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We discuss boundary control of a wave equation with a non-linear antidamping boundary condition. We design structured finite-dimensional H ∞ -output feedback controllers which stabilize the infinite dimensional system exponentially in closed loop. The method is applied to control torsional vibrations in drilling systems with the goal to avoid slip-stick.

Introduction

We discuss H ∞ -boundary feedback control of a wave equation with instability caused by boundary anti-damping. This is applied to the control of vibrations in drilling devices. The system we consider is of the form G nl :

x tt (ξ, t) = x ξξ (ξ, t) -2λx t (ξ, t)

0 < ξ < 1, t ≥ 0 x ξ (1, t) = -x t (1, t) + u(t)
αx tt (0, t) = x ξ (0, t) + qx t (0, t) + ψ (x t (0, t))

where (x, x t ) is the state, u(t) the control, and where the measured outputs are y 1 (t) = x t (0, t), y 2 (t) = x t (1, t).

The non-linearity ψ satisfies ψ(0) = 0, ψ (0) = 0, and the steady state is (x, x t , u) = (0, 0, 0). The linearized system G is obtained from (1) by dropping the term ψ(x t (0, t)).

The parameters satisfy λ ≥ 0, α ≥ 0, while q is signed. System (1) was first discussed in [START_REF] Tucker | In integrated model for drill-string dynamics[END_REF][START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF][START_REF] Tucker | Torsional vibration control and cosserat dynamics of a drill-rig assembly[END_REF] in the context of oil-well drilling. The author of [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF] proves open-loop stability of (1) for the case q < 0 using Lyapunov's direct method. Since applications typically lead to the opposite case q > 0, where instability occurs, various control strategies have been proposed for that setting.

Lyapunov's direct method is used in [START_REF] Saldivar | Suppressing axial-torsional vibrations in drillstrings[END_REF][START_REF] Saldivar | The control of drilling vibrations: a coupled PDE-ODE modeling approach[END_REF][START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF][START_REF] Basturk | Observer-based boundary control design for the suppression of slip-stick oscillations in drilling systems with only surface measurements[END_REF]. This either leads to infinite dimensional controllers, which in order to be implemented require subsequent discretization and controller order reduction, or to infinite dimensional observer-based controllers, where the PDE is built into the observer.

Delay system techniques are used in [START_REF] Saldivar | Reducing stick-slip oscillations in oil-well drillstrings[END_REF][START_REF] Saldivar | Suppressing axial-torsional vibrations in drillstrings[END_REF][START_REF] Saldivar Márquez | Analysis and Control of oil-well Drilling Vibrations. A Time-Delay System Approach[END_REF][START_REF] Cheng | A stick-slip vibration suppression method for the drillstring system based on neutral type model[END_REF][START_REF] Apkarian | Boundary control of partial differential equations using frequency domain optimization techniques[END_REF], but require λ = 0, which leads to an oversimplified model. Input shaping is used in [START_REF] Pilbauer | Input shaping for infinite dimensional systems with application on oil well drilling[END_REF], but as presented, also requires the un-damped model λ = 0. In [START_REF] Fridman | Bounds on the response of a drilling pipe model[END_REF] the cases α = 0, λ = 0 and α = 0, λ > 0 are discussed, respectively, via difference equations and Lyapunov's method.

Backstepping control is used in [START_REF] Smyshlyaev | Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary[END_REF][START_REF] Roman | Robustness to in-domain viscous damping of a collocated boundary adaptive feedback law for an anti-damped boundary wave PDE[END_REF][START_REF] Bresch-Pietri | Output-feedback adaptive control of a wave PDE with boundary antidamping[END_REF][START_REF] Roman | Backstepping control of a wave PDE with unstable source terms and dynamic boundary[END_REF][START_REF] Sagert | Backstepping and flatness approaches for stabilization of the slip-stick phenomenon for drilling[END_REF][START_REF] Davó | Stability analysis of a 2 × 2 linear hyperbolic system with a sampled-data controller via backstepping method and looped-functionals[END_REF], but with the exception of [START_REF] Bresch-Pietri | Output-feedback adaptive control of a wave PDE with boundary antidamping[END_REF], where λ = α = 0, leads to infinite dimensional or state feedback controllers, to which one will again have to add observers and apply discretization or system reduction to make them implementable. Infinite dimensional controllers can also be obtained with the method in [START_REF] Barreau | Stabilization of an unstable wave equation using an infinite dimensional dynamic controller[END_REF]. Other ideas to avoid slip-stick include the design of feedforward startup trajectories [START_REF] Aarsnes | Avoiding stick slip vibrations in drilling through startup trajectory design[END_REF], or manipulation of the weight on bit in [START_REF] Saldivar | Reducing stick-slip oscillations in oil-well drillstrings[END_REF][START_REF] Saldivar | Suppressing axial-torsional vibrations in drillstrings[END_REF]. Model (1), [START_REF] Annaswamy | Active control of combustion instability: Theory and practice[END_REF] has also been used to control axial vibrations, see [START_REF] Saldivar | Suppressing axial-torsional vibrations in drillstrings[END_REF][START_REF] Beji | A method of drilling a ground using a robotic arm[END_REF], and for robotic drilling [START_REF] Beji | A method of drilling a ground using a robotic arm[END_REF].

What these approaches have in common is that they are guided by the method of proof of infinite-dimensional stability. This leads to control laws with large state dimension which, in our opinion, are inconvenient to implement, and certainly not favored by practitioners. In contrast, approaches guided by practical considerations have also been applied to oilwell drilling [START_REF] Serrarens | H ∞ control for suppressing stick-slip in oil well drillings[END_REF][START_REF] Besselink | Analysis and control of stick-slip oscillations in drilling systems[END_REF], but those use finite-dimensional approximate models. This makes it desirable to bridge between both approaches by designing practical controllers using the infinite-dimensional model [START_REF] Aarsnes | Avoiding stick slip vibrations in drilling through startup trajectory design[END_REF]. In the present work we design H ∞ -controllers (cf. [START_REF] Zhou | Robust and Optimal Control[END_REF][START_REF] Apkarian | Nonsmooth H ∞ synthesis[END_REF][START_REF] Apkarian | Structured H ∞ -control of infinite dimensional systems[END_REF]) with the following requirements:

(a) The controller is output feedback and of a simple, implementable structure, like a reduced-order controller or a PID. (b) The controller stabilizes the infinite-dimensional system (and not just a finitedimensional approximation of it). (c) H ∞ -optimality of the controller is certified in closed loop with the infinite-dimensional system (and not just with a finite-dimensional approximation). (d) Due to the achieved infinite-dimensional H ∞ -performance, slip-stick is avoided, or at least mitigated. These requirements are achieved by going through the steps of the following general H ∞ -control scheme, which we proposed for boundary and distributed control of PDEs in [START_REF] Apkarian | Non-smooth optimization for robust control of infinitedimensional systems[END_REF][START_REF] Apkarian | Structured H ∞ -control of infinite dimensional systems[END_REF][START_REF] Apkarian | Boundary control of partial differential equations using frequency domain optimization techniques[END_REF], where it has already been applied successfully to a variety of applications.

Algorithm 1. Infinite-dimensional H ∞ -design

Step 1 (Steady-state). Compute steady state of non-linear system G nl and obtain linearization G. Compute transfer function G(s) and determine number n p of unstable poles of G.

Step 2 (Stabilize). Fix practical controller structure K(x), and compute initial stabilizing controller K(x 0 ) for G. Use Nyquist test to certify stability of linear infinite-dimensional closed loop.

Step 3 (Performance). Determine plant P with H ∞ -performance and robustness specifications, addressing in particular the non-linearity.

Step 4 (Optimize). Solve discretized infinite-dimensional multi-objective H ∞optimization program using a non-smooth trust region or bundle method [START_REF] Apkarian | Structured H ∞ -control of infinite dimensional systems[END_REF][START_REF] Apkarian | Non-smooth optimization for robust control of infinitedimensional systems[END_REF].

Step 5 (Certificate). Certify final result in infinite-dimensional system within pre-specified tolerance level as in [START_REF] Apkarian | Structured H ∞ -control of infinite dimensional systems[END_REF][START_REF] Apkarian | Non-smooth optimization for robust control of infinitedimensional systems[END_REF].

While some of the elements of algorithm 1 are standard, others need to be adapted to the current case and explained in detail. In section 2, the mechanical model for control G nl will be derived. Its linearization G, transfer function, and open-loop properties will be discussed in sections 3 and 4. Locally exponentially stabilizing controllers will be synthesized in section 5, and H ∞ -synthesis for the full, non-linear model in section 6 will complete the procedure. Numerical results are regrouped in section 7.

Model of drilling system

We derive model [START_REF] Aarsnes | Avoiding stick slip vibrations in drilling through startup trajectory design[END_REF] from the setup of an oil-well drilling system, shown schematically in Fig. 1. The state of the system is described by the angular position θ(ξ, t) and angular speed θ t (ξ, t) of the drillstring, where position ξ = 0 refers to the rotary table (top), while
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All these degrees of freedom in motion allow the development of specific drilling dynamic dysfunctions when the drillstring follows its intention and is rotated, see Figure 2. In the subsequent subchapters three of them will be discussed in more detail. Stick-slip is the one that is primarily focused on throughout this work. The three main modes of vibration a BHA can be subject to. [4] 

Stick-Slip

Stick-slip is a phenomenon whose occurrence is enabled by the low torsional stiffness of drillstrings. At the surface a drillstring is driven with a constant rotary speed. "However, the rotary speed at the opposite end of the drillstring, at the bit, oscillates around the surface RPM" [5] . The RPM oscillations can reach severity levels where the bit comes to a complete stop for a short moment (stick). Due to the continuing surface drive, after the short stick period the bit is forced to catch up the developed downhole to surface revolutions difference. The consequence is a phase of rotational acceleration up to peak velocities of two or three times the surface RPM.

As the drillstring is slipping its rotational restriction, this phase is named slip. Sequences of stick and slip phases are known as stick-slip, see Figure 3.

Figure 1.

