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Foreword

In June 2014, with my colleague and friend Morgan Deters, we have submitted an
advanced course for ESSLLI’15 about logical investigations on separation logics
by focusing on expressiveness, computational complexity of reasoning tasks and
decision procedures, some of them based on SMT technology. The submission
has been accepted in the fall 2014. In november 2014, while Morgan visited the
Laboratoire Spécification and Vérification (ENS Cachan), we discussed further
the content of the lectures as well as the plan of the lecture notes. The current
document is the fruit of a joint and intense effort to present in a single volume fun-
damental results about separation logics and to provide numerous bibliographical
references for further study. Morgan passed away unexpectedly last january and
our project to produce the exact document we had in mind became impossible.
Morgan and I wrote several articles about separation logics and we had many
discussions about the logical side of separation logics while I have been visit-
ing New York University in 2012–2014. The current document is the outcome
of our fruitful collaboration1; it is partly inspired from the material in the pa-
pers [DD14, DD15b, DD15a]. All the mistakes are mine.

To the memory of Morgan Deters.

Stéphane Demri
demri@lsv.fr
June 15th, 2015 — Cachan

1This work has been partially supported by the EU Seventh Framework Programme under grant
agreement No. PIOF-GA-2011-301166 (DATAVERIF).
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INTRODUCTION

Introducing new logics is always an uncertain enterprise since there must be suf-
ficient interest to use new formalisms. In spite of this hurdle, we know several
recent success stories. For instance, even though a pioneering work on sym-
bolic modal logic by Lewis appeared in 1918 [Lew18], the first monographs on
symbolic modal logic appear about fifty years later, see e.g. [HC68]. Nowadays,
modal logic is divided into many distinct branches and remains one of the most ac-
tive research fields in logic and computer science, see e.g. [BvBW06]. Addition-
ally, the introduction of temporal logic to computer science, due to Pnueli [Pnu77],
has been a major step in the development of model-checking techniques, see
e.g. [CGP00, BBF+01]. This is now a well-established approach for the for-
mal verification of computer systems: one models the system to be verified by
a mathematical structure (typically a directed graph) and expresses behavioral
properties in a logical formalism (typically a temporal logic). Verification by
model-checking [CGP00] consists of developing algorithms whose goal is to ver-
ify whether the logical properties are satisfied by the abstract model. The de-
velopment of description logics for knowledge representation has also followed
a successful path, thanks to a permanent interaction between theoretical works,
pushing even further the high complexity and undecidability borders, and more
applied works dedicated to the design of new tools and the production of more
and more applications, especially in the realm of ontology languages. The wealth
of research on description logic is best illustrated by [BCM+03], in which can be
found many chapters on theory, implementations, and applications.

It is well-known that modal logic, temporal logic, and description logic have
many similarities even though each family has its own research agenda. For in-
stance, models can be (finite or infinite) graphs, the classes of models range from
concrete ones to more abstract ones, and any above-mentioned class includes a
wide range of logics and fragments. In the present lecture notes, we deal with
another class of logics, separation logic, that has been introduced quite recently
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(see e.g. [IO01, Rey02]) and is the subject of tremendous interest, leading to many
works on theory, tools and applications (mainly for the automatic program anal-
ysis). Any resemblance to modal, temporal, or description logic is certainly not
purely coincidental—but separation logic also has its own assets.

In the possible-world semantics for modal logic, the connective � [resp. ^]
corresponds to universal [resp. existential] quantification on successor worlds,
and these are essential properties to be stated, partly explaining the impact of
Kripke’s discovery [Kri59, Cop02]. Similarly, the ability to divide a model in
two disjoint parts happens to be a very natural property and this might explain the
success of separation logic in which disjoint memory states can be considered,
providing an elegant means to perform local reasoning. Separation is a key con-
cept that has been already introduced in interval temporal logic ITL [Mos83] with
the “chop” connective, and in many other logical formalisms such as in graph log-
ics [Loz04a, DGG07] or in extensions of PDL (see e.g. [BdFV11, BT14a]). More-
over, dependence logic has also a built-in notion of separation, see e.g. [AV11,
KMSV14, HLSV14]. Therefore, the development of separation logic can be partly
explained by the relevance of the separation concept. Its impressive develop-
ment can be also justified by the fact that separation logic extends Hoare logic for
reasoning about programs with dynamic data structures, meeting also industrial
needs as witnessed by the recent acquisition of Monoidics Ltd by Facebook (see
e.g. [CDD+15]).

Separation logic has been introduced as an extension of Hoare-Floyd logic
(see e.g. [Hoa69, Apt81]) to verify programs with mutable data structures [IO01,
Rey02]. A major feature is to be able to reason locally in a modular way, which
can be performed thanks to the separating conjunction ∗ that allows one to state
properties in disjoint parts of the memory. Moreover, the adjunct implication −∗
asserts that whenever a fresh heap satisfies a property, its composition with the
current heap satisfies another property. This is particularly useful when a piece
of code mutates memory locally, and we want to state some property of the entire
memory (such as the preservation of data structure invariants). In a sense, if modal
logic is made for reasoning about necessity and possibility, separation logic is
made for reasoning about separation and composition. As a taste of separation
logic, it is worth observing that models can be finite graphs and the classes of
models range from concrete ones (with heaps for instance) to very abstract ones.

