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Abstract

John W. Tukey (1975) defined statistical data depth as a function that determines centrality of
an arbitrary point with respect to a data cloud or to a probability measure. During the last decades,
this seminal idea of data depth evolved into a powerful tool proving to be useful in various fields
of science. Recently, extending the notion of data depth to the functional setting attracted a lot
of attention among theoretical and applied statisticians. We go further and suggest a notion of
data depth suitable for data represented as curves, or trajectories, which is independent of the
parametrization. We show that our curve depth satisfies theoretical requirements of general depth
functions that are meaningful for trajectories. We apply our methodology to diffusion tensor
brain images and also to pattern recognition of hand written digits and letters. Supplementary
Materials are available online.

Keywords: data depth, space of curves, unparametrized curves, nonparametric statistics,
curve registration, DT-MRI fibers, classification, DD-plot.

1 Introduction
We propose an extension of the notion of depth for curve data. An (unparameterized) curve
datum is a set of points of Rd which can be described by an unspecified continuous function from
a sub-interval of R to Rd. Our original motivation to study such data was to solve a neuroimaging
problem involving brain fibers of elderly twins.

Data depth was originally introduced in a seminal paper by Tukey (1975) to measure the
degree of centrality of a multivariate point x with respect to a given data cloud. His approach
consists in computing, for every halfspace H containing x, the fraction of points from the data
cloud enclosed in H . He then retains the minimum of these fractions as a measure of centrality
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of x; see also Donoho & Gasko (1992). Since then, several other notions of data depth have been
proposed. For example, using random simplices (i.e., generalizations of the notion of a triangle
to arbitrary dimensions), Liu (1990) proposed a similar measure of “insideness” called simplicial
depth. For a comprehensive survey on multivariate data depths the reader is referred to Zuo &
Serfling (2000).

Thanks to these theoretical developments, it has become possible to extend standard univari-
ate descriptive statistics based on ranks to analyze multivariate observations (see, e.g., Oja 1983,
Liu et al. 1999). New classical inferential statistical tools or techniques using these depth mea-
sures or some refinements have also been developed, such as p-values (Liu & Singh 1997), con-
fidence regions (Yeh & Singh 1997, Lee 2012), regression (Rousseeuw & Hubert 1999, Hallin
et al. 2010), multivariate nonparametric testing (Li & Liu 2004, Zuo & He 2006, Chenouri &
Small 2012), classification (Li et al. 2012, Lange et al. 2014, Paindaveine & Van Bever 2015,
Dutta et al. 2016) and estimation of extreme quantiles (He & Einmahl 2017). See Mosler (2013)
for a nice introduction showing the richeness and usefulness of depth techniques.

In recent years, statisticians have been facing complex types of data that they analyze using a
functional depth (Fraiman & Muniz 2001, López-Pintado & Romo 2009, Narisetty & Nair 2016)
or even a multivariate functional depth approach (Claeskens et al. 2014). These new techniques
have proven to be very useful for data visualization, to estimate a measure of location or spread, to
detect outliers (see also Hubert et al. 2015), for clustering, or to detect if two groups of functions
come from the same population.

However, functional depths are sensitive to parametrization of curves. Figures 1 and 2 illus-
trate the impact of two different parametrizations on depths rankings of curves provided by the
multivariate functional halfspace depth (MFHD) developped by Claeskens et al. (2014) (with
weight function set to a constant) and by the modified simplicial band depth (mSBD) developped
by López-Pintado et al. (2014).
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Figure 1: Comparison of depth based ordering for two parametrizations A and B provided re-
spectively by MFHD (a)–(b), mSBD (c)–(d), and by our new depth for unparameterized curves
(e). The depth increases from yellow to red. Each deepest curve is plotted in blue. The center of
symmetry of the distribution is plotted using black dots. Source: an ensemble of 50 simulated S
letters; see Section 1.1 in Supplementary Materials.

In Figure 1 (a)-(d), we see that the choice of a parametrization (A or B) has a clear impact
on which curve is identified as the deepest (in blue). Moreover, unlike MFHD and mSBD, our
unparameterized approach finds a deepest curve which is very close to the center of symmetry
(the dotted curve). Also, we observe that some curves with high depth (in red) seem to be outliers
(Figure 1 (a) and (c), upper right) and some curves with low depth (in yellow) are close to the
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deepest curve (Figure 1 (b) and (d)). This problem is even more striking on Figure 2. There,
many simulated hurricane tracks are identified as outliers (in red, on panels (a)–(d)) by MFHD
and mSBD (with two different parametrizations) even if they are close to the center of distribution
of the curves (in dark blue). This is in agreement with (Mirzargar et al. 2014, Section 5) who note
that “the time-parameterization is more sensitive to the velocity outlier as a parameterization-
dependent feature, the arc-length and life-time percentage parameterization are more sensitive
to shape and positional outliers.” Here again our unparameterized approach correctly identifies
outliers (panel (e)).
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Figure 2: Comparison of the depth based ordering for two parametrizations A (time) and B (arc-
length) provided respectively by MFHD (a)–(b), mSBD (c)–(d), and by our new depth for un-
parameterized curves (e). Curves with low value of depth are plotted in red, the others in blue.
Each deepest curve is plotted in dark blue. Source: an ensemble of 50 simulated hurricane tracks
(Mirzargar et al. 2014).

Note that MFHD and mSBD depths are computed by comparing each point on a given curve
only to points (from the other curves) that “occur at the same time”. Curves are thus compared
pointwisely and not globally (this is a direct consequence of parametrization). We believe this is
the cause of the aforementioned artefacts.

Of course, depending on the context, working with a proper parametrization of curves can be
relevant. For instance, if available, one could use speed of writing as a meaningful parametriza-
tion in a handwriting recognition problem; see Section 1.2 in Supplementary Materials. For
further discussion on the importance and possible choices of a proper parametrization when em-
ploying functional data depth, see, e.g., López-Pintado et al. (2014), Mirzargar et al. (2014) and
references therein.

In this paper we aim to define a depth which is invariant to the choice of a parametrization of
the curves. This was originally motivated by the need to analyze a very large number of bundles
of white matter fibers obtained through diffusion tensor imaging (an MRI-based neuroimaging
technique) among a population of elderly twins. These neuronal fibers, also called axons, are
nerve cell extensions that transmit electrical information between different regions of the brain.
The aim of the study was to investigate if genetics plays a role in the spatial organization of these
fibers.

In our setting, a mathematical curve describing a given fiber should be understood as the
set of all points that describe the location in space of one of these fibers, with no focus whatso-
ever on any parametrization. Indeed, as outlined by Kurtek et al. (2012) “a parameterization is
merely for the convenience of analysis and is not an intrinsic property of a curve” which leads
them to advocate that “the shape analysis should be invariant not only to rigid motions and global
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scalings, but also to their parameterizations”. Intuitively, we want to distinguish curves solely
by how they bend and twist, as well as by their lengths and relative locations in space. Conse-
quently, the concept of functional data depth should not be used here (this is further investigated
in Section 6.1).

One could think of using one of a few other existing approaches that deal specifically with
curves. Goldie & Resnick (1995) considered 2D observation records that are joined in a sequence,
while Sangalli et al. (2009) estimated centreline curves (and their curvature functions) of internal
carotid artery vessels using three-dimensional free-knot regression splines. Unfortunately, these
two methods also rely on some parametrization. Mani et al. (2010) and Kurtek et al. (2012) use
a Riemannian framework invariant to the parametrization while Zhang et al. (2015) developed a
Bayesian version; see also Srivastava & Klassen (2016) for a monograph on the statistical analysis
of the shapes of curves. However, it is difficult to find a software to apply these methods on our
data.

With this motivation in mind, we developed a new concept of depth for curves that is invariant
to the choice of the parametrization. It will be broadly applicable, thanks to our freely available
R/C++ package curveDepth (Mozharovskyi et al. 2019), to many other similar types of data.
On can mention a few examples such as textile fibers (Xu et al. 2001), blood clot fibers (Collet
et al. 2005), blood vessels centrelines (Sangalli et al. 2009), moving objects such as birds mi-
grating (Su et al. 2014, Yuan et al. 2017), multidimensional data sets obtained by constructing
principal curves (Hastie & Stuetzle 1989).

The outline of the paper is as follows. In Section 2, curves are defined formally and we in-
troduce a statistical model for sampled curves. Section 3 contains a definition of the new data
depth for curves. In Section 4, we discuss implementation issues. In Section 6, we present sim-
ulation results. We also apply our curve depth to analyze brain imaging data sets, and to classify
hand-written digits. There, our curve depth is compared to other existing depths, namely MFHD
(Claeskens et al. 2014), the modified multivariate band depth (mMBD) of Ieva & Paganoni
(2013), the multivariate functional skew-adjusted projection depth (saPRJ) of Hubert et al. (2015),
the simplicial band depth (SBD) of López-Pintado et al. (2014) and its modified version (mSBD).

Section 7 gathers some concluding remarks. Supplementary Materials collect all technical
proofs, along with the necessary codes and data to reproduce all our numerical and graphical
results.

2 A Statistical Model for Sampled Curves
In what follows we introduce the space of unparameterized curves and define a statistical model
on it. For a comprehensive reference the reader is referred to Kemppainen & Smirnov (2017,
Section 2) which borrowed material from Aizenman & Burchard (1999, Section 2.1) and Burago
et al. (2001, Section 2.5). For additional details see Section 2 in the Supplementary Materials.

2.1 The Space of Unparameterized Curves
Let d ≥ 1 be an integer. Let (Rd, | · |2) be the d-dimensional Euclidean space, C ([0, 1],Rd) be
the space of continuous functions defined on the interval [0, 1] and taking values in Rd and Γ be
the set of increasing continuous functions γ : [0, 1] → [0, 1] such that γ(0) = 0 and γ(1) = 1.
A parameterized curve β, also called a path, is an element of C ([0, 1],Rd). The image of β,
denoted as Sβ = β([0, 1]), is called the locus of β. Informally if β(t) describes the position of

4



a moving particle at time t, then Sβ describes the physical route taken by this particle with no
consideration being given to stops or goings backward occuring on its trajectory. The function
β : [0, 1] 7→ Rd, a parametrization of Sβ with parameter t, provides an ordering along Sβ . Note
that there might exists an infinite number of different parametrizations describing the same locus.

Remark 1. The start point of Sβ is the image of 0 by β. The end point is the image of 1. The
locus of a trivial curve coincides with a singleton, i.e., a single point of Rd.

Formally, unparameterized curves are usually defined via an equivalence relation on the set
of parameterized curves in Rd up to the set of monotonic functions from [0, 1] to [0, 1]. Roughly
speaking, two curves β1 and β2 are said equivalent if they share the same locus and visit its points
continuously and in the same order, possibly at a different speed. Hereafter, we restrict ourselves
to the set of all curves equivalent to β that start at β(0) and stop at β(1). More precisely, we say
that two parameterized curves β1 and β2 are equivalent whenever there exist two reparametriza-
tions γ1, γ2 ∈ Γ such that β1 ◦ γ1 = β2 ◦ γ2. We then define the unparameterized curve Cβ as the
set of all paths equivalent to β, that is the equivalence class of β up to this equivalence relation.
Informally, Cβ describes the trajectory from β(0) to β(1), with no information about the location
at any time. Note that in our context, it would be possible to consider the general definition, i.e.,
to walk a path β from β(1) to β(0), or the other way around. But restricting all our definitions
by considering the set of parameterized curves in Rd only up to the set of reparametrizations
Γ greatly simplifies exposition; see Remark 5. In the sequel, an unparameterized curve will be
generically denoted C. Notice that all parameterized curves in the same equivalence class C share
the same locus, which enables one to talk about the locus of C, denoted thereafter as SC .

The space of unparameterized curves is then defined as

C = {Cβ : β ∈ C ([0, 1],Rd)}.

In other words, C is the quotient space of C ([0, 1],Rd) by the equivalence relation on the set of
parameterized curves

Following Kemppainen & Smirnov (2017), we endow the space of curves C with the Fréchet
metric dC defined as

dC (C1, C2) = inf {‖β1 − β2‖∞; β1 ∈ C1, β2 ∈ C2} , C1, C2 ∈ C, (2.1)

where ‖β‖∞ = supt∈[0,1] |β(t)|2 for β ∈ C ([0, 1],Rd). The resulting metric space (C, dC) is non
linear. It inherits the properties of separability and completeness from C ([0, 1],Rd); see Sec-
tion 2.2 in the Supplementary Materials. This guarantees the existence of non-atomic probability
measures on (C, dC). Moreover, according to Parthasarathy (1967, Theorems 1.2, 3.2 and 8.1),
every probability measure defined on C is regular and tight.

2.2 The Arc-Length Probability Measure of a Curve
The length L(β) of a parameterized curve β ∈ C is defined as

L(β) = sup
τ
{Lτ (β); τ a partition of [0, 1]} , (2.2)

where Lτ (β) =
∑J

j=1 |β(τj)− β(τj−1)|2 is the chordal length of β associated with the partition
τ = {τ0, . . . , τJ ; 0 = τ0 < · · · < τJ = 1, J ∈ N∗}. Informally L(β) is the total distance
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travelled by a particle moving from β(0) to β(1) along the support Sβ of the curve β (taking
into account any backward steps). Then all parameterized curves in C have the same length.
Consequently, the length of C, denoted L(C), is defined by L(C) = L(β), for any β ∈ C. Note
that the function L : C → [0,+∞] is not continuous, but it is measurable (Lemma 2.3). In the
following we assume that all unparameterized curves belong to the measurable set CL = {C ∈
C ; 0 < L(C) < ∞} ⊂ C, the subset of rectifiable (i.e., of finite length) unparameterized curves
with a positive length.

According to Väisälä (2006, Theorem 2.4), each curve C ∈ CL contains a unique parametriza-
tion βC : [0, 1] → Rd, called the arc-length parametrization, whose restrictions to the intervals
[0, t], noted βtC , satisfy L(βtC) = tL(C), for all t ∈ [0, 1]. Informally, with βC , the locus SC is
visited at a constant speed. Then any rectifiable curve C may be expressed as

C = {βC ◦ γ; γ ∈ Γ}.

Using the arc-length parametrization βC of an unparameterized curve C, one can thus define
the line integral of a non-negative Borel function f : Rd → R over C as∫

C
f(s)ds :=

∫ 1

0
f (βC(t))L(C)dt, (2.3)

where the integral on the right is a Riemann integral. Furthermore, we define the arc-length
probability measure of C as the probability distribution µC on the Borel sets of Rd:

for any borel set A of Rd, µC(A) =
1

L(C)

∫
C
1A(s)ds , (2.4)

where the indicator function 1A(x) takes the value 1 if x ∈ A and 0 otherwise.
From (2.3) and (2.4), we immediately get∫

C
f(s)dµC(s) =

∫ 1

0
f(βC(t))dt. (2.5)

Also, note that µC only contains information about the support SC of C and the frequency at
which its points are visited. Roughly speaking, µC(A) can be interpreted as a ratio: the distance
travelled by a particle on the subset SC ∩ A divided by the total distance it travels on SC . (Note
that L(C) can be different from the length of SC .) It is somehow a normalised measure of how
much of curve C intersects with A.

2.3 A Nonparametric Statistical Model for a Sample of Curves
We denote byP the set of all probability measures defined on the Borel σ-algebra of the Borel sets
of (C, dC) whose support is a subset of rectifiable curves of positive length (to exclude singletons):

P =
{
P, a probability measure on (C, dC) ; P (CL) = 1

}
.

Consider a random unparameterized curve X , namely a random element taking “values” in the
space of unparameterized curves C,whose probability distribution P ∈ P is unknown. We define
the probability distribution QP as follows:

for all borel sets A of Rd, QP (A) =

∫
C
µC(A)dP (C) = EP [µX (A)], (2.6)

a measure of how much (on average) a curve generated by X intersect with A.
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Remark 2. In Section 2.3 in the Supplementary Materials, we show that for any Borel bounded
function f : Rd → R, the function C ∈ CL 7→

∫
C fdµC ∈ R is measurable. Consequently, QP is

well-defined.

The statistical model considered in this article is to assume that the data to be observed are
n random unparameterized curves X1, . . . ,Xn, which are independent copies of the random ele-
ment X , that is to say

X1, . . . ,Xn are i.i.d. from P ∈ P. (2.7)

In the next section, we define a population data depth for unparameterized curves, and its sample
version.

3 Data Depth for Unparameterized Curves

3.1 Population and Sample Versions
Let y> denote the transpose of the column vector y ∈ Rd and S be the unit-sphere in Rd. For
a pair (u, x) ∈ S × Rd, let Hu,x denote the closed halfspace {y ∈ Rd : y>u ≥ x>u} whose
frontier is orthogonal to the vector u and goes through the point x. Notice that if d = 1, the
unit-sphere is {−1, 1}.

Definition 3.1 (Curve depth, population version). Let C ∈ CL be an unparameterized curve and
let P ∈ P be a probability measure. We define the curve depth of C w.r.t. P , denoted D(C|P ), by
the mapping

D : CL × P → R

(C, P ) 7→ D(C|P ) =

∫
C
D(s|QP , µC)dµC(s), (3.1)

where the above line integral is computed via (2.3) using, for any d ≥ 1 and any x ∈ SC ,

D(x|QP , µC)= inf
u∈S

QP (Hu,x)

µC(Hu,x)
, (3.2)

with the convention that a/0 = +∞ for all a > 0 and 0/0 = 0 in the above ratio.