The goal of the active control scenario is to maintain the system at steady state with constant rotational velocity θ t (L, t) = Ω at the drill bit position ξ = L by acting on the driving rotary force Ω(t), and using measurements of the rotary speed at top and bottom. The steady state solution of (3) is easily obtained as

θ 0 (ξ, t) = Ωt - φ(Ω) + βΩL GJ ξ + βΩ 2GJ ξ 2
and this corresponds to applying a constant control torque Ω(t) = Ω 0 at the top, where

Ω 0 = Ω + φ(Ω) + βΩL c a .
Writing the state in the form θ(ξ, t) = θ 0 (ξ, t) + ϑ(ξ, t) for an off-set variable ϑ(ξ, t), and subtracting the steady state from (3), we obtain the equivalent system

GJϑ ξξ (ξ, t) = Iϑ tt (ξ, t) + βϑ t (ξ, t) I B ϑ tt (L, t) = -GJϑ ξ (L, t) + φ(Ω) -φ (Ω + ϑ t (L, t)) GJϑ ξ (0, t) = c a (ϑ t (0, t) -Ω(t) + Ω 0 ) (4) 
A dimensionless system is now obtained by the change of variables

ξ = L(1 -ζ) τ = 1 L GJ I t.
On putting x(ζ, τ ) = ϑ(ξ, t), this leads to the following equivalent dimensionless form

x ζζ (ζ, τ ) = x τ τ (ζ, τ ) + βL √ GJI x τ (ζ, τ ) I B LI x τ τ (0, τ ) = x ζ (0, τ ) + L GJ φ(Ω) -φ Ω + 1 L GJ I x τ (0, τ ) x ζ (1, τ ) = - c a √ GJI x τ (1, τ ) + c a L GJ (Ω(t) -Ω 0 ) (5) 
We re-write the second boundary condition of ( 5) at ζ = 1 as

x ζ (1, τ ) + x τ (1, τ ) = 1 - c a √ GJI x τ (1, τ ) + c a L GJ (Ω(τ ) -Ω 0 ) .
Taking into consideration that the measured outputs of (3) are the angular velocities at the top and bottom positions y 1 (t) = θ t (L, t), y 2 (t) = θ t (0, t), the outputs of the centered system (5) may be understood as measurements of the offset angular velocities y 1 (τ ) = x τ (0, τ ) and y 2 (τ ) = x τ (1, τ ). This allows us to introduce the control

u(τ ) = 1 - c a √ GJI x τ (1, τ ) + c a L GJ (Ω(τ ) -Ω 0 ) ,
which when chosen in feedback form u(τ ) = K(y 1 (τ ), y 2 (τ )) leads to the following final feedback control law for [START_REF] Apkarian | Parametric robust structured control design[END_REF]:

Ω(t) = Ω 0 + K(y 1 (t), y 2 (t)) + c a √ GJI -1 y 2 (t) GJ c a L ,
which is linear as soon as u = Ky is a linear controller. With that the second boundary condition takes indeed the form

x ζ (1, τ ) + x τ (1, τ ) = u(τ ) in (1).
Switching back for convenience to t for time and ξ ∈ [0, 1] for the spatial variable, and introducing the dimension free parameters

(6) α = I B LI , λ = βL 2 √ GJI , q = - φ (Ω) √ GJI , system (5) 
turns into the form (1) with the non-linearity given by ( 7)

ψ(ω) = L GJ φ(Ω) -φ Ω + 1 L GJ I ω -q • ω,
and with

ψ (ω) = - φ Ω + 1 L GJ I ω √ GJI -q, ψ (ω) = - φ Ω + 1 L GJ I ω LI .
From the definition of q it can be readily seen that ψ(0) = 0 and ψ (0) = 0, which complies with the requirement in [START_REF] Aarsnes | Avoiding stick slip vibrations in drilling through startup trajectory design[END_REF]. For later use, we introduce an additional parameter p := ψ (0), which represents the curvature of the non-linearity at the reference position, and gives information on its severity. 

ψ(•) G y 1 K u y 2 W u z u W 1 z 1 Figure 2.
The case φ (Ω) > 0 (left) leads to a stable open loop [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF]. The potentially unstable case (right) is when increasing rotary speed reduces friction.

Phenomenological models of the frictional force φ(•) have been proposed in the literature. For instance [START_REF] Navarro-Lopéz | Avoiding harmful oscillations in a drillstring through dynamical analysis[END_REF] considers a model of the form

φ(θ t ) = φ mud (θ t ) + φ rock (θ t ),
where the mud friction is assumed of viscous form φ mud (θ t ) = c b • θ t , while the rock-bit interaction is the non-linear

(8) φ rock (θ t ) = W ob R b µ cb + (µ sb -µ cb ) e - γ b ν f |θt| sign(θ t ), φ mud (θ t ) = c b • θ t .
Here W ob is the weight on bit, R b is the radius of the drill, the non-linear term features the static and Coulomb friction coefficients µ sb , µ cb ∈ (0, 1), while the coefficient γ b ∈ (0, 1) is the velocity decrease rate accounting for the Stribeck effect. The fact that µ sb > µ cb is the ultimate reason why the slip-stick phenomenon may occur. Namely, for Ω > 0 we have φ

(Ω) = c b -W ob R b (γ b /ν f ) (µ sb -µ cb ) e -(γ b /ν f )Ω , which leads to q = -c b + W ob R b (γ b /ν f ) (µ sb -µ cb ) e -(γ b /ν f )Ω
√ GJI which is typically positive due to dominance of the rock-bit over the mud-bit interaction. In contrast, the curvature parameter

p = ψ (0) = - 1 LI φ (Ω) = - W ob R b (µ sb -µ cb ) (γ b /ν f ) 2 e -(γ b /ν f )Ω LI is typically negative.

Analysis of the linear system G

In this section we determine the number of unstable poles of the linearization G of G nl , as this will be needed later to assure stability of the closed loop. This discussion is of independent interest, as in a different context the specific form of the non-linearity ψ(x t ) may be unknown, in which case a linear parametric robust synthesis in q may be required.

We recall from [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF] that the open loop G nl is stable for φ > 0, and the same is true for its linearization G. This means that we may concentrate on the potentially instable case φ ≤ 0, which means q ≥ 0. Our goal is to classify the open loop properties of G as a function of the three parameters (q, α, λ) ∈ R 3 + . Table 2 Laplace transformation of (1) leads to a family of one-dimensional boundary value problems parametrized by s ∈ C: G :

x ξξ (ξ, s) = (s 2 + 2λs)x(ξ, s) x ξ (1, s) = -sx(1, s) + u(s) x ξ (0, s) = (αs 2 -qs)x(0, s) (9) 
which we solve explicitly. With the outputs y 1 (s) = sx(0, s), y 2 (s) = sx(1, s) from ( 2) we obtain

G(s) =       y 1 (s) u(s) y 2 (s) u(s)       =        1 e σ -e -σ 2σ σ 2 s + αs 2 -qs + e σ +e -σ 2 [αs -q + 1] e σ +e -σ 2 + (αs 2 -qs) e σ -e -σ 2σ e σ -e -σ 2σ σ 2 s + αs 2 -qs + e σ +e -σ 2 [αs -q + 1]        , σ(s) := √ s 2 + 2λs. (10) 
We now have to determine the number of unstable poles of (10) as a function of (q, α, λ) ∈

R 3 + . Note that G(s) = [1/d(s), n(s)/d(s)]
T is a meromorphic function, with n(s), d(s) in [START_REF] Balakrishnan | On computing the worst case peak gain of linear systems[END_REF] holomorphic, but its analysis is more complicated than that of a pure delay system due to the damping coefficient λ and the consequent appearance of the term σ(s). Annihilating d(s) = (s + 2λ + αs 2qs) e σ -e -σ 2σ + (αsq + 1) e σ +e -σ 2 = 0 leads to the complex equation [START_REF] Barreau | Stabilization of an unstable wave equation using an infinite dimensional dynamic controller[END_REF] qαs -1 = 2λ

s + (e σ +e -σ )/2 (e σ -e -σ )/2σ

=: Φ(λ, s), which relates unstable pole s ∈ C + = {s ∈ C : Re(s) ≥ 0} of G(s) and damping coefficient λ > 0 to the pair (q, α) through the operator Φ. Since this is a complex equation and q, α are real, we deduce

(12) α = - Im Φ(λ, s) Im(s) , q -1 = Re Φ(λ, s)Im(s) -Im Φ(λ, s)Re(s) Im(s) .
We have proved the following Lemma 1. Let λ > 0 and s ∈ C + . Suppose (q, α) given by ( 12) is in R 2 + . Then s is an unstable pole of G for the parameters (q, α, λ) ∈ R 3 + . Let us look at poles on the imaginary axis jR, referred to as zero-crossings. Going back to [START_REF] Barreau | Stabilization of an unstable wave equation using an infinite dimensional dynamic controller[END_REF] with s = jω gives Lemma 2. Let λ > 0 and ω ∈ R. Suppose the pair

q -1 = Re Φ(λ, jω), α = - Im Φ(λ, jω) ω satisfies (q, α) ∈ R 2 + .
Then jω is a zero crossing (unstable pole on jR) of G for the parameter (q, α, λ) ∈ R 3 + . Let us look more specifically at zero-crossings through the origin. Substituting s = 0 in the denominator d(s) in [START_REF] Balakrishnan | On computing the worst case peak gain of linear systems[END_REF] and equating d(0) = 0 gives the relation q -1 = 2λ crit which says that for q > 1 a real pole of G crosses the imaginary axis through the origin at the critical value λ = λ crit . Here we use the fact that Φ(λ, 0) = 2λ, explained by the relations [START_REF] Basturk | Observer-based boundary control design for the suppression of slip-stick oscillations in drilling systems with only surface measurements[END_REF] e σ -e -σ 2σ

= 1 + σ 2 3! + σ 4 5! + . . . , e σ +e -σ 2 = 1 + σ 2 2! + σ 4 4! + . . . , σ 2 s = s + 2λ. Theorem 1. For fixed (q, α, λ) ∈ R 3
+ there exists R > 0 such that G has no poles and no transmission zeros on {s ∈ C + : |s| ≥ R}. Proof: 1) For unstable poles we have to show that equation [START_REF] Barreau | Stabilization of an unstable wave equation using an infinite dimensional dynamic controller[END_REF], respectively, [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF] has no solutions when s ∈ C + and |s| 0 sufficiently large. Let s = µ + jω, σ = a + jb, then by the definition of σ:

(14) a 2 -b 2 = µ 2 -ω 2 + 2λµ, ab = ω(µ + λ). It follows that for fixed a 0 > 0 the set {s ∈ C + : Re(σ) ≤ a 0 } is bounded. Choose R 1 > 0 such that {s ∈ C + : Re(σ) ≤ a 0 } ⊂ {s ∈ C + : |s| ≤ R 1 }.
It remains to discuss candidate poles s ∈ C + with Re(σ) ≥ a 0 for some fixed a 0 > 0.

2) Consider s ∈ C + with Re(σ) = a ≥ a 0 and define θ := e σ + e -σ e σe -σ = 1 + e -2a e -j2b 1e -2a e -j2b . Then 1+ρ 0 1-ρ 0 ≥ |θ| ≥ 1-ρ 0 1+ρ 0 , where ρ 0 = e -2a 0 . Moreover, we have |θ [START_REF] Barreau | Stabilization of an unstable wave equation using an infinite dimensional dynamic controller[END_REF] as [START_REF] Besselink | Analysis and control of stick-slip oscillations in drilling systems[END_REF] q -1αs = Φ(λ, s) = 2λ s + θσ , and taking into account that on the right hand side we now have

+ 1| ≥ 2 1+e -2a 0 =: θ 0 > 1. Now choose > 0 such that 1+ρ 0 1-ρ 0 < θ 0 /2. Since λ is fixed we have σ/s → 1 as s → ∞ on C + , hence there exists M = M (λ) > 0 such that |s -σ| < |s| for all |s| ≥ M . Then |s + θσ| = |θ(σ -s) + (θ + 1)s| ≥ |θ + 1||s| -|θ||s -σ| ≥ θ 0 |s| -|θ| |s| ≥ θ 0 |s|/2 for |s| ≥ M . Writing
|Φ(λ, s)| = 2λ |s + θσ| ≤ 4λ θ 0 |s| ,
we see that [START_REF] Besselink | Analysis and control of stick-slip oscillations in drilling systems[END_REF] can have no solution for |s| ≥ max{ 4λ αθ 0 , 1 + 1+q α , M, R 1 } =: R. That settles the case α > 0.