Smallfoot was the first implementation to use separation logic, its goal to ver-
ify the extent to which proofs and specifications made by hand could be treated
automatically [BCO05]. The automatic part is related to the assertion checking,
but the user has to provide preconditions, postconditions, and loop invariants. A
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major step has been then to show that the method is indeed scalable [YLB+08].
In a sense, the legitimate question about the practical utility of separation logic
was quickly answered, leading to a new generation of tools such as Slayer devel-
oped by Microsoft Research, Space Invader [DOY06, YLB+08], and Infer [CD11]
(still under development at Facebook [CDD+15, Section 4]). Actually, nowadays,
many tools support separation logic as an assertion language (see e.g. [MIG14])
and, more importantly, in order to produce interactive proofs with separation logic,
several proof assistants encode the logic, see e.g. [Tue11]. Furthermore, there ex-
ists also many tools that are dedicated to program verification and closely related
to tools explicitly using separation logic, see e.g. a description of the research
prototype VeriFast in [VJP15] (typically featherweight VeriFast and Smallfoot
share a very similar programming language). Note also that the development of
the different tools has been performed progressively; Whereas Smallfoot uses an
assertion language for preconditions, postconditions and loop invariants, Small-
footRG [VP07] goes beyond by inferring some loop invariants (which is apart
from the introduction of rules for dealing the the magic wand operator). Space In-
vader [DOY06] extends further the ideas of Smallfoot by determining annotations
for unannotated programs.

From the very beginning, the theory of separation logic has been an important
research thread even if not always related to automatic verification. This is not
very surprising since separation logic can be understood as a concretisation of
the logic BI of bunched implications which is a general logic of resource with a
nice proof theory [OP99]. More precisely, the logic BI exists in different flavours:
its intuitionistic version has additive and multiplicative connectives that behave
intuitionistically whereas its Boolean version admits Boolean additive connectives
with intuitionistic multiplicative connectives (∗ and−∗), see more details in [LG13].
So, separation logic is rather a concretisation of Boolean BI (see more details in
Section 1.3.1).

Besides, as for modal and temporal logics, the relationships between sepa-
ration logic, and first-order or second-order logics have been the source of many
characterisations and works. This is particularly true since the separating connec-
tives are second-order in nature, see e.g. [Loz04a, KR04, CGH05, BDL12]. For
instance, separation logic is equivalent to a Boolean propositional logic [Loz04b,
Loz04a] if first-order quantifiers are disabled. Similarly, the complexity of satis-
fiability and model-checking problems for separation logic fragments have been
quite studied [COY01, Rey02, CHO+11, AGH+14, BFGN14]. In [COY01], the
model-checking and satisfiability problems for propositional separation logic are
shown PSPACE-complete; this is done by proving a small model property.

Demri, Deters: Logical Investigations on Separation Logics (Draft) – September 8, 2015– ESSLLI’15
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In this course, we would like to emphasise the similarities between separation
logic and, modal and temporal logics. Our intention is to pinpoint the common
features in terms of models, proof techniques, motivations, decision procedures.
Second, we wish to present landmark results about decidability, complexity and
expressive power. These are standard themes for studying logics in computer sci-
ence and we deliberately focus on the logical side of separation logic. Even though
our intention is to produce a self-contained document as far as the definitions and
results are concerned, we invite the reader to consult surveys on formal verifi-
cation and separation logic, see e.g., the primer on separation logic in [O’H12],
the lecture notes about Hoare logic and separation logic in [Gor14] or [Jen13a,
Chapter 7] and [Jen13b]. See also [VJP15] for a detailed description of the tool
featherweight VeriFast.

The five lectures are organised as follows and each chapter is dedicated to one
lecture.

Lecture 1: First steps in separation logics.

Lecture 2: Propositional separation logics.

Lecture 3: Expressiveness of first-order separation logics.

Lecture 4: Relationships with other logics.

Lecture 5: Decision procedures.

Because of time and space limitations, we had to focus on core separation
logic and for the presentation of the main results we adopt a puristic point of
view. Namely, most of the logics

• are without data values (by contrast, see e.g. [BDES09, BBL09, MPQ11]),

• use concrete models (by contrast to abstract models considered in [COY07,
BK10, LWG10, BV14]),

• are not multi-dimensional extensions of non-classical logics (by contrast, see
e.g. [YRSW03, BDL09, CG13]),

• do not provide general inductive predicates (lists, trees, etc.) (by contrast, see
e.g. [IRS13, BFGN14]).

However, these extensions shall be introduced and briefly discussed but we shall
refer to original articles or surveys for in-depth developments.
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1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

In this chapter, we provide a brief introduction to separation logic by showing
how it is related to formal verification. Later sections give a precise definition and
focus on the logical language rather than on the verification process. This means
that we adopt a restrictive use of the term ‘separation logic’ which is understood as
an assertion logic, rather than an understanding combining in some way the asser-
tion logic, the programming language and/or the specification logic. Section 1.1.1
is dedicated to Floyd-Hoare logic understood as a proof system made of deduction
rules to verify the correctness of programs. Section 1.1.4 recalls how separation
logic appears as a way to repair the defects of Floyd-Hoare logic when pointers
are involved. Relationships with the logic of bunched implications logic BI are
also briefly explained. In Section 1.2.1, we present the syntax and semantics for
the versions of separation logics considered in this document. Section 1.2.2 ex-
plains how to express properties with formulae from separation logics whereas
Section 1.2.4 provides a classification of formulae involving pure, intuitionistic
and strictly exact formulae, respectively. Section 1.2.3 presents a few rules in a
Floyd-Hoare-like proof system when commands for mutable shared data struc-
tures are involved and when the assertion language uses formulae from separation
logic. Section 1.2.5 presents some more decision problems for separation logics.
Section 1.3 provides first insights about the relationships between separation log-
ics and other non-classical logics. This shall be complemented by material in the
subsequent chapters, as it is done, for instance, in Chapter 4.