The term D(x|QP , µC) aims to compare the two distributions QP and µC around x ∈ SC .
For u and x fixed, recall from (2.4) and from (2.6) that µC(Hu,x) measures (the fraction of length
of) how much the curve C delves into the halfspace Hu,x, whereas QP (Hu,x) measures (the
expected fraction of length of) how much a random curve X (with distribution P ) delves into
Hu,x. Consequently, the ratio QP (Hu,x)/µC(Hu,x) is small when we expect curves generated
according to P to enter less into Hu,x than the curve C. Getting a value r > 1 (resp. r < 1) for
this ratio, indicates that X generates curves that enter into Hu,x, on average, r times more (resp.
1/r times less) than C does; see Figure 20 for a visual aid.

Then, similarly to the original Tukey depth, to obtain D(x|QP , µC), we consider all possible
rotations of the halfspace Hu,x around x to find the one that discriminates the most the curve C
from a curve generated according to P . We shall call D(x|QP , µC) as the point curve depth at
x ∈ SC . Then (3.1) defines the depth of C w.r.t. P as the mean of the point curve depths at all x
in its locus SC .
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Figure 3: Illustrations of the statistical model and depth calculation (3.2) for three halfspaces
with a sample of five curves generated by X in blue and the curve C in red. We consider all
halfspaces whose frontier contains the point x and pick up the smallest ratio of the probability
measures between QP and µC : (left) QP (Hu1,x)

µC(Hu1,x) = 9.714, (middle) QP (Hu2,x)

µC(Hu2,x) = 0.999, (right)
QP (Hu3,x)

µC(Hu3,x) = 0.618

Notice that if there exists u ∈ S such that QP (Hu,x) = 0, then x is an outlier w.r.t. QP , and
thus the contribution of x ∈ SC to the depth of C w.r.t. P is set to zero, that is D(x|QP , µC) = 0.

If QP (Hu,x) > 0 for all u ∈ S, that means x lies in the convex hull of the support of QP .
Our aim is to calculate the depth of x ∈ SC w.r.t. QP relatively to the measure µC , that is why
we consider the ratio QP (Hu,x)/µC(Hu, x) in the definition of D(x|QP , µC). In this case, we
can show that there exists u such that µC(Hu,x) ≥ QP (Hu,x) > 0 (Lemma 3.1 in the Supple-
mentary Materials), so that x 7→ D(x|QP , µC) is bounded by 1. Moreover, x 7→ D(x|QP , µC) is
measurable as a limit of measurable functions (see Lemma 3.4 in the Supplementary Materials).

Definition 3.2 (Curve depth, sample version). Let X1, . . . ,Xn be a random sample of unparam-
eterized curves belonging to CL a.s. and let C ∈ CL be a rectifiable unparameterized curve. With
a slight abuse of notation, and thanks to (2.3), we define the curve depth of C w.r.t. X1, . . . ,Xn by
the mapping

D : CL × {CL}n → R (3.3)

(C,X1, . . . ,Xn) 7→ D(C|X1, . . . ,Xn) =

∫
C
D(s|Qn, µC)dµC(s),

where Qn = (µX1
+ · · ·+ µXn)/n and βC is the arc-length parametrization of C.

Remark 3. In a sense, our depth may be seen as a genaralization of the Tukey halfspace depth
in Rd. If C is a trivial curve, that is L(C) = 0 and SC = {y} for some y ∈ Rd, we define µC
as the dirac measure δy at y. Then, if X1, . . . ,Xn are also trivial curves, that is SXi = {xi},
i = 1, . . . , n, we get

D(C|X1, . . . ,Xn) = D(y|Qn, δy)

= inf
u∈S

1

n

n∑
i=1

1xi∈Hu,y .
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Theorem 3.1 below states that the sample version of the curve depth (3.3) converges in prob-
ability to the population version (3.1) as n→∞.

Theorem 3.1. Let C ∈ CL be an unparameterized curve such that µC is non-atomic. Let P be
a probability measure in the space of unparameterized curves such that P ∈ P and QP is non-
atomic. Then the sample curve depth D(C|X1, . . . ,Xn) converges in probability to D(C|P ) as
n→∞.

3.2 Properties
The main aim of the proposed curve depth is to provide a meaningful statistical ordering of the
observed curve data, which is experimentally studied and illustrated on real-data examples in
Section 6. Theorem 3.1 states the consistency of our sample depth under mild assumptions and
in this subsection we discuss its properties.

Following the suggestion of Liu (1990) for simplicial depths, Zuo & Serfling (2000) have
defined four properties to be satisfied by a proper multivariate depth function: affine invariance,
maximality at the center of symmetry, monotonicity relative to the deepest point and vanishing at
infinity. (For a slightly different version of the postulates see also Dyckerhoff (2004) and Mosler
(2013).) For a functional depth, Nieto-Reyes & Battey (2016) suggest that six properties need to
be satisfied, but Gijbels & Nagy (2017) argue that some of them could be demanding.

The situation appears to be even more challenging for the space of unparameterized curves.
Indeed, (loci of) unparameterized curves can be seen as subsets of Rd which are parameterized by
paths up to the same order of visit of their points. These mathematical objects can thus be thought
of as being “between” functional data and set data. Moreover, since no canonical mandatory
postulates for a functional depth have been established yet, and since the existing postulates are
mainly inherited from those for the multivariate depth function, we base the following analysis
on the latter.

Since the length is an important characteristic of an unparameterized curve, similarity in-
variance, which is associated with a similarity group preserving orientation and ratio of lengths,
seems to be more appropriate than affine invariance in our context. Moreover, the space of unpa-
rameterized curves is not a vector space. For instance the surjection β 7→ Cβ is not linear (there
is no natural way to define the addition of two unparameterized curves and thus no line segment
between two unparameterized curves, a crucial point for the monotonicity property). It is thus
not possible to extend the classical formulation of a depth using results from Dutta et al. (2011)
or Mosler & Polyakova (2018), say. Similarly, there is no universal way to define a notion of
symmetry for unparameterized curves, no symmetry center can be defined either. The vanishing
at infinity property can be directly extended to the space of curves. Below we state the properties
satisfied by our curve depth function and summarize them in Theorem 3.2.

Boundness. Calculating the curve depth (3.1) consists in integrating a non-negative function
bounded by one w.r.t. a probability measure. This fulfills one of the basic requirements of a depth
function: to take values on the unit interval.

Similarity invariance. For a multivariate depth, affine invariance is required for changeless-
ness w.r.t. an affine change of the coordinate system. For the space of unparameterized curves,
we consider affine transformations that also preserve ratios of the lengths of curves, i.e., similar-
ities. (Note that the length of an unparameterized curve is a property of the equivalence class.)
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A similarity f : Rd → Rd is an affine transform, f(x) = rAx + b such that A is an orthogonal
matrix, r is a positive factor and b ∈ Rd is a vector. In particular, for all x and y in Rd, we have
|f(x)−f(y)|2 = r|x−y|2.We denote by Pf the distribution of the image under f of a stochastic
process having a distribution P . A map D satisfies the property of similarity invariance if for ev-
ery rectifiable curve C and every similarity map f : Rd → Rd, it holds D(C, P ) = D(f ◦ C, Pf ).

Vanishing at infinity. The farther away an unparametrized curve is from a data cloud of
curves, the smaller its depth should be. To formulate the vanishing at infinity property of our
curve depth D, we consider any sequence (Cn)n of curves in CL such that µCn is a non-atomic
measure for all n and limn→∞ dC(Cn, 0) = ∞, where 0 denotes the set of parametrized curves
equivalent to the constant curve t 7→ β(t) = 0 for all t ∈ [0, 1]. However, such a formulation
involves sequences of curves whose length tends to infinity. To exclude these cases, we assume
that there exists some ` > 0 such that L(Cn) < ` for all n. This guarantees that only the location
of these curves tends to infinity. We then prove that

lim
n→∞

D(Cn, P ) = 0.

Theorem 3.2. Under the assumptions of Theorem 3.1, our curve depth is a depth function in CL,
i.e., it takes values in [0, 1], is similarity-invariant and is vanishing at infinity.

4 Implementation
Even if the curves X1, . . .Xn and C are known, it may not be possible to obtain explicit ex-
pressions of µC(H) and Qn(H) for an arbitrary halfspace H . This might prevent one to com-
pute a value for (3.3) (via (3.2)). In fact, it appears that computation of the point curve depth
D(x|Qn, µC), x ∈ SC , in (3.3) demands algorithmic elaboration. We describe in the Supple-
mentary Materials (Section 3.1) a Monte Carlo scheme to approximate D(C|X1, . . . ,Xn). This
is summarized in Algorithm 1.

The main idea is to generate 3 samples. First, a sample of size m is used in order to ap-
proximate µC (Line 2). Next, a (stratified) sample of size nm is used to approximate the µXi
(Lines 3–5) and Qn (Line 6). (See Lemma 2.4 in the Supplementary Materials for the proce-
dure to generate these samples.) These are the two ingredients involved in the approximation of
D(x|Qn, µC).

The last sample (Line 7) consists of points generated along the curve βC . It is used to approx-
imate the line integral of D(·|Qn, µC) with respect to µC (Line 11). A Monte Carlo approxima-
tion of (3.2) is obtained (Lines 8–10) by using an adaptation of a minimization algorithm from
(Rousseeuw & Ruts 1996) for dimension 2 and one from (Dyckerhoff & Mozharovskyi 2016) for
higher dimensions; see our Algorithms 1 and 2 in Section 6.1 in the Supplementary Materials.
These original algorithms were developed for the computation of the multivariate Tukey depth.
They need to be adapted to our context as follows. Given that we are looking to estimate a ratio
whose denominator can be arbitrarily small, we introduce a threshold ∆ in order to control the
stochastic convergence of the proposed algorithm (see Theorem 3.1 in the Supplementary Mate-
rials). Formal algorithms for dimensions 2 and 3 are stated and described in the Supplementary
Materials (Section 6.1). The latter can be easily extended to higher dimensions.
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Algorithm 1 Monte Carlo approximation of D(C|X1, . . . ,Xn) in (3.3); m denotes the
Monte Carlo sample size of points generated uniformly on each curve (taking into ac-
count their length); ∆m is a threshold parameter such that ∆m −→

m→∞
0; Hn,m

∆m
is the

collection of closed halfspaces H such that either Q̂m,n(H) = 0 or µ̂m(H) > ∆m.

1: procedure MCAPPROX(C,X1, . . . ,Xn,m,∆m)
2: Generate Y1, . . . , Ym i.i.d. from µC and set µ̂m = m−1

∑m
j=1 δYj .

3: for i = 1 : n do
4: Generate Xi1, . . . , Xim i.i.d. from µXi and set µ̂Xi = m−1

∑m
j=1 δXi,j .

5: end for
6: Set Q̂m,n = n−1

∑n
i=1 µ̂Xi = (nm)−1

∑n
i=1

∑m
j=1 δXi,j to estimate (2.6).

7: Generate (independently from the Yj’s) Z1, . . . , Zm i.i.d. from µC .
8: for k = 1 : m do . An approximation of D(Zk|Qn, µC) from (3.2)
9: Compute D̂(Zk|Q̂m,n, µ̂m,Hn,m

∆ ) as the smallest ratio of Q̂m,n(Hu,Zk) to
µ̂m(Hu,Zk) over a (random or deterministic) grid of points u ∈ S selected in such a
way thatHu,Zk ∈ H

n,m
∆m

. See Algorithms 1 and 2 in Section 6.1 in the Supplementary
Materials for a way to build a grid achieving exactly the infimum in R2 or R3.

10: end for
11: return m−1

∑m
k=1 D̂(Zk|Q̂m,n, µ̂m,Hn,m

∆ ) as an estimate of (3.3).
12: end procedure

Overall, time complexity isO(mdnd−1 log(mn)) ifD(x|Qn, µC) is computed exactly, where
n is the size of the sample of curves, and m is the size of the Monte Carlo sample of points which
are sampled on each curve involved in the depth computation. Time complexity is O(km2n) if
D(x|Qn, µC) is approximated using projections on k random directions (i.e., the minimum ratio
in Step 9 of Algorithm 1 is searched over k random directions u only).

In (2.1), we introduced the Fréchet distance dC(C1, C2) between any two curves C1 and C2

belonging to the space of curves C. This distance will be useful for two applications of Sec-
tion 6; namely for curve registration in the brain and also for an adaptation of the unsupervised
classification method of Jörnsten (2004). When calculating dC(C1, C2), one has to search for a
parameterized curve in C1 and a parameterized curve in C2 that are as close as possible, in terms
of their supremum distance. Numerically, this can be done as follows. Consider a set of points
on C1 and a corresponding relocation of each one of these points to C2, preserving their ordering.
The goal is to minimize the largest Euclidean distance between any one point on C1 and any of
its relocated counterpart on C2. The formal algorithm together with an illustrative explanation is
stated in the Supplementary Materials (Section 6.2).

Numerical computation of our curve depth and of the above-mentioned distance are imple-
mented in the R package CurveDepth (Mozharovskyi et al. 2019) which is available on the
CRAN (R Core Team 2019).
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5 Numerical Experiments Using Simulations

5.1 Simulated examples with a closed-form depth formula
The particular geometrical aspects of the curves in the following examples allows one to gain a
better insight in the behavior of our curve depth and its potential limitations. More details on the
computations are provided in the Supplementary Materials (Section 7.1).

Segments on a line. We observe a sample of n non-overlapping segments [ak, bk], k =
1, . . . , n, on a line. Without loss of generality, we denote by Xk the kth segment, from left to
right (see Figure 4 top). The curve depth of Xk w.r.t X1, . . . ,Xn is

D(Xk|X1, . . . ,Xn) =

{
1/n if k = 1 or k = n

1/n− ((n− 1)/n) log
(

(1− tk)1−tkttkk

)
otherwise,

where tk = (k − 1)/(n − 1). The deepest curve is the segment for which tk is the closest point
to 1/2. Our curve depth induces the same ordering as when one computes the original Tukey
depth of the middle points of the segments. It is worthwhile noting that when the sample size
n increases, D(Xk|X1, . . . ,Xn) tends to the Shannon entropy (in base b = e) of a Bernoulli(tk)
random variable. Thus our segment depth is maximum at 1/2 (its value being equal to log(2))
and minimal (i.e., equal to 0) close to 0 and 1. Outliers correspond to minimal depth and minimal
entropy.

Parallel segments on a rectangle. Let Cy be the segment of [0, 1]2 defined as the set
{(x, y); x ∈ [0, 1]}. We define X ∼ P as the random curve generated from the following
scheme (see Figure 4 , bottom left) :

X = CY with Y ∼ U [0, 1].

The population version of our curve depth is

D(Cy|P ) = min(y, 1− y) = 1/2− |y − 1/2| for y ∈ [0, 1].

Our curve depth induces the same ordering as when one computes the Tukey depth of the abscissa
of the segments. Notice that due to the particular geometry of the distribution of the segments,
our curve depth is unable to detect as outliers vertical segments lying in the interior of the support
of the measure QP (here it is the unit square).

Star segments. Let Cθ be the segment in R2 from (0, 0) to the point (cos(θ), sin(θ)), for
θ ∈ [0, 2π). We define X ∼ P as the random curve generated from the following scheme (see
Figure 4 , bottom right) :

X = Cθ with θ ∼ U [0, 2π].

By symmetry, every segment has the same depth, which is equal to 0.255.
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Figure 4: Illustration of examples : (top) Sample of n = 7 non-overlapping segments on a
line, (bottom left) Sample of n = 50 parallel segments, (bottom middle) Sample of n = 100
concentric circles and the associated population version of our curve depth as a function of the
radius, (bottom right) Sample of n = 100 star segments. For each scenario, the deepest curves
are plotted in blue while darker red indicates a higher value of depth.

Concentric circles. Let Cr be the circle in R2 of center 0 and radius r > 0. We define X ∼ P
as the random curve generated from the following scheme (see Figure 4, bottom middle-left) :

X = CR with R ∼ U [0, 1].

The population version of our curve depth is plotted on Figure 4 (bottom middle-right). The
deepest circle is the circle with a radius r = 0.425. It is worthwhile noting that our approach do
not incorrectly lead to the deepest curve being the circle with a null radius. This being said, one
may have expected the deepest curve to be the circle with radius r = 1/2.

5.2 Monte Carlo Approximation of the Curve Depth
In most cases, it is not possible to get an explicit expression of our curve depth since it requires
to compute for all x ∈ SC an infinimum of the ratio Qn(Hx,u)/µC(Hx,u) over all u ∈ S. Section
4 describes a Monte Carlo estimate of D(C|X1, . . . ,Xn); see Algorithm 1. This approximation
is consistent according to Theorem 3.1. We conducted a Monte Carlo study to assess this conver-
gence in several scenarios in Section 7.2 of the Supplementary Materials. Here, we only give a
brief summary of these results.

Scheme 1 : Concentric circles. We consider the population of concentric circles with
radius lying in the interval (0, 1) described in Subsection 5.1. For a given sample of circles
{X1, . . . ,Xn}, we have an explicit expression both for D(Cr|X1, . . . ,Xn) and D(Cr|P ), where
Cr is the circle of radius r ∈ (0, 1). This example has the particularity that the functions
x ∈ SC 7→ D(x|Qn, µC) and x ∈ SC 7→ D(x|QP , µC) are constant over their domain. Our
main findings are the following.

