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Abstract—Numerous power-based wind turbine (WT) fault-detection methods using supervisory 
control and data acquisition (SCADA) data are presented in the literature. However, their performance 
cannot be compared easily with one another because of the lack of a realistic benchmark. To address 
this concern, a novel and realistic simulation framework is presented. It utilises actual data recorded 
on five French wind farms located at different geographical sites and composed of WTs of different 
models. It was used to simulate power profiles for three-year data, generated from 25 different wind 
and temperature profiles on 25 different WTs. Thus, the benchmark enabled a rigorous comparison of 
the performances of power-based fault-detection solutions. The fault-detection performances of three 
detection methods were compared for four power-based fault and under-performance scenarios of 
various intensities. The results indicated that the fault-detection performance of a method can vary 
considerably depending on the environmental and operational conditions. Moreover, the most effective 
approach is the one that considers these operational and environmental variations in WT data. The 
detection performance for the four failure scenarios was also statistically analysed. 

Highlights 

• Lack of objective performance evaluation for power-based fault-detection methods 
• Novel simulation framework for controlled performance comparison based on actual data 
• Critical performance comparison of three power-based fault-detection methods 
• Detailed analysis of operational and environmental effects on detection performance 

 

Keywords: Wind turbine; Fault detection; Simulation framework; Critical comparison; Performance 
evaluation 

Nomenclature: WT, wind turbine; O&M, operations and maintenance; SCADA, supervisory control 
and data acquisition; COE, cost of energy; OEM, original equipment manufacturer; PC, power curve; 
WS, wind speed; PA, pitch angle; RS, rotation speed; GB, gearbox; IEC, International Electrotechnical 
Commission; IEA, International Energy Agency; IRENA, International Renewable Energy Agency; 
kW, kilowatt; MW, megawatt, GW, gigawatt; MWh, megawatt-hour; ANN, artificial neural network; 
PD, probability of detection; PFA, probability of false alarms; Th, threshold; EST, estimated; PEM, 
performance evaluation matrix; NBM, normal behaviour model; RMSE, root mean square error  
Word Count: (~9,500 words with prior approval of Editor-in-Chief) 

1 INTRODUCTION 
With the consistent increase in the global installed capacity of renewable energy systems [1], 

operation and maintenance teams constantly encounter the challenge of maintaining and increasing the 
production performance of existing wind turbine (WT) fleets [2].  

Industrial operators require 24/7 production cycles, as downtime is linked to production loss and 
translates to financial costs for operators. Conditional maintenance is an effective method of ensuring 
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production at a reduced maintenance cost. It relies on fault-detection methods that can detect any faults 
that affect a WT at an early stage.   

Many WT fault-detection methods are available in the literature, but the analysis of their 
performance is often limited in scope. This limitation occurs because the data used to analyse the fault-
detection performances are often obtained from a single geographical location and from specific 
machine makes or models. The fault scenarios used for validation are also limited. Additionally, the 
proposed methods do not subject themselves to comparison with other solutions. Hence, a convergence 
of solutions is not available as no approach has been demonstrated to be comprehensively performant. 
The key factors affecting detection performance have neither been identified nor analysed. This is 
because a realistic benchmark that enables the comparison of fault-detection methods on realistic and 
controlled data is lacking. This creates the motivation to develop a framework to compare existing 
solutions, quantify their detection capabilities, and establish their limitations. 

1.1 Wind turbine fault detection 
This study exploited supervisory control and data acquisition (SCADA) data for analysis, as SCADA 

systems are familiar and easily accessible. Owing to their easy accessibility, various monitoring and 
detection methods have been proposed in the literature. Industrial SCADA systems for WTs provide 
data that are normally stored at an average resolution of 10 min with measurements for different 
parameters.  

Fault detection and monitoring approaches using SCADA data, as presented in the literature, can be 
classified into two categories based on some key variables. The two main parameters of interest from 
the health and fault-detection perspectives are ‘produced power’ and ‘temperature’ [3]. This paper 
focuses on methods that utilise the produced power. WTs inherently function as power generators, 
making the monitoring of produced power a key objective of their asset management strategy. 
Unwanted and unexpected decreases in the produced power are associated with non-optimal operational 
states or faults. For simplicity, ‘fault’ subsequently will refer to both faults and under-performing 
production states of a WT. 

1.1.1 Power-based fault detection 

Based on the understanding that faults or under-performance affect the produced power, various 
fault-detection approaches based on monitoring power curves have been proposed in the literature. 
However, power data often require pre-processing before their use in fault detection. The International 
Electrotechnical Commission (IEC) standard is a commonly used method for processing power curves 
[4]. The IEC provides a standardised method of calculating the mean power curve. The mean power 
curve is determined by grouping data into wind intervals called ‘bins’ and averaging the produced 
power within these intervals [4].  

The literature on power-based fault detection can be categorised into two solution families, namely, 
‘model comparison’ and ‘residual’-based approaches. Refs. [5],[6],[7] belong to the first family of 
methods in which two power curve models are compared. A reference power curve is first built offline 
on reference data under normal conditions. A second curve is built online during the observation period. 
Fault-detection indicators are created by comparing these two power curves. These methods require 



 

 

 

sufficient data to build complete power curves before the comparison. Their advantage lies in the 
simplicity of power curve modelling, as the level of data analysis is relatively rudimentary.  

The second major category of fault-detection solutions is based on generating power residuals. A 
residual is the difference between the expected power calculated using a model and the power measured 
online. Within the residual-generation methods, two subfamilies further emerge. These subfamilies are 
distinguished based on the selection of so-called ‘explicit’ or ‘implicit’ approaches to model the 
produced power. Once power production is modelled using historical data, online residuals can be 
generated. 

The authors in [8] generated residuals through the implicit modelling of produced power using 
artificial neural networks (ANNs). Wind speed (WS), pitch angle (PA), rotation speed (RS), nacelle 
temperature, gearbox (GB) oil temperature, etc. were used as inputs. The work proposed in [9] 
employed cluster analysis and pattern mining using WS, PA, RS, and power, while [10] used five data 
mining algorithms and compared their modelling performance. In [11],[12], the authors used data 
mining algorithms for detection, diagnosis, and isolation, while [13],[14], [15] used Gaussian process 
regression to model power. Additionally, WS and density were included as inputs to improve the 
modelling performance. In [16], the authors used a multistage ANN to predict power. WS, density, 
turbulence, wind shear, wind direction, and yaw were identified as appropriate inputs to reduce 
modelling errors. The authors in [17] provided a literature review of machine learning methods used to 
monitor WT conditions, while [18] presented a comprehensive overview of strategies on power curve 
modelling. 

The explicit modelling for residual-generation solutions proposed in the literature operates with the 
graphical representation of power versus another variable. When the corresponding variable is WS, the 
curve becomes a power curve, which is an industry standard. Other representations in the literature are 
generally referred to as performance curves. The authors in [19] used RS vs. power and RS vs. PA 
curves, while [20] used the standard power and performance curves such as WS vs. PA and WS vs. RS 
curves for monitoring. The authors in [21] used power-curve data and placed a graphical envelope 
around the shape for monitoring purposes. Another study proposed by [22] was inspired by the IEC 
Standard’s ‘method of bins’ [4] and used the linear operating region of the power curve, while [23] 
used the constructor-provided power curve as a reference model.  

The strength of residual-building approaches lies in their superior online monitoring capabilities. 
When the offline prediction model is learned, power prediction can be performed in real-time, and fault 
detection becomes possible. Historic residuals can also be used to examine the evolution of the overall 
behaviour of the system. However, the generated residuals can be affected by environmental and 
operating conditions if these conditions are not properly considered by residual-generation methods. 

 This study focused on understanding the effect of environmental and operational variations and 
evaluating different strategies to account for these variations.    

