

Flow loop experiments to study gas hydrate formation in gas-water-oil systems

V. Almeida¹, A. Cameirão¹, J-M. Herri¹, E. Abadie² and P. Glenat²

Une école de l'IMT

¹Mines Saint-Etienne, Univ. Lyon, CNRS, UMR 5307 LGF, Centre SPIN, Departement PEG, F - 42023 Saint-Etienne France

²TOTAL S.A., CSTJF, Avenue Larribau, Pau Cedex 64018, France

Context

Formation of gas hydrates in oil and gas pipelines

Objectives:

- Study the influence of GLL flow pattern on hydrate formation and plugging
- Detect agglomeration and deposition over time and space
- □ Test an anti-agglomerant additives

Figure 4 - Typical hydrate formation pressures and temperatures in subsea flow line (Sloan et al. 2011).

Figure 1 - Cage S1 (WordPress, 2018).

Figure 2 – Hydrates removed from a pipeline during a cleaning operation.

270 280

300

Temperature (K)

290

Experimental methodology and results

Conclusions

- Acoustic emission may help characterize the flow pattern and track growth and deposition.
- For systems with well dispersed hydrates, some indications confirm that the absolute energy is proportional to the hydrates fraction.
 Evidence that phase inversion may partially occurs (tests with 50% and 80% water cut).

Perspectives

□ Compare acoustic emission and permittivity measurements with high speed imaging to identify flow patterns.

Time [min]

- Test an AA additive at high water cuts.
- Understand better the mechanisms of hydrates transportability and plugging tendencies.