1. The Monte Carlo estimator of the sample curve depth converges in probability as the Monte
Carlo sample size m goes to infinity; see Figure 24 in the Supplementary Materials. Monte Carlo
estimates (see Algorithm 1) tend in average to underestimate the sample curve depth. Observing
such a negative bias is not surprising since we aim to compute an infimum over all directions
u ∈ S. However this bias and the standard deviation depend on the value of the radius (i.e., on
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the position of the curve C w.r.t. the sample of curves) and they both decrease towards zero as m
gets large.

2. The sample curve depth converges in probability to the population curve depth. The bias
and the standard deviation of the sample curve depth computed over 5, 000 replications decrease
towards zero as n goes to +∞; see Table 2 in the Supplementary Materials. Moreover, the
standard deviation of D(Cr|X1, . . . ,Xn) seems to be dependent on the value of the radius r.
As expected, the Monte Carlo estimator of the population curve depth (see Algorithm 1) also
converges in probability for increasing values of both n and m. The rate of convergence of the
latter is slightly smaller, with on average a greater impact on its bias than on its standard deviation.

Scheme 2 and scheme 3 : functional data. We consider two example of simulated func-
tional data from Claeskens et al. (see paragraph 4.2.1 in 2014) and from Cuevas et al. (2007).
Here we consider as unparametrized curve the collection of points,

X = {(t,x(t)) : t ∈ [0, 1]}

where x(t) is a continuous function from [0, 1] to R. The sample processes of these example
admit a symmetry around their respective mean function. Moreover these mean functions are
known (see the black curves in Figure 5). Notice that for these examples, we have no explicit
formula for the sample curve depth and the population curve depth.

1. The convergence of the Monte Carlo estimate of the sample curve depth. For a given
sample of curves, {X1, . . . ,Xn}, we observe that the Monte Carlo estimate of D(C|X1, . . . ,Xn)
converges in probability to a constant with m goes to∞ and with min(n,m) goes to∞. More-
over, we don’t observe an impact of the threshold ∆ in the computation of the depth.

2. The most central curves are located in a neighborhood of the mean curves. According
to the previous simulations, we estimate the Monte Carlo error of the deepest curve (shown in
red in Figure 5) and we select the curves whose depth belongs to the 97.5%-confidence (shown
in orange in Figure 5). These curves appear to be located reasonably close to the center of the
stochastic process (the black mean curves).
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Figure 5: Two samples of n = 50 gray curves generated according to two simulation schemes:
(left) the one proposed by Claeskens et al. (2014), (right) the one proposed by Cuevas et al. (2007).
The deepest curve, computed using our new method (taking ∆m = 1/(10mα) withm = 500 and
α = 1/8), is plotted in red; its depth is 0.744 (left) and 0.752 (right). The mean curves, plotted in
black, have a depth of 0.727 (left) and 0.571 (right). The curves having a depth lying in the 0.975
Monte Carlo confidence interval are plotted in orange.
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5.3 Outlier detection
We explored the ability of our curve depth to detect outlying observations in a sample of curves,
on two visual examples; see Figure 6.
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Figure 6: Curve data with outliers. Left: 15 smooth curves with two shift-shape (red and green)
and one purely shape (blue) outliers. Right: 50 oscillating curves with one smooth shift outlier
(red), one isolated outlier (green), one persistent outlier (blue), and one isolated outlier with a
negative peak (magenta).

For the first scenario, we generated a sample of 12 2D-curves according to the following
random generating process (inspired from (Claeskens et al. 2014, Section 4.2.1)):

X = {(x,A1 sin(2πx) +A2 cos(2πx)) ; x ∈ [L,U ]} ,

where A1, A2 ∼ U [0, 0.05], L ∼ U [0, 2π
3 ], and U ∼ U [4π

3 , 2π], all independent. We then added
three outlier curves: two (red and green) are shift-shape outliers, while the third one (blue) is
a purely shape outlier (for a taxonomy of multivariate functional outliers see, e.g., Hubert et al.
2015).

For the second scenario, we generated a sample of 46 2D-curves according to the following
random generating process:

Y =
{(
x, 30(1− x)1+Wx1.5−W + Ux

)
; x ∈ [L,U ]

}
where {Ut; t ∈ [0, 1]} is a zero mean stationary Gaussian process with covariance function
t 7→ 0.2e−

1
0.3
|t|, W ∼ U [0, 0.5], L ∼ U [0, 0.1], U ∼ U [0.9, 1], all independent. We then added

four outliers: a shift outlier (red), an isolated outlier (green), a persistent outlier (blue), and to be
fair to the other depth measures, another isolated outlier with a negative peak (magenta). All the
outliers (slightly) differ in shape.

Plots of the ordered depths of the curves in these two samples, computed using mSBD, saPRJ
and MFHD (using an arc-length parametrization) as well as our curve depth are displayed on
Figure 7.

Our curve depth is the only one able to correctly identify the three outliers added to the X
curves. saPRJ and MFHD only identify the two shift-shape outliers while mSBD identifies just
one. None of these three other depth methods sees the pure shape outlier.
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Figure 7: Values of depth in ascending order for two samples drawn from X (top) and Y (bottom)
contaminated with a few outlying observations (colored as in Figure 6).

For the second scenario, mSBD and MFHD are not able to identify any outlier added to the
Y curves, while saPRJ only fails to find the shift outlier. Our curve depth perfectly distinguishes
all outliers but the negative isolated outlier which is assigned a rather large value of depth. This
failure was to be expected since a building block of our approach is to use halfspaces, as illustrated
in Figure 20. Somehow, a similar behaviour was observed when we slightly underestimated the
depth of the deepest curve in the concentric circles example of Section 5.1.

6 Application to Real Data

6.1 Application to the Older Australian Twins Study Data
White matter (WM) in the brain is made up of long myelinated axonal fibers generally regarded
as passive routes connecting several gray matter regions (the ones containing neurons) to permit
flow of information across them. In such tissue, water tends to diffuse mostly along the direction
of the fibers. The ratio of axial and radial movement is called fractional anisotropy. Diffusion
Tensor Magnetic Resonance Imaging (DTI) measures the motion of hydrogen atoms within water
in all three dimensions.

We had access to DTI scans from the Older Australian Twins Study (OATS), an ongoing
longitudinal study investigating genetic and environmental factors and their associations and in-
teractions in healthy brain ageing and ageing-related neurocognitive disorders for people aged
65+ years (Sachdev et al. 2009). The DTI data considered in the current article were drawn from
34 twin pairs, aged between 67.3 and 84.2 years. Eleven of the 34 pairs were dizygotic (DZ)
twin pairs (i.e., non-identical twins sharing 50% of their genes) and 23 monozygotic (MZ) twin
pairs (i.e., identical twins sharing 100% of their genes). Using MRtrix software (Tournier et al.
2012) to extract corticospinal fiber tracts from the DTI scans (an operation called tractography),
the resulting data sets were two bundles of around 1, 000 fibers each per subject (see Figure 8;
left). Other pre-processing steps are described in the Supplementary Materials, Section 8.

It is quite a challenging task to visualize brain fibers. Consequently this information is diffi-
cult to use in a clinical environment (e.g., for surgery planning). New tools are thus needed for
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efficiently representing these tractograms. An interesting approach by Mercier et al. (2018) con-
sists in progressively simplifying tractograms by grouping similar fibers into a specific geometric
representation.

We believe that the depth for curves developed here can also help neuroscientists to visualize
a 3D bundle of fibers. One can follow the approach adopted by Mercier et al. (2018) by grouping
curves according to their depths. It is also possible to assign a transparency value to each curve
equal or proportional to its depth value (see Figure 8; left) to inspect the whole bundle at once.
Similarly, one can instead assign a low transparency value to the least deep curves in order to vi-
sualize outliers (see Figure 8; right). Outliers can eventually be removed before further statistical
analyses are conducted.

Figure 8: Illustrations of the ordering of the white matter fibers for one subject using our curve
depth. (Left) Whole brain fiber data set for one twin; see http://biostatisticien.eu/
DataDepthFig8 for an interactive 3D applet. (Right) Result of bundle ordering for the right
side of the brain only. We only display the first 100 fibers in the data set, among which 6 are
identified as outliers and colored in red (their depth is less than 0.075).

We demonstrate on Figure 9 that our curve depth approach gives better results in terms of
outlier detection than four other existing depth measures that can be applied to three-dimensional
curves. These multivariate functional depth-based competitors (with an arc-length parametriza-
tion) are the modified multivariate band depth (mMBD), SBD, mSBD, saPRJ, and our curve
depth. We observe that the 15 fibers having the lowest depth as computed by our curve depth are
located outside of the bundle, while there are fibers with a low depth value inside this bundle for
the competitors. Furthermore the range of depth values associated to our curve depth is the widest
among the 5 methods considered here. And there is a clearer separation between the depths of
outliers and the other fibers. Notice that it is hard to distinguish outliers using SBD and mSBD
and that the bottom fiber which is clearly outside the bundle is not detected as an outlier by SBD.
Finally, mMBD and saPRJ detect fewer outliers than our curve depth, some of them being the
same as the ones detected by our approach.
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Figure 9: Top: Curve boxplots for a sample of 100 WM-fibers from the right side of the brain.
The set of 100 curves is partitioned into 15/35/49/1 curves: 15 with the smallest value of depth,
considered as outliers (red), 35 with a larger value of depth, considered as outer curves (light
blue), 49 with the largest value of depth, considered as the more central curves (blue), and finally
the deepest curve of all (dark blue). Depth methods are (from left to right) mMBD, SBD, mSBD,
saPRJ, and our curve depth. Bottom: Corresponding depth-ranked histograms.

6.1.1 Curve Registration

Image registration is one of the main pre-processing steps in any statistical analysis of brain
imaging data. Its aim is to geometrically match up image volumes of brain structures, for example
for structure localization or difference detection. Broadly, this consists in finding rotation and
translation parameters that will minimize a certain cost function (e.g., least squares or mutual
information) which quantifies how well aligned two images are. Image registration is an active
field of research since existing algorithms still have defects, for example they might suffer from
directionality bias (Modat et al. 2014). All standard libraries dedicated to the analysis of fMRI,
MRI and DTI brain imaging data contain an image registration procedure; see, e.g., RNiftyReg
(Clayden et al. 2017) in the R software (R Core Team 2019).

Here, our approach to register the bundles at hand is to first extract one single best represen-
tative curve for each bundle (namely the deepest one; see the dark blue fiber in Figure 8) and
then to match these representatives as best as possible. In the twin DTI data set considered here,
our aim was to register 68 bundles, of about 1,000 fibers each, located in the left hemisphere
say. To reach this goal, we first computed the deepest fiber within each bundle, noted thereafter
dj , j = 1, . . . , 68. We then computed the deepest fiber among d1, ..., d68, which is denoted D.
Finally, for each bundle j, we found the rigid transformation (in terms of rotation, translation
and centering) that minimizes the distance (2.1) between the curves dj and D. Registration is
then achieved by applying each one of these rigid transformations to all the fibers within the
corresponding bundle. This process is illustrated in Figure 10.

18



Subject 104 Subject 110 Subject 131

Figure 10: Illustration of the registration process. Subject 235 is the reference subject (i.e., the
subject whose deepest curve is D, the deepest of all). The red and the dark blue curves are the
deepest curves (before registration) of the given subject and of subject 235, respectively. We
bring the red curve as close as possible, in terms of distance (2.1), to the dark blue curve. The
transformed curve (i.e, after registration) is the light blue curve. Distances from each red curve
(i.e., before registration) and from each light blue curve (i.e., after registration) to the deepest of
all are 10.271 and 3.245 (for subject 104), 4.539 and 3.395 (for subject 110), and 3.329 and 2.084
(for subject 131), respectively.

6.1.2 A Statistical Comparison Between MZ and DZ Twins

After having performed curve registration, comparison of the empirical distributions is possible.
Given two distributions P0, P1 ∈ P on the space of curves C, we consider the mapping that yields
the DD-plot (Liu et al. 1999):

C→ [0, 1]2 , C 7→ (D(C|P0), D(C|P1)) . (6.1)

For two random samples of curves {X (0)
1 , . . . ,X (0)

n0 } and {X (1)
1 , . . . ,X (1)

n1 } from P0 and P1 re-
spectively, the empirical DD-plot can be constructed as:⋃

k=0,1

{(
D(X (k)

i |X
(0)
1 , . . . ,X (0)

n0
), D(X (k)

i |X
(1)
1 , . . . ,X (1)

n1
)
)
, i = 1, . . . , nk

}
.

For six pairs of twins, DD-plots are presented in Figure 11, whose contribution is twofold.
First, as a proof of concept, the empirical distributions of two MZ twins are very similar since the
points are concentrated around the diagonal of the DD-plot while those of DZ twins differ (see
also Liu et al. 1999). Second, this closeness of the MZ twins underlines the high quality of the
curve registration using the the geometrical matching (Section 6.1.1) in the sense that (each of)
these two bundles of curves are meant to substantially coincide.

Recently, neuroscientists have discovered that several structures in the brain are influenced by
our genetics; see, e.g., (Wen et al. 2016). This suggests a genetically-driven spatial organisation
of corticospinal brain fibers. This biological hypothesis can be statistically confirmed by apply-
ing the depth-based Wilcoxon testing procedure introduced by Liu & Singh (1993) and further
described in (López-Pintado & Romo 2009). For each pair of twins, we considered 500 fibers se-
lected at random from the first twin as a reference sample. We then used 50 fibers from each twin
(selected at random among the remaining fibers) to calculate the test statistic value. The p-values,
computed using the normal asymptotic null distribution given by Lehmann & D’Abrera (1975),
are provided in Figure 11. They are small for DZ twins and large for MZ twins, a statistical
evidence in favour of this biological hypothesis.
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104 vs. 204 (MZ) 106 vs. 206 (MZ) 131 vs. 231 (MZ)
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Figure 11: DD-plots of six pairs of twins (red circles for 1xx; blue “+” signs for 2xx) with
associated p-values in parenthesis. (Top) three DZ, namely: 105 and 205 (1 − e9), 120 and 220
(0.017), 132 and 232 (0.003). (Bottom) three MZ: namely 104 and 204 (0.733), 106 and 206
(0.366), 131 and 231 (0.366).

6.2 Classification Algorithms for Unparameterized Curves
Automatic clustering of white matter fibers is an important sub-task in understanding brain con-
nectivity and integrity, see e.g., Jin et al. (2014). With this motivation in mind, we extend to the
context of curves two classification algorithms: the DD-plot procedure (Li et al. 2012) and the
unsupervised depth-based clustering (Jörnsten 2004). To illustrate the performance of these two
procedures when used in conjunction with our curve depth, we start by considering the problem
of recognition of hand-written digits from the now famous training MNIST data set1. This is
done in a supervised way in Section 6.2.1 and in an unsupervised way in Section 6.2.2. Finally,
in Section 6.2.3 we produce an unsupervised clustering of the DT-MRI brain fibers in a data set
previously studied by Kurtek et al. (2012, Section 4).

1http://yann.lecun.com/exdb/mnist/
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6.2.1 Supervised Classification of Hand-written Digits

As a proof-of-concept, we show that our curve depth can be used to produce a linear classifier able
to discriminate between two classes of images representing the digits ‘0’ and ‘1’. We illustrate its
results on 100 observations from each class. The original MNIST images have been preprocessed
in order to transform them into pixelized curves (i.e., each pixel of an image should have at most
two neighboring pixels on the vertical, horizontal and diagonal directions). A few examples of
the preprocessed digit images are plotted in Figure 12.
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Figure 12: First ten images from each of the two classes of curve-preprocessed MNIST digits.

ADD-plot built using our curve depth (see Section 6.1.2) can be exploited to classify curves.
Indeed, this task is greatly simplified in the DD-plot space since a rule separating two classes
needs only to be found in a Euclidean space of dimension two. For the sample consisting of 100
‘0’s and 100 ‘1’s, we applied the DDα-procedure (an iterative heuristics in the DD-plot; see
Lange et al. (2014) for a detailed description). The resulting separation rule is plotted in solid
green on Figure 13.

One can observe (for this particular sample) the perfect separation of the two classes by a
linear rule. In Figure 13, on the right-hand side of the DD-plot ‘magnified’ observations (‘1’ and
‘0’) having the highest depth in each class are pictured; they are trivially well classified. On the
left-hand side of the DD-plot, we paint the most doubtful observations, i.e., those lying closest
to a member of the opposite class. The ‘1’ here corresponds to the observation with the lowest
depth in the sample of ‘1’s; this can also be regarded as an atypical observation. The situation is
different with the ‘0’ lying closest to the set of ‘1’s. It has a rather average depth in its own class,
but due to its oblong shape resembles a ‘1’ and thus has a high depth value in the class of ‘1’s
relative to its depth in the class of ‘0’s.