1.2 Problem statement 

An approach to objectively compare different fault-detection methods proposed in the literature is 
required. For a thorough comparison, the approach must consider changes in operational and 
environmental conditions and their effects on residuals. Previous studies overlooked these 



 

 

 

considerations. Frequently, the detection performance of fault-detection methods is assessed using 
unique, irreproducible fault scenarios that are often unique. Analysis is often performed using simulated 
data with additive Gaussian white noise, which is an oversimplification of reality. In summary, as 
evident from the literature review, the relevant publications do not address the problem of objective and 
critical performance evaluation of the WT fault-detection methods, which is the contribution of this 
study. 

Representative comparisons of fault-detection methods require the use of near-real-case scenarios. 
This requires a realistic simulation framework and a test setup with sufficient test scenarios to include 
environmental variations, operational variations, different fault scenarios, and sufficient data samples 
to perform a rigorous analysis.  

Thus, the major research questions become  

i) Can power curves be used to monitor WT conditions, despite inherent environmental and 
operational variations? 

ii) What type of fault-detection performance can be expected, what key factors affect the 
detection performance, and how? 

To address these concerns, a novel approach of generating a controlled stream of data is proposed. 
The time-series data of the produced power were simulated as a function of wind speed and external 
temperature. Data streams for both fault-free and fault scenarios were generated. Realistic fault 
signatures were used to output the faulty data streams. This faulty data were of the desired duration and 
could be inserted into the fault-free data stream at the desired locations.   

This study built on and extended the preliminary simulation approach proposed in [24] and the 
preliminary validation approach presented in [25]. The identified gap in the current approaches and the 
formulated research questions provided a foundation for the original contributions of this research, and 
are summarised as follows:  

i) The proposed simulation framework enables the production of extensive and controlled 
simulation data (non-white noise).  

ii) It makes a critical and objective performance evaluation of fault-detection methods, as 
illustrated using the three methods. 

iii) It enables the effects of operational and environmental variations on detection performance 
to be evaluated, as highlighted in this paper. 

The remainder of this paper is organised as follows. Section II presents the proposed simulation 
framework in detail and briefly describes the performance evaluation criteria. Section III presents the 
validation benchmark setup with the source data presentation and the fault scenarios used. Three power-
based fault-detection solutions are introduced and compared using the proposed benchmark. The results 
obtained using the simulation framework (Section II) and validation benchmark (Section III) are 
presented, discussed, and rigorously analysed in Section IV. The conclusions and future considerations 
are presented in Section V. 



 

 

 

2 PROPOSED SIMULATION FRAMEWORK 
A simulation framework is required because finding multiple, identical fault signatures on 

geographically distant and operationally different wind farms is often difficult. This makes isolating the 
effects of failures from those of operational and environmental factors difficult. Thus, a controlled but 
realistic simulation setup, as partially introduced in [24], is required to achieve the objectives of this 
study, i.e. to answer the lack of realistic and controlled data, to facilitate the evaluation of the effects of 
environmental and operational variations on the detection performance, and to enable a robust and 
extensive performance comparison of detection methods.   

2.1 Simulation process synthesis 

To simulate realistic power data, a two-stage process was first developed. This process relied on real 
power-curve data and the manifestation of various faults on the power curves as well as the dispersion 
of observed data owing to varying environmental and operating conditions.    

- The constructor power curves, expert knowledge, and/or historical data were used as 
references to generate various representative power curves for fault and fault-free scenarios. 
 
- The representative power curves generated were transformed into fault and fault-free data 
with the addition of real dispersion data, assuming that the dispersion data were not affected 
by a fault. 

2.1.1 Reference power curves 

The relationship between the power produced by a WT and the measured wind speed can be 
expressed by the curve shown in Fig. 1. Power curves are industry-wide standards; therefore, they are 
familiar to producers and operators. The power curve depicts the power generation behaviour under 
normal or fault-free scenarios, and any deviation is classified as an anomaly or a fault. Faults reduce 
the production capacity of a WT, which can significantly affect the power curve [21].  

To begin the simulation process, the reference power curves for normal and faulty behaviours were 
first created. Two options for establishing these reference curves were available. The first was to use 
the power curve provided by a manufacturer as a reference. Fig. 1a shows the normal behaviour of a 
fault-free power curve, also called the constructor power curve provided by the original equipment 
manufacturers (OEMs) to represent the production behaviour of their WTs. This power curve depicts 
the production behaviour of a WT during the fault-free period. The second option was to learn a 
measured reference power curve from fault-free historical data using the method of bins [4]. The mean 
power curve shown in Fig. 1a can be represented as (𝑃!! = 𝑓(𝜔")), where the averaged produced power 
(P) in wind bin 𝜔" is a function of wind speeds (ω) in the same bin (i). Wind bins often have a resolution 
of 0.5 ms-1.  



 

 

 

 
Similar to the normal behaviour, fault power curves replicating the behaviour of a WT power curve 

under ‘abnormal’ scenarios were created based on the literature review [21], expert knowledge, and 
analysis of real fault scenario data. Any faults affecting the shape of the power curve were simulated. 
As an illustration, Fig. 1b shows the power curve under a specific fault (yaw angle misalignment) and 
under normal conditions.  

2.1.2 Learning of dispersion and reference matrix creation  

The second step necessary for the realisation of the simulation process is to capture the realistic data 
dispersion around the power curve by calculating residuals and sorting the calculated dispersion 
residuals into an appropriate reference set.  

To learn the dispersion profile of real data, 10-min SCADA data from actual WTs operating under 
normal conditions for several years were used. Fig. 2 shows the real power-curve data from a 2-MW 
WT operating under normal conditions for the years 2014–2016. It also shows the reference mean 
power curve (𝑃!!

#$% = 𝑓(𝜔"
#$%)) calculated using the IEC binning method [4] from the fault-free 

reference data ‘ref’.  

Note that in Fig. 2, in contrast to the ideal power curve shown in Fig. 1, real data have a significant 
dispersion around the mean power curve. A significant amount of this data dispersion can be associated 
with variations in onsite air density, which is a consequence of onsite temperature variation [26]. The 
visual representation of this variation is shown in Fig. 2, which presents the dataset with colour bars 
associated with the corresponding onsite temperature values (θ). Fig. 2 shows the data after basic 
filtering. Outliers corresponding to erroneous samples (owing to measurement errors) and known 
maintenance actions were removed. Only data in which the WT produced power were maintained. 

 
Fig. 1. Example of power curve a) an ideal fault-free power curve, also referred to as constructor power 

curve b) fault power curve; fault type yaw misalignment. 



 

 

 

 
As shown in Fig. 2, it is important to observe that in the same wind speed bin	𝜔", multiple values of 

produced power P at different temperature values θ are present. Hence, the P values can be stored in 
the corresponding wind speed bin 𝜔" and temperature bin 	𝜃&, where Nij is the number of samples in the 
cell indexed by (𝜔" , 𝜃&). As an example of the varying temperature values, the data corresponding to 
the wind bin 10–12 m/s (Fig. 2) will intuitively fall within a varied range of temperature bins (Fig. 3). 

This fragmentation can be elaborated further as a 2D reference of i wind bins (𝜔") and j temperature 
bins (	𝜃&) (Fig. 4), where one 2D reference bin (marked red in Fig. 4) is defined by the wind bin and the 
temperature bin that contain a set of Nij power values denoted by {𝑃!!,("(∗)}.    

The data dispersion around the mean power curve (Fig. 2) is captured as the difference in the mean 
power curve values ((𝑃!!

#$% = 𝑓(𝜔"
#$%)) learned using the IEC method of bins [4] and the produced 

power data (𝑃!,() around this mean power curve. As explained earlier, the produced power data are 
fragmented into i wind bins and j temperature bins. For each 2D reference bin defined by the wind bin 
𝝎𝒊 and temperature bin 𝜽𝒋, the set of residuals {𝑟!!,("} on power values is calculated using Eq. 1. 