Highlights of the chapter

1. Definition of separation logics following [IO01, Rey02] in which the set
of addresses/values is equal toN.

2. Translation of kSL into weak monadic second-order logic by internalising
the semantics.

3. Undecidability proof of 2SL (without separating connectives) by reduc-
tion from the finitary satisfiability problem for predicate logic restricted
to a unique binary predicate symbol (Theorem 1.3.4) [COY01].
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CHAPTER 1. FIRST STEPS IN SEPARATION LOGICS

1.1 Floyd-Hoare Logic and Separation Logic

1.1.1 Hoare triples
Hoare logic, proposed in 1969 by Tony Hoare [Hoa69] and inspired by the earlier
work of Floyd [Flo67], is a formal system used to show the correctness of pro-
grams (see a quite complete survey in [Apt81], the recent lecture notes [Gor14] or
the extension to parallel programming languages in [OG76]). This is an axiomatic
method that had a substantial impact for the design and the verification of com-
puter programs. Its hallmark, the Hoare triple, is composed of assertions ϕ and
ψ and the command C:

{ϕ} C {ψ}.

Simply put, such a triple means that given a program state where the precondi-
tion ϕ holds, the execution of C yields a state in which the postcondition ψ holds.
Two commands can be composed:

{ϕ} C1 {ψ} {ψ} C2 {χ}

{ϕ} C1; C2 {χ}
composition

Similarly, the skip has no effect.

{ϕ} skip {ϕ}
skip

Preconditions can be strengthened and postconditions can be weakened in a natu-
ral fashion:

ϕ⇒ ϕ′ {ϕ′} C {ψ} ψ⇒ ψ′

{ϕ} C {ψ′}
strengthen/weaken

The expression ϕ ⇒ ϕ′ can be read as ϕ entails ϕ′, which amounts to state the
logical validity of the formula ϕ ⇒ ϕ′, when defined in a first-order dialect. An
assignment axiom schema is stated simply:

{ϕ[e/x]} x := e {ϕ}
assignment

In general, atomic commands, such as the assignment, are axiomatised by so-
called small axioms.

Example 1.1.1. Here are examples of “valid” triples that are related to assign-
ment but that are not instances of the assignment axiom schema.

Demri, Deters: Logical Investigations on Separation Logics (Draft) – September 8, 2015– ESSLLI’15
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1.1. FLOYD-HOARE LOGIC AND SEPARATION LOGIC

• {x = 1} x := x + 2 {x ≥ 2}.

• {x = 1} x := x + 2 {x = 3}.

• {x = 1} x := x + 2 {∃ y, z (y · z > 0 ∧ x = y · z − 1)}.

By contrast, the triple below is an instance:

{x + 2 = 3} x := x + 2 {x = 3}.

Here is another deduction rule (that remain sounds even when the new com-
mands introduced below are considered):

{ϕ} C {ψ}

{∃ u ϕ} C {∃ u ψ}
auxiliary variable elimination

assuming that u is not free in C.
Additional deduction rules for the command while and if-then-else in Floyd-

Hoare logic proof system can be defined as follows:

{ϕ ∧ B} C {ϕ}

{ϕ} while B do C {ϕ ∧ ¬B} while rule

{ϕ ∧ B} C1 {ψ} {ϕ ∧ ¬B} C2 {ψ}

{ϕ} if B then C1 else C2 {ψ}
conditional rule

Note that B is a Boolean expression in the programming language but it also
belongs to the assertion language for preconditions and postconditions since the
deduction rules handles formulae of the form ϕ ∧ B and ϕ ∧ ¬B.

The rule of constancy can be also defined as follows:

{ϕ} C {ψ}

{ϕ ∧ ψ′} C {ψ ∧ ψ′}

where no variable free in ψ′ is modified by C.
An instance of the rule of constancy can be found below:

{x = 3} x := 4; z := x {x = 4}
{x = 3 ∧ y = 8} x := 4; z := x {x = 4 ∧ y := 8}

Note that y does not occur in x := 4; z := x.

Demri, Deters: Logical Investigations on Separation Logics (Draft) – September 8, 2015– ESSLLI’15
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CHAPTER 1. FIRST STEPS IN SEPARATION LOGICS

Given a formal semantics for a simple imperative programming language based
on the above command, it is possible to state soundness and completeness prop-
erties (see e.g. [Apt81]). We do not provide here a formal semantics in terms of
small-step operational semantics for the commands but it can be defined via a bi-
nary relation s, C { s′, C′ that corresponds to one step in the computation. The
expressions s and s′ are assignments for the program variables and executing one
step of C leads to s′ and it remains to compute C. Termination is expressed by
s, C {∗ s′, skip where{∗ denote the reflexive and transitive closure. With this
approach, the following simple observations can be made:

1. any command except skip can execute in any state (possibly except halt),

2. skip alone represents the final step of execution of a program,

3. there is no possible runtime error.

Consequently, C does not terminate means that C diverges. When pointers are
involved, failed dereference operations are possible and therefore nontermination
of a command does not imply necessarily divergence.

Correctness of the proof system involving Hoare triples means that whenever
a triple {ϕ} C {ψ} is derived, it is valid. This means that if s, C {∗ s′, skip and
s |= ϕ (the formula from the assertion language is satisfied by the current variable
assignment), then s′ |= ψ. This type of correctness is called partial. By contrast,
total correctness requires that if s |= ϕ, then s, C {∗ s′, skip (termination) and
s′ |= ψ. Besides, relative completeness requires that every valid triple is derivable
in the proof system. Of course, all these notions are relative to a programming
language, to its semantics, to the assertion language for the pre/post-conditions
and to the exact rules of the proof system.