6.2.2 Unsupervised Classification of Hand-written Digits

Jörnsten (2004) proposes the DDClust algorithm for clustering. This non-parametric method is
based on both distance-based distortion (captured by the silhouette width) and geometry of the
curves (captured by the relative depth). We propose the original method with slight modifications
and we illustrate it on the MNIST-digits data. Let {C1, . . . , Cn} be an observed sample of curves
from C. Our aim is to partition the data set into K groups. DDclust proceeds iteratively by
assigning a curve Ci at each instance to the cluster where it has the highest depth.

For k = 1, . . . ,K, we denote by Ik the set of indices of observations belonging to the cluster
k and by Pk the probability measure on C defined as

Pk =
1

nk

∑
i∈Ik

δCi ,
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Figure 13: DDα-classifier for a subsample of 100 ‘0’s and 100 ‘1’s taken from the MNIST data
set. For each one of the two classes, ‘magnified’ observations correspond to the one having the
highest depth value in its class (on the right-hand side), and to the one lying closest to the opposite
class (on the left-hand side).

where nk is the size of the cluster Ik. Then I = {I1, . . . , IK} is a partition of {1, . . . , n}.
The within-cluster data depth of an observation i ∈ Ik is D(Ci|Pk). The between-cluster data

depth of an observation i ∈ Ik is min`6=kD(Ci|P`). The relative depth of an observation i ∈ Ik
is then defined as

ReDi(I) = D(Ci|Pk)−min
`6=k

D(Ci|P`). (6.2)

The within-cluster average distance of an observation Ci ∈ Ik is

d(Ci|k) =
1

nk − 1

∑
j∈Ik\{i}

dC(Ci, Cj),

where nk − 1 is the size of Ik \ {i}. The closest average distance of an observation i ∈ Ik among
foreign clusters is min 6̀=k d(Ci|`). The silhouette width of an observation i belonging to cluster
k is

Sili(I) =
min`6=k d(Ci|`)− d(Ci|k)

max{d(Ci|k),min`6=k d(Ci|`)}
. (6.3)

The clustering cost of an observation i for the partition I = {I1, . . . , IK} is

Ci(I) = (1− λ)Sili(I) + λReDi(I), (6.4)
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where λ ∈ [0, 1] being a constant defining trade-off between depth and distance. The total
clustering cost can then be formulated as

C(I) =
1

n

K∑
k=1

∑
i∈Ik

Ci(I). (6.5)

Here we employ the original clustering algorithm by Jörnsten (2004) with slight modifica-
tions, which we briefly describe right below and send the reader to the source for details. For a
fixed number of clusters K, we start with an initial partition I which may be generated at ran-
dom. For each observation i = 1, . . . , n, we compute its clustering cost Ci(I). Then the set of
observations considered for a potential reallocation is defined as the set of indices:

R = {i : Ci(I) < T},

where T ≤ 0 is a prefixed threshold. For a random subset E fromR, we reallocate each index in
E to its closest cluster (the one with highest depth for this observation) getting a new partition Ĩ
that is accepted if C(Ĩ) > C(I) and with probability 1− exp

(
β(C(I)− C(Ĩ))

)
/2 otherwise

(β is a temperature parameter). The whole procedure is given in Algorithm 5, which can be found
in Section 6.3 of the Supplementary Materials.

We ran our clustering algorithm DDCLUSTCURVE (withK = 3) on a set of 300 preprocessed
MNIST images of the digits ‘0’, ‘1’ and ‘7. The results are very satisfactory (empirical error rate
= 1%, 3 errors). The resulting Ci(I)-s are plotted in Figure 14.
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Figure 14: Clustering cost (ordered decreasingly within each class) of 300 digits from the MNIST
library after convergence of the clustering algorithm (Algorithm 5 in the Supplementary Materi-
als, an adaptation of Jörnsten (2004)’s algorithm). The colors correspond to the correct classes of
digits ‘0’ (red), ‘1’ (green), and ‘7’ (blue). According to the clustering criterion (threshold T set
at 0), only 3 observations from class ‘1’ and 1 observation from class ‘7’ are misclassified; the
(true) clustering error is 1% (or 3 observations).
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Subject 1 (n = 176) Subject 2 (n = 68)

Subject 3 (n = 48) Subject 4 (n = 88)

Figure 15: Clustering of DT-MRI fibers (Source: Kurtek et al. 2012).

6.2.3 Unsupervised Classification of DT-MRI Fiber Tracts

To further illustrate the exploratory potential of the proposed depth notion, we additionnaly apply
the clustering Algorithm 5 by Jörnsten (2004) to the DT-MRI brain fibers considered previously
by Kurtek et al. (2012, Section 4). Automatic clustering of white matter fibers is an important
sub-task in understanding brain connectivity and integrity, see e.g., Jin et al. (2014).

The data consist of one bundle of fibers for each one of four subjects. These bundles contain
176, 68, 48 and 88 fibers respectively. The results of our clustering coincide for subjects 1 and
3 with those obtained by Kurtek et al. (2012, Figure 4). The results differ for subjects 2 and 4
but our own interpretation is geometrically sound; see Figure 15. For subject 2, the original red
and blue groups in Kurtek et al. (2012) are grouped together into one single group (the red one in
Figure 15), while their original green group is split in two parts (green and blue in Figure 15). It
is worthwhile noting that a closer look to the scatter plot in Kurtek et al. (2012, bottom of second
column in Figure 4) tends to justify this splitting. Subject 4, on the other hand, illustrates that our
approach takes into account different features of the data.
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7 Concluding Remarks
In this work, we introduced a new notion of depth for continuous curves having finite length
and we investigated its properties (boundedness, similarity invariance, vanishing at infinity). By
construction, our curve depth is invariant to reparametrizations and it is defined on a non-linear
space, namely the space of unparametrized curves. It is applicable to curve data embedded in a
space of any (finite) dimension. It is a tool that can advantageously compete with functional data
depths when dealing with curve objects that should not be considered as functional data (e.g., DTI
data). In that sense, our curve depth can be seen as an extension of the notion of statistical depth
function to non-standard data types; see also the works by Ley et al. (2014) and Paindaveine &
Van Bever (2018). We envision a rich palette of applications for this curve depth. We gave various
examples of its use, e.g., for the spatial alignment or unsupervised classification of brain fibers.
We illustrated its superiority to other existing depth methods for some applications, for instance
in terms of its ability to detect spatial outliers. One can think of other interesting applications of
our curve depth, e.g., for handling handwriting data, or 2D and 3D trajectories of animal species
or vehicles. A ready-to-use implementation of algorithms that approximate depths of curves
via Monte Carlo or that compute the distance between two curves suggests a basis for direct
application of the developed methodology in other contexts. Being the most time demanding
part of the algorithm, the computation of our point curve depth can be performed efficiently in
dimension two while approximations can be successfully used in higher dimensions, which is
illustrated in the performed experiments. These computations are moderately sensitive to the
choice of the size m of Monte Carlo samples or smooth curves. This is confirmed by simulation
and for real data applications (e.g., we took m = 50 to cluster brain imaging data obtained
from Kurtek et al. (2012)). Implementation of the proposed methodology can be found in the R-
package curveDepth (Mozharovskyi et al. 2019) available on the CRAN (R Core Team 2019).
The data on brain fibers used in this article are available from the authors.

Supplementary Materials
Additional results: These contain theoretical details on the space of curves, definitions of our

curve depth function and its properties, algorithms, additional simulation results and some
details on data preprocessing. (“CurveDepthSupplement.pdf”)

Reproducing scripts: Reproducing R-scripts for experiments contained in the article with de-
scriptions included in files. (“CurveDepthReproduce.zip”)

Animations: A depth-colored animation of a few brain fibers (http://
biostatisticien.eu/DataDepthFig8) and an illustration of two
parametrizations of an ‘S’-shaped curve (http://biostatisticien.eu/
EquivalentCurves).
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1 Impact of Parametrization on Functional Depth

1.1 Simulated S Letters
We parameterize a 2D S-shaped curve (the red one in Figure 17 (a)) using either parametrization
A:

x1(t) = −
(
cos(t) + 1

)
1{t < 3π

2
} −

(
cos(3t− 3π) + 1

)
1{t ≥ 3π

2
}+ 1,

x2(t) =
(
sin(t) + 1

)
1{t < 3π

2
} −

(
sin(3t− 3π) + 1

)
1{t ≥ 3π

2
},

(1.1)

or parametrization B:

x1(t) = −
(
cos(3t) + 1

)
1{t < π

2
} −

(
cos(t+ π) + 1

)
1{t ≥ π

2
}+ 1,

x2(t) =
(
sin(3t) + 1

)
1{t < π

2
} −

(
sin(t+ π) + 1

)
1{t ≥ π

2
}.

(1.2)

For parametrization A (1.1), the argument t “moves slowly” on the first half of the curve while
it “moves fast” on the second half. This pattern is reversed for parametrization B (1.2); see Fig-
ure 16 and also http://biostatisticien.eu/EquivalentCurves for an interactive
visualization.
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Figure 16: Parametrization A (in red) and parametrization B (in green) for coordinates x1 (a) and
x2 (b).

A set of 50 S-shaped curves is then obtained by randomly shifting and rotating an “ideal” S-
curve, as well as changing its length; see Figure 17 (a). More precisely, both location coordinates,
the rotation angle, and the difference of length w.r.t. the beginning and the end of the “ideal” S-
curve are drawn from a normal distribution centered at zero.

Depth-based rankings given by MFHD (Claeskens et al. 2014) and mSBD (López-Pintado
et al. 2014), both using parametrizations A and B, are displayed in Figure 17 (b) and (c), respec-
tively.
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Figure 17: A set of 50 curves derived from the red pattern (a), together with their corresponding
depth-colored functional representations for parametrizations A (b) and B (c). The depth of each
curve is calculated w.r.t. to the same sample of 50 curves. Here, we used the multivariate func-
tional halfspace depth by Claeskens et al. (2014). The depth increases from yellow to red, the
deepest curve being colored in blue.

1.2 Cursive Handwriting Sample
We applied the multivariate functional halfspace depth developped by Claeskens et al. (2014)
(with weight function set to a constant) to a set of 20 planar curves taken from (Ramsay et al.
2017, Cursive handwriting sample). These curves were parameterized via two continuous func-
tions u 7→ (x(u), y(u)) ∈ R2, where the parameter u ∈ [0, 1] represents either the time or the
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arc-length. (Note that an equivalent representation of such a curve, standard in multivariate func-
tional data analysis, is through a vector of two real-valued functions defined over [0, 1], as in the
previous subsection.) Depth rankings are different depending on the parametrization chosen; see
Figure 18.
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Figure 18: Functional depth based ranking (obtained using the multivariate functional halfs-
pace depth by Claeskens et al. (2014)) of plane curves for parametrization by time (left) or by
arc-length (right) obtained using the package MFHD (Hubert & Vakili. 2013). The depth in-
creases from yellow to red in the two dimensional trace. The 3-dimensional blue curve indicates
the observation with the extreme rank difference for the two parametrizations (rank 1 for time
parametrization and rank 13 for arc-length parametrization). Source: data set handwrit of the
R-package fda (Ramsay et al. 2017).

Only four curves out of twenty are assigned the same ranks (namely 3, 10, 19 and 20). For the
sixteen others, depth-induced rankings are different, sometimes by a large amount. For instance,
one curve is ranked 1 (minimal depth) for one parametrization and 13 (quite high depth) over 20
for the other; see Table 1.

Table 1: Depth ranks for parametrization by time or by arc-length.

Time 2 3 13 12 4 8 1 17 11 9 7 19 15 20 18 16 14 5 6 10
Length 6 3 16 14 5 7 13 11 1 17 2 19 8 20 12 18 15 4 9 10

It thus appears that to obtain meaningful results, a proper parametrization of curves is needed.
(This could be the speed of writing in this handwriting recognition example.)

1.3 Historic Hurricanes Tracks
We applied the multivariate functional halfspace depth developped by Claeskens et al. (2014) and
the multivariate simplicial depth developed by López-Pintado et al. (2014) to the historical hur-
ricane tracks (obtained from https://coast.noaa.gov/hurricanes/) that go through
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the circular region of size 56 nautical miles centered at location 24.5N by 78W. We considered
two parametrizations : the arc-length parametrization (A) and the parametrization by the time
(B); see Figure 19. In this example, the results we obtained seem less sensitive to the choice of
a parametrization than in the previous subsections. Nevertheless, this illustrates that multivari-
ate functional depth functions tend to detect outliers which do not appear to be geometrically
aberrant.

MFHD, par. A MFHD, par. B mSBD, par. A mSBD, par. B Curve Depth

Figure 19: Comparison of depth based ordering for two parametrizations A (time) and B (arc
length) provided respectively by MFHD (a)–(b), mSBD (c)–(d), and by our new depth for un-
parameterized curves (e). The depth increases from yellow to red. Deepest curves are plotted
in blue. Curves with low value of depth are plotted in red. Source: an ensemble of 23 historic
hurricane tracks originating in the Gulf of Mexico between 1918 - 2018.

2 The Space of Unparametrized Curves
Several of the results in this section can be found in (Kemppainen & Smirnov 2017, Section 2).
The authors of this article borrowed material from Aizenman & Burchard (1999, Section 2.1) and
Burago et al. (2001, Section 2.5).

2.1 Equivalence Relation for Parametrized Curves
We denote Γ the set of increasing continuous functions γ : [0, 1] → [0, 1] such that γ(0) = 0
and γ(1) = 1. Two parametrized curves β1 : [0, 1] → Rd and β2 : [0, 1] → Rd are equivalent
(i.e., describe the same unparametrized curve) if and only if there exist two reparametrizations
γ1, γ2 ∈ Γ such that β1 ◦ γ1 = β2 ◦ γ2.

In order to describe the equivalence class associated to β1,we consider never-locally-constant
functions. A parametrized curve β : [0, 1] → Rd is said to be never-locally-constant if there
exists no non-empty sub-interval (a, b) ⊂ [0, 1] such that the restriction of β to the interval [a, b],
denoted as β|[a,b] , is a constant function. According to Burago et al. (2001, Exercice 2.5.3), each
equivalence class admits one representative which is never-locally-constant, for example its arc-
length parametrization. The equivalence class associated to the never-locally-constant path β in
C ([0, 1],Rd) is,

C = {β ◦ γ : γ ∈ Γ}.

The set of unparmetrized curves C is the quotient space of C ([0, 1],Rd) by the equivalence rela-
tion defined above.
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2.2 The Metric Space of Unparmetrized Curves
Following Kemppainen & Smirnov (2017), we endow the space of curves C with the Fréchet
metric dC defined as

dC (C1, C2) = inf {‖β1 − β2‖∞, β1 ∈ C1, β2 ∈ C2} , C1, C2 ∈ C, (2.1)

where ‖β‖∞ = supt∈[0,1] |β(t)|2 for β ∈ C ([0, 1],Rd).

Lemma 2.1. The metric space (C, dC) is separable and complete.

Proof of Lemma 2.1 relies on the following lemma.

Lemma 2.2. Let β1 and β2 be two never-locally-constant paths on [0, 1]. Let Ci be the un-
parametrized curve associated to βi and

CHom
i = {βi ◦ ψ; ψ : [0, 1]→ [0, 1] is homeomorphic increasing continuous},

a subset of Ci, i = 1, 2. Then, we have

dC (C1, C2) = dC
(
C1

Hom, C2
Hom

)
.

Proof of Lemma 2.2. We note that for every reparametrization γ ∈ Γ, there exists a sequence
(ψn)n of increasing homeomorphisms that converges uniformly to γ. Then using the uniform
continuity of the parametrized curves, we deduce that every point of the equivalence class Ci is
the uniform limit of sequence of CiHom for i = 1, 2.

Proof of Lemma 2.1. First, note that (C, dC) is a metric space (Aizenman & Burchard 1999,
Lemma 2.1). It remains to prove that it is separable and complete.

1. The topological space (C, dC) is separable. The topological space (C ([0, 1],Rd), ‖·‖∞) is
separable (Billingsley 2013, Exemple 1.3), so by definition it contains a countable dense subset
D. Then the set of equivalence classes associated to the paths of D is a countable dense subset of
(C, dC).

2. The topological space (C, dC) is complete. Let (Cm)m be a Cauchy sequence of (C, dC). Let
(εk)k be a sequence of positive real numbers such that the series of general term (εk) converges.
Using Lemma 2.2 it is possible to build a sub-sequence (nk)k and a sequence of never-locally-
constant parametrizations βnk of Cnk such that,

∀k ≤ 1, ‖βnk − βnk+1
‖∞ ≤ εk.

Then (βnk) is a Cauchy sequence of the complete space (C ([0, 1],Rd), ‖ · ‖∞). There exists β ∈
C ([0, 1],Rd) such that limk→∞ ‖βnk−β‖∞ = 0. Since the sequence (Cn)n is a Cauchy sequence
and that βnk is a parametrization of Cnk , we deduce that (Cn)n converges to the equivalence class
of β in (C, dC).

2.3 Mesurability of the Line Integral
The length of a parametrized curve β, denoted L(β), is defined as the supremum of the set of
chordal lengths,

Lτ (β) =

J∑
j=1

|β(τj)− β(τj−1)|2, (2.2)

corresponding to all finite partitions τ of [0, 1] : 0 = τ0 < τ1 < . . . < τJ = 1. A parametrized
curve β is rectifiable if L(β) is finite.
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Remark 4. For a rectifiable parametrized curve β, we have,

L(β) = lim
J→∞

J∑
j=1

|β(j/J)− β ((j − 1)/J)|2 .