 𝑟!!,#"(𝑙) = 𝑃!!
$%& −	𝑃!!,#"(𝑙)   𝑙 = 0,… , 𝑁'(  (1) 

where 

𝑁"& is the number of samples within wind speed bin ω+ and temperature bin 𝜃&; 

𝑟!!,("(𝑙) are the dispersion residuals calculated for wind speed bin ω+ and temperature bin 𝜃&; 

𝑃!!
#$% is the mean power value in wind speed bin ω+ calculated on reference data; 

𝑃!!,("(𝑙) is the measured power within wind speed bin 𝜔" and temperature bin 𝜃&; 

The number 𝑁"& of dispersion residuals (𝑟!!,("(𝑙)) in each wind and temperature bin (𝜔" , 𝜃&) is 
variable. Fig. 5 shows a colour image of the number of data dispersion residuals in each cell of the 2-D 
reference matrix, filled using Eq. 1. The colour scale is determined by the number (𝑁"&) of the dispersion 

 
Fig. 2. Scatter plot of 10-min wind speed and power for a turbine over a 3-year period for dispersion 

learning; the mean power curve and colour corresponding to the temperature value of each sample are 
also shown. 

 



 

 

 

residual samples in each cell of the 2-D reference (Fig. 4). The fault-free data dispersion residuals 
𝑟!!,("(𝑙) calculated on the reference data are stored in a residual reference dataset (𝑅!!,("), as presented 
by Eq. 2.   

 𝑅!!,#" = {𝑟!!,#"(∗)}    (2) 

where 

𝑅!!,(" is the set of dispersion residuals sorted in wind speed bin 𝜔" and temperature bin 𝜃& as a function 
of 𝜔 and 𝜃 values.  

Note that the resolution of each cell in this 2-D reference (𝑅!!,(") can be varied. For the sake of 
simplicity, the examples presented in Figs. 3 and 4 use a bin resolution of 2 m/s by 5 °C. However, for 
this paper, the resolution is selected to be 0.5 m/s by 1 °C and each cell is subsequently populated by l 
dispersion residual (𝑟!!,("(𝑙)) entries. A wind bin resolution of 0.5 m/s is standard [4] for power curve 
analysis; however, the selected value also depends on the availability of data. A finer resolution may 
result in a lack of sufficient reference data per bin; thus, a careful trade-off might be required. The size 
of the empty 2-D reference 𝑅!!,(" before the population must be consistent and representative of real 
data sample values. 



 

 

 

 
For this implementation, the reference ranges for the wind speed and temperature were selected as 

0 to 25 m/s and -10 to 40 °C, respectively. The bin resolution of 0.5 m/s by 1 °C for this reference range 
(0 to 25 m/s and -10 to 40 °C) resulted in the size of 𝑅!!,(" 	being 50 × 50. Note that the total number of 
reference bins with available and non-empty reference data in the 2-D reference is a function of the 
dataset under consideration and can vary. The different pixel intensities in Fig. 6 further elaborate the 
varying number of samples in each reference cell. The pixel density in the image indicates that most 
data lie roughly within the boundaries of 4–22 m/s for wind and 2–25 °C for temperature values.   

2.2 Generation of simulated data flows 

2.2.1 Simulation procedure 

A simulation process was now available to generate simulated data. This process relied on the 
following:  

v Various realistic and useful reference fault power curve patterns, replicating the multiple fault 
scenario identified and created in Section 2.1.1.  

 
Fig. 3. Scatter plot of 10-min wind speed and temperature values over a 3-year period with wind bin 10–

12 [m/s] marked with dotted lines. 

  
Fig. 4. 2-D ref. of i wind and j temperature bins to 
be filled with data corresponding to respective 
wind speed bin 𝝎𝒊 and temperature bin	𝜽𝒋. 

Fig. 5. Image of dispersion residuals set with 
colours scaled for number of residuals per wind 
and temperature bin (𝝎𝒊, 𝜽𝒋). 

 
 
 
 

  



 

 

 

v A realistic dispersion profile learnt and the 2-D dispersion reference matrix created in Section 
2.1.2. 

To simulate the 10-min power time series, the simulation process was used with wind speed and 
external temperature time series (𝑈(𝑘),	𝑇(𝑘)) measured on different WTs as inputs. (𝑈(𝑘),	𝑇(𝑘)) were 
time series of wind speeds and temperatures recorded every 10 min, where k is the time index. For this 
implementation, k = 0,…, 157824 (~3 years for a 10-min sampling rate) was used.  

At each timestamp (k), the values of this ‘input’ pair of environmental parameters (wind	𝑈(𝑘) ∈ 𝜔" 
and temperature	𝑇(𝑘) ∈ 𝜃&) were used to select the corresponding reference power value (step 1) and 
the dispersion profile value (step 2). The input wind data sample (	𝑈(𝑘) ∈ 𝜔") was used to select the 
corresponding reference power value (	𝑃!!) (Section 2.1.1). Both new environmental parameters 
(wind	𝑈(𝑘)) ∈ 𝜔" and temperature	𝑇(𝑘) ∈ 𝜃&) were used to identify the corresponding reference wind 
and temperature bin (𝜔" , 𝜃&) of the reference dispersion residual set	𝑅𝜔𝑖,𝜃𝑗 built earlier.  

When the correct reference bin (𝜔" , 𝜃&) was identified, a dispersion value 𝑟̃ωi,θj(𝑘) from the 

corresponding bin of 𝑅!!,#" was randomly drawn. The value of the (	𝑈(𝑘),	𝑇(𝑘)) pair operated as a 

pointer to the corresponding reference wind speed and temperature bins of the 2-D reference matrix. 
Hence, for each (	𝑈(𝑘),	𝑇(𝑘)) pair of 10-min data samples, a dispersion residual was randomly drawn 
from the relevant reference bin. Note that when randomly drawn, residual sample 𝑟̃ωi,θj(𝑘) was neither 
removed nor replaced and was available for the next and subsequent withdrawals throughout the 
simulation process (in a boot-strap-like approach).  

The randomly selected dispersion	𝑟̃ωi,θj(𝑘) value was then added to the corresponding reference 

power value (	𝑃!!& 𝑃!!
, ) for the modelling of normal and faulty behaviour, respectively. A realistically 

simulated time series of power data 𝑃-(/),1(/)(𝑘) as a function of the (	𝑈(𝑘),	𝑇(𝑘)) pair of input data 
could be generated using Eq. 3 for the fault-free scenario, and Eq. 4 for the fault scenarios as follows:  

 𝑃-(/),1(/)(𝑘)̈ = 	𝑃!! + 𝑟4!!,#"(𝑘)    for fault-free case (3) 

 				𝑃-(/),1(/)(𝑘)̈ = 	𝑃!!
2 + 𝑟4!!,#"(𝑘)  for fault profiles (4) 

    
U(k) ∈ 𝜔"
𝑇(𝑘) ∈ 𝜃&

;    

where 

𝑃-(/),1(/)(𝑘)	is the simulated power output for the input pair (	𝑈(𝑘), 𝑇(𝑘)); 

𝑃!! is the fault-free reference power curve; 

𝑃!!
,  is the fault reference power curve ranging from 1 to q depending on the fault mode selected; 

𝑟̃ωi,θj(𝑘)is the dispersion residual selected randomly from (𝑙) entries in the reference bin (ω",	𝜃&); 

q is the number of fault modes for the reference power curves available for simulation (Fig. 10).  