1.1.2 Weakest preconditions
Relative completeness for Hoare logic has been established in [Coo78] by using
weakest preconditions introduced by E.W. Dijkstra, see e.g. [Dij76]. A weakest
precondition wp(C, ψ) is a predicate that describes the exact set of states s such
that when C is started in s, if it terminates, then it terminates in a state satisfy-
ing ψ. In a sense, wp(C, ψ) corresponds to the minimal precondition ϕ that vali-
dates {ϕ} C {ψ}. So, Hoare logic is complete if the assertion logic L can express
the weakest preconditions for any C and ψ. The proof for relative completeness
from [Coo78] uses weakest preconditions and a structural induction on C.
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Note that checking validity of {ϕ} C {ψ} amounts to perform the following
tasks:

1. to compute wp(C, ψ),

2. to check the validity of ϕ⇒ wp(C, ψ).

Of course, this implies that {wp(C, ψ)} C {ψ} is valid, which is expected in view of
the specification for defining weakest preconditions. So, the completeness result
for mono-procedure sequential programs proved in [Coo78] establishes that each
triple {wp(C, ψ)} C {ψ} is derivable.

By way of example, we brievely explain how weakest preconditions can be
defined inductively. Note that this assumes that the assertion logic has sufficient
syntactic resources and that it contains appropriate logical connectives and quan-
tifiers.

wp(skip, ψ) def
= ψ

wp(x := e, ψ) def
= ψ[e/x]

wp(C1; C2, ψ) def
= wp(C1, wp(C2, ψ))

wp(if B then C1 else C2, ψ) def
= (B = > ∧ wp(C1, ψ)) ∧ (B =⊥ ∧ wp(C2, ψ))

wp(while B do C, ψ) def
= I ∧ ∀ y1, . . . , yk

(((B = > ∧ I)⇒ wp(C, I)) ∧ ((B =⊥ ∧I)⇒ ψ))[yi/xi]

(x1, . . . , xk are the assigned variables in C)
Here, it is worth noting the necessity to annotate the program so that the in-

variant condition I is known before computing the weakest precondition, which is
indeed problematic for a fully automated verification process.

1.1.3 Adding pointers
When pointers are added to the programming language (see an example below),
soundness of the rule of constancy is not preserved, as briefly shown below. By
way of example, we provide new commands for the manipulation of mutable
shared data structures understood as an extension of an imperative programming
language.

x := cons(e) allocation
x := [e] lookup
[e] := e′ mutation

dispose(e) deallocation
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Again, we do not provide here a formal semantics in terms of small-step op-
erational semantics for such commands but it is worth mentionning that compu-
tational states are extended so that a store is a variable assignment and a heap is
understood as a map from the set of addresses into the set of values. A command
of the form x := [e] updates the store whereas a command of the form [e] := e′

updates the heap. Moreover, the domain of the heap is augmented after the exe-
cution of the command x := cons(e) and it is reduced after the execution of the
command dispose(e). In order to simplify technical developments, in the sequel,
we assume that the set of adresses and the set of values are equal to the set of
natural numbers. For instance,

(s, h), x := cons(e) { (s[x 7→ n], h ] {n 7→ JeK}), skip

where n 7→ JeK is a new memory cell and JeK denotes the interpretation of the
expression e (parameterised by (s, h)). This can be generalised to the command
x := cons(e1, . . . , es) whose effect is to create s new memory cells with consecu-
tive addresses. Similarly, we have

(s, h),dispose(y) { (s, h \ {JyK 7→ m}), skip

where JyK belongs to the domain of h, h(JyK) = m, and h \ {JyK 7→ m} is equal to
h, except that the memory cell JyK 7→ m is removed.

As noted quite early, original Floyd-Hoare logic has a severe limitation when
pointers are involved. Consider the following triple, an instance of the assignment
rule:

{y = 1} x := 2 {y = 1}

This essentially states that an assignment of 2 to x does not affect the value of
y (if it is 1). With many popular imperative programming languages, this is not
the case, as x and y may in fact be aliased, i.e., they may refer to the same or a
partially-overlapping region of computer memory.

More precisely, the presence of pointers invalidates the use of the rule of con-
stancy. Indeed, consider the following instance of the rule when pointers are in-
volved:

{∃ u (x ↪→ u)} [x] := 4 {x ↪→ 4}
{(∃ u (x ↪→ u)) ∧ y ↪→ 3} [x] := 4 {x ↪→ 4 ∧ y ↪→ 3}

where x ↪→ u is a logical atomic formula stating that the heap has a memory cell
with address x and value u. Unsoundness is due to the possibility that x is equal
to y (aliasing).
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This defect will be repaired with the introduction of the frame rule below
where ∗ is a separating connective so that distinct parts of memory can be reasoned
about distinctly.

{ϕ} C {ψ}

{ϕ ∗ ψ′} C {ψ ∗ ψ′} frame rule

where no variable free in ψ′ is modified by C.
Naturally, the problem with pointers was understood early on as a limitation,

and aliasing has continued to plague program analysis in the decades since. How-
ever, the simplicity and composability of Hoare’s proposal was appreciated, and
various ways of overcoming this limitation within Hoare’s formalism have been
sought. Many of these approaches have used some form of separation, by which
distinct parts of memory can be reasoned about distinctly.