The length is a property of the equivalence class : all parametrizations of C ∈ C have the
same length. We denote by L(C) the length of C.

For a rectifiable parametrized curve β, we define the length reparametrization (see Väisälä
2006, Theorem 1.3) :

sβ : [0, 1]→ [0, 1]

t 7→ L(βt)/L(β),

where βt is the restriction of β to the interval [0, t]. The function sβ is increasing and continuous,
that is sβ ∈ Γ. Moreover, one can define the generalized inverse of sβ,

qβ : [0, 1]→ [0, 1]

u 7→ inf{t : sβ(t) ≥ u}.

The function qβ is left continuous and admits a limit from the right for all u ∈ [0, 1] (see Em-
brechts & Hofert 2013, Proposition 1). According to Väisälä (2006, Theorem 2.4), for each
rectifiable curve C there exists a unique parametrization βC : [0, 1] → Rd, called the arc-length
parametrization, such that L(βtC) = tL(C), for all t ∈ [0, 1]. The arc-length parametrization is
never-locally-constant.

Lemma 2.3. Let CL be the set of rectifiable unparametrized curves with a positive length.

1. L : C→ [0,+∞] is measurable and CL is a measurable set.

2. Let u ∈ [0, 1] be fixed. The application,

{β ∈ C ([0, 1],Rd) : L(β) <∞} → [0, 1]

β 7→ qβ(u)

is measurable.

3. For all non negative bounded functions f : Rd → R, the application

I : CL → R

C 7→
∫
C
f(s)ds :=

∫ 1

0
f(βC(t))dt

is measurable.

Proof of Lemma 2.3. 1. L is measurable. Let τ be a partition of [0, 1]. The function β ∈
C ([0, 1],Rd) 7→ Lτ (β) ∈ R+ is measurable. Then the length function β 7→ L(β) is measurable
as the limit of measurable functions. Moreover, for A a borelian of [0,∞], we have :

β ∈ L−1(A) if and only if Cβ ⊂ L−1(A).

Then L : C→ [0,+∞] is measurable and CL = L−1(]0,∞[).

36



2. β 7→ qβ(u) is measurable. From the previous item, we deduce that for all t ∈ [0, 1], the
function

{β ∈ C ([0, 1],Rd) : L(β) <∞} → [0, 1]

β 7→ sβ(t)

is measurable. Let u be in [0, 1] fixed. We remark that,

{β∈C ([0, 1],Rd) : 0 < L(β) <∞ and qβ(u) ≤ t} = {β∈C ([0, 1],Rd) : 0 < L(β) <∞ and sβ(t) ≥ u}.

Then β 7→ qβ(u) is measurable too.
3. I : C 7→ I(C) is measurable. It suffices to prove the lemma when f is continuous. Let C

be in CL. Using Riemann sums we have:

I(f) = lim
n→∞

In(C), where In(C) =
1

n

n∑
i=1

f (βC(i/n)) .

Let β be a parametrization of C, then β = βC ◦ sβ and βC = β ◦ qβ. Then we can rewrite In(C) as

In(β) =
1

n

n∑
i=1

f (β(qβ(i/n))) .

We deduce from the previous point that the function,

{β∈C ([0, 1],Rd) : 0 < L(β) <∞} → R, β 7→ In(β),

is measurable, and its limits is measurable too.

Further, we define the probability distribution µC on the Borel sets of Rd

for all borel sets A of Rd, µC(A) =
1

L(C)

∫
C
1A(s)ds ,

with 1A(x) being the indicator function that takes the value 1 if x ∈ A and 0 otherwise.

Lemma 2.4. Let β be a parametrisation of C. Let UJ be a random variable such that its distri-
bution is a mixture distribution,

J∑
j=1

|β(j/J)− β((j − 1)/J)|2
LτJ (β)

U[(j−1)/J,j/J ],

where LτJ (β) is the chordal-length (2.2) associated to the partition τJ = (j/J)j=0,...,J and U[a,b]

is the uniform distribution on the interval [a, b]. The sequence of random variables (β(UJ))J≥1

converges in distribution to µC .

Proof of Lemma 2.4. Let `β(t) = L(β|[0,t]) be the length of the parametrized curve β on [0, t].

Let f : Rd → R be a continuous bounded function. Using that the functions f, β, βC and `β are
continuous (and uniformly continuous on a compact set), for all ε > 0 there exists Jε ≥ 1 such
that,

∀J ≥ Jε, [L(C)− LTJ (β)| < εL(β)/2 and L(C)/2 < LTJ (β),

∀J ≥ Jε, ∀t ∈ [0, 1], ∃j ∈ {1, . . . , J} : t ∈ [(j − 1)/J, j/J ] and |f ◦ β(j/J)− f ◦ β(t)| < ε.
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Then we can show that

lim
J→∞

EP (f(β(UJ)) = lim
J→∞

J∑
j=1

|β(j/J)− β((j − 1)/J)|2
L(C)

f(β(j/J)),

∫
fdµC = lim

J→∞

J∑
j=1

`β(j/J)− `β((j − 1)/J)

L(C)
f(β(j/J)).

Noticing that for all j = 1, . . . , J, `β(j/J) − `β((j − 1)/J) ≥ |β(j/J) − β((j − 1)/J)|2, we
can bound the difference,∣∣∣∣∣∣

J∑
j=1

`β(j/J)− `β((j − 1)/J)

L(C)
f(β(j/J))−

J∑
j=1

|β(j/J)− β((j − 1)/J)|2
L(C)

f(β(j/J))

∣∣∣∣∣∣
≤

maxt∈[0,1] |f(β(t))|
L(C)

(L(C)− LτJ (β)) .

Remark 5 (The order does not matter). In the paper, we define an unparametrized curve C = Cβ
with an order : the starting point is β(0) and the end point is β(1). We can also define an
unparametrized curve without orientation via an equivalence relation on the set of parametrized
curves up to a larger set of reparametrization,

Γnew = {γ : [0, 1]→ [0, 1] : γ is continuous and monotonic,

(γ(0), γ(1)) ∈ {(0, 1), (1, 0)}} .

Using the same arguments, one can show that the resulting space of curves endowed with the
associated Frechet metric is separable and complete. The difference is that there exist two arc-
length parametrizations : one β+

C from β(0) to β(1) and the other β−C from β(1) to β(0) such
that,

β−C (t) = β+
C (1− t).

Then the definition of the probability measure µC is invariant whether we use β+
C or β−C to define

it.

3 Definition of the Depth Functions
In order to prove that our curve depth is well defined, we have to show that the function x 7→
D(x|QP , µC) is measurable and that D(C|QP ) is bounded by 1 for all C ∈ CL. This requires the
use of a Monte Carlo scheme that we describe in the next subsection.

3.1 Monte Carlo Approximation of the Curve Depth
Notice that the curves X1, . . .Xn and C are known, so this means that µC and Qn are formally
known too. However, the computation of µC(H) and Qn(H) for an arbitrary halfspace H can be
untractable. Consequently, it is necessary to estimate µC(H) using either a quadrature formula
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or a Monte Carlo approach. We choose here a Monte Carlo approximation of (3.3). In Section 7
we conduct a simulation study on the size m of the Monte Carlo scheme.

We generate samples of size m from the observed (realized) curves X1, . . . ,Xn:

for all i = 1, . . . , n, given Xi, Xi,1, . . . , Xi,m are i.i.d. distributed from µXi ,

and two independent samples from the curve C,

Y1, . . . , Ym are i.i.d. distributed from µC ,

Z1, . . . , Zm are i.i.d. distributed from µC .

We use Ym = {Y1, . . . , Ym} to estimate the distribution µC by the empirical distribution µ̂m:

µ̂m = m−1
m∑
j=1

δYi ,

where δx stands for the Dirac measure at x ∈ Rd.
Furthermore, we remark that the marginal distribution of Xi,j is QP (see Remark 2). Then,

let Q̂m,n be the empirical distribution of the random sample Xn,m = {Xi,j , i = 1, . . . , n; j =
1, . . . ,m}:

Q̂m,n = (mn)−1
n∑
i=1

m∑
j=1

δXi,j .

Let H be a closed halfspace of Rd. A plug-in estimator of Qn(H)/µC(H) is Q̂m,n(H)/µ̂m(H).
To ensure the consistency of the Monte Carlo estimate of (3.3) we need to control the ratio

Q̂m,n(H)/µ̂m(H) for allH such that µC(H) > 0, given that µC(H) is approximated by µ̂m(H).
This is known to be a challenging problem having no general solution, see e.g., Broda & Kan
(2016). To circumvent this, we consider only a subset of all halfspaces in Rd for the computation
of the Monte Carlo estimate of the depth. Let ∆ be in (0, 1/2).We denote byHn,m∆ the collection
of closed halfspaces H such that either Q̂m,n(H) = 0 or µ̂m(H) > ∆, almost surely. For all x
in the locus of C, we define

D̂(x|Q̂m,n, µ̂m,Hn,m∆ )= inf
u∈S

{
Q̂m,n(Hu,x)/µ̂m(Hu,x) : Hu,x ∈ Hn,m∆

}
. (3.1)

Then, we use Zm = {Z1, . . . , Zm} to estimate the integral (3.3) w.r.t. the probability measure
µC ,

D̂n,m,∆(C|X1, . . . ,Xn)=
1

m

m∑
i=1

D̂(Zi|Q̂m,n, µ̂m,Hn,m∆ ). (3.2)

39



Hu1,z1

z1

Hu2,z2

z2

Figure 20: Illustrations to the statistical model and Monte Carlo appproximation of the depth with
a sample of five curves in blue and the curve C in red: (left) samples Xn,m (blue) and Ym (red)
of points on the observed curves; (middle and right) illustration of calculations of (3.1) for z1 and
z2 on the red curve see Remark 6.

Remark 6. To provide an intuitive reasoning, we artificially restrict the choice of the infimum in
(3.1) to two halfspaces where the number of observed curves is n = 5 and the size of the Monte
Carlo sample for each curve is m = 8; see Figure 20. Let z1 and z2 be two points in the locus
of C (red middle curve). Consider two halfplanes, say Hu1,z1 and H−u1,z1 , yielded by the line in
Figure 20, middle, when calculating D̂(z1|Q̂m,n, µ̂m). For each of these halfplanes, we obtain
(Q̂m,n(Hu1,Z1) = 25/40, µ̂m(Hu1,z1) = 4/8) and (Q̂m,n(H−u1,z1) = 15/40, µ̂m(H−u1,z1) =

4/8), respectively. Among Hu1,z1 and H−u1,z1 , H−u1,z1 will be chosen as Q̂m,n(H−u1,z1) <

Q̂m,n(Hu1,z1) and µ̂m(Hu1,z1) = µ̂m(H−u1,z1), and thus the rationale follows the traditional
multivariate Tukey depth as this would be the case in the absence of the denominator µ̂m(H·,z1).
On the other hand, in Figure 20, right, the values of the denominators in (3.1) differ giving
pairs of portions equal to (Q̂m,n(Hu2,z2) = 25/40, µ̂m(Hu2,z2) = 6/8) and (Q̂m,n(H−u2,z2) =

15/40, µ̂m(H−u2,z2) = 2/8). In this case, halfplane Hu2,z2 with higher portion of Q̂m,n will be
chosen due to the difference of µ̂m(Hu2,z2) and µ̂m(H−u2,z2).

Theorem 3.1 below states that the Monte Carlo approximation of the curve depth (3.2) con-
verges in probability to the population version (3.1) when n,m → ∞ or to the sample version
(3.3) when m → ∞. Then Theorem 3.1 holds. Let µ be a probability measure defined on Rd,
and let µ̂m be the empirical measure defined on a m-sample of µ. We denote byH the collection
of all halfspaces in Rd and define

‖µ̂m − µ‖H := sup
H∈H

|µ̂m(H)− µ(H)|.

According to Shorack & Wellner (2009, Chapter 26, Theorem 1), the class H satisfies the
Glivenko-Cantelly property. Then ‖µ̂m−µ‖H converge a.s. to zero as m→ +∞. Moreover, we
have

limmλ
−1
m ‖µ̂m − µ‖H ≤ C a.s., (3.3)

where C =
√
d+ 1 + 1/2 and λm = (log(m)/m)1/2; see Shorack & Wellner (2009, Chapter

26, Exercise 2).

40



Theorem 3.1. Let C ∈ CL be an unparametrized curve such that µC is non-atomic. Let P be a
probability measure in the space of curves such that P ∈ P and QP is non-atomic. Let (∆m)
be a decreasing sequence of positive numbers such that (∆m) and (λm/∆

2
m) converge to zero as

m→∞. Then:

• the Monte Carlo approximation D̂n,m,∆m(C|X1, . . . ,Xn) converges in probability to
D(C|X1, . . . ,Xn) as m→∞,

• the Monte Carlo approximation D̂n,m,∆m(C|X1, . . . ,Xn) converges in probability to
D(C|P ) as m,n→∞,

• the sample Tukey curve depth D(C|X1, . . . ,Xn) converges in probability to D(C|P ) as
n→∞.

To prove the boundness of the curve depth, it suffices to show that for all x, D(x|QP , µC) is
bounded by 1.

3.2 Boundness of Data Depth
LetA be a Borel set of Rd,we denote by ∂A the boundary of the setA. For instance the boundary
of Hx,u is ∂Hx,u =

{
y ∈ Rd : (y − x)>u = 0

}
, u ∈ S, x ∈ Rd.

Lemma 3.1. Let µ and Q be non-atomic measures on Rd, d ≥ 1. For all x ∈ Rd, there exists a
closed halfspace H ∈ H such that x ∈ ∂H and Q(H)/µ(H) ≤ 1 (with a convention 0/0 = 0).

Proof of Lemma 3.1. Let x be a fixed point of Rd.
1. The one-dimensional case, d = 1. Since QP and µC are non-atomic measures, we get

either QP ((−∞, x]) ≤ µC((−∞, x]) or QP ([x,+∞)) ≤ µC([x,+∞)), for all x ∈ R. Then the
lemma is proved.

2. The multi-dimensional case, d ≥ 2. If there exists u ∈ S such that Q(∂Hu,x) =
µ(∂Hu,x) = 0, then the lemma is proved. We show recursively that, for k = 1, . . . , d − 1,
there exists an affine subspace Ak of dimension k such that Q(Ak) = µ(Ak) = 0 and x ∈ Ak.
Then we consider u ∈ S such that ∂Hu,x = Ad−1 and the first assertion is true.

For k = 1, let An be the set of affine subspaces of dimension 1 such that for all A ∈ An:
x ∈ A and either Q(A) > 1/n or µC(A) > 1/n. The set An is finite since the intersection of
A ∈ An is the singleton {x} (and Q({x}) = µ({x}) = 0),

1 ≥ µ (∪A∈AnA) =
∑
A∈An

µ(A) > #An/n.

Then the set

∪n≥1An = {A affine subspaces of dimension 1 : x ∈ A and µ(A) > 0 or Q(A) > 0}

is countable as the countable union of finite sets. Since the set of affine subspaces of dimension
1 which contain x is continuous, there exists A1 /∈ An such that Q(A1) = µC(A1) = 0 and
x ∈ A1.

Assume that k ≥ 2. Using the recursive assumption for k − 1, there exists an affine subspace
Ak−1 of dimension k − 1 such that Q(Ak−1) = µ(Ak−1) = 0 and x ∈ Ak−1. Let An be the set
of affine subspaces A of dimension k such that Ak−1 ⊂ A, Q(A) > 1/n or µ(A) > 1/n. Using
the same previous argument the subset An is finite and there exists Ak /∈ ∪n≥1An.
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3.3 Mesurability
To prove the measurability, it suffices to show that x 7→ D(x|QP , µC) and x 7→ D(x|Qn, µC) are
the limits of measurable functions (see Lemma 3.4 and Lemma 3.5 respectively).

Lemma 3.2. The function x ∈ Rd 7→ D̂(x|Q̂m,n, µ̂m,Hn,m∆ ) ∈ R+ is measurable a.s.

Lemma 3.3. Let C ∈ CL be an unparametrized curve such that µC is non-atomic. The function
x 7→ D̂(x|Q̂m,n, µ̂m,Hn,m∆ ) ∈ R+ is bounded µC-a.s. by 1 if ∆ ≤ 1/m and by (1 − ∆)−1

otherwise.

Lemma 3.4. Let C ∈ CL be an unparametrized curve such that µC is non-atomic. Let P be a
probability measure on the space of curves such that P ∈ P and QP is non-atomic. Let (∆m) be
a decreasing sequence of positive numbers such that (λm/∆

2
m) and (∆m) converges to zero as

m → ∞. Then for all x ∈ Rd, D̂(x|Q̂m,n, µ̂m,Hm,n) converges almost surely to D(x|QP , µC)
as n,m→∞.

Lemma 3.5. Let C ∈ CL be an unparametrized curve such that µC is non-atomic. Let P be a
probability measure in the space of curves such that P ∈ P and QP is non-atomic. Let (∆m) be
a decreasing sequence of positive numbers such that (λm/∆

2
m) and (∆m) converges to zero as

m → ∞. Then for all x ∈ Rd, D̂(x|Q̂m,n, µ̂m,Hm,n) converges almost surely to D(x|Qn, µC)
as m→∞.