3) For α = 0 and q = 1 there are no poles in |s| > 4λ |q-1|θ 0 , and for q = 1, α = 0 clearly (15) has no solutions.

4) Let us next discuss unstable zeros. Clearly those can only occur in the second component y 2 /u in [START_REF] Balakrishnan | On computing the worst case peak gain of linear systems[END_REF]. Here the equation is Φ(λ, s) -1 = (q+1)s-αs 2

2λ

. From 1) above we know that we may concentrate on Re(σ) ≥ a 0 , and from 2) we have |θ| ≤ 1+ρ 0 1-ρ 0 , while for |s| > λ we get |σ| ≤ √ 3|s|, hence for |s| > max{R 1 , λ}:

|Φ(λ, s)| = 2λ s + θσ ≥ 2λ |s| + |θ||σ| ≥ 2λ |s|(1 + 1+ρ 0 1-ρ 0 √
3) .

This leads to

|(q + 1)s -αs 2 | 2λ = |Φ(λ, s)| -1 ≤ |s|(1 + 1+ρ 0 1-ρ 0 √ 3) 2λ , hence α|s| -(q + 1) ≤ |αs -(q + 1)| ≤ 1 + 1 + ρ 0 1 -ρ 0 √ 3.
For α > 0 this cannot be satisfied for large |s|. In fact, there are no unstable zeros on |s| > R := max{R 1 , λ, (2 + q + 1+ρ 0 1-ρ 0 √ 3)/α}. For α = 0 the equation for unstable zeros is θσ = qs, and since σ/s = 1 + 2λ/s → 1 for s → ∞, we get θ → q. On choosing a 0 sufficiently large, we get θ ≈ 1, which leads to a contradiction for q = 1. Finally, for q = 1, α = 0 we obtain the transfer function y 2 /u = s[(σ-s)e σ +(σ+s)e -σ ] (σ-s)(σ+s)e σ -(σ+s) 2 e -σ , so unstable zeros = 0 satisfy s-σ s+σ = e -2σ . That givesλ s+σ+λ = e -2σ , which cannot be satisfied for large |s|.

Since the transfer function G is of size 2 × 1, the number of unstable poles is the maximum of the number of unstable poles of G 1 (s) = 1/d(s) and G 2 (s) = n(s)/d(s), hence the number of unstable zeros of d(s). The latter can be determined by the argument principle. For the following we denote the half circle used for the standard Nyquist contour by D R . Proposition 1. Suppose (q, α, λ) ∈ R 3 + does not give rise to zero crossings. Then the number n p of unstable poles of G(s) equals the winding number of d(D R ) around 0, where the radius R > 0 is as in Theorem 1.

The radius R in Theorem 1 may be quantified, and the winding number can be computed exactly using the method in [START_REF] Apkarian | Structured H ∞ -control of infinite dimensional systems[END_REF]. If (q, α, λ) creates a zero-crossing, the contour D R has to be modified, either by making small indentations into the right half plane, or preferably by removing poles on jR with the method of [START_REF] Huang | A new Nyquist test for the stability of control systems[END_REF], as explained in [START_REF] Apkarian | Structured H ∞ -control of infinite dimensional systems[END_REF]. At this stage we have completed step 1 of our general algorithm 1.

We conclude this section with the following important consequence of Theorem 1.

Corollary 1. The input-output map and the input-to-state map of the boundary control problem (1) are bounded.

Proof: As a consequence of [20, Thm. 2.3] for input-output boundedness it suffices to show that sup Re(s)>a 0 |G 2 (s)| < ∞ for some a 0 ∈ R. We choose a 0 as in the proof of Theorem 1, which allows us to bring θ as close to 1 as we wish. Now with the notation of the theorem

G 2 (s) = σθ + αs 2 -qs σ 2 /s + αs 2 -qs + 2σθ(αs -q + 1)
.

For α > 0 we divide numerator and denominator by the leading term αs 2 , which gives

G 2 (s) = 1 + σθ/αs 2 -q/αs 1 + 1/αs + 2λ/αs 2 -q/αs + 2θσ/s + 2(1 -q)σθ/αs 2 ∼ 1 1 + 2θσ/s . But σ 2 /s 2 = 1 + 2λ/s ∼ 1, whence G 2 (s) ∼ 1/3, showing that G 2 is bounded on some half plane Re(s) > a 0 . Since G 2 = n/d and G 1 = 1/d, this is also true for G 1 .
In the case α = 0 simplification by s leads to a similar estimate. For the input-to-state map we repeat the argument with G(ξ, s) = sx(ξ, s)/u(s).

Pattern of unstable poles

As a consequence of the previous section we can determine the number n p of unstable poles of G for every scenario (q, α, λ) ∈ R 3 + using the argument principle. However, we would like to learn a little more about n p (q, α, λ), and in this section we shall see that n p ∈ {0, 1, 2}, where the corresponding regions can be determined with arbitrary numerical precision.

To begin with, observe that for λ = 0 the transfer function (due to σ = s) simplifies to a pure delay system

G λ=0 (s) =       e -s 1 + αs -q (1 + αs -q) + (1 -αs + q)e -2s 2(1 + αs -q)       =        1 α e -s s -q-1 α 1 2 + 1 2 1+q α -s e -2s s -q-1 α       
, where we immediately see that G λ=0 has one unstable real pole if q ≥ 1, while it is stable for q < 1.

This suggests now the following procedure. Fix (q, α) ∈ R 2 + , and then follow the evolution of the number of unstable poles n p (λ) := n p (q, α, λ) of G as λ increases from λ = 0 to λ → +∞. We know the number of poles at λ = 0, and we expect that for very large λ > 0 the damping effect in the wave equation should lead back to stability, n p (λ) = 0 as λ → ∞.

Let us look again at zero crossings at the origin. We know that for q > 1 the origin is crossed when λ ∈ [0, ∞) reaches the critical value λ crit = (q -1)/2 > 0. We have to decide whether this real pole when crossing s = 0 migrates from left to right or in the opposite direction. Let s(λ) be the position of the potentially unstable pole on the real axis, that is d (s(λ), λ) = 0, where s(λ crit ) = 0. Writing d(s, λ) for the denominator d in [START_REF] Balakrishnan | On computing the worst case peak gain of linear systems[END_REF] to highlight dependency on both s, λ, we apply the implicit function theorem at (s(λ crit ), λ crit ) = (0, λ crit ) under the hypothesis d s (0, λ crit ) = 0, which is equivalent to α = 1 3 (q -1) 2 + (q -1). Then differentiation with respect to λ gives

s (λ) = - d λ (s(λ), λ) d s (s(λ), λ) ,
where the partial derivatives with respect to λ, s are

d λ = 2 1 + σ 2 3! + . . . + (s + 2λ + αs 2 -qs) s σ 2σ 3! + 4σ 2 5! + . . . + (αs -q + 1)
s σ e σ + e -σ 2 and

d s = (1 + 2αs -q) 1 + σ 2 3! + . . . + (s + 2λ + αs 2 -qs) s + λ σ 2σ 3! + 4σ 3 5! + . . . + α e σ + e -σ 2 + (αs -q + 1) e σ -e -σ 2σ (s + λ).
Substituting λ = λ crit = (q -1)/2 and s = s(λ crit ) = 0 gives

s (λ crit ) = 2 1 3 (q -1) 2 + (q -1) -α . Hence s (λ crit ) > 0 for α < 1 3 (q -1) 2 + (q -1) < 0 for α > 1 3 (q -1) 2 + (q -1) This leads to the following Lemma 3. Let (q, α) ∈ R 2 + . If α < 1 3 (q -1) 2 + (q -1)
, then a single real pole of G crosses the imaginary axis through the origin at λ = λ crit = (q -1)/2 from left to right, going from stable at λ < λ crit to unstable at λ crit < λ. If α > 1 3 (q -1) 2 + (q -1) a single real pole crosses the imaginary axis through the origin from right to left, going from unstable at λ < λ crit to stable at λ > λ crit .

This can also be corroborated by investigating the value G(0) in [START_REF] Balakrishnan | On computing the worst case peak gain of linear systems[END_REF]. We have

G 1 (0) = 1 2λ -q + 1
, so G has no unstable pole at the origin, except for the critical λ value λ crit = (q -1)/2 when q > 1. On the exceptional manifold M = {(q, α, λ) ∈ R 3 + : 2λ = q -1}, we have

lim s→0 sG 1 (s) = 1 α -(q -1) -1 3 (q -1) 2
, which means a pole of order one at the origin, except when (q, α) lies on the parabola α = (q -1) + 1 3 (q -1) 2 . On the exceptional set

O = {(q, α, λ) ∈ R 3 + : 2λ = q -1, α = (q -1) + 1 3 (q -1) 2 } we find that lim s→0 s 2 G 1 (s) = 6 q 2 -1 ,
which means G has a double pole at the origin, except when q = 1. The case q = 1 now leaves only the parameter choice (q, α, λ) = (1, 0, 0), an exceptional point where the system is not well-posed. Using the mapping Φ, one can see that the positive quadrant (q, α) ∈ R 2 + may be divided into 5 different zones, shown in Fig. 3, in which the number of unstable poles of G evolves differently. Each zone has its specific pattern.

The red zone is Red = {(q, α) : q ≥ 1, α ≥ 0, α ≤ 1 3 (q -1) 2 + (q -1)} is below a parabola. Setting m(q) = sup{α > 0 : q -1 = Re Φ(λ, jω), α = -ω -1 Im Φ(λ, jω) for certain ω > 0, λ > 0}, the magenta zone is defined as

Mag = {(α, q) : q ≥ 1, 1 3 (q -1) 2 + (q -1) ≤ α ≤ m(q)}
delimited by the parabola and the analytic curve α = m(q). The green zone is

Green = {(q, α) : q ≥ 1, α ≥ m(q)},
where the curve α = m(q) separates magenta and green. Finally, on setting

b(α) = inf{q : q -1 = Re Φ(λ, jω), α = -ω -1 Im Φ(λ, jω) for certain ω > 0, λ > 0},
the blue zone is Blue = {(q, α) : α ≥ 0, b(α) ≤ q ≤ 1}, which is the only bounded one. The boundary of the blue zone described by the curve q = b(α) is just a different local parametrization of the same analytic curve α = m(q) separating magenta and green. This curve disappears into α < 0 at (1, 0), where it is no longer of interest. The gray zone Gray is what is left over from the strip 0 ≤ q ≤ 1, α ≥ 0 when removing the blue zone. 