 



 

 

 

Fig. 6 shows the input wind and temperature time series (	𝑈(𝑘),	𝑇(𝑘)) recorded for a 2-MW WT 
over three years (2014–2016). This input time series was used to create new simulations of power data 
(𝑃-(/),1(/)̈ ), as detailed in Section 2.2.1. 

 
The simulation framework presented could then be used to generate a faulty and fault-free power 

data time series at length. The simulated data were entirely controlled and a realistic data stream could 
be selected based on the selected reference power curve mode. The data dispersion used replicated the 
dispersion observed in the real world.  

2.2.2 Simulated data example 

Fig. 7 shows the zoomed version of an example of simulated power against the wind samples for a 
one-week duration (19th to 26th April 2015). To validate that the simulated power is a response to the 
input wind speed time series used, some key moments are identified in the example. The horizontal red 
bar in Fig. 7a corresponds to the ‘nominal wind speed”’ above which the produced power attained the 
‘nominal power’ value, as indicated by the red line in Fig. 7b. The nominal wind speed for the example 
presented was 11 m/s, while the nominal power was 2.05 MW (Fig. 1). The figure shows that the 
moment wind speed values in Fig. 7a crossed the red line (nominal speed of 11 m/s), the simulated 
power in Fig. 7b attained the nominal power (2.05 MW). 

 
Fig. 6. Input profiles (Real data): (a) Wind	𝑼(𝒌), (b) temperature	𝑻(𝒌) used to select the reference power 

𝑷𝝎𝒊
𝒒 and random dispersion sample 𝒓?𝛚𝐢,𝛉𝐣  to simulate the output power (𝑷𝑼(𝒌),𝑻(𝒌)̈ ). 

 



 

 

 

 

2.3 Evaluation of the performance of the detection methods 

The time-series data generated using the aforementioned framework can be used to gauge the 
performance of fault-detection methods. Such an analysis is based on the evaluation of the detection 
performance indicators. Wind farm operators require automated monitoring methods that can generate 
alarms when the WTs experience faults. The detection mechanisms must be timely, robust, and with a 
minimal number of false alarms. 

The principle of detecting the fault occurrence is based on the difference between the normal 
behaviour and observed behaviour of a characteristic operating variable. When this difference exceeds 
a predefined threshold, a fault is detected. Setting a proper detection threshold is an arduous task 
because fault indicators are imperfect and may vary even in fault-free scenarios. Therefore, a 
compromise is found between the detection of actual defects and the number of false alarms generated 
by the system. Despite its significance, few studies have focused on this aspect in the context of fault 
detection on wind turbines based on SCADA data [27]. 

2.3.1 Performance indicator definition 

As mentioned earlier, a fault is detected by setting a threshold on the residual generated by the fault-
detection methods. When the residual decreases below the detection threshold, an alarm is raised. The 
alarm raised can be a true detection (or true positive), i.e. an actual fault occurs on the WT, or it can be 
a false alarm (or false positive), i.e. no fault actually occurs on the WT. The performance of a detector 
can be assessed using a receiver operating characteristic (ROC) curve, which sketches the true detection 
probability (the probability of detecting a fault when one occurs) as a function of the false alarm 
probability (the probability of detecting a fault when none occurs). This curve is obtained by changing 
the value of the detection threshold [28]. 

The ROC curve is a monotonically increasing function. Changing the detection threshold value to 
increase the true detection probability also increases the false alarm probability. Fig. 8 shows an 
example of three ROC curves obtained using three different fault-detection methods, which will be 

 
Fig. 7. (a) Input: Real wind profile and nominal speed drawn as a red line; (b) output: simulated 

power profile and nominal power drawn as a red line (1 week). 

 



 

 

 

presented and used later in this paper, for a particular fault. Detector performances using ROC curves 
can be compared by calculating the area under the curve (AUC): the higher the AUC, the better the 
detector. Another solution that is frequently used in supervision is to select a particular value for the 
false alarm probability and compare the corresponding true detection probabilities. The higher the 
corresponding true detection probability, the better the detector. It is a standard approach in fault-
detection theory and is called the Neyman–Pearson criterion. We selected the Neyman–Pearson 
criterion over the AUC because the true detection probability is easy to interpret and relevant for 
maintenance operators, while the AUC is not.   

 
In this paper, we propose the use of a specific point on the ROC curve as the performance indicator, 

we set the false alarm probability to 0.1 (or 10%) and use the corresponding true detection probability, 
denoted as PD10, as our performance indicator. This particular value for the false alarm probability is 
set by constraints from the industrial application, requiring a maximum level of false alarms equal to 
10% (above this level, too many unnecessary maintenance actions could be triggered). False alarms can 
be very costly because they result in the intervention of maintenance technicians on sites that are often 
remote and sometimes difficult to reach. 

The following section details the estimation of the true detection and false alarm probabilities using 
the proposed framework. 

2.3.2 Protocol for performance evaluation 

A three-year simulation time-series dataset was generated: Years 1 and 2 were fault-free periods. A 
fault was introduced in year 3. Let Th be the detection threshold set for the fault indicator. Whenever 
the fault indicator crosses Th, a fault is detected. 

Year 1 (learning period) of fault-free data is reserved for learning fault-free behaviour using the 
implemented fault-detection solutions.  

Year 2 (validation period, setting of Th) is used to select the detection threshold Th10 corresponding 
to the selected 10% false alarm rate. During this year, no faults are introduced. Hence, periods when 

 
Fig. 8. Example ROC curves for Methods 1, 2, and 3 for fault type icing 10%; corresponding PD values 

are identified by stars against PFA 10%. 

 



 

 

 

the residual decreases below the detection threshold correspond to false alarms. The detection threshold 
Th10 is set such that the percentage of false alarms during the second year is equal to 10%.   

PFA10 is estimated as follows: 

 𝑃𝐹𝐴78 =
𝑁𝑜. 𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	(𝑇ℎ78)

𝑇𝑜𝑡𝑎𝑙	𝑁𝑜. 𝑜𝑓	𝑑𝑎𝑡𝑎	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑖𝑛	𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛	𝑝𝑒𝑟𝑖𝑜𝑑 
(5) 

Th10 is set such as PFA10= 0.1 (10% PFA) 

Year 3 (fault period) is used to estimate the probability of detection (PD), which is used as the 
performance indicator for fault detection. During this year, a fault is always present. Hence, periods 
when the residual decreases below the detection threshold correspond to the true detections. Note that 
only the PD value corresponding to a PFA of 10% is used as a performance indicator in this analysis. 
The indicator is denoted PD10.  

PD10 is estimated as follows: 

 
𝑃𝐷78 =

𝑁𝑜. 𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	(𝑇ℎ78)
𝑇𝑜𝑡𝑎𝑙	𝑁𝑜. 𝑜𝑓	𝑑𝑎𝑡𝑎	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑓𝑎𝑢𝑙𝑡	𝑝𝑒𝑟𝑖𝑜𝑑 

(6) 

2.3.3 Performance evaluation strategy 

For a particular fault-detection method and a particular fault, PD10 can be estimated using several 
time-series data streams generated by the framework. These data streams are generated using real data 
from wind farms located in distinct geographical locations and WTs built by different manufacturers. 
Each time-series datum can be generated using the dispersion residuals from one turbine of a particular 
wind farm and the environmental parameters recorded on another WT. If 𝑁1 is the number of WTs, a 
total of 𝑁1 by 𝑁1 time-series data can be generated, and an equal number of PD10 indicators can be 
calculated. Subsequently, the performance of a particular fault-detection method on a specific fault can 
be evaluated using the 𝑁1 by 𝑁1 performance-indicator values. These values are stored in tabular form 
(Table II) called the performance evaluation matrix (PEM). Using the calculated PEMs, further analysis 
can be performed to compare the performances of different fault-detection approaches. 

