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RANDOMIZATIONS OF GROUPS ARE CONNECTED

ITAÏ BEN YAACOV, JORGE MUÑOZ CARVAJAL

Abstract. Randomizations are continuous structures consisting of random variables with values on a
given family of structures. We show that if G is a definable group on a continuous structure then GR,

the randomization of the group, defined as the set of variables whose values belong to the group, is
definably connected, i.e. it has no proper invariant subgroups of bounded index.

Introduction

Given a structure M, continuous or classical, a randomization of M is a new structure consisting of
random functions from a probability space into M . For classical structures, they were first introduced
by Keisler on [Kei99] and were then formalized in the continuous setting by Ben Yaacov and Keisler on
[BYK09]. They are defined as two-sorted continuous structures, consisting of a sort of random elements
and a sort of events.

Moreover, from a classical theory T we can obtain a continuous theory TR, known as the randomization
of T , defined as the common theory of randomizations of models T . In [BYK09], an axiomatisation of
TR is given and several preservation results are proven, such as completeness, ω-categoricity and sta-
bility. This framework proved to be the adequate one for the study of randomizations, and subsequent
works of Andrews, Goldbring and Keisler were developed in this context (see [AGK15], [AGK19], [AK15]).

Finally, Ben Yaacov in [BY13] generalized the randomization construction to continuous structures. In
this slightly different set-up, although equivalent in the classical case, the sort of events is replaced by a
sort of [0,1]-valued random variables and the language is simplified. As before, for a continuous theory
T we can construct TR and the same preservation results will hold.

This paper, as the title suggests, deals with the notion of connectedness in randomizations of groups. Let
M be a continuous structure and G be a definable group over ∅, we have that GR, defined as the set of
variables whose values belong to the group, is a definable group. The second author together with Beren-
stein proved in [BM21], via a study of generic types, that if G is a classical definably amenable NIP group
then GR is definably connected, i.e. it has no proper type-definable subgroups of bounded index (when
looked inside a monster model). In this paper, we show that in general, without any model-theoretical
assumptions on the model, GR is definably connected. Moreover, we prove that it has no proper in-
variant subgroups of bounded index. For the proof, we use the construction of a homogeneous space.
We use the presentation given in [GN08], that allows us to embed the group GR in the group of auto-
morphisms of a certain structure and then use the fact that in randomizations all types are Lascar strong.

The paper is organized as follows, in Section 1 we introduce the construction of the homogeneous space.
In Section 2 we define randomizations, give some results on definability in continuous logic and proof the
main result.

1. The homogeneous space construction

Suppose G is an ∅-definable group in a structure M. The homogeneous space structure consists of M to-
gether with a new sort X, corresponding to an affine copy of G, and a symbol for the action ⋅ ∶ G×X Ð→X.
This is a classical construction and has been considered several times. For instance, in [Zie02, Section 7]
it is used to prove an unpublished result of Bouscaren, Lascar and Pillay concerning compact Lie groups.
It was later used in [GN08] to describe groups of automorphisms of the homogeneous space in terms of
groups of automorphisms of the original structure and groups related to G. This section is based on the
latter, we recreate in the continuous setting the construction given in Section 3 therein.
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As previously stated, we let X be an affine copy of G. We also add G itself as a sort, so the group operation
can be represented by a symbol in the language and we can avoid dealing with partially defined functions.
However, this step is not strictly necessary and the same results can be obtained by just adding the affine
copy. Let us denote this new structure by M̃. As mentioned before, the main goal of the construction is
to describe some subgroups Aut(M̃) in terms of subgroups of Aut(M) and subgroups of G. Towards this

end, we must embed G as a normal subgroup of Aut(M̃). To make this task easier, we will suppose that
the distance on G is bi-invariant, which is always true in the classical context. Nevertheless, this does not
impose us a limitation, since the group always admits a definable bi-invariant metric, see Fact 2.14 below.

Let L be a continuous language and let M be an L-structure. Suppose G is a definable group over ∅
whose metric is bi-invariant. We will denote by S the sort in which G is defined. Let L̃ be the many-sorted
language obtained by adjoining two sorts S1, S2 and the following function symbols to L:

● A unary function symbol ι ∶ S1 Ð→ S.
● A binary function symbol ⋅G ∶ S1 × S1 Ð→ S1

● A binary function symbol ⋅ ∶ S1 × S2 Ð→ S2.