1.1.4 The birth of separation logic

Burstall introduced distinct nonrepeating tree systems in 1972 [Bur72], implic-
itly appealing to a notion of separation to be later enshrined in separation logic.
There were, however, limitations of Burstall’s approach (see [Rey00] for a full
treatment). Fragments of data structures could be asserted as separate, and this in-
vention was important; however, they were not permitted to have internal sharing.
This has the effect that the assertion language is limited in its ability to distin-
guish structures with (unbounded) sharing. Further, the notion of composition
was directional, so that mutually-referential data posed a problem.

Recognising these limitations, Reynolds introduced the notion of an “indepen-
dent conjunction” to Hoare logic, capable of speaking of disjoint structures and
thus maintaining some control in the face of the aliasing problem. Its first incarna-
tion, interpreted classically, was flawed, as it assumed monotonicity of interpreta-
tions of assertions in extensions of memory states but included an unsound proof
rule. This was quickly repaired by coopting an intuitionistic semantics [Rey00].

This intuitionistic version was discovered independently [IO01] by Ishtiaq and
O’Hearn. In fact, their efforts (together with Pym) on bunched implication (BI)
logics [OP99, Pym02] gave them a somewhat more general perspective, and they
recognised Reynolds’ assertion language as being an instance of bunched impli-
cation that reasons about pointers. Independently, working from Reynolds’ earlier
classical variant, they developed a version of BI that used Reynolds’ independent
conjunction, and gave it intuitionistic semantics. Afterward, they considered a
classical version, but ended up presenting these in reverse, the intuitionistic as a
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variant of the classical; this as a result of the fact that the intuitionistic can be trans-
lated into the classical version, and the classical version was useful in reasoning
about pointer disposal.

Their paper made two further important contributions. First, they introduced
separating implication (the “magic wand”) to the logic (this quite naturally came
from BI’s multiplicative implication). This addition of the magic wand was not
merely an afterthought or side effect of the instantiation of bunched implica-
tion in this “pointer logic” setting; indeed its addition was justified in its own
right when first introduced [IO01]. Despite this, many verification applications
have made use of the separating conjunction only and do not employ the magic
wand. However, nowadays its use in verification is more recognised; see [LP14,
Section 1] and [HCGT14, Section 8] for recent discussions on this topic (see
also [TBR14, SS15]).

Second, they introduced the frame rule, important for local reasoning [IO01]
(see Section 1.1.1). Given a Hoare triple {ϕ} C {ψ} and reasoning about partial
computer memories satisfyingϕ andψ, one can make conclusions about (disjoint)
extensions of those partial memories and, in particular, about how these extensions
are unaltered by C. This is at the core of the scalability of separation logic and its
ability to handle aliasing.

In all these early versions of separation logic, memory locations were distinct
from the integers. Reynolds later offered an extension that takes memory loca-
tions to be a (countably infinite) subset of the integers, and made fields of larger
units independently addressable. His goal was to adequately model the low-level
operation of code and, particularly, address arithmetic. In this document, we adopt
such a convention: memory locations are integers. We also adopt modern syntax;
before 2002, Reynolds used ‘&’ for separating conjunction. The modern syntax
is ‘∗’ for separating conjunction and ‘−∗’ for the separating implication, both taken
from bunched implication logic.

1.2 A Core Version of Separation Logic

1.2.1 Basic definitions

Let us start by defining separation logics on concrete models, namely on heaps.
Let PVAR = {x1, x2, . . .} be a countably infinite set of program variables and
FVAR = {u1, u2, . . .} be a countably infinite set of quantified variables. A mem-
ory state is a pair (s, h) such that
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• s is a variable valuation of the form s : PVAR→N (the store),

• A heap with k ≥ 1 record fields is a partial function h : N ⇁ Nk with finite
domain. We write dom(h) to denote its domain and ran(h) to denote its range.

Usually in models for separation logic(s), memory states have a heap and a store
for interpreting program variables, see e.g. [Rey02]. Herein, sometimes, there is
no need for program variables (with a store) because we establish hardness results
without the help of such program variables. Moreover, for the sake of simplicity,
we do not make a distinction between the set of locations (domain of h) and the
set of values (set of elements from the range of h).

When k = 1, we write ]̃l to denote the cardinal of the set {l′ : h(l′) = l} made
of predecessors of l (heap h is implicit in the expression ]̃l). A location l is an
ancestor of a location l′ iff there exists i ≥ 0 such that hi(l) = l′ where hi(l) is
shorthand for h(h(. . . (h(l) . . .))) (i applications of h to l).

Two heaps h1 and h2 are said to be disjoint, noted h1⊥h2, if their domains are
disjoint; when this holds, we write h1] h2 to denote the heap corresponding to the
disjoint union of the graphs of h1 and h2, hence dom(h1]h2) = dom(h1)]dom(h2).
When the domains of h1 and h2 are not disjoint, the composition h1 ] h2 is not
defined even if h1 and h2 have the same values on dom(h1) ∩ dom(h2). Moreover,
we can also define the disjoint union of the memory states (s1, h1) and (s2, h2) when
s1 = s2 and h1⊥h2 so that (s1, h1) ] (s2, h2) def

= (s1, h1 ] h2). We write h v h′ when
the heap h′ is a conservative extension of the heap h, i.e. dom(h) ⊆ dom(h′) and,
h and h′ agree on dom(h). In Figure 1.1, we illustrate how disjoint memory states
are built when there is a unique record field while recalling a standard graphical
representation. Each node represents a distinct natural number (the value is not
specified in Figure 1.1) and each edge l → l′ encodes the fact that h(l) = l′,
assuming that h is the heap graphically represented. A variable xi just above a
node means that its value by the store s is precisely that node. In Figure 1.1, the
heap on the left of the equality sign (say h) is equal to the disjoint union of the
two heaps on the right of the equality sign (say h1, h2 from left to right). For
example, the self-loop on the node labelled by x3 encodes that (s, h) |= x3 ↪→ x3

where |= is the satisfaction relation defined below. Similarly, (s, h1) |= x3 ↪→ x3

but not (s, h2) |= x3 ↪→ x3. Each edge in the graphical representation of the heap
h corresponds to a unique edge in the graphical representation of either h1 or h2.