In what follows, we introduce the probability space (Ω,F ,Q) generated by the sequences
(Xi,j)j≥1,i≥1, (Yj)j≥1 and (Zj)j≥1 (P and C are fixed). For ω ∈ Ω, we denote by Xi,j(ω),
Yj(ω) and Zj(ω) the respective coordinates of ω for the variables Xi,j , Yj and Zj . Similarly, let
T be a random variable which is a function of (Xi,j)i≥1,j≥1, (Yj)j≥1 and (Zj)j≥1. We denote by
T (ω) the value taken by this variable at points (Xi,j(ω)), (Yj(ω)) and (Zj(ω)).

Applying (3.6) to the empirical measures µ̂m and Q̂m,n with the assumptions of Theorem 3.1,
there exists Ω̃ ⊂ Ω such that Q(Ω̃) = 1 and for all ω ∈ Ω̃ there exists Nω ∈ N:

∀m ≥ Nω, ∀n ≥ 1, ‖µ̂m(ω)− µC‖H ≤ 2Cλm and ‖Q̂m,n(ω)−Qn‖H ≤ 2Cλm,

2Cλm < ∆m,

∀m ≥ Nω, ∀n ≥ Nω, ‖Q̂m,n(ω)−QP ‖H ≤ 2Cλmn.

Proof of Lemma 3.4. We introduce the variable,

D(x|Q,µ,Hn,m∆ ) = inf
{
Q(Hu,x)/µ(Hu,x), u ∈ S, Hu,x ∈ Hn,m∆

}
,

where Q and µ are two probability measures on Rd. It is straightforward to show that, for all
ω ∈ Ω̃, there exists Nω ∈ N such that for all m,n ≥ Nω, we get,

sup
x∈Rd

∣∣∣D̂(x|Q̂m,n(ω), µ̂m(ω),Hn,m∆m
(ω))−D(x|QP , µ̂m(ω),Hn,m∆m

(ω))
∣∣∣ ≤ ‖Q̂m,n(ω)−QP ‖H

∆m
,

sup
x∈Rd

∣∣D(x|QP , µ̂m(ω),Hn,m∆m
(ω))−D(x|QP , µC ,Hn,m∆m

(ω))
∣∣ ≤ ‖µ̂m(ω)− µC‖H

∆2
m (1− 2Cλm/∆m)

.

Then we deduce that the variable

sup
x∈Rd

∣∣∣D(x|Q̂m,n, µ̂m,Hn,m∆m
)−D(x|QP , µC ,Hn,m∆m

)
∣∣∣
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converges a.s. to zero. It remains to show thatD(x|QP , µC ,Hn,m∆m
) converges a.s. toD(x|QP , µC)

as m,n→∞ for a fixed point x ∈ Rd.
Case 1 : there exists u0 ∈ S such that QP (Hu0,x) = 0. Then for all (m,n), Hu0,x ∈ H

n,m
∆m

,
and D(x|QP , µC) = D(x|QP , µC ,Hn,m∆m

) a.s.
Case 2 : for all u ∈ S, QP (Hu,x) > 0. Due to the fact that D(x|QP , µC) is bounded by 1

(see Lemma 3.1) there exists a sequence (uk) of S such that

D(x|QP , µC) = lim
k→∞

QP (Huk,x)

µC(Huk,x)
, and QP (Huk,x) ≥ µC(Huk,x) > 0.

First we consider the sub-case where the sequence (µC(Huk,x)) is lower-bounded by a positive
constant κ > 0 (if d = 1, only this case occurs because S is a finite set). Since (λm) and (∆m)
are decreasing sequences, we have µC(Huk,x) ≥ 2Cλm + ∆m, for m large enough and for all
k ∈ N. Then for all ω ∈ Ω̃, there exists Nω ∈ N such that

∀m ≥ Nω, ∀k ∈ N, µ̂m(ω)(Huk,x) ≥ µC(Huk,x)− ‖µ̂m(ω)− µC‖H
≥ ∆m,

which means that ∀m ≥ Nω, ∀k ∈ N, Huk,x ∈ H
n,m
∆m

(ω). Therefore we have, for all m ≥ Nω,
D(x|QP , µC) = D(x|QP , µC ,Hn,m∆m

(ω).
A second sub-case occurs when the sequence (µC(Huk,x)) is decreasing to zero, i.e., for all

m there exists Mm ∈ N such that for all k > Mm, µC(Huk,x) < 2Cλm + ∆m. Let m0 ∈ N
such that there exists k0 ∈ N for which µC(Huk0 ,x

) ≥ 2Cλm0 + ∆m0 . Then we consider the
increasing sequence (km)m≥m0 of integers defined recursively by,

km0 = k0 and km+1 = sup{k ≥ km : µC(Hukm+1
,x) ≥ 2Cλm+1 + ∆m+1}.

For all ω ∈ Ω̃, there exists Nω ∈ N such that,

∀m ≥ Nω, µ̂m(ω)(Hukm ,x
) ≥ ∆m,

i.e., Hukm ,x
∈ Hn,m∆m

(ω). Thus we obtain for all ω ∈ Ω̃, for all m ≥ Nω that

D(x|QP , µC) ≤ D(x|QP , µC ,Hn,m∆m
(ω)) ≤

QP (Hukm ,x
)

µC(Hukm ,x
)

and lim
m→∞

QP (Hukm ,x
)

µC(Hukm ,x
)

= D(x|QP , µC).

Proof of Lemma 3.5. As the proof of Lemma 3.4, we have that, for all ω ∈ Ω̃, there exists Nω ∈
N such that for all m ≥ Nω, and for all n ≥ 1,

sup
x∈Rd

∣∣∣D̂(x|Q̂m,n(ω), µ̂m(ω),Hn,m∆m
(ω))−D(x|Qn, µ̂m(ω),Hn,m∆m

(ω))
∣∣∣ ≤ ‖Q̂m,n(ω)−Qn‖H

∆m
,

sup
x∈Rd

∣∣D(x|Qn, µ̂m(ω),Hn,m∆m
(ω))−D(x|Qn, µC ,Hn,m∆m

(ω))
∣∣ ≤ ‖µ̂m(ω)− µC‖H

∆2
m (1− 2Cλm/∆m)

.

Then we deduce that the random variable

sup
x∈Rd

∣∣∣D(x|Q̂m,n, µ̂m,Hn,m∆m
)−D(x|Qn, µC ,Hn,m∆m

)
∣∣∣
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converges a.s. to zero. It remains to show thatD(x|Qn, µC ,Hn,m∆m
) converges a.s. toD(x|QP , µC)

as m→∞ for a fixed point x ∈ Rd.
Case 1 : there exists u0 ∈ S such that Qn(Hu0,x) = 0. Then for all m, Hu0,x ∈ H

n,m
∆m

, and
D(x|Qn, µC) = D(x|Qn, µC ,Hn,m∆m

) a.s.
Case 2 : for all u ∈ S, Qn(Hu,x) > 0. Due to the fact that D(x|Qn, µC) is bounded by 1

(see Lemma 3.1) there exists a sequence (uk) of S such that,

D(x|Qn, µC) = lim
k→∞

Qn(Huk,x)

µC(Huk,x)
, and Qn(Huk,x) ≥ µC(Huk,x) > 0.

First we consider the sub-case where the sequence (µC(Huk,x)) is lower-bounded by a positive
constant κ > 0 (if d = 1, only this case occurs). Since (λm) and (∆m) are decreasing sequences,
we have µC(Huk,x) ≥ 2Cλm + ∆m, for m large enough and for all k ∈ N. Then for all ω ∈ Ω̃,
there exists Nω ∈ N such that,

∀k ∈ N, µ̂m(ω)(Huk,x) ≥ µC(Huk,x)− ‖µ̂m(ω)− µC‖H
≥ ∆m,

i.e., ∀k ∈ N, Huk,x ∈ H
n,m
∆m

. Therefore we have for all m ≥ Nω that D(x|Qn, µC) =
D(x|Qn, µC ,Hn,m∆m

(ω)).
A second sub-case occurs when the sequence (µC(Huk,x)) is decreasing to zero, i.e., for all

m there exists Mm ∈ N such that for all k > Mm µC(Huk,x) < 2Cλm + ∆m. Let m0 ∈ N
such that there exists k0 ∈ N for which µC(Huk0 ,x

) ≥ 2Cλm0 + ∆m0 . Then we consider the
increasing sequence (km)m≥m0 of integers defined recursively by,

km0 = k0 and km+1 = sup{k ≥ km : µC(Hukm+1
,x) ≥ 2Cλm+1 + ∆m+1}

For all ω ∈ Ω̃, there exists Nω ∈ N such that,

∀m ≥ Nω, µ̂m(ω)(Hukm ,x
) ≥ ∆m,

that means Hukm ,x
∈ Hn,m∆m

(ω). Thus we obtain for all ω ∈ Ω̃, for all m ≥ Nω that

D(x|Qn, µC) ≤ D(x|Qn, µC ,Hn,m∆m
(ω)) ≤

Qn(Hukm ,x
)

µC(Hukm ,x
)

and lim
m→∞

Qn(Hukm ,x
)

µC(Hukm ,x
)

= D(x|Qn, µC).

Proof of Lemma 3.2. Notice that the function (x, z, u) ∈ R × Rd × S 7→ u>(x − z) ∈ R is
measurable, and that the function

w : Rd × S → R+ ∪ {+∞}× R+

(x, u) 7→
(
Q̂m,n(Hu,x)/µ̂m(Hu,x), µ̂m(Hu,x)

)
is also measurable and takes a finite number of values. We denote by 0 = v0 < v1 < · · · < vp =
+∞ the collection of values which are taken by the first coordinate of w. Let Vq be the inverse
image of {vq} × [∆, 1] under w, q = 0, . . . , p. We may rewrite D(x|Q̂m,n, µ̂m,∆) as

D̂(x|Q̂m,n, µ̂b,∆) =

p∑
q=0

vq1Bq(x),
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where (Bq)q=0,...,p are measurable subsets of Rd defined recursively by

B0 =
{
x ∈ Rd : ∃u ∈ S, Q̂m,n(Hu,x) = 0

}
,

Bq =
{
x ∈ Rd : ∃u ∈ S, (x, u) ∈ Vq

}
\

{
q−1⋃
r=0

Br

}
, q = 1, . . . , p.

Proof of Lemma 3.3. Let x be a fixed point of the locus of C. Since µC is a non-atomic measure,
x is not in Ym ∪ Xn,m almost surely. Let ω ∈ Ω be fixed.

1. The one-dimensional case, d = 1. We have that Q̂m,n(∂Hu,x) = µ̂m(∂Hu,x) = 0, for all
u ∈ {−1, 1}.

2. The multi-dimensional case, d ≥ 2. Assume there exists a.s. an affine subspace Ad−1 of
dimension d − 1 such that Q̂m,n(Ad−1) = µ̂m(Ad−1) = 0 and x ∈ Ad−1. Since 0 < ∆ < 1/2,
there exists u ∈ S such that ∂Hu,x = Ad−1 and µ̂m(Hu,x) > ∆. Then we define the non-empty
subset Sx of S such that

Sx =
{
u ∈ S : Hu,x ∈ Hn,m∆ and Q̂m,n(∂Hu,x) = µ̂m(∂Hu,x) = 0 a.s.

}
.

If there exists u ∈ Sx such that Q̂m,n(Hu,x)/µ̂m(Hu,x) ≤ 1, the lemma is proved. Otherwise for
all u ∈ Sx, we have

Q̂m,n(Hu,x)/µ̂m(Hu,x) > 1, and 0 < µ̂m(H−u,x) < ∆.

If ∆ < 1/m, then there exists u ∈ Sx such that Q̂m,n(Hu,x)/µ̂m(Hu,x) ≤ 1 by the reductio ad
absurdum argument. If ∆ > 1/m, then for all u ∈ Sx, Q̂m,n(Hu,x)/µ̂m(Hu,x) ≤ 1/(1 − ∆).
It remains to show the existence for d ≥ 2 of such an affine subspace Ak recursively on the
dimension k = 1, . . . , d− 1 of Ad−1.

For k = 1, there exists a finite number (at mostm+nm) of affine lines which contain x and a
point of the sample Ym(ω)∪Xn,m(ω). Since the set of affine lines which contain x is continuous,
there exists an affine line A1 such that Q̂m,n(w)(A1) = 0 and µ̂m(w)(A1) = 0.

Assume that k ≥ 2. Using the recursive assumption, there exists an affine subspace Ak−1 of
dimension k − 1 such that Q̂m,n(ω)(Ak−1) = µ̂m(ω)(Ak−1) = 0 and x ∈ Ak−1. Let A be the
set of affine subspaces A of dimension k such that Ak−1 ⊂ A. Then there exist at most m+ nm
affine subspaces of A which contain at least one point of the sample Ym(ω) ∪ Xn,m(ω). Then
there exists an affine subspaceAk which contains no points of the sample Ym(ω)∪Xn,m(ω).

4 Proof of Theorem 3.1
Conditionally on the samples Xn,m and Ym, we apply the Hoeffding inequality on the indepen-
dent sum of bounded variables D̂(Zi|Q̂m,n, µ̂m,Hn,m∆m

). Then for all ε > 0, we get that the event

Ωε = Ω \
(∣∣∣∣D̂n,m,∆(C|X1, . . . ,Xn)−

∫
C
D(x|Qn, µC ,Hn,m∆m

)dµC(x)

∣∣∣∣ > ε

)
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has a probability larger than 1−2 exp(−2ε2m).Using Lemma 3.5 and Lemma 3.3, the dominated
convergence theorem implies that given X1, . . . ,Xn,

∀ω ∈ Ωε, lim
m→∞

∫
C
D̂(s|Q̂m,n(ω), µ̂m(ω),Hn,m∆m

(ω))dµC(s) =

∫
C
D(s|Qn, µC)dµC(s).

Then we deduce that D̂n,m,∆(C|X1, . . . ,Xn) converges in probability to D(C|X1, . . . ,Xn) as
m→∞.

Similarly, conditionally on the samples Xn,m and Ym, the Hoeffding inequality on the inde-
pendent sum of bounded variables D(Zi|Q̂m,n, µ̂m,Hn,m∆m

) allows to consider,

Ωε = Ω \
(∣∣∣∣D̂n,m,∆(C|X1, . . . ,Xn)−

∫
C
D(x|QP , µC ,Hn,m∆m

)dµC(x)

∣∣∣∣ > ε

)
,

where ε > 0 and Q(Ωε) ≥ 1−2 exp(−2ε2m). Using Lemma 3.4 and Lemma 3.3, the dominated
convergence theorem implies that given the sequence (Xi)i≥1,

∀ω ∈ Ωε, lim
m,n→∞

∫
C
D(s|Q̂m,n(ω), µ̂m(ω),Hn,m∆m

(ω))dµC(s) =

∫
C
D(s|QP , µC)dµC(s).

Then we deduce that D̂n,m,∆(C|X1, . . . ,Xn) converges in probability to D(C|P ) as n,m → ∞
and therefore that D(C|X1, . . . ,Xn) converges in probability to D(C|P ) as n→∞.

5 Properties of the Curve Depth
Lemma 5.1. The depth of a curve is invariant up to the similarities group,

D(rAC + b|QPrAX+b
) = D(C|QPX ),

where A is a d× d orthogonal matrix, r > 0 and b ∈ Rd.

Proof of Lemma 5.1. Let b be a translation vector in Rd, r > 0 be a scalar and A be a d × d
orthogonal matrix. The arc-length parametrization of the curve rAC + b is t 7→ rAβC(t) + b. We
notice by using the substitution rule u = t/r that

µrAC+b(rAH+ b) =

∫ 1

0
1rAβC(t)+b∈rAH+bdt

=

∫ 1

0
1βC(t)∈Hdt

= µC(H).

Denote by QX the distribution of a given random vector X. We deduce that

QrAX+b(rAH+ b) =

∫
µrAC+b(rAH+ b)dP (C) = QX(H).

Then we get

D(rAC + b|QPrAX+b
) =

∫ 1

0
D(rAβC(t) + b|QrAX+b, µrAC+b)dt,
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where

D(rAβC(t) + b|QrAX+b, µrAC+b) = inf
u∈S

{
QrAX+b(rAHu,x + b)

µrAC+b(rAHu,x + b)

}
= inf

u∈S

{
QX(Hu,x)

µC(Hu,x)

}
= D(x|C, PX ).

rn
Rn

Hu1,x

Hu2,x

u1

u2

xn

Figure 21: Illustration for the proof of “Vanishing at infinity” property

Lemma 5.2. Let (Cn) be a sequence of unparametrized curves of length ` such that µCn is non-
atomic, and

Rn = inf
x∈SCn

|x|2, and lim
n→∞

Rn = +∞.

Then the sequence of depths (D(Cn|P )) converges to 0 as n→∞.

We introduce the following notations and definitions. We denote by Sr = {x ∈ Rd : |x|2 =
r} the sphere of radius r > 0. A halfspace H is tangent to Sr if its boundary ∂H is tangent to Sr
and H ∩ Sr is a singleton.

Lemma 5.3. Let x ∈ Rd such that |x|2 = R and d ≥ 2. Let y ∈ Rd such that |y|2 ≥ |x|2 and
|x− y|2 ≤ ` < r. There exist u1, u2, . . . , u2d−2 ∈ S such that

• for all i = 1, . . . , 2d− 2, Hui,x is a tangent halfspace to Sr,
• y ∈ ∪2d−2

i=1 Hui,x.