2.4 Simulation and evaluation framework overview 

 The proposed simulation and performance comparison framework can now be summarised. Fig. 9 
shows the step-by-step methodology for the performance comparison framework. 



 

 

 

 
3 CASE STUDY: COMPARISON OF THREE FAULT-DETECTION 

METHODS ON FIVE DIFFERENT WIND FARMS 
The simulation framework presented in the previous sections was used to set up a test bench for 

performance comparison. In this study, three fault-detection methods were selected as representative 
samples of the diverse existing fault-detection methods. Five different wind farms were selected for 
their diversity of operating and environmental conditions, ensuring technological and environmental 
variability. This experimental approach enables the exploration of the effects of geographical and 
operational variations on the performance of fault-detection methods. 

 
Fig. 9. Overview of the proposed simulation framework. Input profiles shown to generate simulated power. 

Residuals are generated and detection performance compared. 



 

 

 

3.1 Real data set description 
A realistic simulation benchmark requires a deep-rooted foundation in the real dataset. Hence, 10-

min interval SCADA data recorded during three years from five different wind farms of the research 
partners were utilised. These five wind farms provided a total of 𝑁1=25 WTs. One WT was either 
selected as a source of input environmental parameters (wind	𝑈(𝑘), temperature	𝑇(𝑘)) or as a source 
of measured power data to learn the dispersion profile	(	𝑅!!,("). Based on this, 625 (𝑁1 × 𝑁1 = 25 × 
25) simulation combinations were possible. For this analysis, each data stream had a three-year 
duration. The proposed simulation framework enabled the generation of an overall simulated data 
duration of 1875 years (625 × 3 years) by adding all combinations of simulation scenarios. The time-
series data from years to 2014–2016 were used to generate residuals using different fault-detection 
methods. 

Hence, five wind farms operated by research partners labelled V, L, D, S, and C were selected. The 
selection of the wind farms under analysis in this study ensured several key considerations: a fair 
representation of the research partner’s fleet from mainland France, sufficient environmental 
variability, and sufficient operational variability. Fig. 10a shows a map of the wind farms selected from 
the on-shore fleet of the research partner. The geographical variability of the data source ensured 
sufficient environmental variability in the dataset. Fig. 10 b and c show the onsite wind and temperature 
distributions of these wind farms. As the figures show, the wind speed distribution for Farm S differed 
considerably from that of Farm V. Farm S was subjected to stronger winds, with a median value of 
approximately 6 m/s and maximal values up to 16 m/s. For Farm V, the median value of wind speed 
was 3 m/s, and the maximum value was approximately 12 m/s. Similarly, the onsite temperature was 
significantly colder for Farm V, with minimal values of approximately -5 °C and maximal values of 30 
°C. The minimal value for Farm S was positive, and the maximal value was approximately 35 °C. 

 
The operational variation of the dataset was ensured by the selection of data from wind farms with 

machines from different OEMs. Their characteristics are presented in Table I. The selected turbines had 
different models, hub heights, swept areas, rotor diameters, and rated powers. The wind farms ranged 
from three to six turbines per farm and were implanted in line, grid, L-shape, or arc configurations.  

    
      

Fig. 10. (a) Geographical location of the five 
selected on-shore wind farms. 

Fig. 10. (b) Wind profile distribution and (c) 
Temperature profile distribution of the five wind 
farms. 

 



 

 

 

 
In summary, the variation in the selection of input farm data provided an opportunity to test 

environmental variation. The variation in data used to learn the dispersion profiles enabled the 
operational characteristics of the WTs to be captured.  

3.2 Simulation test bench configuration 

The simulated time-series data were used to set up a test bench. As mentioned earlier, one simulated 
time-series datum was composed of two years of fault-free data and one year of faulty data. The normal 
behaviour models required by each fault-detection method were learned in the first year of the simulated 
data stream. Year 2 of fault-free data was used to set the detection threshold to 10% of false alarms, and 
PD10 values were calculated on year-3 faulty data. A unique fault scenario of a one-year duration was 
induced at the same period (year 3) for each simulated data stream. 

Note that the proposed simulation framework enables flexibility in the location and duration of the 
faults induced in the dataset. The selection of the duration of threshold, learning, and validation periods 
is also flexible. 
3.2.1 Faults induced 

Four different families of faults, including (a) icing, (b) down-rating, (c) acoustic curtailment, and 
(d) yaw misalignment, were used. Different intensities of these faults could be generated. The faults 
tested were realistic and were selected to encompass a wide spectrum of faults of interest. The 
corresponding power curves of these four fault scenarios are shown in Fig. 11.  

• Icing (v-low, low, medium, high): This type of failure appears as a uniform degradation in the 
operational zone on the power curve (Fig. 11a). In the time series of produced power, a 
downward shift is visible for data corresponding to moderate wind speed values. 

• Down-rating (1%, 3.5%, 7%, and 15%): This type of failure appears as a fixed degraded value 
on the power curve for higher wind speeds (Fig. 11b). In the time series of the produced power, 
the downward shift is only visible for data corresponding to higher wind speed values. 

• Acoustic curtailment: This mode of operation regulates surrounding noise levels. The produced 
power is degraded at higher wind speeds, but the degradation is different from down-rating (Fig. 
11c). 

TABLE I.  DATA BASE SUMMARY 

Wind 
Farms 

Wind Farm Characteristics  Wind Turbine Specifications 
# of 
WTs 

Farm 
Location 

Instal. 
Year 

Farm 
Layout Model Rated 

Power 
Hub 

Height 
Rotor 
Dia. 

Swept 
Area 

Farm   
V 6 Centre-

North 2014 Line SENVION 
MM92 

2.05 
MW 

68.5/80/100 
m 92.5 m 6,720.0 

m² 
Farm  

L 3 Centre-
East 2014 Grid GE 

2.5×L/100 
2.5 

MW 75/85 m 100.0 
m 

7,854.0 
m² 

Farm  
D 6 Centre- 

North 2010 L-
shape 

VESTAS 
V90 

2.0 
MW 

80/95/105 
m 

90.0 
m 

6,362.0 
m² 

Farm  
S 5 South 2009 Line ECOTECNIA 

80 
2.0 

MW 70/80 m 80.0 m 5,027.0 
m² 

Farm 
C 5 West 2010 Arc SENVION 

MM92 
2.05 
MW 

68.5/80/100 
m 92.5 m 6,720.0 

m² 
 

 



 

 

 

• Yaw misalignment: WTs are equipped with a yaw motor to ensure that the most efficient angle 
along the wind direction is followed. A misalignment changes the optimal behaviour of the WT, 
and the produced power is degraded (Fig. 11d). 

 
Note that down-rating and acoustic curtailment are operational modes, but unintended activation 

results in significant production loss; hence, they can be referred to as fault scenarios.  

3.3 Evaluation of fault-detection methods 
Three representative fault-detection approaches proposed in the literature were implemented in this 

study. All methods generated residuals by comparing the current 10-min SCADA power values to the 
expected values. The expected power values were predicted using a normal behaviour model derived 
from the power curve. The selection of these three fault-detection methods considered in this study was 
based on three different methods of ‘managing’ data dispersion and variability. Method 1 used only 
wind, Method 2 used wind, density correction, and data translation, and Method 3 used wind and air 
density for dispersion correction. Fig. 12 shows an overview of the different characteristics of the 
selected methods.  

Methodologically, the first method used is a proposed residual-generation method inspired by the 
method of bins [4], the second is a more intricate method proposed by [22], and the third is a machine 
learning method based on Gaussian process regression presented by [13]. These methods are presented 
below in further detail.  

 

(a)   (b)   

(c)   (d)   
Fig. 11. Fault reference power curves for (a) icing, (b) down-rating, (c) acoustic Curtailment, and (d) yaw 

misalignment. 