For every k ≥ 1, formulae of kSL are built from expressions of the form
e ::= x | u where x ∈ PVAR and u ∈ FVAR, and atomic formulae of the form

π ::= e = e′ | e ↪→ e1, . . . , ek | emp | ⊥ .
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x1
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Figure 1.1: Disjoint memory states with one record field.

Formulae are defined by the grammar

ϕ,ψ ::= π | ϕ ∧ ψ | ¬ϕ | ϕ ∗ ψ | ϕ−∗ψ | ∃ u ϕ

where u ∈ FVAR. The connective ∗ is separating conjunction and −∗ is separating
implication, usually called the magic wand. The use of the magic wand −∗ is due
to [IO01]. We also make use of standard notations for derived connectives for this
and all logics defined in this document.

As in classical first-order logic, an assignment is a map f : FVAR → N.
The satisfaction relation |= is parameterised by assignments (obvious clauses for
Boolean connectives are omitted):

(s, h) |=f emp iff dom(h) = ∅

(s, h) |=f e = e′ iff JeK = Je′K, with JxK def
= s(x) and JuK def

= f(u)
(s, h) |=f e ↪→ e1, . . . , ek iff JeK ∈ dom(h) and h(JeK) = (Je1K, . . . , JekK)
(s, h) |=f ϕ1 ∗ ϕ2 iff h = h1 ] h2, (s, h1) |=f ϕ1, (s, h2) |=f ϕ2

for some h1, h2

(s, h) |=f ϕ1 −∗ϕ2 iff for all h′, if h ⊥ h′ and (s, h′) |=f ϕ1

then (s, h ] h′) |=f ϕ2

(s, h) |=f ∃ u ϕ iff there is l ∈N such that (s, h) |=f[u7→l] ϕ where
f[u 7→ l] is the assignment equal to f except
that u takes the value l

When ϕ has no program variables, we also write h |=f ϕ to mean that ϕ is
satisfied on the heap h under the assignment f. Furthermore, when ϕ is a sentence,
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we can omit the subscript ‘f’ since ϕ has no free quantified variable. Note also that
it is possible to get rid of program variables by viewing them as free quantified
variables with rigid interpretation. However, it is sometime useful to distinguish
syntactically program variables from quantified variables.

It is worth noting that separating conjunction ∗ has an existential flavour whereas
separating implication −∗ has a universal flavour. Nonetheless, −∗ universally quan-
tifies over an infinite set, namely the set of disjoint heaps. In the literature, an
alternative syntax is used where e ↪→ e1, . . . , ek is represented by the conjunction
below:

e
1
↪→ e1 ∧ · · · ∧ e

k
↪→ ek

When pointer arithmetic is allowed, e ↪→ e1, . . . , ek can be also understood as the
conjunction below

(e ↪→ e1) ∧ (e + 1 ↪→ e2) ∧ · · · (e + (k − 1) ↪→ ek),

which requires some semantical adjustment. Nevertheless, in this document, we
stick to e ↪→ e1, . . . , ek, as defined above.

The definition of kSL does not provide a special treatment for nil. Indeed,
it is possible to regain the usual behaviour by requiring that the interpretation of
nil is not in the heap domain. This can be done in different ways depending on
the fragment at hand.

The exact/precise points-to atomic formulae x 7→ y can be defined as abbre-
viations for (x ↪→ y) ∧ ¬(¬emp ∗ ¬emp) and states that the domain of the heap is
a singleton and the heap contains only the memory cell from x 7→ y. The formula
emp ∗ ¬emp) enforces that card(dom(h)) ≥ 2. It is common to consider x 7→ y as
a primitive atomic formula and in the rest of the document, we shall often refer to
such an atomic formula. It will be clear from the context, whether x 7→ y should
be considered as primitive.

For k′ ≥ 0, we write kSLk′ to denote the fragment of kSL with at most k′

quantified variables. So, we write kSL1 to denote the fragment of kSL restricted to
a single quantified variable, say u. Moreover, kSLk′(−∗) [resp. kSLk′(∗)] denotes
the fragment of kSLk′ without separating conjunction [resp. wihout separating
implication]. Note also that kSL can be understood as a syntactic fragment of
(k + 1)SL by simply encoding e ↪→ e1, . . . , ek by e ↪→ e1, e1, . . . , ek everywhere
(the first expression is repeated twice).

As noted earlier, we do not make a distinction between the (countably infinite)
set of locations and the set of values that includes the locations since only the set
N is used to define the stores and heaps.
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Let L be a logic of the form kSLk′ or one of its fragments or extensions.
As usual, the satisfiability problem for L takes as input a formula ϕ from L
and asks whether there is a memory state (s, h) and an assignment f such that
(s, h) |=f ϕ. The validity problem is also defined as usual. The model-checking
problem for L takes as input a formula ϕ from L, a memory state (s, h) and a finite
assignment f for free variables from ϕ and asks whether (s, h) |=f ϕ (s is finitely
encoded and it is restricted to the program variables occurring in ϕ). Note that the
model-checking problem for first-order logic over finite structures is known to be
PSPACE-complete (see e.g. [Var82]) but we cannot conclude a similar statement
for fragments of separation logic (even though s, h and f can be finitely encoded)
because separating implication quantifies over an infinite set of disjoint heaps.