We require the new unary function symbol to be 1-Lipschitz. To both binary function symbols we assign
the same modulus of uniform continuity of the group multiplication. We define M̃ = (M,G(M),X(M))
as the L̃-structure where

(1) The sort M has the original structure of M.
(2) ι ∶ G(M) ↪M is the inclusion map.
(3) ⋅G ∶ G(M) ×G(M) Ð→ G(M) is the group operation.
(4) ⋅ ∶ G(M) ×X(M) Ð→X(M) is a regular (free and transitive) action of G(M) on X(M).

We endow G(M) and X(M) with the same metric, the one they inherit from M . So, G(M) acts by
isometries on X(M), and for all g, h ∈ G(M) and x ∈ X(M), dX(g ⋅ x,h ⋅ x) = dG(g, h). We will simply
write ⋅ instead of ⋅G, the distinction with the action being clear from the context.

Fix C̃ = (C,G,X) a monster model extending M̃. In particular, C is a monster model of Th(M). A set is
said to be bounded, or small, if its cardinality is less than the saturation of our monster. As usual, sets
of parameters are supposed to be small.

Remark 1.1. The structure C̃ is interpretable in C (for more details on interpretation in continuous logic
see [BYK16]). Indeed, fix x0 ∈ X, the map that corresponds to the identity on the sort C, the inclusion

on the sort G and on the sort X is given by h ⋅ x0 z→ h defines an interpretation of C̃ on C.

In other words, we add two interpretable sorts, namely two copies of G interacting with each other, and
in one of them we forget the inner group structure. We now characterize the elementary substructures
of C.

Proposition 1.2. Every elementary substructure of C̃ is of the form (N,G(N),G(N)⋅x0) for some N ⪯ C
and x0 ∈X. Conversely, if N ⪯ C then for every x ∈X, (N,G(N),G(N)⋅x) is an elementary substructure

of C̃.

Proof. Let Ñ = (N,G0,X0) be an elementary substructure of C̃. It follows that N ⪯ C, which implies
G0 = G(N). Pick any x0 ∈ X0, since the action G0 ↷ X0 is regular, we have X0 = G0 ⋅ x0 = G(N) ⋅ x0.

We conclude that Ñ = (N,G(N),G(N) ⋅ x0). For the converse, suppose N ⪯ C, pick x ∈ X and define

Ñ = (N,G(N),G(N) ⋅ x). Since C̃ is interpretable in C, for every L̃-formula ϕ(u, y, z), where u, y and z
are tuple of variables in the sorts S, S1 and S2, respectively, there is a definable predicate Pϕ(u, v,w) in
L such that for every a ∈ C, g, h ∈ G

ϕC̃(a, g, h ⋅ x) = PC
ϕ (a, g, h).

Restricting to Ñ, we obtain an interpretation of Ñ in N and an analogous equality for every a ∈ N,
g, h ∈ G(N). Let w denote a variable in any of the sorts of L̃, then for any L̃-formula ϕ(u, y, z) =
infw ψ(u, y, z,w), and tuples a ∈N and g, h ∈ G(N)

inf
w∈Ñ

ψÑ(a, g, h ⋅ x,w) = PN
ϕ (a, g, h) = PC

ϕ (a, g, h) = inf
w∈C̃

ψC̃(a, g, h ⋅ x,w).

The result follows from the Tarski-Vaught test. �
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Now, take any x0 ∈X, then X = G ⋅ x0. For g ∈ G we define g ∶ C̃Ð→ C̃ by

g ↾C= idC, g ↾G= idG, g(h ⋅ x0) = (hg−1) ⋅ x0.

Claim: For any g ∈ G, g is an automorphism of C̃.

Proof. It is immediate that g is a bijection that respects the structure of C, the group operation and that
commutes with ι. Now, for k, h ∈ G

g(k ⋅ (h ⋅ x0)) = g(kh ⋅ x0) = (khg−1) ⋅ x0 = g(k) ⋅ g(h ⋅ x0),
and

dX(g(h ⋅ x0), g(k ⋅ x0)) = dX(hg−1 ⋅ x0, kg
−1 ⋅ x0) = dG(h, k) = dX(h ⋅ x0, k ⋅ x0). �

On the other hand, suppose f ∈ Aut(C), since G is definable, f(G) = G. So we can define f ∶ C̃Ð→ C̃ by

f ↾C= f, f ↾G= f ↾G, f(h ⋅ x0) = f(h) ⋅ x0.

Claim: For any f ∈ Aut(C), f is an automorphism of C̃.