 

 

 

 

3.3.1 Method 1: Approach inspired by the IEC 

With this technique, the reference power curve is learned by binning data in wind speed intervals of 
a 0.5-m/s resolution. For each wind bin with a 0.5-m/s resolution, a reference mean value of the 
produced power data samples, as presented by the IEC standard [4], is computed. This in turn builds a 
fault-free reference power curve. The indicator for fault detection is calculated as the difference between 
all the produced power samples and the mean power value within each wind bin [24]. Fig. 13a shows 
an example of residuals calculated for a three-year data stream. The fault scenario presented in this 
example is a 15% down-rating during year 3 (2016–2017). The faulty period is indicated by a horizontal 
red bar. Fig. 13b shows the same residual with a one-week moving average.  

3.3.2 Method 2: IEC-based density correction and translated data approach 

 The approach presented in [22] is one of the approaches of normal behaviour modelling. This 
technique generates a residual inspired by the IEC standard [4], but considers both environmental and 
operational conditions. Similar to Method 1, the data are binned into 0.5-m/s wind intervals, and the 
reference mean is calculated for each wind bin. However, according to the recommendation of the IEC 
standard [4], the data are corrected for onsite density variations and normalised to the reference density 
of 1.225 kg/m3. Because the reference mean lies in the centre of a wind bin, the residual is only 
calculated after translating all the data samples within each wind bin towards the bin centre [22]. The 
indicator for fault detection is calculated as the difference between all the produced power samples and 
the mean power value of two consecutive wind bins. Fig. 14a shows an example of residuals calculated 
for a three-year data stream. The fault scenario presented in this example is a 15% down-rating during 
year 3 (2016–2017). The faulty period is indicated by a horizontal red bar. Fig. 14b shows the same 
residual averaged with a one-week moving window.  

3.3.3 Method 3: Approach based on Gaussian process regression 

The authors in [13] used Gaussian process regression to model the WT power output. The learned 
model was used to predict the power output for each timestamp based on two inputs (wind speed and 

 
Fig. 12. Overview of three residual-generation-based fault-detection methods. Method 1 uses wind only; 

Method 2 uses wind, density correction, and data translation; Method 3 uses wind and air density. 

 
 



 

 

 

air density). Fault-detection residuals were generated as the difference between the simulated power 
data samples and predicted reference power data. Fig. 15a shows an example of residuals calculated 
from a three-year data stream with an induced fault of 15% down-rating during year 3 (2016), as 
indicated by the red lines. Fig. 15b shows the one-week moving average of the same residual.  

 

3.4  Performance evaluation matrix 

The three fault-detection methods presented were applied to the 625 streams of three years of 
simulated data (i.e. 25 × 25 = 625), and their respective residuals were computed. To reduce noise, the 
residuals generated by all methods were smoothed by obtaining a one-week moving average, and the 
performance indicator (PD10) was subsequently calculated as presented in Section 2.3. For each fault 
scenario and fault-detection method, 625 performance indicators (PD10) were now available. They were 
stored in the PEM shown in Table II [25]. The letters in Table II are wind farm names, while the 
numbers (1,…, n) refer to the corresponding WTs in these wind farms. For example, V3 and D4 refer 
to the third and fourth WTs of Farms V and D, respectively.  

The variation in environmental behaviour was ensured by the selection of various environmental 
profiles for simulation inputs, as presented in the rows of Table II. All the PD10 values in one row were 
calculated from data streams simulated from the same input environmental profile (	𝑈(𝑘),	𝑇(𝑘)), 

    
 

Fig. 13. Method 1 for 15% down-rating: (a) 
Unprocessed; (b) moving average; the red lines 
mark the fault period (year 3). 

Fig. 14. Method 2 for 15% down-rating: (a) 
Unprocessed; (b) moving average; the red lines 
mark the fault period (year 3). 

 
Fig. 15. Method 3 for 15% down-rating: (a) Unprocessed; (b) moving average; the red lines mark the 

fault period (year 3). 
 



 

 

 

measured on the same turbine. However, for each row, a dispersion set (	𝑅!!,(") was drawn from each 
of the 25 WTs (V1 to Cn). All the PD10 values in one column were calculated from data streams 
simulated by 25 environment profiles (	𝑈(𝑘),	𝑇(𝑘)) (from V1 to Cn). In each column, a dispersion 
profile drawn from the same WT was used (Section 2.2). Thus, extensive statistical analysis and 
performance comparison could be performed for each test scenario using this matrix.  

 

 
 

4 PERFORMANCE EVALUATION: RESULTS AND DISCUSSION 

The simulation framework proposed in this paper was used to evaluate the detection performance of 
the three fault-detection methods presented earlier. To achieve a realistic quantification of the global 
performance, different fault intensities were considered. The performance indicator was calculated to 
populate the PEM shown above. The results are presented and discussed in the following sections.  

4.1 Performance evaluation according to the type of fault 

4.1.1 Down-rating 

Fault intensities of 1%, 3.5%, 7%, and 15% down-rating were selected for analysis. In terms of 
produced power, for a 2.05-MW WT, this down-rating translates to a curtailment from the rated 
maximum of 2.05 MW to approximately 2.03, 1.97, 1.92, and 1.75 MW, respectively. This curtailment 
is only activated at higher wind speeds. The selection of different fault intensity levels provides a 
comprehensive view of the fault-detection performance for this particular fault family.  

Fig. 16 shows the mean PD10 value for each method, calculated for different intensities of fault mode 
down-rating. The mean value represented by a single bar per fault-detection method is calculated for 
the complete PEM (for all 625 simulations, environmental profiles, and dispersion profiles). The results 
indicate that, globally, the increase in fault intensity results in an increase in detection performance for 
all methods. However, the mean PD10 value for Method 2 is approximately 10% and 20% higher than 
that of Methods 3 and Method 1, respectively, for the fault intensities of 1%, 3.5%, and 7%. As the 

TABLE II.  PERFORMANCE EVALUATION MATRIX 

 



 

 

 

fault intensity is increased to 15%, the fault signature becomes easier to detect, and the detection 
performance advantage of Method 2 is decreased to approximately 10% and 5% compared with 
Methods 1 and 3, respectively. 

Note that the overall mean detection performance for fault-type down-ratings is relatively low. The 
PD10 values shown in Fig. 16 have the lowest performance value of approximately 7% for Method 1 
and a fault intensity of 1%. The highest value of detection performance is 52% for Method 2 and a fault 
intensity of 15%. For a false alarm rate of 10%, the highest mean detection performance (PD10) of 52% 
is relatively low. This can be explained by examining the fault signatures for the down-rating. Owing 
to the peculiar nature of the fault (visible only for high winds), the fault signature was not pertinent 
throughout the fault period (year 3). Because the PD10 is calculated over the complete fault period (year 
3), the average detection values for the down-rating (visible only for high winds) are lower than those 
for a fault that was consistently visible throughout the entire fault period (year 3). 

  

 

4.1.2 Icing on blades 

The fault intensities (v-low, low, medium, and high icing) were selected for analysis. In terms of 
reduced production, for a 2.05-MW WT, these intensities translate to a reduction of approximately 
1%, 5%, 10%, and 20% power, respectively. Unlike down-rating, this production loss affects all wind 
speeds. The hypothesis here is that this fault type changes the aerodynamics of the turbine blades and 
affects the production for all wind speeds. Note that although icing is a seasonal phenomenon, in this 
study, the fault was evaluated over the entire year (year 3). The selection of different fault intensity 
levels provides a comprehensive view of the fault-detection performance for this particular fault 
family.  

