approach that consists in eliminating quan-
tifiers by blocks).
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COMPLEXITY OF PRESBURGER ARITHMETIC Decidability of Presburger arithmetic stated in
Theorem 1.11 has been shown in (Presburger, 1929). The satisfiability problem for Pres-
burger arithmetic can be solved in triple exponential time (Oppen, 1978) by analyzing
the quantifier elimination procedure described in (Cooper, 1972). Besides, the satisfia-
bility problem for Presburger arithmetic is shown 2ExpTiMe-hard in (Fischer and Rabin,
1974) and in 2ExPSPACE in (Ferrante and Rackoff, 1979, Chapter 3, Theorem 1.7). An ex-
act complexity charaterisation is provided in (Berman, 1980) (double exponential time
on alternating Turing machines with linear amounts of alternations). Due to the wide
range of applications for Presburger arithmetic, computational complexity of numerous
fragments has been also characterised, see e.g. (Gradel, 1988). Moreover, its restriction
to quantifier-free formulae is NP-complete (Papadimitriou, 1981) (see also (Borosh and
Treybig, 1976)). Theorem 1.9 is a consequence of developments in (Borosh and Treybig,
1976; Papadimitriou, 1981; Schrijver, 1986). These works propose different ways to mea-
sure the size of small solutions; each measure makes sense depending on the relevant
parameters. For instance, the work on one-counter automata in (Goller et al., 2012) takes
advantage of bounds established in (Schrijver, 1986). Note also that Theorem 1.12 is due
to (Gradel, 1988, Theorem 3.7). Let us conclude this paragraph by a nice result due to
(Lenstra, 1983; Scarpellini, 1984): given a fixed £ > 1, the satisfiability problem for the
quantifier-free fragment restricted to formulae with at most k variables and with atomic
formulae of the form ¢ < ' can be solved in polynomial time.

UBIQUITY OF PRESBURGER ARITHMETIC Arithmetical constraints expressed in Presburger
arithmetic are used in numerous formalisms including counter machines, modal and tem-
poral logics (Bouajjani et al., 1995; Comon and Cortier, 2000; Demri and Gascon, 2008;
Demri and Lugiez, 2010), languages to specify XML documents (Zilio and Lugiez, 2003;
Seidl et al., 2007). This list is certainly not exhaustive.

Techniques for the verification of infinite-state systems also used intensively this for-
malism either to get decision procedures (Fribourg and Olsén, 1997; Leroux, 2003; Schuele,
2007; Leroux, 2010) or to represent symbolically infinite sets of configurations (Comon
and Jurski, 1998).

SEMILINEAR SETS Theorem 1.22 and Theorem 1.23 are due to (Ginsburg and Spanier, 1966)
(see also (Reutenauer, 1990)). An alternative proof can be found in (Kracht, 2002).

ParikH’s THEOREM Parikh’s remarkable result states that the Parikh image of any context-
free language is semilinear (Parikh, 1966) and that its representation is computable with
a pushdown automaton. By the way, Parikh’s proof can be also found in (Kozen, 1997,
Chapter H). An alternative proof is also given in (Esparza, 1997) based on the result that
the reachability relation for communication-free Petri nets is computable and semilinear.

For regular languages, it is possible to impose constraints on its Parikh image about
the size of the representation in terms of basis and periods. Let A be a finite-state automa-
ton with a set of states () and a finite alphabet ¥. The Parikh image of L(.A), a subset of
Neard(®) ig a finite union X; U- - - U X, of linear sets of the form X; = {b+ Z;-Lzl Ajpj -
\j > 0} where b and the p;’s are in {0, . . ., card(Q) }**4*) by (Seidl et al., 2004, Theo-
rem 1). Consequently, / is bounded by (card(Q) +1)® (). It is also possible to build ¢ 4
in polynomial-time in the size of A such that II(Lan(.A)) = [p.4] (see e.g. (Seidl et al.,
2004)).
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Theorem 1.28 is shown in (Blattner and Latteux, 1981, Theorem 2) in its more general
form for context-free languages, see also (Esparza et al., 2011).