ψ(•) G y 1 K u y 2 W u z u W 1 z 1 1 Figure 3.
Five regions and five scenarios. The pattern of the gray zone is 0. Blue: 0-2-0. Red: 1-2-0. Magenta: 1-0-2-0. Green: 1-0.

Altogether, we have found the following classification or pattern.

• For (q, α) ∈ Gray the system G is stable for all λ ≥ 0. The pattern is 0.

• For (q, α) ∈ Blue there exist 0 < λ 1 (q, α) < λ 2 (q, α) such that G is stable for all 0 ≤ λ < λ 1 (q, α) and λ > λ 2 (q, α), and has two unstable poles for

λ 1 ≤ λ ≤ λ 2 .
The pattern is 0-2-0. • For (q, α) ∈ Red the system has one unstable pole for 0 ≤ λ ≤ (q -1)/2 =: λ 1 (q), and two unstable poles for (q -1)/2 ≤ λ ≤ λ 2 (q, α), while it is again stable for λ > λ 2 (q, α). The pattern is 1-2-0. • For (q, α) ∈ Mag there exist λ 2 (q, α) > λ 1 (q, α) > (q -1)/2 such that the system has one unstable pole for 0 ≤ λ ≤ (q -1)/2, no unstable poles for (q -1)/2 < λ < λ 1 (q, α), then two unstable poles for λ 1 (q, α) ≤ λ ≤ λ 2 (q, α), and again no unstable poles for λ > λ 2 (q, α). The pattern is 1-0-2-0. • For (q, α) ∈ Green the system has one unstable pole for 0 ≤ λ ≤ (q -1)/2, and is stable for λ > (q -1)/2. The pattern is 1-0.

Remark 1. The values λ 1 (α, q), λ 2 (α, q) for each zone can be computed with arbitrary precision. We mention that [START_REF] Fridman | Bounds on the response of a drilling pipe model[END_REF] discusses among others the case α = 0, λ > 0 and finds sufficient conditions on q > 0 for open loop stability. This is corroborated by our findings, because (0, q) ∈ Gray for 0 < q < 1.

Stabilization

In this section we pave the way to construct finite-dimensional output feedback controllers which stabilize the linearization G of system (1)-( 2) exponentially. The following result is preparatory, as it allows to upgrade H ∞ -stability of the closed loop into exponential stability. The idea of the proof is the following. According to [26, Theorem 5.2], a well-posed system which is exponentially stabilizable, exponentially detectable, and at the same time H ∞ -stable, is already exponentially stable in the state-space sense. In order to apply this result to the closed-loop system, several transformations of the original state-space are performed. Theorem 2. Let K be a finite-dimensional output feedback controller for (1)-( 2) which stabilizes the linearized system G in the H ∞ -sense. Then the linearized closed loop (G, K) is even exponentially stable.

Proof: 1) We start with a preparatory argument. Suppose the boundary control problem is written in the abstract form ( 16)

ẋ = A x, Px = u, y = C x
with suitable unbounded operators [START_REF] Cheng | Well-posedness of boundary control systems[END_REF][START_REF] Salamon | Infinite dimensional linear systems with unbounded control and observation: a functional analytic approach[END_REF][START_REF] Salamon | Realization theory in Hilbert space[END_REF], and the controller u = Ky stabilizes [START_REF] Boyd | Linear controller design. Limits of performance[END_REF] in the H ∞ -sense. Writing K(s) = K 1 (s)+K 0 with K 1 strictly proper, we see that u = K 1 y stabilizes the modified boundary control problem

ẋ = A x, (P -K 0 C )x = u, y = C x
in the H ∞ -sense, where u = u -K 0 y. We will use this type of shift in part 3) below to arrange for a strictly proper stabilizing controller.

2) Starting out from the linearization G of (1) we perform the change of variables z(ξ, t) = x ξ (ξ, t), v(t) = x t (0, t), cf. [START_REF] Sagert | Backstepping and flatness approaches for stabilization of the slip-stick phenomenon for drilling[END_REF], which leads to an equivalent representation of G as a PDE coupled with and ODE:

G : z tt (ξ, t) = z ξξ (ξ, t) -2λz t (ξ, t) z(1, t) = u(t) αz ξ (0, t) = z(0, t) + (q + 2αλ)v(t) α v(t) = z(0, t) + qv(t). ( 17 
)
Here the new state is (z, z t , v), the measured outputs are

y 1 = v, y 2 (t) = 1 0 z t (ξ, t) dξ + v(t),
and a new control u(t) = u(t) -x t (1, t) = u(t) -y 2 (t) is used.
Since by hypothesis the controller u = Ky stabilizes (1) in the H ∞ sense, so does u = Kyy 2 for (17), and since the state trajectories remain unaffected, we may from here on prove the statement for controller u = Ky and system [START_REF] Bresch-Pietri | Output-feedback adaptive control of a wave PDE with boundary antidamping[END_REF]. It is also clear that we may replace the outputs y 1 , y 2 by the equivalent outputs

y 1 = v, y 2 = 1 0 z t (ξ, t)dξ, because y 1 = y 1 , y 2 = y 2 -y 1 . Then u = u -y 2 = u + y 1 -y 2 ,
and the controller is u = K y. At this stage, for the ease of presentation, we drop the tilde notation and write the new control and measurements again as u and y. What has been achieved so far? Apart from the change of output variables, we have an equivalent system with state (z, z t , v), where the trace v = z t (0, •) will turn out well-defined by properly defining the domain of the differential operator in part 5).

3) Let the controller K have the form u(s) = K(s)y(s) = K 1 (s)y + K 0 y with direct transmission K 0 y = k 1 y 1 + k 2 y 2 and strictly proper K 1 (s). We now apply the idea of part 1) and shift its direct transmission into the plant. This leads to G :

z tt -z ξξ + 2λz t = 0 z(1, t) = u -k 1 y 1 -k 2 y 2 αz ξ (0, t) -z(0, t) = (q + 2αλ)v(t) α v = qv + z(0, t) (18) 
with the outputs y 1 , y 2 as before, now in feedback with u = K 1 (s)y, where K 1 is strictly proper. Note that K 1 still stabilizes [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF] in the H ∞ -sense, and since the state trajectories remain the same we may prove exponential stability of the loop for this pair G , K 1 . Now u(s) = K 1 (s)y(s) gives su(s) = sK 1 (s)y(s), and since K 1 is strictly proper, K (s) := sK 1 (s) gives a proper controller u(s) := su(s) = K (s)y(s), which may be represented in state space as

K : ẋK = A K x K + B 1 K y 1 + B 2 K y 2 u = C K x K + d 1 K y 1 + d 2 K y 2
, with u standing for the new control u. Indeed, if the original state-space realization is

K = a b c d , then K 1 = a b c 0 , and K = a b ca cb =: A K B K C K D K . Since H ∞ -
stability of the loop is not altered by these transformations, we may prove the statement for the pair G , K , where the new achievement is that K 1 (s) = 1 s K (s) has integrator form, i.e., consists of a proper controller K followed by an integrator.

4) We now perform a less standard manipulation, which consists in transferring parts of the system dynamics [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF] into a new controller K by augmenting K by one state. We introduce a new artificial output y 3 = z(0, t) in [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF], and consider the boundary wave equation G :

z tt -z ξξ + 2λz t = 0 z(1, t) = u(t) -k 1 v -k 2 y 2 αz ξ (0, t) -z(0, t) = (q + 2αλ)v(t) y 2 (t) = 1 0 z t (ξ, t)dξ y 3 (t) = z(0, t) (19) 
Here we have substituted v = y 1 , created a new input into G, and have now an infinite dimensional system G in feedback with the augmented controller K :

α v = qv + y 3 ẋK = A K x K + B 1 K v + B 2 K y 2 u = C K x K + d 1 K v + d 2 K y 2 v = q α v + 1 α y 3 ( 20 
)
where the first two equations represent the dynamics, the third and fourth equation feature the outputs u, v, which as we know represent u and v. The ODE α v = z(0, t)+qv = qv+y 3 was shifted from G into the new K, leaving us with a simpler infinite-dimensional system G. The controller K is K augmented by this ODE, so is still finite dimensional, and moreover, is also an integral controller with regard to its new output v. The output y 1 has disappeared from [START_REF] Diaz-Bobillo | Minimization of the maximum peak-to-peak gain: the general multiblock problem[END_REF], because the corresponding dynamics are now integrated in K.

The state of ( 19) is (z, z t ), while the state of K is (v, x K ), to which we have to add the integrator. The significance of the fact that K is now an integral controller with regard to both outputs v = v, u = u will become clear in the next part 5). This is required in order to comply with the way state-space representations of boundary control problems for hyperbolic equations are generated; cf. [22, p.128]. 5) Our next step is to find a state-space representation of y = G[u, v] T in [START_REF] Diaz-Bobillo | Minimization of the maximum peak-to-peak gain: the general multiblock problem[END_REF], which means representing it as a well-posed boundary control system in the sense of [START_REF] Salamon | Infinite dimensional linear systems with unbounded control and observation: a functional analytic approach[END_REF][START_REF] Salamon | Realization theory in Hilbert space[END_REF], [START_REF] Staffans | Well-Posed Linear Systems, Encyclopedia of Mathematics and its Applications[END_REF]Def. 5.2.1] or [START_REF] Cheng | Well-posedness of boundary control systems[END_REF]. With zero boundary conditions equation [START_REF] Diaz-Bobillo | Minimization of the maximum peak-to-peak gain: the general multiblock problem[END_REF] reads

z tt -z ξξ + 2λz t = 0 z(1, t) + k 2 1 0 z t (ξ, t)dξ = 0 αz ξ (0, t) -z(0, t) = 0 z(ξ, 0) = z 0 (ξ), z t (ξ, 0) = z 1 (t).
This has now a representation as a strongly continuous semi-group

(21) ż = 0 I d 2 dξ 2 -2λ z =: Az, z(0) = z 0 ,
where z = (z, z t ), and where the generator

A has D(A) = {(z 1 , z 2 ) ∈ H 2 (0, 1) × H 1 (0, 1) : z 1 (1) + k 2 1 0 z 2 (ξ, t)dξ = 0, αz 1x (0) -z 1 (0) = 0}
as domain in the Hilbert space H = H 1 (0, 1)×L 2 (0, 1). Define A with domain D(A ) = H 2 ×H 1 by the same formula [START_REF] Cheng | A stick-slip vibration suppression method for the drillstring system based on neutral type model[END_REF], and let the projector P with D(P) = D(A ) be defined as

Pz = z 1 (1) + k 2 1 0 z 2 (ξ)dξ αz 1ξ (0) -z 1 (0) ∈ C 2 , with z = [z 1 , z 2 ] T .
The boundary control of G has now the abstract form

ż = A z, Pz = u -k 1 v k 3 v , y = C z,
as in part 1), where k 3 := q+2αλ, and where y = [y 2 , y 3 ], with C :

H 1 ×L 2 → C 2 bounded.
Finally we re-arrange the boundary condition by defining P with D(P ) = D(P) as

P z = z 1 (1) + k 2 1 0 z 2 (ξ)dξ + α k 1 k 3 z 1ξ (0) -k 1 k 3 z 1 (0) 1 k 3 (αz 1ξ (0) -z 1 (0)) , P z = u v =: u.
In order to make this well defined, we have to assure, according to [22, Sect. 