Proof. By definition f is a bijection that respects the structure of C, the group operation and commutes
with ι. Now, for k, h ∈ G

f(k ⋅ (h ⋅ x0)) = f(kh ⋅ x0) = f(kh) ⋅ x0 = f(k)f(h) ⋅ x0 = f(k) ⋅ f(h ⋅ x0).
And

dX(f(h ⋅ x0), f(k ⋅ x0)) = dX(f(h) ⋅ x0, f(k) ⋅ x0) = dG(f(h), f(k)) = dG(h, k) = dX(h ⋅ x0, k ⋅ x0). �

In this way, we have embeddings ⋅ ∶ Aut(C) ↪ Aut(C̃) and ⋅ ∶ G ↪ Aut(C̃). Note that for f ∈ Aut(C̃) and

g ∈ G, f ○g ○f−1 = k−1f(g)k where k ∈ G satisfies f(x0) = k ⋅x0. Thus, G is a normal subgroup of Aut(C̃).
We now define the notion of Lascar types.

Definition 1.3. Let A be a set of parameters and, a and b be tuples (possibly infinite) of the same
length in C. We say that dA(a, b) ≤ 1 if there exists N ⪯ C containing A such that tp(a/N) = tp(b/N).
We say that a and b have the same Lascar type over A, and we write Lstp(a/A) = Lstp(b/A), if there is
a finite sequence of tuples of the same length a0 = a, a1, . . . , an = b such that dA(ai, ai+1) ≤ 1.

An equivalence relation is bounded if the set of equivalence classes is bounded. It is a well-known fact
that having the same Lascar type over A is the smallest bounded A-invariant equivalence relation. The
group of Lascar strong automorphisms over A is the group generated by all Aut(C/M) where M ranges
over all models containing A, and is denoted by AutfL(C/A). It follows from the definition that every
automorphism in AutfL(C/A) preserves Lascar strong types. Moreover, if Lstp(a/A) = Lstp(b/A) then
there is f ∈ AutfL(C/A), such that f(a) = b.

Definition 1.4. Given A ⊆ C, we define G∞
A to be the smallest A-invariant subgroup of G of bounded

index.

Proposition 1.5. For A ⊆ C, G∞
A = ⟨g−1h ; g, h ∈ G and Lstp(g/A) = Lstp(h/A)⟩.

Proof. Denote H = ⟨g−1h ; g, h ∈ G and Lstp(g/A) = Lstp(h/A)⟩. The relation E(g, h) given by g−1h ∈
G∞
A is A-invariant and bounded. Therefore, if g, h ∈ G and Lstp(g/A) = Lstp(h/A) then g−1h ∈ G∞

A .
Hence, H ⊆ G∞

A . For the other inclusion, clearly H is A-invariant. Let λ be the index of H in G and
suppose that {gαH ; α ∈ λ} is an enumeration of the cosets of H in G. Take α,β ∈ λ with α ≠ β, then
g−1
α gβ ∉H. This implies that Lstp(g/A) ≠ Lstp(h/A). Since there are boundedly many Lascar types over
A, then the index of H in G is bounded. Therefore, G∞

A ⊆H and the equality follows. �

The following proposition corresponds to Propositions 3.3 and 3.4 in [GN08]. Even though they are
proved in the classical setting, the proofs readily adapts to continuous structures.

Proposition 1.6. (1) Aut(C̃) = G⋊Aut(C). More precisely, for F ∈ Aut(C̃), F = ḡ○f̄ where f = F ↾C
and F (x0) = g−1 ⋅ x0.

(2) If M̃0 ⪯ C̃ with M̃0 = (M0,G0,X0) and X0 = G0 ⋅ (h0 ⋅ x0) for some h0 ⋅ x0 ∈ X0. Then F ∈
Aut(C̃/M̃0) if and only if there is f ∈ Aut(C/M0) such that F = fh0

.
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(3) For any A ⊆ C, AutfL(C̃/A) = G∞
A ⋊AutfL(C/A).

(4) G∞
A = G ∩AutfL(C̃/A).

2. Randomization of the homogeneous space

2.1. Randomizations.

Here we give some basic definitions and results on randomizations, for a more detailed treatment of the
subject we refer the reader to [BY13]. Let L be a continuous language, we define the randomization
language, denoted LR, as a continuous language consisting of:

(1) A sort in LR for each sort in L. These sorts will be referred as the main sorts.
(2) A new sort, which will be called the auxiliary sort, equipped with the language of random variables
LRV.

(3) For each function symbol in L a function symbol in LR between the corresponding main sorts,
equipped with the same modulus of uniform continuity.