TooLs Even though Cooper’s elimination procedure is much more efficient than Pres-
burger’s algorithm, as far as we can judge, the first implemented algorithm for deciding
Presburger arithmetic is due to Martin Davis who wrote a program based on Presburger’s
algorithm in 1954. As written in (Davis, 1999) from the original Davis’ paper, “its great
triumph was to prove that the sum of two even numbers is even”. Since then, deciding
fragments of Presburger arithmetic is an essential part of many reasoning tasks, for in-
stance to verify properties on programs, see e.g. (Shostak, 1979) and (Suzuki and Jefferson,
1980) for an early use of Presburger arithmetic for formal verification, see also (Fribourg,
2000).

Most well-known Satisfiability Modulo Theories (SMT) solvers can deal with quantifier-
free formulae, also known as linear arithmetic (LIA). For instance, this includes Z3 (de Moura
and Bjorner, 2008), CVC4 (Barrett et al,, 2011) and Alt-Ergo (Conchon, 2012), to cite a
few of them; see also Pugh’s Omega test to deal with quantifier-free formulae (Pugh,
1992). Another approach using binary decision diagrams (BDD) in automata is proposed
in (Ganesh et al., 2002) in order to solve the satisfiability problem for quantifier-free for-
mulae. However, dealing with quantifiers is usually a difficult task for SMT solvers that
are better tailored to theory reasoning. SMT solver Z3 is one of the rare SMT solvers that
can handle quantified Presburger formulae.

AUTOMATA-BASED DECISION PROCEDURES The satisfiability problem for FO(N) is decidable
by quantifier elimination. An alternative approach consists in reducing the satisfiability
problem to the nonemptiness problem for finite-state automata. The use of automata for
logical decision problems goes back to (Biichi, 1960a) and in the seminal paper (Biichi,
1960b), it is already mentioned how to use the automata-based approach to deal with
Presburger arithmetic.

We have seen that a formula ¢(xy, . . . , xg) with d > 1 defines a subset of N¢, namely
[¢] € N that corresponds to the set of variable valuations that make ¢ true. The
automata-based approach consists in representing the tuples in [[] by a regular language
that can be effectively defined, for instance with the help of a finite-state automaton.
A correspondence is actually used between logical connectives (conjunction, negation,
quantification, ...) and operations on automata (intersection, complementation, projec-
tion, ...), see e.g. (Boudet and Comon, 1996).

ExTENSIONS First-order theories of arithmetic have been intensively studied in the past,
and Presburger arithmetic is one of them. Below, we list decidability/undecidability re-
sults about extensions of FO(N).

e Undecidability of the first-order theory of (N, <, x,+) (FO(N) with multiplica-
tion) can be found in (Tarski, 1953). Actually, this result is a consequence of Godel
first incompleteness theorem (Godel, 1931), see e.g. (Church, 1936). However, the
monograph (Tarski, 1953) (and more specifically Chapter II) presents a proof tech-
nique to show undecidability of first-order theories of arithmetic. Apart from the
proof technique itself, it is also of great interest for its rich amount of bibliograph-
ical references (Tarski, 1953).
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FO(N) extended with divisibility predicate (usually written |) is undecidable, see
e.g. (Robinson, 1949) whereas its existential restriction is decidable (Lipshitz, 1978).
Existential fragment corresponds to formulae in prenex normal form in which the
quantifier prefix contains only the existential quantifier.

FO(N) extended with the unary function symbol Vj, so that Vi (n) is the greatest
power of k that divides n. This extension is decidable by (Btichi, 1960b) by using
Biichi’s encoding of FO(N) in weak monadic second-order logic. Each natural
number is encoded by a finite set of natural numbers that corresponds to non-
zero positions in its binary representation. Number 11 is encoded by {0, 1, 3} for
instance.

FO(N) extended with relative primeness predicate (usually written L) is undecid-
able (Woods, 1981).

FO(N) extended with the unary prime predicate is undecidable (Woods, 1981).

FO(N) with unary predicates is undecidable (Halpern, 1991). Actually, it is shown
in (Halpern, 1991), that adding to FO(N) the possibility to quantify over a single
monadic second-order variable P leads to undecidability. In such an extension,
formulae of the form V P (Vx ¢(x) = (x € P)) are allowed, where for instance
©(x) is a formula from FO(N). Note the new quantification V P and the new atomic
formula x € P.

A survey about decidability of first-order fragments of arithmetic, including exten-

sions of Presburger arithmetic, can be found in (Bes, 2002) as well as plenty of biblio-
graphical references on the subject.
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