Bu = b(•)u + c(•)v 0 , b(ξ) = b 0 ξ 2 + b 1 ξ + b 2 , c(ξ) = c 0 ξ 2 + c 1 ξ + c 2 ,
where equating P • B ! = I leads to

P Bu = b(1)u + c(1)v + d 1 K (αb (0)u + αc (0)v -b(0)u -c(0)v) αb (0)u + αc (0)v -b(0)u -c(0)v ! = u v = u
which allows to determine the coefficients b i , c i as

b(ξ) = ξ 2 , c(ξ) = (k 3 -k 1 )ξ 2 -k 3 .
As is well-known, (cf. [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF]Sect. 3.3]), the boundary wave equation may now be represented by the state-space equation ( 22)

ẋ = Ax -B u + A Bu, x(0) = x 0 ,
where solutions z of ( 19) and x of ( 22) are related by x(t) = z(t) -Bu(t). This can be further streamlined as

(23) ẋe = 0 0 A B A x e + I -B u,
where the extended state is x e = (u, x) = (u, v, z, z t ), and where u = u = [ u, v] T has become the input. The output operator for ( 23)

is now y = C e x e = C •[B I] u z -Bu = C z.
It is now clear why it was necessary to find a controller of integrator form [START_REF] Cheng | Well-posedness of boundary control systems[END_REF], because it was necessary to comply with the form (23) of the state-space representation of a hyperbolic boundary value problem. We also note that well-posedness of the transformed system (23) implies well-posedness of the original system with state (x, x t ). See also [35, sect. 4] for this transformation. 6) We next show that system G, and therefore also the state-space representation (23) with C 0 -semi group, is exponentially stabilizable. This can for instance be obtained from [START_REF] Sagert | Backstepping and flatness approaches for stabilization of the slip-stick phenomenon for drilling[END_REF]Theorem 4.2], where the authors construct a state feedback controller which stabilizes [START_REF] Bresch-Pietri | Output-feedback adaptive control of a wave PDE with boundary antidamping[END_REF] exponentially in the Hilbert space H = H 2 × H 1 × L 2 . The control law found in that reference can be arranged as a state feedback law for G, and hence for [START_REF] Davó | Stability analysis of a 2 × 2 linear hyperbolic system with a sampled-data controller via backstepping method and looped-functionals[END_REF], using the same technique of shifting parts of the dynamics from plant to controller. Alternatively, we may even use the open loop characterization of stabilizability, called optimizability in [START_REF] Weiss | Dynamic stabilizability of well-posed linear systems. 5th International Symposium on Methods and Models in Automation and Robotics[END_REF], which is equivalent to stabilizability, while offering a more convenient way to check it.

7) We now show that the controller K is admissible for G and is as a system exponentially stabilizable. Due to shifting the direct transmission of K into the plant as outlined in 1) and put to work in [START_REF] Diaz-Bobillo | Minimization of the maximum peak-to-peak gain: the general multiblock problem[END_REF], the new controller K in ( 20) is written as an integral controller, that is, its output is u = u = [ u, v], which makes it admissible for G.

Assuming that the original K = a b c d is stabilizable and detectable (e.g. minimal), the same is true for K obtained in 3), so

A K B K C K D K is stabilizable. Now the augmented controller is K = A K B K C K D K with A K = A K B 1 K 0 α -1 , B K = B 2 K 0 0 α -1 , C K = C K d 1 K 0 α -1 , D k = d 2 K 0 0 α -1 .
Applying the Hautus test, for simplicity in the case λ = α -1 , let v be an eigenvector of A T K with unstable eigenvalue λ, then

[v ρ] T is an eigenvector of A T K for λ if ρ = B 1T K v/(λ -α -1 ). Now B T K [v ρ] T = [v v(α -1 /(λ -α -1
))] T , and this vector cannot equal the vector [0, 0] T , because that would imply

B 1T K v = 0 and B 2T K v = 0, hence B T K v = 0, contradicting stabilizability of [A K , B K , C K , D K ]. Now for the eigenvalue α -1 of A T K we take the eigenvector w = [0 1] T , then B T K w = [0 α -1 ] T = [0 0] T , which proves stabilizability.
With G and K exponentially stabilizable, the closed loop ( G, K) is also exponentially stabilizable (see [START_REF] Staffans | Well-Posed Linear Systems, Encyclopedia of Mathematics and its Applications[END_REF]Prop. 8.2.10(ii)(c)]) in the sense of the induced state-space realization [START_REF] Staffans | Well-Posed Linear Systems, Encyclopedia of Mathematics and its Applications[END_REF]Chap. 7]. The infinitesimal generator of the closed loop will be denoted as A cl .

8) Next we argue that G is exponentially detectable. Since G is exponentially stabilizable, its semi-group satisfies the spectrum decomposition assumption, see [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF]Theorem 5.2.6]. Since from the discussion of section 3 we know that there are only finitely many right hand poles, all with finite multiplicity, a necessary and sufficient condition for exponential detectability is that ker(sI -A) ∩ ker( C) = {0} for every s ∈ C + ; see [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF]Theorem 5.2.11], where ( A, B, C) refers to the state-space realization of G derived in 2) above. But that may now be checked in the frequency domain. It means that for every s ∈ C + the only solution of the Laplace transformed system (9) with u = 0 satisfying y 1 (s) = sx(0, s) = 0, y 2 (s) = sx(1, s) = 0 is x ≡ 0. Now for s = 0 these boundary conditions give x(0, s) = 0, x(1, s) = 0, and therefore from the boundary conditions in [START_REF] Apkarian | Non-smooth optimization for robust control of infinitedimensional systems[END_REF] x ξ (0, s) = 0, x ξ (1, s) = 0. The general solution of the dynamic equation in (9) being x(ξ, s) = k 1 e σξ + k 2 e -σξ , with constants depending on s, we get the four conditions

k 1 + k 2 = 0, σ(k 1 -k 2 ) = 0, k 1 e σ + k 2 e -σ = 0, σ(k 1 e σ -k 2 e -σ ) = 0, which can only be satisfied if k 1 = k 2 = 0.
With G exponentially detectable, and K exponentially detectable with an argument similar to 7) above, the closed loop is exponentially detectable, again by [45, Corollary 2. Let K be a finite-dimensional controller for (1)-( 2), and suppose the closed loop with the linearization G of (1) has no unstable poles. Then K stabilizes G exponentially and G nl locally exponentially.

Proof: The result follows from Theorem 2 above, once we show that K in (20) stabilizes G in [START_REF] Diaz-Bobillo | Minimization of the maximum peak-to-peak gain: the general multiblock problem[END_REF] in the H ∞ -sense. Since the transfer functions are not concerned by the transformations in the proof of Theorem 2, it suffices to show that K stabilizes G in the H ∞ -sense. For that we have to show that the closed loop transfer operator

T (s) = I G(s) -K(s) I -1 = (I + KG) -1 -K(I + GK) -1 (I + GK) -1 G (I + GK) -1 ∈ H ∞
belongs to the Hardy space H ∞ . Since we know by hypothesis that T (s) has no poles in C + , this follows as soon as T is bounded on jR. Since K is proper, this hinges on the behavior of G on jR. As is easy to see, the denominator d(s) of ( 10) satisfies lim ω→∞ |d(jω)| = ∞, so y 1 (s)/u(s) is proper, and it remains to show that y 2 (s)/u(s) in ( 10) is bounded on jR. Dividing numerator and denominator of n 2 /d in ( 9) by (e σe -σ )/2σ, and observing that the term (e σ +e -σ )/2 (e σ -e -σ )/2σ is bounded on jR, we see that y 2 (s)/u(s) is bounded, because the leading terms in both numerator and denominator are now αs 2 = -αω 2 . That proves H ∞ -stability of the closed loop hence exponential stability of the linear closed loop.

It remains to show that K stabilizes G nl locally exponentially. Due to the specific form of the non-linearity, this may be obtained with [START_REF] Zwart | Linearization and exponential stability[END_REF].

Remark 2. Semi-groups for hyperbolic equations with boundary dynamics have been investigated, e.g. in [START_REF] Mugnolo | Damped wave equations with dynamic boundary conditions[END_REF], but as this requires additional conditions, we believe that our method of simplifying the infinite-dimensional part by augmenting the controller offers additional flexibility. After all the goal is to show that the closed-loop has an exponentially stabilizable and detectable semi-group e A cl t , not necessarily the individual parts.

Remark 3. For finite-dimensional systems arbitrary decay rates in closed loop can be achieved by observer-based controllers under controllability and observability assumptions. For infinite-dimensional systems it is already more challenging to achieve arbitrary exponential decay even by state feedback, see e.g. [START_REF] Smyshlyaev | Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback[END_REF].

The situation changes thoroughly with structured controllers, where even in finite dimensions arbitrary decay rates may no longer be possible. One should, however, bear in mind that optimizing the decay rate is by itself not a reasonable tuning goal. This leads to high gain controllers, which are very sensitive to model errors. This is one of the reasons why robust control is nowadays preferred in practice. A further reason is that requiring arbitrarily fast decay rates needs assignment of the real parts of all closed-loop eigenvalues, which is no longer possible e.g. when actuator or sensor dynamics are present in the model, again underlining the academic nature of this problem.

The merit of Theorem 2 is that from now on exponential stability of the loop (G, K) between the infinite-dimensional system G in ( 1)-( 2) with any finite-dimensional controller K can be checked via the Nyquist test. What remains to be done is actually find such a stabilizing controller. A straightforward idea is to use a discretization of (1), the most obvious being finite differences

x i (t) = x(ξ i , t), ξ i = ih, i = 0, . . . , N, N h = 1 x ξ (ξ i , t) ≈ x i+1 (t) -x i-1 (t) 2h , x ξξ (ξ i , t) ≈ x i+1 (t) + x i-1 (t) -2x i (t) h 2 .
With the boundary condition at ξ = 0

αx 0 (t) = x 1 (t) -x -1 (t) 2h + qx 0 (t)
we can eliminate x -1 , and with the boundary condition at ξ = 1

x N +1 (t) -x N -1 (t) 2h = -x N (t) + u(t)
we eliminate x N +1 . Putting xi = x i , i = 0, . . . , N , we get a dynamical system of order 2N + 2

(24) x x = 0 I T Λ x x + 0 b u, y 1 (t) = x0 (t), y 2 (t) = xN (t),
with typical A-matrix featuring a tridiagonal T and a diagonal Λ. It comes as a mild surprise that ( 24) is not stabilizable, the reason being a pole/zero cancellation at the origin. Kalman reduction using the function minreal from [START_REF]Robust Control Toolbox 5.0[END_REF] removes one state of ( 24) and furnishes a stabilizable system, which we use for synthesis, and where the reduced system A-matrix is now no longer sparse. In our experiment we chose N = 50 and synthesized controllers of various simple structures like a sum of PIDs u = PID 1 y 1 + PID 2 y 2 , a 5thorder state-space controllers, or on ignoring one of the outputs, standard PID controllers u = PID y 1 , respectively, u = PID y 2 . These controllers, once they stabilize the reduced finite-dimensional system, are then tested against the infinite dimensional system using the Nyquist test of [START_REF] Apkarian | Structured H ∞ -control of infinite dimensional systems[END_REF], which by Corollary 2 gives an exact answer. For instance, stabilizing the gray and blue scenarios with the 5th-order controller given in [START_REF] Mugnolo | Damped wave equations with dynamic boundary conditions[END_REF] leads to the Nyquist plots in Fig. 4 for the gray and blue scenarios, and certifies infinite-dimensional stability.