Proof of Lemma 5.2. Since QP is a probability meausure on Rd, QP is tight. Then we can con-
sider an increasing sequence rn such that:

1− εn = QP ({x : |x|2 ≤ rn}) and lim
n
ε = 0,

` < rn < Rn/
√

2 and εn ≤ 1/(4d2).
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Let ∆n be a subset of SCn defined as

∆n = {x ∈ SCn : ∀u ∈ S, QP (Hu,x) > εn or µCn(Hu,x) <
√
εn} .

Then for all x /∈ ∆n, D(x|µCn , QP ) ≤ √εn. It suffices to show that µCn(∆n) < 4dεn and the
lemma is proved. We define,

Rn + `n = max
x∈SCn

|x|2,

Fn(t) = µCn ({x : |x|2 ≤ Rn + t}) .

Since SCn is a compact set, we get that 0 < `n < `, and Fn is a cumulative distribution function
(c.d.f.) whose support is [0, `n].

1. The one-dimensional case, d = 1. The c.d.f. Fn is a non atomic cumulative distribution
function because µCn is non-atomic. Let tn be the quantile of order 1 −√εn of Fn. Then ∆n is
included in the set of x ∈ SCn such that |x|2 > tn, that is µCn(∆n) ≤ √εn.

2. The multi-dimensional case, d ≥ 2. The c.d.f. Fn may have atoms. First assume that
µCn({x : |x|2 = Rn}) ≥ 1− (2d− 2)

√
εn. We aim to show that ∆n ⊂ {x : |x|2 > Rn} and

then µCn(∆n) < 4dεn. Let x ∈ SCn be such that |x|2 = Rn and x ∈ ∆n. Then for all y ∈ SCn ,
|y|2 ≥ |x|2 and |x− y|2 ≤ `. Using Lemma 5.3, there exist u1, . . . , u2d−2 ∈ S such that :

SCn ⊂ ∪2d−2
i=1 Hui,x and ∀i = 1, . . . , 2d− 2, µCn(Hui,x) <

√
εn,

which is absurd. Then ∆n ⊂ {x : |x|2 > Rn} and µCn(∆n) < 4dεn.
Secondly assume that µCn({x : |x|2 = Rn}) < 1 − (2d − 2)

√
εn : there exists a non

negligible part of the curve Cn outside of SRn . Under this assumption, we distinguish two cases.
The first sub-case is when µCn({x : |x|2 = Rn + `n}) ≥ (2d − 2)

√
εn. If x ∈ ∆n then for all

y ∈ {z : |z|2 = Rn + `n} ∩ SCn , |x|2 ≤ |y|2 and |x − y|2 ≤ `. Using Lemma 5.3, there exist
u1, . . . , u2d−2 ∈ S such that :

SCn∩{x : |x|2 = Rn+`n} ⊂ ∪2d−2
i=1 Hui,x and ∀i = 1, . . . , 2d−2, µCn(Hui,x) <

√
εn,

which is absurd. Then ∆n = ∅ and µCn(∆n) < 4dεn.
The second sub-case is when µCn({x : |x|2 = Rn + `n}) < (2d − 2)

√
εn. Let tn be the

quantile of order 1− (2d− 2)
√
εn of Fn. We know that 0 < tn ≤ `n. Using the same argument,

we show that ∆n ⊂ {x : |x|2 ≥ tn}. If µCn({x : |x|2 = tn}) ≥ (2d − 2)
√
εn, one can show

that ∆n is a subset of {x : |x|2 < tn} and µCn(∆n) ≤ (2d−2)
√
εn. If µCn({x : |x|2 = tn}) <

(2d− 2)
√
εn, then

µCn(∆n) ≤ µCn({x : |x|2 = tn}) + µCn({x : |x|2 > tn}) ≤ 4d
√
εn.

6 Algorithms

6.1 Procedures for Calculating Point Curve Depth
Calculation of the point curve depth D̂(x|Q̂m,n, µ̂m,Hn,m∆ ) in R2 relies on the work by
Rousseeuw & Ruts (1996). The main idea is to regard all possible closed halfplanes by rotat-
ing a line containing x in a counter-clockwise way. Here, the modifications are straightforward
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and narrow down to accounting for two differing samples Q̂m,n and µ̂m, threshold ∆, and min-
imization functional represented by a ratio. The formal algorithm is detailed in Algorithm 2,
where w.l.o.g. x = 0 due to translation invariance of the depth for convenience. The complexity
of the algorithm is O(mn log(mn)).

Algorithm 3 calculates D̂(x|Q̂m,n, µ̂m,Hn,m∆ ) in R3 modifying in the similar way the work
by Dyckerhoff & Mozharovskyi (2016), and exploits Algorithm 2 as its basic element. The main
idea is to perform Algorithm 2 for a projection of Q̂m,n and µ̂m onto a plane orthogonal to the
line connecting 0 and one of the points from Q̂m,n and µ̂m. It can be easily extended to higher
dimensions by additionally accounting for different combinations of points lying on this line on
different sides form the (hyper)plane. The complexity of the algorithm is O(m2n2 log(mn)).

Algorithm 2 Routine for computing D(0|Q̂m,n, µ̂m,∆) in dimension 2

1: function PTCD.2D(y1, ...,ym,x1, ...,xm·n,∆) . Point Tukey curve depth of 0
2: nzy ← 0 . Number of µ-points in the origin
3: nzx ← 0 . Number of Q-points in the origin
4: nhy ← 0 . Number of µ-points in the halfplane
5: nhx ← 0 . Number of Q-points in the halfplane
6: for i = 1 : m do . Go through all points sampled on µ
7: if |yi| = 0 then
8: nzy ← nzy + 1 . Count µ-points in the origin
9: else

10: P (i− nzy)← (α = ATAN2(yi(2),yi(1)), c = 0) . Save to all points
11: if ATAN2(yi(2),yi(1)) < 0 then
12: nhy ← nhy + 1 . Count µ-points in the (lower) halfplane
13: end if
14: end if
15: end for
16: for i = 1 : (m · n) do . Go through all points sampled on Q
17: if |xi| = 0 then nzx ← nzx + 1 . Count Q-points in the origin
18: else
19: P (m− nzy + i− nzx)← (α = ATAN2(xi(2),xi(1)), c = 1) . Save to

all
20: if ATAN2(xi(2),xi(1)) < 0 then
21: nhx ← nhx + 1 . Count Q-points in the (lower) halfplane
22: end if
23: end if
24: end for
25: k ← (m+m ∗ n)− (nzy + nzx)
26: Sort P w.r.t. αs in ascending order
27: D ← nhx/(m·n)

nhy/m
. Initialize the depth value

28: j ← nhy + nhx + 1
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Algorithm 2 Routine for computing D(0|Q̂m,n, µ̂m,∆) in dimension 2 (continued)

29: . Turn around counter-clockwise from the lower to the upper halfplane
30: for i = 1 : (nhy + nhx + 1) do
31: while j ≤ k and (((i = nhy + nhx + 1) and (P (j).α ≤ π)) or
32: (P (j).α− π ≤ P (i).α)) do
33: if P (i).c = 0 then nhy ← nhy + 1 . Add the point to the halfplane
34: elsenhx ← nhx + 1
35: end if
36: if (j < k) and (P (j + 1).α = P (j).α) then . If next point a tie ...
37: j ← j + 1; continue . ... go directly to it
38: end if
39: if (i = nhy + nhx + 1) or (P (j).α− π ≤ P (i).α) then . If last point ...
40: if nhx = 0 then
41: return 0 . ... stop if zero depth achieved ...
42: end if
43: if nhy/m > ∆ then . ... otherwise still update the depth

44: D ← min{D, n
h
x/(m·n)
nhy/m

}
45: end if
46: end if
47: j ← j + 1 . Add point to the halfplane
48: end while
49: if i = nhy + nhx + 1 then break . No more points to remove from the

halfplane
50: end if
51: if P (i).c = 0 then nhy ← nhy − 1 . Remove the point from the halfplane
52: else nhx ← nhx − 1
53: end if
54: if (i < nhy + nhx) and (P (i+ 1).α = P (i).α) then . If next point a tie ...
55: continue . ... go directly to the next iteration
56: end if
57: if nhx = 0 then
58: return 0 . Stop if zero depth achieved
59: end if
60: if nhy/m > ∆ then . Update the depth

61: D ← min{D, n
h
x/(m·n)
nhy/m

}
62: end if
63: end for
64: j ← 0
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Algorithm 2 Routine for computing D(0|Q̂m,n, µ̂m,∆) in dimension 2 (continued)

65: . Turn around counter-clockwise from the upper to the lower halfplane
66: for i = (k − (nhy + nhx) + 1) : (k + 1) do
67: while j ≤ k < (nhy + nhx) and (((i = k + 1) and (P (j).α ≤ 0)) or
68: (P (j).α + π ≤ P (i).α)) do
69: if P (i).c = 0 then nhy ← nhy + 1 . Add the point to the halfplane
70: elsenhx ← nhx + 1
71: end if
72: if (j < k − (nhy + nhx)) and (P (j + 1).α = P (j).α) then . If a tie ...
73: j ← j + 1; continue . ... add it as well
74: end if
75: if (i = k + 1) or (P (j).α + π ≤ P (i).α) then . If last point ...
76: if nhx = 0 then
77: return 0 . ... stop if zero depth achieved ...
78: end if
79: if nhy/m > ∆ then . ... otherwise still update the depth

80: D ← min{D, n
h
x/(m·n)
nhy/m

}
81: end if
82: end if
83: j ← j + 1 . Add point to the halfplane
84: end while
85: if i = k + 1 then . If last point ...
86: break. ... no points to remove from the halfplane, so stop the outer loop
87: end if
88: if P (i).c = 0 then nhy ← nhy − 1 . Remove the point from the halfplane
89: elsenhx ← nhx − 1
90: end if
91: if (i < k) and (P (i+ 1).α = P (i).α) then . If next point a tie ...
92: continue . ... go directly to the next iteration
93: end if
94: if nhx = 0 then
95: return 0 . Stop if zero depth achieved
96: end if
97: if nhy/m > ∆ then . Update the depth

98: D ← min{D, n
h
x/(m·n)
nhy/m

}
99: end if
100: end for
101: return D
102: end function
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Algorithm 3 Routine for computing D(0|Q̂m,n, µ̂m,∆) in dimension 3

1: function PTCD.3D(y1, ...,ym,x1, ...,xm·n,∆) . Point Tukey curve depth of 0
2: D ← 1
3: for i = 1 : (m+m · n) do . For each point of the both samples
4: if i ≤ m then z ← yi
5: else z ← xi−m
6: end if
7: Compute a basis A = [a1,a2] of the hyperplane with normal z
8: nay = 0 . Number of µ-points in the origin above halfplane
9: nby = 0 . Number of µ-points in the origin below plane

10: ny = 0 . Number of µ-points not in the origin in the plane
11: for j = 1 : m do . Go through all points sampled on µ
12: if A>yi = 0 then . If projected in the origin
13: if z>yi > 0 then nay ← nay + 1 . yi above the plane
14: else if z>yi < 0 then nby ← nby + 1 . yi below the plane
15: elsey′ny+1 ← A>yi; ny ← ny + 1 . Add yi’s projection to the

plane
16: end if
17: elsey′ny+1 ← A>yi; ny ← ny + 1 . Add yi’s projection to the plane
18: end if
19: end for
20: nax = 0 . Number of Q-points in the origin above halfplane
21: nbx = 0 . Number of Q-points in the origin below halfplane
22: nx = 0 . Number of Q-points not in the origin in the plane
23: for j = 1 : (m · n) do . Go through all points sampled on Q
24: if A>xi = 0 then . If projected in the origin
25: if z>xi > 0 then nax ← nax + 1 . xi above the plane
26: else if z>xi < 0 then nbx ← nbx + 1 . xi below the plane
27: elsex′nx+1 ← A>xi; nx ← nx + 1 . Add xi’s projection to the

plane
28: end if
29: elsex′nx+1 ← A>xi; nx ← nx + 1 . Add xi’s projection to the plane
30: end if
31: end for
32: D ← min{D, pTcd.2d(y1, ...,yny

,x1, ...,xnx , n
a
y, n

b
y, n

a
x, n

b
x,∆)} .

Update depth
33: end for
34: return D
35: end function
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6.2 Procedure for Calculating the Distance Between Two Curves
When calculating the metric dC(C1, C2) in (2.1) one searches for two parametrizations that mini-
mize the maximum norm between the two corresponding parametrized curves. Numerically this
can be done by looking for a possible relocation of points from one curve to another keeping
their order, in such a way that the distance of the longest relocation is minimal. Below we state
the formal algorithm (Algorithm 4) and demonstrate it on an example of calculation of distance
between two digits. The complexity of the algorithm is O(m1m2 log(m1m2)) with m1 and m2

being the number of points of each of the curves C1 and C2, respectively.
In Figure 22, two curves (digits ’1’) are given in a pixel form, or more precisely by the

coordinates of the corresponding pixel centers ordered from below to above in the image. Their
mutual pixel-wise distances can be represented as a distance matrix; see Figure 23. Keeping in
mind that curves are (piece-wise) connected curves (in R2, here), optimal relocation of points
will be approximated by a path in the matrix connecting the most upper left and the most bottom
right cells in Figure 23, such that the largest cell of this path will have smallest possible value.
Algorithm 4 starts by eliminating the cells with the highest values and continues until any such
path is blocked. The blockage of the path is identified when either at least one row or at least one
column does not contain a single cell. Note that unreachable cells (while the path can proceed
only right and down) are immediately deleted as well on each iteration of the algorithm.
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0.
0

0.
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4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
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Figure 22: Two digits ’1’ used as an example to demonstrate calculation of the metric dC.
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0.107 0.113 0.129 0.152 0.179 0.208 0.240 0.272 0.305 0.352 0.385 0.418

0.113 0.107 0.113 0.129 0.152 0.179 0.208 0.240 0.272 0.319 0.352 0.385

0.101 0.080 0.071 0.080 0.101 0.129 0.160 0.192 0.226 0.272 0.305 0.339

0.113 0.080 0.051 0.036 0.051 0.080 0.113 0.147 0.182 0.226 0.260 0.295

0.147 0.113 0.080 0.051 0.036 0.051 0.080 0.113 0.147 0.192 0.226 0.260

0.179 0.143 0.107 0.071 0.036 0.000 0.036 0.071 0.107 0.147 0.182 0.217

0.214 0.179 0.143 0.107 0.071 0.036 0.000 0.036 0.071 0.113 0.147 0.182

0.253 0.217 0.182 0.147 0.113 0.080 0.051 0.036 0.051 0.071 0.107 0.143

0.295 0.260 0.226 0.192 0.160 0.129 0.101 0.080 0.071 0.051 0.080 0.113

0.339 0.305 0.272 0.240 0.208 0.179 0.152 0.129 0.113 0.071 0.080 0.101

Figure 23: Pixel-wise distance matrix for the two digits ’1’ from Figure 22.