When k = 1, observe also that heaps are understood as Kripke frames of the
form (N,R) where R is a finite and functional binary relation. Indeed, R =
{(l, h(l)) : l ∈ dom(h)} for some heap h. Furthermore, the locations l and l′ are
in the same connected component whenever (l, l′) ∈ (R∪R−1)∗. Usually, con-
nected components are understood as non-singleton components. A finite func-
tional graph (N,R) can be made of several maximal connected subgraphs so that
each connected subgraph is made of a cycle, possibly with trees attached to it.

Finally, it is well-known that there exists a formal relationship between ∗ and
−∗ since −∗ is the adjunct of ∗. This means that (ϕ∗ψ)⇒ χ is valid iff ϕ⇒ (ψ−∗χ)
is valid. Exercise 1.5 is dedicated to this equivalence. This does not imply that
the formula ((ϕ ∗ ψ) ⇒ χ) ⇔ (ϕ ⇒ (ψ−∗χ)) is valid (otherwise ∗ and −∗ would
be inter-definable). However, sometimes, we are able to show that we can get rid
of one of the separating connectives, see e.g. Chapter 3, without sacrificing the
expressive power.

We also introduce so-called septraction operator ¬−∗: ϕ ¬−∗ ψ is defined as the
formula ¬(ϕ−∗¬ψ). As far as we know, its first appearance was in [VP07]. So,
(s, h) |=f ϕ

¬
−∗ ψ iff there is a heap h′ disjoint from h such that (s, h′) |=f ϕ and

(s, h ] h′) |=f ψ. The septraction operator states the existence of a disjoint heap
satisfying a formula and for which its addition to the original heap satisfies another
formula.

1.2.2 Expressing properties with separation logic
The logic 1SL allows one to express different types of properties on memory
states. The examples below indeed illustrate the expressivity of 1SL.

• The domain of the heap has at least α elements: ¬emp ∗ · · · ∗ ¬emp (α times).
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• The variable x is allocated in the heap: alloc(x) def
= (x ↪→ x)−∗ ⊥. Sometimes,

atomic formulae of the form alloc(x) are primitive in the considered frag-
ments of separation logics since alloc(x) is a fundamental property to express
in a memory state (see Section 5.3).

• The variable x points to a location that is a self-loop:

∃ u (x ↪→ u) ∧ (u ↪→ u).

x

In the following, let u and u be the variables u1 and u2, in either order. Note
that any formulaϕ(u) with free variable u can be turned into an equivalent formula
with free variable u by permuting the two variables. Below, we define (standard)
formulae and explain which properties they express.

• The domain dom(h) has exactly one location:

size = 1 def
= ¬emp ∧ ¬(¬emp ∗ ¬emp).

• The domain dom(h) has exactly two locations:

size = 2 def
= (¬emp ∗ ¬emp) ∧ ¬(¬emp ∗ ¬emp ∗ ¬emp).

It is easy to see that one can also define in 1SL that the heap domain has at
least k ≥ 0 elements (written size ≥ k).

• u has a successor: alloc(u) def
= ∃ u u ↪→ u.

• u has at least α predecessors: ]u ≥ α
def
=

α times︷                                      ︸︸                                      ︷
(∃ u (u ↪→ u)) ∗ · · · ∗ (∃ u (u ↪→ u)) .

• u has at most α predecessors: ]u ≤ α
def
= ¬

(
]u ≥ α + 1

)
.

• u has exactly α predecessors: ]u = α
def
= (]u ≥ α) ∧ ¬(]u ≥ α + 1).
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• There is a non-empty path from u to u and nothing else except loops that ex-
clude u:

reach′(u, u) def
= ]u = 0 ∧ alloc(u) ∧ ¬alloc(u) ∧
∀ u

((
alloc(u) ∧ ]u = 0

)
⇒ u = u

)
∧

∀ u
[
(]u , 0 ∧ u , u)⇒ (]u = 1 ∧ alloc(u))

]
.

• There is a (possibly empty) path from u to u:

reach(u, u) def
= u = u ∨

[
> ∗ reach′(u, u)

]
.

One can show that h |=f reach(u, u) iff there is i ∈N such that hi(f(u)) = f(u).
The proof for this property can be found in [BDL12, Lemma 2.4] (a similar
property has been established for graph logics in [DGG07]).

• There is a (possibly empty) path from u to u and nothing else, can be defined
as follows:

sreach(u, u) def
= reach(u, u) ∧ ¬(¬emp ∗ reach(u, u))

sreach(u, u) can be understood as the ‘strict’ reachability predicate and it is
usually written as the segment predicate ls(u, u).

• There is at most a single connected component (and nothing else):

1comp
def
= ¬emp ∧ ∃ u ∀ u alloc(u)⇒ reach(u, u).

• There are exactly two components: 2comps
def
= 1comp ∗ 1comp.

It is also worth noting that the separation logic 1SL is not necessarily minimal,
see obvious reasons below. A similar reasoning applies to any separation logic
kSL. For instance, in 1SL, the atomic formula emp is logically equivalent to the
following formula using only two quantified variables:

∀ u ¬(∃ u′ (u ↪→ u′)).