As can be seen, in the blue case (right) the Nyquist curve winds twice around the origin. Since K blue is stable and the open loop G blue has n p = 2 unstable poles, this proves Since K blue is stable and n p = 2, closed loop is certified exponentially stable. Gray case (left) has n p = 0 and winding number 0 around origin (critical point). Since K gray is stable, loop is certified exponentially stable.

exponential stability of the closed-loop (G blue , K blue ). At this point we have completed step 2 of the general synthesis algorithm 1.

Remark 4. The fact that finite-difference and finite-element discretizations of stabilizable (or detectable) hyperbolic equations may turn out not stabilizable (detectable) cannot be overcome by increasing N . This has been the cause of a large body of controllability literature, which fortunately has little relevance for control. Namely, once we have decided that the true model for the drilling process is the infinite-dimensional ( 1)-( 2), we little care whether K, synthesized for G and G nl , also stabilizes discretizations of G or G nl .

H ∞ -synthesis

The final step in algorithm 1 is H ∞ -synthesis. While we have already shown that the non-linear system can be locally exponentially stabilized by a finite-dimensional controller, we now strive to prove global exponential stability of the closed-loop system (G nl , K). In the following, it is helpful to represent the non-linear system G nl in Lur'e form, i.e., as the closed loop interconnection of its linearization with a static non-linearity.

K u G G nl ψ(•) y 1 y 2 w -- K u G y 1 y 2 w W u W y z y z u -- Figure 5
. Non-linear system (left) in feedback form. The synthesis interconnection (right) interprets non-linearity as an exogenous disturbance w.

6.1. Mixed sensitivity. The non-linear system can be consider as a feedback loop between the linearized plant P :

x tt (ξ, t) = x ξξ (ξ, t) -2λx t (ξ, t) x ξ (1, t) = -x t (1, t) + u(t)
αx tt (0, t) = x ξ (0, t) + qx t (0, t) + w(t) y 1 (t) = x t (0, t), y 2 (t) = x t (1, t), z = (y, u), [START_REF] Huang | A new Nyquist test for the stability of control systems[END_REF] connected with the controller u = Ky and the non-linearity ψ(•) as in Fig. 5 left. We now have several choices. The most straightforward one is to grossly interpret the nonlinearity ψ(x t (0, t)) as a disturbance w, forgetting its specific form. In [START_REF] Huang | A new Nyquist test for the stability of control systems[END_REF] we then introduce typical outputs like z y = W y y, z u = W u u, where the channel w → z y rejects the effect of the non-linearity on the low-frequency part of the measured output, while w → W u u = z u accounts for high frequency components of the control signal, so that minimizing the H ∞ -norm of T wz (K) limits the degrading effects of the non-linearity while maintaining reasonable control authority. Here and for the following T ab (K) denotes a closed-loop channel b → a in plant P . The closed loop of ( 25) with K from w to z is obtained as T zw (K) = diag(W u , W y )T (u,y),w (K) as shown in Fig. 5 right.

Sector non-linearity.

A more sophisticated approach uses the fact that the nonlinearity ψ in [START_REF] Apkarian | Nonsmooth optimization for multidisk H ∞ synthesis[END_REF] induced by φ = φ mud + φ rock as in ( 8) is sectorial. That is to say, there exist q l ≤ q u such that q l ω ≤ ψ(ω) ≤ q u ω for all ω, i.e., ( 1) is an infinite dimensional Lur'e system. For the scenarios gray and blue these sectors are shown in Fig. 6. A(x) q l " x q u " x Figure 6. Sector non-linearity q l ω ≤ ψ(ω) ≤ q u ω for gray scenario (left) and blue scenario (right). Lemma 4. For ω → ±∞ the non-linearity ψ(ω) behaves asymptotically like a line -q s ω + a ± , where

q s = c b √ GJI +q, a + = LW ob R b GJ (µ sb -µ cb )e - γ b ν f Ω , a -= 2 LW ob R b µ cb GJ + L GJ (µ cb -µ sb ) e - γ b ν f Ω .
Proof: Note that since we have transferred the steady state to the origin, the kink of the friction term ψ(ω) occurs at ω = -LΩ √ I √ GJ =: -ω 0 . For ω -ω 0 we have

ψ(ω) = -( c b √ GJI + q)ω + LW ob R b GJ (µ sb -µ cb )e - γ b ν f Ω (1 -e - γ b ν f 1 L √ GJ I ω ) ∼ -( c b √ GJI + q)ω + LW ob R b GJ (µ sb -µ cb )e - γ b ν f Ω = -q s ω + a + , and for ω < -ω 0 we get ψ(ω) = -( c b √ GJI + q)ω +2 LW ob R b µ cb GJ + L GJ (µ cb -µ sb ) e - γ b ν f Ω + L GJ µ cb -µ sb )e -1 L √ GJ I |ω| e γ b ν f Ω ∼ -( c b √ GJI +q)ω + 2 LW ob R b µ cb GJ + L GJ (µ cb -µ sb ) e - γ b ν f Ω = -q s ω + a -.
Since both branches behave asymptotically like a line with slope

(26) -q s := - c b √ GJI -q = - W ob R b (γ b /ν f )(µ sb -µ cb )e - γ b ν f Ω √ GJI ,
it is not hard to find slopes q l , q u with q l ω ≤ ψ(ω) ≤ q u ω. Those can be seen in Fig. 6 for the gray and blue cases. We use the standard notation ψ ∈ sect(q l , q u ).

In order to achieve stability of the non-linear closed loop, we now apply the technique of Zames [START_REF] Zames | On the input-output stability of time-varying non-linear feedback systems. Part I: Conditions derived using concepts of loop gain, conicity, and positivity[END_REF], which requires that the linear system T y 1 w (K) in feedback with the nonlinearity ψ(•) as in Fig. 5 left satisfy the complementary sector constraint. To put this to work, we let c = (q l + q u )/2 and r = (q uq l )/2, and introduce the centered non-linearity χ(w) = ψ(w)cw, which satisfies χ ∈ sect(-r, r).

The centered non-linearity χ(w) = ψ(w)cw is now in feedback with the following shifted plant:

P : x tt (ξ, t) = x ξξ (ξ, t) -2λx t (ξ, t) x ξ (1, t) = -x t (1, t) + u(t) αx tt (0, t) = x ξ (0, t) + (q + c)x t (0, t) + e(t) y 1 (t) = x t (0, t), y 2 (t) = x t (1, t), z(t) = x t (0, t), (27) 
connected with [START_REF] Noll | Bundle method for non-convex minimization with inexact subgradients and function values[END_REF] u = Ky, z χ = χ(e χ ), e = z χ + w, e χ = z + w χ .

Closing the loop with regard to u = Ky leads to z = T ze (K)e, which is in loop with the non-linearity z χ = χ(e χ ) as in Fig. 7. Here and in the following channels derived form plant P will be denoted T wz (K) etc. Note that the sole difference between P and P is that the parameter q is replaced by q = q + c. In particular, stabilization of P is obtained as studied in section 5. Ultimately this means that K will have to stabilize the linear wave equation for two different values q, q, while α, λ remain fixed.

T ze (K) 27) leaves an exponentially stable linear system T ze (K) in feedback with the shifted static non-linearity z χ = χ(e χ Lemma 5. Let ψ ∈ sect(q l , q u ) and put c = (q u + q l )/2, r = (q uq l )/2. Suppose the controller K has been tuned such that the closed loop ( P , K) is H ∞ -stable with T ze (K) ∞ < r -1 . Then the non-linear closed-loop (1) with u = Ky is finite gain input-output stable, i.e., there exists a constant M > 0 such that in (27)- [START_REF] Noll | Bundle method for non-convex minimization with inexact subgradients and function values[END_REF] we have

χ(•) z χ w z e χ e w χ
x t (0, •) 2 + ψ(x t (0, •)) 2 ≤ M ( w χ 2 + w 2 ) for all inputs w, w χ ∈ L 2 [0, ∞).
Proof: This follows from [START_REF] Zames | On the input-output stability of time-varying non-linear feedback systems. Part I: Conditions derived using concepts of loop gain, conicity, and positivity[END_REF]Thm. 1]. If ψ ∈ sect(q l , q u ), then the centered nonlinearity χ := ψ -cI satisfies χ ∈ sect(-r, r), hence χ(z χ ) 2 ≤ r z χ 2 has L 2 -gain r in the sense of [START_REF] Zames | On the input-output stability of time-varying non-linear feedback systems. Part I: Conditions derived using concepts of loop gain, conicity, and positivity[END_REF]Def. (3)]. This non-linearity is now in feedback with T ze (K). Since by assumption K has been tuned such that T ze (K) ∞ < r -1 , this LTI-system has L 2 -gain < r -1 , and the small gain theorem implies boundedness of the loop ( 27)- [START_REF] Noll | Bundle method for non-convex minimization with inexact subgradients and function values[END_REF], i.e., there exists a constant M > 0 such that e χ 2 ≤ M ( w 2 + w χ 2 ) and e 2 ≤ M ( w 2 + w χ 2 ) in Fig. 7. Since in closed loop the input e to T ze (K) represents the non-linear term χ(x t ), we derive χ(x t (0, •)) 2 ≤ M ( w χ 2 + w 2 ). Still from the small gain theorem we get e χ 2 ≤ M ( w χ 2 + w 2 ), and since in closed loop e χ represents the output x t (0, •), we have x t (0, •) 2 ≤ M ( w χ 2 + w 2 ) in closed loop. Finally, for ψ = χ + cI we get a similar estimate by combining the previous two:

ψ(x t (0, •)) 2 ≤ χ(x t (0, •)) 2 + c x t (0, •) 2 ≤ M (1 + c) ( w χ 2 + w 2 ).
This has now the following consequence: Proposition 2. Let ψ ∈ sect(q l , q u ) with c, r as above, and suppose the controller K has been tuned such that the closed loop ( P , K) is H ∞ -stable with T ze (K) ∞ < r -1 . Then the non-linear closed loop between (1) and u = Ky is input-to-state stable in the following sense: If the input signal w ∈ L 2 [0, ∞), then the state (x, x t ) of the non-linear closed loop with initial condition

x cl (0) = x 0 is in L 2 ([0, ∞), H).
Proof: Write the non-linear closed loop in the abstract state-space H in theorem 2 as

ẋcl = A cl x cl +Ψ(x cl )+w, x cl (0) = x 0 , where A cl is exponentially stable, Ψ(x cl ) = ψ(x t (0, •))
for the closed-loop x t (0, t), and where w(t) is an input to the equation αx tt (0, t) = x ξ (0, t) + qx t (0, t) + ψ(x t (0, t)). The linear feedback system ( P , K), respectively its channel T ze (K), is now ẋcl = A cl x cl + e, z = C cl x cl , in loop with the centered nonlinearity χ(•), and w is the lower right input in Fig. 7. To account for a non-zero initial condition x cl (0) = x 0 we choose the top left input in Fig. 7 as w χ = C cl e A cl t x 0 , where C cl is the output operator of closed loop system ( P , K). Then e χ is the solution of the Cauchy problem ẋcl = A cl x cl + e, x cl (0) = x 0 . From the lemma we get

Ψ(x cl ) 2 = ψ(x t ) 2 ≤ M ( w χ 2 + w 2 ) ≤ M ( x cl (0)e -ω 0 t 2 + w 2 )
, where -ω 0 < 0 is the growth rate of the exponentially stable generator A cl . In particular, if we put v(t) = Ψ(x cl (t)) + w(t), then v 2 ≤ (M + 1) (|x cl (0)| + w 2 ), hence we may consider v(t) as a right hand side in L 2 to the non-homogeneous Cauchy problem ẋcl = A cl x cl + v, x cl (0) = x 0 . Since A cl is exponentially stable, the closed loop state is then also in L 2 ; [29, Ch. VI,7.1a].