Fig. 17 shows the mean PD10 value calculated for different intensities of the icing fault mode. The 
mean value is represented by a single bar for each method. The mean value shown is calculated for the 
complete PEM (over all the 625 simulations, environmental profiles, and dispersion profiles). The 
results indicate that, globally, the increase in fault intensity results in an increase in detection 
performance for all methods. The mean PD10 value for Method 2 remains ahead of that of Methods 1 

 
Fig. 16. Performance indicators for down-rating (1%, 
3.5%, 7%, and 15%) for Methods 1, 2, and 3 with 
95% confidence intervals and median values. 

 
Fig. 17. Performance indicators for icing (v-low, low, 
medium, and high) for Methods 1, 2, and 3 with 95% 
confidence intervals and median values.  

  
               
 



 

 

 

and 3 for the fault intensities of 1%, 5%, 10%, and 20%. The advantage of Method 2 in detection 
performance compared to other Methods is reduced for the icing fault. As the fault intensity increased 
to 20%, the fault signature became easier to detect, and the difference in the detection performance 
became nominal. 

Note that the overall mean detection performance for fault-type icing is high. The PD10 values in Fig. 
17 have the highest values at approximately 97% for Method 2 and a fault intensity of 20%. For a false 
alarm rate (PFA) of 10%, the highest mean detection performance (PD10) of 97% is very high. This can 
be explained by examining fault signatures for icing. The production loss for this fault type appeared 
as a downward ‘step’ shift in the fault period. As the fault intensity increases, the amplitude of the step 
shift increases, and the fault becomes easier to detect. Moreover, the icing fault is visible for all wind 
speeds, and the fault signature is pertinent throughout the fault period (year 3). Because the performance 
indicator PD10 was calculated over the complete fault period (year 3), the average detection values for 
icing (visible for all wind speeds) are higher than those for a fault that is only visible for high wind 
speeds (down-rating).  

4.1.3 Acoustic curtailment and yaw misalignment 

The mean detection performance results for various fault intensities of fault types down-rating and 
icing have been presented thus far. Two other important faults, namely, acoustic curtailment and yaw 
misalignment, were included in the analysis and are presented in this section.  

Acoustic curtailment is a particular operational mode that is often activated at night to ensure 
compliance with acceptable noise levels. The activation is also a function of the wind direction and 
populated sectors near wind farms. In reality, this type of fault is occasional, but for the sake of this 
analysis, an active fault throughout the fault period (year 3) was considered. The fault signature for 
acoustic curtailment is only visible at high wind speeds. This is because the noise levels increase at 
higher wind speeds. Acoustic curtailment is a configuration activated by an operator. Because 
unintentional or faulty activation results in production loss, it is considered a fault. 

The results (Fig. 18) indicate that for acoustic curtailment, the global value of PD10 for Method 2 is 
higher than that for Methods 1 and 3. For this fault type, the PD10 for Method 2 is approximately 13% 
higher than that of Method 1. The advantage of Method 2 in terms of detection performance compared 
to that of Method 1 is relatively low (3%).  

Yaw misalignment occurs when the WT fails to align with the direction of the maximum wind. The 
control system of a WT is configured to adjust the yaw angle to enable maximum exposure to wind. 
Any misalignment results in suboptimal power production and is termed a fault. An 8° misalignment 
was used as a fault for this analysis, but the severity of this fault can vary. The fault signature of the 8° 
misalignment resembles the fault signature of the fault type 10% icing. 

For yaw misalignment, the trend of the detection performance of Method 2 being superior continues 
(Fig. 18). Globally, the value of PD10 for Method 2 remained higher than that of Methods 1 and 3. For 
this fault type, the PD10 for Method 2 is approximately 11% higher than that of Method 1. Similar to 
acoustic curtailment, the advantage of Method 2 in detection performance compared with Method 1 is 
relatively low (3%).  

Fig. 18 shows these two faults (acoustic curtailment and yaw misalignment) along with the down-
rating and icing faults. The results for down-rating and icing in Fig. 18 represent the mean values across 



 

 

 

all fault intensities. For each method, the down-rating in Fig. 18 is the mean of all values (1%, 3.5%, 
7%, and 15% down-rating) presented in Fig. 16. Similarly, the results for icing in Fig. 18 are the global 
mean of all fault intensities (1%, 5%, 10%, and 20% icing) presented in Fig. 17.  

4.1.4 Conclusion—fault-specific comparison 

 The performances of the three methods on each particular fault (type and fault intensity) were 
compared using paired t-tests. The aim was to determine whether, for a particular fault, one method 
(Method i) had superior performance over another (Method j), with i and j being 1, 2, or 3. Hence, two 
hypotheses were formulated. The null hypothesis (H0) was that the mean value of PD10 is equal for 
methods i and j for a particular fault. The alternative hypothesis (H1) was that the mean value of PD10 
of Method i is higher than that of Method j for a particular fault.  

For this analysis, an α risk of 1% was accepted. A conclusion is drawn for each combination of the 
two methods and for each fault. The results are listed in Table III. Because the methods were compared 
using PD10 values calculated for ten different faults, we used a Bonferroni correction for multiple 
testing. Therefore, the threshold set on the p-value to reject hypothesis H0 was set to a/10, i.e. 0.001. 
Whenever the p-value of the test is below 0.001, the mean value of PD10 of Method i is higher than that 
of Method j. Methods 2 and 3 outperform Method 1 for every fault, except for 20% high icing, which 
was seemingly very easy to detect. For this fault, the absolute PD10 values were higher than 95% for 
each method. Method 2 outperforms Method 3 for every fault except for low to high icing, for which 
the test was inconclusive.  

 
One of the causes of the under-performance of Method 1 is the lack of mitigation of operational and 

environmental variations. For Method 1, no effort was made to reduce the data dispersion caused by 
these variations. Method 3 performed better than Method 1 because of the use of air density as an input 
during the implementation. The consideration of wind density in modelling a WT’s output power has 
been demonstrated to reduce the RMSE by 16% [26]. Method 2 performed better than the other two 
methods for most of the fault scenarios evaluated. With this method, data dispersion owing to 
environmental variation is reduced by introducing a density correction in its implementation. The 
operational variation was addressed by data translation within each wind bin [22].  

Finally, Fig. 18 shows the mean PD10 value obtained by the three methods for each type of fault, 
regardless of the intensity of the fault. These results agree with the conclusions of the paired t-tests. The 

TABLE III. PERFORMANCE COMPARISON RANKING (P-VALUES) 
 

  M2 vs M1 M2 vs M3 M3 vs M1 
Down-rating 1%  8.7E-63 4.0E-40 1.8E-24 

Down-rating 3.5%  1.8E-127 4.0E-75 8.1E-77 
Down-rating 7%  5.8E-161 5.6E-70 2.7E-98 
Down-rating 15%  1.2E-131 1.8E-31 2.0E-51 
Icing V-Low 1% 5.3E-44 8.7E-05 4.0E-19 

Icing Low 5% 3.4E-83 0.72 7.6E-64 
Icing Medium 10% 7.3E-76 0.01 8.0E-45 

Icing High 20% 5.2E-02 0.95 3.2E-08 
Yaw Misalignment  1.7E-44 5.6E-95 9.8E-51 

Acoustic Curtailment 2.20E-49 3.0E-02 4.1E-46 
 



 

 

 

mean PD10 values of Methods 2 and 3 are clearly higher than those of Method 1, regardless of the fault 
type. However, as shown in Fig. 18, although the t-test enabled us to conclude that the difference in 
means between Methods 2 and 3 is statistically significant for acoustic curtailment and yaw 
misalignment, this difference is significantly small. 
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intensity, the fault signature was low such that detection became difficult, and for fault intensities above 
this value, the fault signatures began to be relatively easier to detect.      