(4) For each predicate symbol P in L, a function symbol JP (⋯)K from the corresponding main sorts
into the auxiliary sort, equipped with the same modulus of uniform continuity.

Definition 2.1. Let (Ω,B, µ) be an atomless probability space and let MΩ = {Mω; ω ∈ Ω} be a family
of L-structures. A randomization based on MΩ, is an LR-prestructure M = (K,A) such that:

(1) A corresponds to L1((Ω,B, µ), [0,1]).
(2) K is a subset of ∏

ω∈Ω
Mω.

(3) For F ∈ L, n-ary function symbol, and a1, . . . , an ∈ K, the mapping ω ↦ FMω(a1(ω), . . . , an(ω))
belongs to K, and we define FM(a1, . . . , an) as this map.

(4) For P ∈ L, n-ary predicate symbol, and a1, . . . , an ∈ K, the mapping ω ↦ PMω(a1(ω), . . . , an(ω))
belongs to A, and we define JPM(a1, . . . , an)K as this map.

(5) For every a, b ∈ M and A ∈ A there is c ∈ M such that

c(ω) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a(ω) if A(ω) = 1

b(ω) if A(ω) = 0

anything otherwise.

(6) For every a, b ∈ K, the mapping Jd(a, b)K ∈ A and dK(a, b) = EJd(a, b)K.
In case Mω is equal to a single structure M for every ω ∈ Ω, we say that M is a randomization of
M. Given an L-theory T , we define the randomization theory, denoted TR, as the common theory of
randomizations based on families of models of T .

Let M be a randomization based on MΩ. Proceeding by induction, for every L-formula ϕ(x), we have
a definable map Jϕ(⋅)K ∶ Kn Ð→ A defined in the obvious way. In particular, if ϕ is an L-sentence, then
JϕK ∈ A. So, if Mω ⊧ ϕ = 0 for every ω ∈ Ω then M ⊧ JϕK = 0. Hence, if T is an L-theory, and M is a
randomization based on models of T , then M ⊧ JϕK = 0 for every condition (ϕ = 0) ∈ T . We thus obtain
Keisler’s transference axiom:

TR ⊧ JϕK = 0 for every condition (ϕ = 0) ∈ T.

Conversely, if M is a model of TR, then we can construct an atomless probability space (Ω,B, µ), a family

of L-structures MΩ and a randomization based on MΩ, M̂, such that M is isomorphic to M̂ and for

every formula ϕ(x̄) and every tuple ā in M̂, Jϕ(ā)KM̂(ω) = ϕMω(ā(ω)) (see the discussion after Definition
3.9 and Theorem 3.14 in [BY13]). This randomization is known as the canonical representation and we
will identify a randomization with its canonical representation. In particular, each Mω is a model of
T . In this way, we have a correspondence between models of TR and randomizations based on models of T .

An explicit axiomatization of TR is given in [BY13]. This theory has many desirable properties, in
particular it has quantifier elimination in the main sorts down to formulas of the form EJϕ(x̄)K (see
Theorem 3.32 in [BY13]). However, it does not preserve simplicity, if T has IP then TR has TP2 (see
Theorem 4.13 in [BY13]).
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2.2. Definable groups.

Fix a continuous language L, M an L-structure and G an ∅-definable group. Let (K,A) be a monster
model of Th(M)R, which we identify with its canonical representation. By taking C to be a sufficiently
saturated elementary extension of M, we can assume that (K,A) corresponds to a randomization of C
and we will denote it CR. The randomization of G will correspond to the set of functions in K whose
image is contained in G. We will show that this is in fact a definable group in CR. First a technical
result.

Fact 2.2 (Theorem 9.12 in [BYBHU08]). Let M be a continuous structure. Given a definable predicate
P ∶M Ð→ [0,1], we define the two conditions

E1 ∶ sup
x

inf
y
P (y) ∨ ∣P (x) − d(x, y)∣ = 0

E2 ∶ sup
x

∣P (x) − inf
y
(P (y) + d(x, y))∣ = 0.

Then, P (x) corresponds to the distance to the zeroset of P if and only if M satisfies E1 and E2.

Proposition 2.3. If D is definable subset of Cn over ∅ then

DR = {a ∈ Kn ; a(ω) ∈D for all ω ∈ Ω}.
is definable over ∅.