One wonders whether the state x cl (t) decays exponentially to 0 when this is the case for the input w(t). Suppose w ∈ L 2 decays exponentially in the sense that w = e -at w for some a > 0 and w ∈ L 2 . In this case it seems plausible to work with the weighted squared L 2 -norm w 2 2 = e at w(•) 2 2 = w 2 2 . Proposition 3. Suppose ψ ∈ sect(q l , q u ) with c, r as above, and suppose K has been tuned such that ( P , K) is H ∞ -stable, with T ze (K) ∞ < r -1 . There exists a > 0 such that whenever the input w decays exponentially with rate at least as fast as a, i.e., w(t) = e -at w(t) for some w ∈ L 2 [0, ∞), then the state x cl (t) of the non-linear closed loop in response to the input w decays exponentially with rate at least a.

Proof: 1) Since the closed loop ( P , K) is exponentially stable with -ω 0 := ω 0 (A cl ) < 0 and T ze (K) ∞ < r -1 , we may choose a small enough shift 0 < a < ω 0 such that ( P (•a), K(•a)) is still exponentially stable and T ze (K)(•a) ∞ < r -1 . Let • 2 be the corresponding weighted L 2 -norm as above.

2) Let us observe that for the centered non-linearity χ ∈ sect(-r, r) implies χ(w) 2 ≤ r w 2 for all w = e at w. Namely, χ(w)

2 2 = t 0 e 2aτ |χ(w(τ ))| 2 dτ ≤ t 0 e 2aτ r 2 |w(τ )| 2 dτ = r 2 w 2 2 .
3) Now we establish the complementary estimate for the LTI feedback system ( P , K) and its channel T ze (K) with regard to the norm • 2 . We have

T ze (K) * w 2 2 = ∞ 0 e 2at t 0 T ze (K)(t -τ )w(τ )dτ 2 dt = ∞ 0 t 0 T ze (K)(t -τ )e a(t-τ ) w(τ )e aτ dτ 2 dt = ∞ 0 t 0 T ze (K) • e at (t -τ ) w • e at (τ )dτ 2 dt = ( T ze (K) • e at ) * w 2 2 = T ze (K)(s -a) • w(s) 2 2 ≤ T ze (K)(• -a) 2 ∞ w 2 2 = T ze (K)(• -a) 2 ∞ w 2 2 < r -2 w 2 2
. This means we may apply the small gain argument with the norm • 2 . The result is as before that x t (0, •) 2 + ψ(x t (0, •)) 2 ≤ M ( w χ 2 + w 2 ) for some M > 0 and all inputs w = e -at w, w χ = e -at w χ with w, w χ ∈ L 2 [0, ∞). That means the non-linearity in closed loop in response to the signal w = e -at w also decays at least as fast as e -at , so that the right hand side v(t) = Ψ(x cl (t)) + w(t) already used in the previous proposition is of the form v(t) = e -at v(t) for some v ∈ L 2 .

We also have to argue that w χ = C cl e A cl t x 0 decays with rate a, which holds since a < -ω 0 (A). But now all we have to observe is that due to exponential stability of A cl in the non-homogeneous Cauchy problem ẋcl = A cl x cl + v the state decays exponentially as soon as v decays exponentially. The mild solution in the semi-group sense [29, p. 436] satisfies x cl (t) = e A cl t x cl (0) + t 0 e A cl (t-τ ) v(τ )dτ , hence |x cl (t)| ≤ M e -ω 0 t + v 2 t 0 e -ω 0 (t-τ ) e -aτ dτ ≤ M (1 + v 2 /(ω 0a))e -at . This brings us now to our first optimization program, where we combine a mixed H ∞ performance and robustness requirement (Fig. 5 right) for the nominal plant with a sector constraint assuring global exponential stability of the non-linear closed loop (Fig. 5 left) when satisfied:

minimize r T ze (K) ∞ subject to W u T uw (K) ∞ ≤ 1 K ∈ K (29) 
Here K refers to a class of structured controllers, and optimization over K ∈ K can be dispensed with as soon as the objective attains a value < 1. As our experiments show, the sectorial approach works successfully for the gray scenario. Note that it is implicit in (29) that K has to stabilize P and P , which means stabilizing the wave equation for the two different values q and q = q + c with the same α, λ.

6.3.

Large magnitude sector constraint. The limitation of the sector approach is obviously that if the primal sector sect(q l , q u ) is large, it is difficult to tune K such that the closed loop system (P, K) is in the complementary sector. In the transformed metric, if the primal sector is large, then r is large, so r -1 is small and the constraint T ze (K) ∞ < r -1 in ( 29) is difficult to achieve -if at all. This fails indeed for the blue scenario, and Zames-Falb multipliers [START_REF] Zames | Stability conditions for systems with monotone and slope-restricted nonlinearities[END_REF] do not help for the specific non-linearity ψ. However, the particular structure of the non-linearity in Lemma 4 suggests the following definition as a remedy.

We say that ψ satisfies a large magnitude sector constraint, denoted ψ ∼ sect(q l , q u ), if there exist constants L, M > 0 such that (ψ(x)q l x) • (ψ(x)q u x) ≥ 0 for all |x| > M , while |ψ(x)| ≤ L|x| for |x| ≤ M . A strict large magnitude sector is defined analogously. This is indeed what happens for ψ(•) here, because from Lemma 4 it follows that any choice q l < -q s < q u will give such a large magnitude sector.

The following result uses the peak-gain norm, which is the time-domain L ∞ operator norm G pk_gn = sup |w|∞≤1 |G * w| ∞ of a transfer function G, with * denoting convolution in the time domain, and | • | ∞ standing for the time-domain supremum norm on L ∞ [0, ∞). See [16, 5.2.5] or [START_REF] Balakrishnan | On computing the worst case peak gain of linear systems[END_REF].

Proposition 4. Suppose ψ satisfies a large magnitude sector constraint ψ ∼ sect(q l , q u ) with constants L, M . Let c = (q u + q l )/2, r = (q uq r )/2, and suppose the controller K has been tuned such that the loop ( P , K) is H ∞ -stable and satisfies T ze (K) pk_gn < r -1 for the peak-gain norm. Then for every input w ∈ L ∞ [0, ∞) the non-linear closed loop state trajectory Note that the same also holds in the truncated version, i.e., |χ(w

x cl (t) is in L ∞ ([0, ∞), H).
)•1 [0,t] | ∞ ≤ r|w•1 [0,t] | ∞ +k
for every t > 0 and all w.

2) Note that by the above definition of the peak-gain norm of a transfer function ), and similarly in the truncated version.

T ze (K) pk_gn < r -1 means | T ze (K) * w| ∞ ≤ (r -1 -δ)|w| ∞ for some small δ > 0 for all w ∈ L ∞ [0, ∞
3) But now both T ze (K) and the non-linearity χ(•) are finite-gain stable in the sense e.g. of [START_REF] Mareels | Monotone stability of non-linear feedback systems[END_REF]Def. 3] 

with regard to | • | ∞ . Namely |χ(w)| ∞ ≤ r|w| ∞ + k and | T ze (K) * w| ∞ ≤ (r -1 -δ)|w| ∞ ,
∞ ≤ M (|w| ∞ +|w ψ | ∞ )+k and |z ψ | ∞ ≤ M (|w| ∞ +|w ψ | ∞ )+k for certain M, k > 0. We derive as before that |x t (0, •)| ∞ ≤ M (|w| ∞ + |w χ | ∞ ) + k and |ψ(x t (0, •))| ∞ ≤ M (|w| ∞ + |w χ | ∞ ) + k for all w ∈ L ∞ ,
where x t (0, •) is with regard to the closed loop.

4) Putting Ψ(x cl (t)) = ψ(x t (0, t)) and v(t) = Ψ(x cl (t)) + w(t) as before, we can consider v(t) as a right hand side in the non-homogeneous Cauchy problem ẋcl = A cl x cl + v. Accounting for non-zero initial data needs w χ

(t) = C cl e A cl t x 0 . Since w ∈ L ∞ , we have |v •1 [0,t] | ∞ ≤ (M +1)(|w| ∞ +|w χ | ∞ )+k =:
k for all t, and since v is square integrable up to time t, i.e., v • 1 [0,t] ∈ L 2 [0, t], the solution x cl exists on [0, t] and is bounded independently of t by a constant depending only on k and the decay rate ω 0 (A cl ) of A cl . This gives x cl ∈ L ∞ as desired, and the solution exists at all times t > 0.

Remark 5. It is clear that the impact of this result hinges on computing K for a sufficiently large sector where the constant k is as small as possible, as that controls how far the trajectory x cl (t) may remove herself from the steady state 0. 6.4. Overshoot. It has been suggested in the literature that slip-stick is avoided as soon as the non-linear system is globally stabilized. This is obviously misleading, as any sufficiently strong disturbance will cause the trajectory x t to attain the value -x 0 t , however stable the loop. Stability would then only make the difference that the trajectory, after being stuck, returns to steady state when the effect of the disturbance ceases, while an unstable design might remain stuck. Since the non-linearity ψ(•) is concave in the neighborhood of 0, the term qx t + ψ(x t ) = (q + 1 2 px t )x t + o(x 2 t ) < qx t is slightly below the linearized term qx t , so that a linear controller may overestimate its effect. This may cause overshoot in the response to a disturbance, thereby increasing the risk of slip-stick. That in turn suggests optimizing the closed loop against overshoot in the channel w → y 1 , which we realize by simply minimizing the (unweighted) H ∞ -norm of T y 1 w (K). Reduction of peak-gain over frequency is known to be a suitable approach for systems with dominant second-order characteristics and performs equally well in the present case. In combination with the large magnitude sector this leads now to the program minimize

T y 1 w (K) ∞ subject to T ze (K) pk_gn ≤ 1/r W u T uw (K) ∞ ≤ 1 K ∈ K (30) 
where T y 1 w (K) is the closed loop transfer w → y 1 obtained from plant P , T ze (K) refers to the transfer e → z in plant P , and the channel w → z u in plant P is a safeguard against unrealistic control actions. This leads to satisfactory results in the blue case, even though the stability certificate is weaker in the sense that the non-linear closed loop trajectory x cl (t) is only guaranteed locally exponentially stable and globally bounded.