Algorithm 4 Routine for computing dC(C1, C2)

1: function DISTANCE(x1, ...,xm1 ,y1, ...,ym2
) . Distance between sampled curves

2: for i = 1 : m1 do
3: for j = 1 : m2 do
4: cells

(
m2(i− 1) + j

)
= (i, j, dij = ‖xi − yj‖2) . Calculate cell-wise

distances
5: end for
6: end for
7: Sort cells w.r.t. d··-s in descending order
8: M = (0, ..., 0)m1 × (0, ..., 0)m2 . m1 ×m2 matrix filled with 0
9: rowMaxs = (m2, ...,m2)m1 . Vector of length m1 having all entries equal m2

10: rowMins = (0, ..., 0)m1 . Vector of length m1 having all entries equal 0
11: colMaxs = (m1, ...,m1)m2 . Vector of length m2 having all entries equal m1

12: colMins = (0, ..., 0)m2 . Vector of length m2 having all entries equal 0
13: k = 1
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Algorithm 4 Routine for computing dC(C1, C2) (continued)

14: while k <= m1 ·m2 do
15: d = cells(k).dij
16: while cells(k).dij = d do
17: M(i, j) = 1
18: if rowMaxs(i) = j + 1 then . If blocking cells above, then ...
19: l← j
20: while l ≥ 1 and M(i, l) = 1 do
21: M(0 : i, l)← 1; l← l − 1 . ... mark cells above
22: end while
23: rowMaxs(i) = l + 1 . Update maximum row’s extension
24: end if
25: if rowMins(i) = j − 1 then . If blocking cells below, then ...
26: l← j
27: while l ≤ m2 and M(i, l) = 1 do
28: M(i : m1, l)← 1; l← l + 1 . ... mark cells below
29: end while
30: rowMins(i) = l − 1 . Update minimum row’s extension
31: end if
32: if colMaxs(j) = i+ 1 then . If blocking cells to the left, then ...
33: l← i
34: while l ≥ 1 and M(l, j) = 1 do
35: M(l, 0 : j)← 1; l← l − 1 . ... mark cells to the left
36: end while
37: colMaxs(j) = l + 1 . Update maximum column’s extension
38: end if
39: if colMins(j) = i− 1 then . If blocking cells to the left, then ...
40: l← i
41: while l ≤ m1 and M(l, j) = 1 do
42: M(l, j : m2)← 1; l← l + 1 . ... mark cells to the left
43: end while
44: colMins(j) = l − 1 . Update minimum column’s extension
45: end if
46: k ← k + 1
47: end while
48: if min rowMaxs = 1 or max rowMins = m2 or min colMaxs = 1 or
49: max colMins = m1 then . If the route through the matrix is blocked
50: break
51: end if
52: end while
53: return d
54: end function
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6.3 Procedure for the Clustering of Curves

Algorithm 5 Clustering of curves (following Jörnsten 2004)
1: function DDCLUSTCURVE(C1, . . . , Cn) . Input unlabeled curves
2: Initialize {Ik}K1 randomly
3: m← 0; β ← −1; i← 0 . Initialize iterated variables
4: while m < M or j < maxIter do . Termination criterion
5: Calculate Ci({Ik}K1 ), i = 1, ..., n
6: Identify a set S = {i : Ci({Ik}K1 ) ≤ T} . Candidates for reallocation
7: f ← false
8: while S 6= ∅ do
9: For a random subset E ⊂ S, reallocate observations to get partitioning
{Ĩk}K1

10: if C({Ĩk}K1 ) > C({Ik}K1 ) or B
(
P
(
C({Ik}K1 )−C({Ĩk}K1 ), β

)
∼ b = 1

)
then

11: Ik ← Ĩk, k = 1, . . . , K; f ← true . Accept reallocation
12: end if
13: S ← S \ E
14: end while
15: β ← 2β; j ← j + 1 . Increase simulated-annealing temperature
16: if f = true then
17: m← 0
18: else
19: m← m+ 1 . No changes on current iteration
20: end if
21: end while
22: return {Ik}K1 . Output the final clustering
23: end function

7 Numerical experiments and Applications
In this section, some additional materials are proposed in order to illustrate the convergence of
the Monte Carlo approximation of our curve depth with the size n of the sample of curves and
the size m of the Monte Carlo sample. We conduct the Monte Carlo study with three models of
two-dimensional curves.
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7.1 Simple examples and their explicit depth expression
Segments on a line. We observe n non-overlapping segments on a line. Without loss of
generality, we denote by Xk the kth segment (k = 1, . . . , n), from left to right. For t ∈ [0, 1], we
have

for k ∈ {1, n}, D(βXk(t)|Qn, µXk) = 1/n,

for k /∈ {1, n}, D(βXk(t)|Qn, µXk) =
t+ (n− 1)tk

nt
1t≥tk +

1− t+ (n− 1)(1− tk)
n(1− t)

1t<tk ,

where tk = (k − 1)/(n− 1).

Star segments. Let Cθ be the segment in R2 of starting point (0, 0) and ending point
(cos(θ), sin(θ)), for θ ∈ [0, 2π). We define X ∼ P as the random curve generated from the
following scheme :

θ ∼ U [0, 2π], X = Cθ.

For t ∈ [0, 1], we have

D(βCθ(t)|Q,µX ) =


1/2, if t = 0,
g(t), if t ∈ (0, 1),
0, if t = 1,

where g : (0, 1)→ (0, 1) is a function defined by

g(t) = min

{
1

2
, inf
α∈(0,π/2]

qt,α
1− t

, inf
α∈(−π/2,0)

1− qt,−α
t

, inf
α∈(−π,−pi/2)

1− qt,π+α

t
, inf
α∈(π/2,π)

qt,π−α
1− t

}
,

qtα =
π − sin−1(t sinα)

2π
− t sin(α)

2π
log

1 + cos
[
sin−1(t sin(α))

]
1− cos

[
sin−1(t sin(α))

] .
The population version of the curve depth is defined as

D(Cθ|P ) =

∫ 1

0
g(r)dr.

Concentric circles. Let Cr be the circle of center 0 and radius r > 0 in R2. We define X ∼ P
as the random curve generated from the following scheme :

R ∼ U [0, 1], X = CR.

The population version of the curve depth is defined as

D(Cr|P ) = 0 if r = 1;

D(Cr|P ) = min

{
1,

cos−1(r)

π
− r

π
log

(
1 + sin cos−1(r)

r

)
,

inf
α∈(0,π/2)

2π − 2 cos−1(r sinα)

π + 2α
+

2r sin(α)

π + 2α
log

1 + sin
[
cos−1(r sin(α))

]
r sin(α)

,

inf
α∈(0,π/2)

2 cos−1(r sinα)

π − 2α
− 2r sin(α)

π − 2α
log

1 + sin
[
cos−1(r sin(α))

]
r sin(α)

}
.
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For n ≥ 1, we denote by Ri the radius of the circle Xi for all i = 1, . . . , n. The sample depth of
Cr with respect to {X1, . . . ,Xn} is

D(Cr|X1, . . . ,Xn) = 0 if r ≥ max
i=1...n

Ri; (7.1)

D(Cr|X1, . . . ,Xn) = min

{
1, inf
α∈(0,π/2)

2π

n(π − 2α)

n∑
i=1

cos−1(r sin(α))

π
1Ri>r sin(α),

inf
α∈(0,π/2]

2π

n(π + 2α)

n∑
i=1

(
1Ri≤r sin(α) +

cos−1(r sin(α))

π
1Ri>r sin(α)

)}
.

7.2 Monte Carlo Approximation of the Curve Depth
We illustrate the convergence of the Monte Carlo approximation of our curve depth according to
the size n of the sample and the Monte Carlo size m on three simulation schemes.

Scheme 1 : Concentric circles. First, we consider the population of concentric circles
with radius lying in the interval (0, 1) described in Section 7.1. We fix the sample size n of
{X1, . . . ,Xn}, and we compute the depth of circles Cr of radius r ∈ {0.1, 0.4, 0.5, 0.6, 0.9}.

In the companion package of the paper, we propose an algorithm to approximate the depth
D(C|X1, . . . ,Xn) using a Monte Carlo estimate (see line 11 of Algorithm 1):

1

m

m∑
k=1

D̂(Zk|Q̂m,n, µ̂m,Hn,m∆ ),

where Q̂m,n is the empirical measure associated to an i.i.d. sample Xn,m = (Xi,j)i=1,...,n;j=1,...,m

from QPn , where µ̂m is the empirical measure associated to an i.i.d. sample Ym = (Yj)j=1,...,m

from µC and (Zj)j=1,...,m is an i.i.d. sample from µC . Theorem 3.1 states that this Monte Carlo
estimator is consistent as m goes to +∞. We emphasize that the threshold ∆ is here useless due
to the geometry of circles : the halfspaces Hx,u such that µC(Hx,u) is small are those for which
the ratio Q̂n,m/µ̂m(Hx,u) is larger than 1.

First, we fix the sample X1, . . . ,Xn and we compute 100 replications of the Monte Carlo
estimate of D(Cr|X1, . . . ,Xn); see Figure 24. The Monte Carlo estimates tend to underestimate
the sample depth. Moreover the variability of the Monte Carlo estimates depends on the position
of the circle C with respect to the sample of curves. Nevertheless both the bias and the variance
decrease as m increases.
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Figure 24: Boxplot of Monte Carlo estimates of the sample depths (Algorithm 1) for curves
Cr with respect to a sample of n = 25 concentric circles over 100 replications : (left) r =
0.1, (middle) r = 0.4, (right) r = 0.9. The Monte Carlo sample sizes considered are m ∈
{125, 500, 2000}. The horizontal dotted line is at the value D(Cr|X1, . . . ,Xn).

Table 2 illustrates the convergence in probability of the sample depth D(C|X1, . . . ,Xn) and
of its Monte Carlo approximation (see Algorithm 1) to D(C|P ) as n → ∞ over 5, 000 repli-
cations. For every replicated sample, we compute the depth of Cr using Equation (7.1) and its
approximation using Algorithm 1. The sample size m in Algorithm 1 is set to 500. As expected,
both the empirical bias of the sample curve depth and its empirical standard deviation converge
to zero for every value of r. The sample curve depth is on average smaller than the population
depth. Moreover the standard deviation of D(Cr|X1, . . . ,Xn) is a function of the radius.

Since the Monte Carlo approximation tends to underestimate the sample depth, its average is
expected to be smaller than the population depth : the bias of the Monte Carlo approximation is
then larger than that of the sample curve depth. We may expect a larger variance for the Monte
Carlo estimate. In this example the variability due to the Monte Carlo estimate is quite weak, and
tends to be equivalent to the variability of the sample curve depth for a large enough sample size.

r 0.1 0.4 0.5 0.6 0.9
D(Cr|P ) 0.627 0.830 0.758 0.629 0.169

n = 50 D(Cr|X1, . . . ,Xn) 0.627 0.808 0.744 0.617 0.161
(0.020) (0.031) (0.071) (0.083) (0.062)

MC-estimate 0.627 0.782 0.697 0.574 0.144
(0.020) (0.041) (0.071) (0.078) (0.056)

n = 200 D(Cr|X1, . . . ,Xn) 0.627 0.825 0.756 0.628 0.167
(0.010) (0.011) (0.037) (0.042) (0.031)

MC-estimate 0.627 0.799 0.705 0.581 0.149
(0.010) (0.022) (0.038) (0.040) (0.028)

n = 800 D(Cr|X1, . . . ,Xn) 0.627 0.830 0.758 0.629 0.169
(0.005) (0.005) (0.019) (0.021) (0.015)

MC-estimate 0.627 0.806 0.707 0.582 0.151
(0.005) (0.015) (0.021) (0.022) (0.014)

Table 2: Average of sample depths and their Monte Carlo approximations (withm = 500) for the
curves Cr and their corresponding standard deviations (in parentheses) with respect to increasing
sample sizes n over 5, 000 replications.
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Scheme 2 : (see paragraph 4.2.1 in Claeskens et al. 2014). We consider an i.i.d. sample
X1, . . .Xn, from the process X proposed by (see paragraph 4.2.1 in Claeskens et al. 2014),

X = {(x,A1 sin(2πx) +A2 cos(2πx)) ; x ∈ [L,U ]} ,

where A1, A2 ∼ U [0, 0.05], L ∼ U [0, 2π
3 ], and U ∼ U [4π

3 , 2π], all independent. The mean of
the process is denoted as CX with the value a1 = a2 = 0.025 of A1 and A2. Using the Monte
Carlo approximation for a fixed values of m and ∆, we compute the depth of CX . We repeat the
experiment 1, 000 times for different values of n, m and ∆.

First we fix the n = 50 curves of the sample, and we aim to measure the effect ofm and ∆ on
the computation of the depth of CX given the sample X1, . . . ,Xn. Table 3 indicates the average
depths and their standard deviations (in parentheses) for the curve CX for different choices of m
and ∆. From the simulations, the threshold ∆ in the chosen range seems to have very limited
influence on the estimated depth value. Further simulations indicate that averages of the depths
converge (the consecutive differences decrease) and their standard deviations decrease towards
zero as m increases as expected from Theorem 3.1. Figure 25 (right) indicates that a subsample
of deepest curves is located nearby the center of the stochastic process.
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Figure 25: Illustration of the sample of n = 50 curves for Simulation 1. In the left panel, the
curves Xi are plotted in different colors and the mean curve CX in black. In the right panel, the
curves with depth larger than 0.727 − 2 × 0.014 (with m = 500 and α = 1/8, see Table 3) are
plotted in orange, where 0.727 is the depth of the mean curve, the deepest curve having depth
0.744 in red.

Lastly, we aim to measure the effect of the size n of the sample of curves on the computa-
tion of the depth. Here, we sample m = 1, 000 points on each curve. For every Monte Carlo
replication, we generate a new i.i.d. sample X1, . . . ,Xn from the process X defined above. Ta-
ble 4 shows the average depths and their standard deviations (in parentheses) of the curve CX .
We can see that the depth of CX converges as expected in Theorem 3.1. Note that, compared to
Table 3, the standard deviations take into account additionally the variation of the curves’ sample,
cf. 0.010 for α = 1/8, m = 1000 in Table 3 and 0.023 for n = 50 in Table 4.

Simulation 2 : Cuevas et al. (2007). We consider an i.i.d. sample Y1, . . . ,Yn from the
process Y proposed by Cuevas et al. (2007):

Y =
{(
x, 30(1− x)1+Wx1.5−W + Ux

)
; x ∈ [L,U ]

}
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Table 3: Average depths for the mean curve CX and their corresponding standard deviations (in
parentheses) with respect to a sample of size n = 50 for Simulation 1 over N = 1, 000 Monte
Carlo repetitions with differing m and ∆ = 1/(10mα).

α\m 20 50 100 200 500 1000 2000 5000 10000
0 0.616 0.685 0.721 0.745 0.764 0.772 0.777 0.781 0.782

(0.055) (0.040) (0.030) (0.023) (0.015) (0.010) (0.007) (0.004) (0.003)
1/8 0.62 0.69 0.726 0.749 0.767 0.774 0.778 0.781 0.782

(0.056) (0.040) (0.029) (0.022) (0.014) (0.010) (0.006) (0.004) (0.003)
1/4 0.615 0.686 0.723 0.747 0.766 0.773 0.778 0.781 0.782

(0.054) (0.039) (0.031) (0.022) (0.014) (0.010) (0.007) (0.004) (0.003)

Table 4: Average depths for the mean curve and their corresponding standard deviations (in paren-
theses) for Simulation 1 over N = 1, 000 Monte Carlo repetitions, m = 1, 000, and α = 1/8
with growing n.

n 20 50 100 200 500 1000 2000 5000 10000
CX 0.730 0.751 0.759 0.762 0.764 0.765 0.766 0.765 0.766

(0.044) (0.023) (0.016) (0.012) (0.009) (0.009) (0.008) (0.008) (0.007)

where {Ut; t ∈ [0, 1]} is a zero mean stationary Gaussian process with covariance function
t 7→ 0.2e−

1
0.3
|t|, W ∼ U [0, 0.5], L ∼ U [0, 0.1], U ∼ U [0.9, 1], all independent. The mean of the

process is denoted as CY with the parametrization y(t) = 15(1− t)t(
√

1− t−
√
t)/(log(1− t)−

log(t)). Notice that since the curves Yi are noisy, they may not be in fact rectifiable. While in
practice such curves are discretely observed, they can be approximated by affine functions with
a finite length.

Similarly to the last scheme, we fix the n = 50 curves of the samples. In Figure 26 (right),
we depict the first Monte Carlo replication with the deepest curve Y1 and a subsample of curves
with a depth closest to it in depth. Note that the depth of CY is around 0.6 while the depth of
the deepest curve in the sample is about 0.8. Although the mean curve CY is fairly central, the
deepest curve Y1 is a better representative of the sample because of the smoothness of CY . Table 5
indicates the average depths and their standard deviations (in parentheses) for the curves CY and
Y1 (notice that due to the variation of the points on the curves, Y1 is not always the deepest curve
for all Monte Carlo replications). Even though the standard deviations are of the same order as
in the previous simulation, we remark that the depths of Y1 are twice more dispersed than those
of CY .
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Table 5: Average depths for the mean curve CY and the deepest curve Y1 and their corresponding
standard deviations (in parentheses) for Simulation 2 over N = 1, 000 Monte Carlo repetitions,
n = 50 curves and α = 1/8.

m 20 50 100 200 500 1000 2000 5000 10000
CY 0.497 0.54 0.557 0.568 0.576 0.58 0.583 0.584 0.585

(0.055) (0.039) (0.031) (0.021) (0.014) (0.010) (0.007) (0.004) (0.003)
Y1 0.633 0.694 0.726 0.746 0.761 0.768 0.772 0.774 0.774

(0.069) (0.061) (0.049) (0.038) (0.026) (0.018) (0.013) (0.008) (0.006)
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Figure 26: Illustration of the sample of n = 50 curves for Simulation 2. In the left panel, the
curves Yi are plotted in different colors and the mean curve CY in black. In the right panel, the
curves with depth larger than 0.752 − 2 × 0.026 (with m = 500 and α = 1/8, see Table 5) are
plotted in orange, where the deepest curve having depth 0.752 is plotted in red, the depth of the
mean curve is 0.571.

8 Pre-processing of DTI Scans
DTI scans were acquired from all 34 twin pairs on a Philips 3T Achieva Quasar Dual MRI scanner
(Philips Medical System, Best, The Netherlands), using a single-shot echo-planar imaging (EPI)
sequence (TR = 7115 ms, TE = 70 ms). For each diffusion scan, 32 gradient directions (b = 1000
s/mm2) and a non-diffusion-weighted acquisition (b = 0 s/mm2) were acquired over a 96mm2

image matrix (FOV 240 mm × 240 mm2); with a slice thickness of 2.5 mm and no gap, yielding
2.5 mm isotropic voxels.

We used the MRtrix software (Tournier et al. 2012) to extract fiber tracts from the DTI scans
and we chose corticospinal tract (both left and right) here because corticospinal tracts are long
and could be identified and extracted relatively accurately and reliably in comparison to other
shorter and more ambiguous fiber tracts of the human brain. We used the seed region of interest
on an axial slice on which the cerebral peduncle was visible. The resulting data sets were two
bundles of around 1, 000 fibers each per subject. Each fiber was described by a set of around 400
successive 3D locations. The size of a single file containing only one bundle of fibers was around
12MB, so that altogether the 34× 2× 2 files weigh around 1.6GB.
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