Proof. Suppose that d(x,D) = P (x) for some definable predicate P ∶ Cn Ð→ [0,1]. Then DR corresponds
to the zeroset of EJP (x)K, we will use the previous proposition to show that this predicate corresponds
in fact to the distance predicate to DR. By the transfer axiom applied to E1, supx infy(JP (y)K∨ J∣P (x)−
d(x, y)∣K) = 0. This implies that, supx infy(EJP (y)K∨EJ∣P (x)−d(x, y)∣K) = 0. Hence, supx infy(EJP (y)K∨
∣EJP (x)K −EJd(x, y)K∣) = 0. This means that CR satisfies E1 for EJP (x)K. Analogously we obtain that
supx ∣EJP (x)K − infy(EJP (y)K +EJd(x, y)K)∣ = 0, i.e. CR satisfies E2 for EJP (x)K. �

For the proof of the next lemma we will use the following fact, which is the heart of the proof of Theorem
9.17 in [BYBHU08].

Fact 2.4. Let M be a continuous structure.If D ⊆ Mn is definable and P ∶ Mm ×Mn Ð→ [0,1] is a
definable predicate. Then, there is a continuous function α ∶ [0,1] Ð→ [0,1] such that for any x ∈Mm:

● ∣P (x, y) − P (x, z)∣ ≤ α(d(y, z)) for every y, z ∈Mn.
● inf
y∈D

P (x, y) = inf
y
(P (x, y) + α(d(y,D))).

Lemma 2.5. Let D be an ∅-definable subset of Cn and let P ∶ Cm × Cn Ð→ [0,1] be an ∅-definable
predicate. Then,

J inf
y∈D

P (x, y)K = inf
y∈DR

JP (x, y)K.

Proof. Fix x ∈ Km, then for any y0 ∈DR, JP (x, y0)K ≥ J inf
y∈D

P (x, y)K. By taking the infimum over y0 ∈DR

we conclude that inf
y∈DR

JP (x, y)K ≥ J inf
y∈D

P (x, y)K. For the other inequality, take α ∶ [0,1] Ð→ [0,1] as in

the previous fact. Given ε > 0, take y0 ∈ Kn satisfying

JP (x, y0) + α(d(y0,D))K ≤ J inf
y∈D

P (x, y)K + ε.

Let z0 ∈DR be such that Jd(y0, z0)K = Jd(y0,D)K. Then,

inf
y∈DR

JP (x, y)K ≤ JP (x, z0)K ≤ JP (x, y0) + α(d(y0, z0))K ≤ J inf
y∈D

P (x, y)K + ε.

Since ε was arbitrary, we get the desired inequality. �

Proposition 2.6. GR is an ∅-definable subgroup of CR with the group operation defined pointwise, i.e.
for f1, f2 ∈ GR, (f1 ⋅ f2)(ω) = f1(ω)f2(ω) for every ω ∈ Ω.
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Proof. By Proposition 2.3, GR is an ∅-definable subset of CR. Let P ∶ C3 Ð→ [0,1] be the ∅-definable
predicate such that P (x, y, z) = d(x⋅y, z) when restricted toG2×C. We have that C ⊧ sup

x∈G
sup
y∈G

inf
z∈G

P (x, y, z) =

0. By transference and the previous Lemma,

CR ⊧ sup
x∈GR

sup
y∈GR

inf
z∈GR

JP (x, y, z)K = 0.

This implies that for every x, y ∈ GR there is z ∈ GR such that x ⋅ y = z. So, GR is closed under poitnwise
multiplication. Clearly, for x, y ∈ GR and z ∈ K, d(x ⋅ y, z) = EJP (x, y, z)K. Thus, the group operation
is definable. It remains to show that GR is in fact a group. It is immediate that the operation is
associative. Again by transference and the previous lemma, CR ⊧ inf

x∈GR
sup
y∈GR

JP (x, y, y) ∨ P (y, x, y)K = 0

and CR ⊧ sup
x∈GR

inf
y∈GR

sup
z∈GR

JP (x ⋅ y, z, z) ∨P (y ⋅ x, z, z)K = 0. So, GR has a neutral element and inverses. �

2.3. The main result.

We first assume that the metric in GR is bi-invariant. Then, we can construct the (̃LR)-structure

C̃R = (K,A,GR,XR). By reordering the sorts of (̃LR), we see that (̃LR) ⊂ (L̃)R. The inclusion being

strict due to the fact that the mappings Jd( , )K from the sorts of GR and XR do not belong to (̃LR).
However, if x, y ∈ GR (or XR) then they can be identified with elements in K, so we can define these
maps in the obvious way, namely:

Jd(x, y)K(ω) = d(x(ω), y(ω)) for every ω ∈ Ω.