Remark 6. The peak-gain or peak-to-peak norm • pk_gn is the time domain L ∞ -operator norm, which for SISO systems equals the time-domain L 1 -norm of the impulse response, or the total variation of the step response [START_REF] Boyd | Linear controller design. Limits of performance[END_REF]Sect. 5.2]. It is harder to compute, let alone to optimize, than the H ∞ -norm, but the bound H ∞ ≤ H pk_gn is known. Non-smooth analysis of • pk_gn is beyond the scope of this work and will be presented elsewhere. In our experiments we use the trapezoidal rule to estimate the integral of the absolute value of the impulse response of ( P , K), and a heuristic to optimize it. Bounds for • pk_gn have been discussed e.g. in [START_REF] Balakrishnan | On computing the worst case peak gain of linear systems[END_REF], and a minimization approach via linear programming is discussed in [START_REF] Diaz-Bobillo | Minimization of the maximum peak-to-peak gain: the general multiblock problem[END_REF] for the case of full order (unstructured) K.

Experiments

7.1. Gray scenario. The gray scenario has been addressed with the approach (29), where q l = -4.8, q u = -4.8, W u = 1e4s s+2e5 . Using Kalman reduction to determine a minimal realization, the finite-difference model with N = 50 is used to design a preliminary controller K 0 ∈ K 5 in the class of 5 th -order controllers. The Nyquist test [5, Thm. 1] and Corollary 2 show that K 0 already stabilizes the linear infinite dimensional loop exponentially. Moreover, K 0 satisfies the sector constraint T ze (K 0 ) ∞ = 0.281 < r -1 = 1/2.64 = 0.379 strictly. After choosing a small enough tolerance with T ze (K) ∞ + ϑ < r -1 , we check using [5, Thm. 2] that K 0 satisfies even the infinite dimensional sector constraint, so that the non-linear closed loop (G nl , K 0 ) is proved globally exponentially stable in the sense of Proposition 3.

In a second phase this controller is further optimized with the true infinite dimensional system as described in [START_REF] Apkarian | Structured H ∞ -control of infinite dimensional systems[END_REF], maintaining the stability and performance certificates already achieved during optimization. Ultimately this leads to the controller K gray ∈ K 5 in (31) which has the same stability certificates, and slightly improved H ∞ -performance. This controller was then tested in non-linear simulations with spatial discretizations N = 200. For instance, in Fig. 10 (left) an initial condition θ t (0) < θ 0 t = Ω representing a deviation of 60% from the steady-state was chosen. The controller was switched on at time t = 10 and simulated with a square-wave disturbance occurring at t = 15 with magnitude 60% of the steady-state. In the gray scenario linear and non-linear trajectories are almost identical. That slip-stick may still occur even for this highly stable scenario is seen in Fig. 8 (right), but due to stability the trajectory θ t is able to free herself and regain speed. 7.2. Blue scenario. The blue scenario is more challenging as the damping parameter λ is between the two critical values λ 1 (α, q) < λ < λ 2 (α, q), giving rise to two unstable poles. Here slip-stick occurs quickly in open loop (Fig. 9). While stabilization of the linear closed loop is based on the results of section 5, leading to a locally exponentially stable non-linear closed loop, a global certificate via the sector non-linearity (29) fails due to the very large primal sector in the blue case. In response, we use the large magnitude sector constraint in tandem with overshoot mitigation. Moreover, the H 2 -norm is used as a heuristic for the peak-gain norm, which leads to the mixed program minimize T y 1 w (K) ∞ subject to T ze (K) 2 ≤ ρ(r)

K gray = A K B K C K D K =     -0.
W u T uw (K) ∞ ≤ 1 K ∈ K 5 , (32) 
the parameters now being q l = -3, q u = -0.1 and W u (s) = 1e4s s+2e5 . The idea is to employ the H 2 -norm of the LTI-system in Fig. 7 as an indirect means to reduce T ze (K) pk_gn , which amounts to replacing the L 1 -norm of the impulse response by its energy. The parameter ρ(r) has been estimated using trial and error so that the H 2 constraint ensures satisfaction of the peak-gain constraint in program [START_REF] Mareels | Monotone stability of non-linear feedback systems[END_REF] with parameter r. Starting again with K 0 ∈ K 5 synthesized for a finite-difference model with N = 50, we certify exponential stability and H ∞ -performance of the infinite-dimensional loops (P, K 0 ) and ( P , K 0 ) via [START_REF] Apkarian | Structured H ∞ -control of infinite dimensional systems[END_REF], and the H 2 -certificate with [START_REF] Apkarian | Boundary control of partial differential equations using frequency domain optimization techniques[END_REF]Lemma 3]. This controller is further optimized in the true infinite dimensional system using the method of [START_REF] Apkarian | Structured H ∞ -control of infinite dimensional systems[END_REF][START_REF] Apkarian | Boundary control of partial differential equations using frequency domain optimization techniques[END_REF], leading to the final K blue ∈ K 5 in [START_REF] Mugnolo | Damped wave equations with dynamic boundary conditions[END_REF]. We recall that Corollary 2 in tandem with the Nyquist test of [START_REF] Apkarian | Structured H ∞ -control of infinite dimensional systems[END_REF] proves that K blue stabilizes (1)-( 2) locally exponentially, its linearization exponentially, while [START_REF] Apkarian | Structured H ∞ -control of infinite dimensional systems[END_REF]Thm. 3] certifies the H ∞ -norm estimates in [START_REF] Pilbauer | Input shaping for infinite dimensional systems with application on oil well drilling[END_REF]. Posterior certification of the H 2 -norm estimate in ( 32) is also possible, now via [START_REF] Apkarian | Boundary control of partial differential equations using frequency domain optimization techniques[END_REF], and proves T ze (K blue ) 2 < ρ(r) = 1.3 in the infinite-dimensional sense. Due to the choice of ρ(r) this now implies T ze (K blue ) pk_gn = 0.680 < r -1 = 1/1.45 = 0.690, whereby the complementary large magnitude sector condition is verified in the discretized model with N = 200. Infinite dimensional certification for • pk_gn is currently not yet available, even though this ought to be established along the lines of [5, Lemma 4, Theorem 3] and [4, Lemma 3]. The controller achieves excellent results in the non-linear simulation. This is shown in Fig. 10 (right), where an initial condition generates slip-stick in open loop (yellow area). Triggering control at t = 10 removes slip-stick and additionally provides rejection against strong and sharp disturbances (blue area). Similarly, in Fig. 11 the effect of switching the controller on at t = 10 is tested on two more disturbances.

It should be mentioned that other ways to address the non-linearity ψ have been discussed. In [START_REF] Bresch-Pietri | Output-feedback adaptive control of a wave PDE with boundary antidamping[END_REF] an adaptive controller for a time varying q(t) was constructed, while [START_REF] Apkarian | Boundary control of partial differential equations using frequency domain optimization techniques[END_REF] discusses parametric robust control for q ∈ [q, q] as well as gain-scheduling of q(t) as further possibilities.

Conclusion

We have presented a novel method to design exponentially stabilizing regulators of simple implementable structure for boundary control of a wave equation with non-linear boundary anti-damping. Our results are illustrated in control of torsional vibrations in drilling systems, and two scenarios labeled 'gray' and 'blue' are discussed in detail. We show that in order to avoid slip-stick it is crucial to optimize H ∞ -performance of the loop. In particular, reducing overshoot by way of H ∞ minimization proved effective for the more challenging 'blue' scenario. The 'gray' scenario had previously been discussed in the literature, and here the substantial improvement of our method over published work is that we can design finite-dimensional exponentially stabilizing controllers, which in addition show excellent performance. The 'blue' scenario is new and more challenging due to inherent instability. We design finite-dimensional controllers which stabilize the
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 12 Figure 1. The case 0 (⌦) > 0 (left) leads to a stable open loop [?]. The potentially unstable case (right) is when increasing rotary speed reduces friction.
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 12 Figure 1. The case 0 (⌦) > 0 (left) leads to a stable open loop [?]. The potentially unstable case (right) is when increasing rotary speed reduces friction.

  3.3], that D(A ) ⊂ D(P ), D(A) = D(A ) ∩ ker(P ), Az = A z on D(A), and that A generates a C 0 -semi group. These are satisfied by construction. In addition, we require an operator B : C 2 → H such that P • B = I, im(B) ⊂ D(A ) and A • B bounded. This can be arranged by the ansatz

Figure 4 .

 4 Figure 4. Nyquist curve 1 + K blue G blue (right) winds twice around origin.Since K blue is stable and n p = 2, closed loop is certified exponentially stable. Gray case (left) has n p = 0 and winding number 0 around origin (critical point). Since K gray is stable, loop is certified exponentially stable.
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 7 Figure 7. Closing the loop with u = in (27) leaves an exponentially stable linear system T ze (K) in feedback with the shifted static non-linearity z χ = χ(e χ

Proof: 1 )

 1 As before let χ = ψ -cI be centered, then |χ(x)| ≤ r|x| for all |x| > M , while |χ(x)| ≤ (L + c)|x| for |x| ≤ M . We show that this implies |χ(w)| ∞ ≤ r|w| ∞ + k for some constant k > 0 and all w ∈ L ∞ [0, ∞) in the time domain. Indeed, sup t>0 |χ(w(t))| ≤ sup |w(t)|>M |χ(w(t))| + sup |w(t)|≤M |χ(w(t))| ≤ sup |w(t)|>M r|w(t)| + sup |w(t)|≤M (L + c)|w(t)| ≤ r|w| ∞ + (L + c)M =: r|w| ∞ + k.

  both fully and in the truncated version. Since r • (r -1δ) < 1, it follows from [30, Cor. 1] that the closed loop of Fig.7is finite-gain stable in the sense that |z|
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 8 Figure 8. Gray scenario: Occasional slip-stick occurs even with global stability. Oscillatory disturbance (left). Disturbance at t = 3, 10 (right).
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 9 Figure 9. Blue scenario: Slip-stick in open loop.
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 10 Figure 10. Initial value below steady state, control switched on at t = 10. Disturbance at t = 15. Gray left, blue right.

Figure 11 .

 11 Figure 11. Blue scenario: slip-stick caused by large disturbances. Stabilizing feedback with K blue allows the rotational speed to recover.
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wave equation locally exponentially, mitigate the slip-stick effect, and in addition, have a global boundedness certificate, based on the novel concept of a large magnitude sector non-linearity.