The rows of the PEM represent the PD10 computed with different environmental profiles (wind, 
temperature time series (	𝑈(𝑘),	𝑇(𝑘)) from different wind farms. The three PEMs obtained for a down-
rating fault of 15% for each of the three fault-detection methods were appended horizontally. They are 
displayed in Fig. 19a as a scaled colour image for Methods 1, 2, and 3. This arrangement aims to visually 
evaluate the effect of environmental variations on the detection performance across all three methods. 
The images of the PEMs show significantly higher PD10 values for Wind Farm S for the 15% down-
rating test scenario. This indicates that the site-specific wind and temperature profiles have a direct 
effect on performance detection for all methods.  

 
Fig. 18. Global performance indicators for all fault types (down-rating, icing, acoustic curtailment, 

yaw misalignment) for Methods 1, 2, and 3 with 95% confidence intervals. 



 

 

 

To quantify this visual observation further, the mean PD10 values for each wind farm (for each 
method) were calculated. The results are presented in tabular form in Fig. 19b as mean values and their 
95% confidence intervals. When compared with wind farms (V, L, D, and C), the mean detection 
performance for Farm S is approximately 52% higher on average for Method 1, 43% higher for Method 
2, and 40% higher for Method 3.  

 
The effects of environmental variation on detection performance can be explained by examining the 

signature of the fault under observation and the distinct environmental profile of Farm S. Farm S is 
located in the south of France, where relatively higher wind speeds are experienced compared with the 
other four locations. Figs. 20 and 21 show the down-rating faults and the onsite wind distribution for 
all farms under observation, respectively. The distribution of wind at higher wind speeds (from 8 to 16 
m/s (Fig. 21) is of interest here. As identified by the region between red dotted lines), a significantly 
higher number of wind speed samples can be observed for Farm S in this high wind region. The same 
wind region (from 8 to 16 m/s) is shown in Fig. 20. This shows that the effect of a 15% down-rating 
only becomes visible in the high-wind-speed regions (> 10 m/s) owing to the inherent nature of the fault 
signature. A larger number of high-wind-speed samples mean that during the fault period (year 3), the 
fault signature was excited more frequently for Farm S than for Farms V, L, D, and C. This explains 
the higher values of the detectability indicator PD10 for Farm S. The peculiar fault nature of down-rating 
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(fault excitation for high winds only) and the specific wind distributions (Fig. 21) explain the lower 
detection performance values for wind farms V, L, D, and C.  

 

4.2.2 Effect of operational variation 

Different turbines from different manufacturers can exhibit unique characteristic behaviours. The 
PEM provides the opportunity to observe and evaluate performance variations owing to the variability 
in these operational profiles. The columns of PEM represent different operational profiles (data 
dispersion and operational characteristics) from different manufacturers.  

The icing fault is a good candidate for evaluating operational variations. As presented earlier, this 
fault type affects the overall behaviour of a turbine for all wind speeds. Hence, it is suitable for capturing 
the operational behaviour of WTs. The performance indicator PD10 for fault-type icing of 5% was 
calculated and the PEM was populated. The same process was repeated for all methods of interest, and 
the resulting PEMs were appended vertically. The selection of vertical concatenation ensured a better 
visual interpretation.  

The icing fault with an intensity level of 5% was selected to calculate the performance indicators 
and perform meaningful analysis. The 5% fault intensity level for this type of fault presented a fair 
opportunity for comparative analysis. Below this intensity, the fault signature was low such that the 
detection became too difficult, and for fault intensities above this value, the fault signatures began to 
be relatively easier to detect.  

Three wind farms were carefully selected for the operational analysis. Because Farms V and C have 
WTs from the same OEM, they became a natural candidate for the control group in this analysis. Wind 
Farm D was selected as the third candidate for comparison with the control group of similar turbines. 
Fig. 22 shows the performance indicator PD10 calculated for Methods 1 and 2.  

For easier visual interpretation, the performance evaluation matrices are shown as an image with 
scaled colours for two methods of fault detection (Methods 1 and 2). The colour bar on the right-hand 
side shows a colour scale associated with the PD10 values, with higher values depicted as shades of 
yellow and lower values as blue. The image of the PEMs exhibits globally similar performance values 
for Wind Farms V and C, in contrast to Wind Farm D. This indicates that, similar to the environmental 

   
Fig. 20. Faulty power curves for down-rating 
(15%) with red dotted lines identifying region of 
interest (from 8 to 16 m/s). 

Fig. 21. Wind distribution of farms (Farms V, L, D, S, 
and C) with red dotted lines identifying the region 
of interest (from 8 to 16 m/s). 

 



 

 

 

profiles evaluated earlier, data dispersions, i.e. operational characteristics, also have a direct effect on 
the fault-detection performance.  

To quantify this visual observation further, the mean PD10 values for each wind farm (and for each 
method) were calculated. The results are presented in a tabular form in Fig. 22b. When comparing Wind 
Farms V and C, the mean detection performance remains approximately within one standard deviation 
of each other. On the contrary, the mean detection values for Farm D was approximately 35% higher 
for Method 1 and 45% higher for Method 2 on average. This made the detection performance for Farm 
D twice as much as that for Farms V and C. The improved performance of Farm D can be associated 
with the specific operational performance of machines from this OEM. For Farm D, the data dispersion 
was minimal, and the observed power values closely followed the expected power curve.  

Similar to the environmental variation analysis, the mean performance indicator (PD10) values for 
Method 2, as presented in Fig. 22b, are relatively higher. The same is visually represented in Fig. 22a 
through visibly lighter shades for Method 2. This suggests that Method 2 performed globally better than 
Method 1 for this fault type. Quantitatively, the gain of Method 2 for the specific fault example is 
approximately 20%. This observation of performance gain for Method 2 corresponds to the conclusions 
drawn in the fault-specific performance evaluation discussed earlier. 
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5 CONCLUSION 

In this paper, we propose a simulation framework that realistically replicates the dispersion around 
a power curve to enable large sets of data flows in various environmental and operational conditions 
to be generated. This enables the performance of fault-detection algorithms to be compared and the 
key factors that may affect the performance of the algorithms to be identified. The framework used a 
large set of available data, recorded from five different French wind farms, composed of WTs of 
different models and located in different geographical areas and therefore subject to different 
environmental conditions. In total, 625 power profiles were generated. 

The main finding of this research is the extent to which environmental and operational conditions 
affect the performance of the methods. For certain faults, we observed that our performance indicator 
could be increased by up to 50% when the power profiles were generated with the wind and 
temperature profiles of a particular wind farm compared with the others. This clearly shows that 
equitably comparing two fault-detection methods in the literature using a single profile of the power 
produced is impossible. 

The proposed framework is fully robust and can be used to validate and analyse other methods and 
evaluate more fault signatures, provided that these methods use the power produced, the wind speed 
and temperature, and provided the fault affects the turbine power curve. For future research, the 
framework presented could be used to compare the performance of additional wind farm 
configurations (turbines in configurations such as square, diamond, scattered, etc.). Other phenomena 
of interest could include the analysis of detection performance as a function of the time of the year. 
The concept involves evaluating whether fault occurrence in the winter is different from fault 
occurrence in the summer. Additionally, the analysis of the effect of the duration of fault occurrence 
could be of interest.  

In summary, the unique contribution of this study is that it demonstrated that the comparison of 
fault-detection methods based on a single example of a fault on a particular WT on a particular farm 
is insufficient to determine whether one method is superior to the other. However, most studies 
conducted over the last decade on WT fault detection have adopted this method. To prove our point, 
we used an extensive database of fault-free SCADA data recorded on WTs of different OEMs installed 
in various geographical sites. We created a realistic simulation framework and proposed a method of 
comparing the performances of different fault-detection methods. Thus, we demonstrated that there is 
great variability in the values of the performance indicators of a particular fault-detection method, even 
when applied to the same fault. We consider that these findings are of value to both academia and the 
industry and can aid the design of objective performance evaluation procedures for fault-detection 
methods for WTs. 
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