Hence, (K,GR,XR,A) admits a natural interpretation as an (L̃)R-structure. The next result is clear.

Proposition 2.7. With the maps Jd( , )K defined as before, C̃R is a randomization of C̃.

In this way, when we consider (K,GR,XR,A) as an (L̃)R-structure we will write C̃R.

Proposition 2.8. The maps Jd( , )K ∶ (GR)2 Ð→ A and Jd( , )K ∶ (XR)2 Ð→ A are ∅-definable in C̃R.

Proof. For any g, h ∈ GR we have that Jd(g, h)K = Jd(i(g), i(h))K, a definable map. For the other map,
first note that e ∈ GR is definable, the distance predicate being given by dK(x, e) = dK(x2, x). Now, given
x, y ∈ XR define χ(x, y) to be the unique g ∈ GR such that g ⋅ x = y. The map χ ∶ (XR)2 Ð→ GR is
definable over ∅. Indeed, given h ∈ GR, dGR(h,χ(x, y)) = dXR(h ⋅x, y). Hence, Jd(x, y)K = Jd(χ(x, y), e)K,
which is a definable map. �

Corollary 2.9. Given A ⊆ K, Aut(C̃R/A) = Aut(C̃R/A).

Proof. Immediate from the previous result. �

The next result says that in randomizations all types are Lascar strong.

Theorem 2.10 (Theorem 5.8 in [BY13]). Let T be any theory, (K,B) ⊧ TR, a, b ∈ K and A ⊆ K any set
of parameters. Then the following are equivalent:

(1) Lstp(a/A) = Lstp(b/A).
(2) tp(a/A) = tp(b/A).

Corollary 2.11. Given A ⊆ K, AutfL(C̃R/A) = Aut(C̃R/A)

Proposition 2.12. Given A ⊆ K, AutfL(C̃R/A) = AutfL(C̃R/A).

Proof. ⊆) It follows directly from Corollaries 2.9 and 2.11.

⊇) Take N ⪯ C̃R with A ⊆ N and f ∈ Aut(C̃R/N). Then N0, the reduct of N to a (̃LR)-structure, is an

elementary substructure of C̃R. Hence, f ∈ Aut(C̃R/N0). So Aut(C̃R/N) ⊆ AutfL(C̃R/A). Since N was
arbitrary, the result follows. �

Corollary 2.13. For any A ⊆ K, (GR)∞A = GR. Thus, GR is definably connected.

Proof. By 4. of Proposition 1.6, (GR)∞A = GR ∩AutfL(C̃R/A). Using Proposition 2.12 we get (GR)∞A =
GR∩AutfL(C̃R/A). Now, by Corollary 2.11, (GR)∞A = GR∩Aut(C̃R/A). Finally, since GR ⊆ Aut(C̃R/A),
then (GR)∞A = GR. �
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In order to prove this corollary we assume that that the metric on the group is bi-invariant. However,
this requirement can be removed, as we now show.

Fact 2.14 (Proposition 3.13 in [BY10]). Let M be a continuous structure and let G be an ∅-definable
group. Then there is an ∅-definable metric on M which is bi-invariant on G.

Theorem 2.15 (Main Theorem). Let G be an ∅-definable group in a continuous theory. Then, for any
A ⊆ K, (GR)∞A = GR.

Proof. The case where the metric in GR is bi-invariant corresponds to Corollary 2.13. Suppose now
that the metric in GR is not bi-invariant. Let d1 be a metric on K which is bi-invariant on GR, as per
the previous fact. We define CR1 as the structure having the same universe that CR but whose distance
predicate on K is given by d1 and the original metric will correspond to a new predicate d2. So,

d
CR

1

K = dC
R

1 and d
CR

1

2 = dC
R

K .

Since CR and CR1 have the same definable predicates, then for any A ⊆ K, Aut(C̃R/A) = Aut(C̃R1 /A).
Furthermore, if N ⪯ C̃ then the structure N1, defined in the same way, is an elementary substructure of
C̃1. Hence, for any A ⊆ K, AutfL(C̃R/A) = AutfL(C̃R1 /A). The metric on GR, viewed now as a definable

group on C̃R1 , is bi-invariant. By Corollary 2.13, GR does not have non-trivial A-invariant subgroups of
bounded index in the new language. As we have the same definable predicates, the same is true for GR

in the original structure. �
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[BY13] Itäı Ben Yaacov. On theories of random variables. Israel Journal of Mathematics, 194(2):957–1012, 2013.
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