Alternatively, it is equivalent to the following, which uses only one variable:

∀ u ¬((u ↪→ u)−∗⊥).
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Note that (u ↪→ u)−∗⊥ is the way to express alloc(u) in 1SL1 (as shown at the
top of this section).

More interestingly, the atomic formula of the form e = e′ for some expres-
sions e, e′ is logically equivalent to the following formula by using a new quanti-
fied variable u that does not occur in e = e′:

∀ u ((u ↪→ e)−∗(u ↪→ e′)).

The formula simply states that adding to the heap a memory cell pointing to the
location interpreted by e amounts to adding a memory cell pointing to the location
interpreted by e′.

Below, we define (standard) formulae and explain which properties they ex-
press.

• For all ∼∈ {≤,≥,=} and i, α ≥ 0, we define the following formulae:

]u0
∼ α

def
= ]u ∼ α

]ui+1
∼ α

def
= ∃ u u ↪→ u ∧ ]ui

∼ α

]u−i−1
∼ α

def
= ∃ u (u ↪→ u) ∧ ]u−i

∼ α

For instance, ]u6
≥ 2 states that there is a (necessarily unique) location at

distance 6 from u and its number of predecessors is greater than or equal to 2.
This is illustrated below.

u

Moreover, the formula ]u−5
≤ 2 states that there is a (not necessarily unique)

location at distance −5 from u and its number of predecessors is not strictly
greater than 2. For instance, ]u1

≥ 1 is logically equivalent to alloc(u).

Remark. The heap is a finite tree with at least two nodes can be expressed by the
formula below:

¬emp ∧ ∃ u ¬alloc(u) ∧ (∀ u alloc(u)⇒ reach(u, u))

Complexity results about two-variable fragments of first-order logic over finite
trees can be found in [BBC+13] but we cannot really take advantage of them since
we do not use predicate symbols apart from equality and the points-to relation. By
contrast, we do admit separating connectives.
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1.2.3 Deduction rules in a Floyd-Hoare proof system
In this section, we introduce deduction rules for some Hoare-like proof system in
view of the new commands for mutable shared data structures and in view of the
assertion language obtained by adding features from separation logic (presence of
∗ and −∗).

The mutation command [e] := e′ leads to the following local rule (small ax-
iom):

{∃ u e 7→ u} [e] := e′ {e 7→ e′} local mutation

Note that the precondition and the postcondition are now expressed in 1SL. The
global rule can be also derived by application of the frame rule.

{(∃ u e 7→ u) ∗ ϕ} [e] := e′ {e 7→ e′ ∗ ϕ}
global mutation

Similarly, for performing backward reasoning, one can obtain the following rule:

{(∃ u e 7→ u) ∗ (e 7→ e′ −∗ϕ)} [e] := e′ {ϕ}
backwards reasoning mutation

Global rules for deallocation and allocation are provided below:

{(∃ u e 7→ u) ∗ ϕ} dispose(e) {ϕ}

{ϕ} x := cons(e) {(x 7→ e) ∗ ϕ}

where x is not free in e and in ϕ.
Small axioms for allocation and deallocation are the following ones:

{∃ u e 7→ u} dispose(e) {emp}

{emp} x := cons(e) {x 7→ e}

1.2.4 Classes of formulae
Below, we provide a classification of formulae provided in [Rey02, Section 3],
see also [IO01].

Definition 1.2.2. A sentence ϕ is pure if the true value of ϕ does not depend
on the heap, i.e. for all stores s, and for all heaps h, h′, we have (s, h) |= ϕ iff
(s, h′) |= ϕ. ∇
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For instance, any Boolean combination built over equalities of the form x = y
is a pure formula. When ϕ1 and ϕ2 are pure, the formulae below can be proved
valid:

1. (ϕ1 ∧ ϕ2)⇔ (ϕ1 ∗ ϕ2).

2. (ϕ1 ⇒ ϕ2)⇔ (ϕ1 −∗ϕ2).

Definition 1.2.3. A sentence ϕ is intuitionistic if for all stores s, and for all heaps
h, h′, (h′ is a conservative extension of h and (s, h) |= ϕ) imply (s, h′) |= ϕ. ∇

As a rule of thumb, intuitionistic semantics for separation logics is present
whenever (s, h) |= ϕ and h v h′ imply (s, h′) |= ϕ for a given class of formulae ϕ.

In particular, any pure formula is intuitionistic. A typical example of intu-
itionistic formula is x ↪→ y. Similarly, assuming that ϕ and ψ are intuitionistic
formulae, the formulae below are intuitionistic too:

ϕ ∧ ψ ϕ ∨ ψ ϕ ∗ ψ ϕ−∗ψ

Moreover, whenever ϕ is intuitionistic, the formulae below are valid:

• (ϕ ∗ >)⇒ ϕ.

• (ϕ⇒ (>−∗ϕ).

Strictly exact formulae have been introduced in [Yan01].

Definition 1.2.4. A sentence ϕ is strictly exact if for all stores s, and for all heaps
h, h′, ((s, h) |= ϕ and (s, h′) |= ϕ) implies h = h′. ∇

Any formula built over atomic formulae of the form x 7→ y and ∗ are strictly
exact (see also Lemma 5.2.3). Strictly exact formulae are helpful to establish the
validity of the formula below when ϕ is strictly exact:

((ϕ ∗ >) ∧ ψ)⇒ (ϕ ∗ (ϕ−∗ψ)).

Strictly exact formulae are clearly domain-exact in the following sense. A
sentence ϕ is domain-exact if for all stores s, and for all heaps h, h′, ((s, h) |= ϕ
and (s, h′) |= ϕ) implies dom(h) = dom(h′).
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1.2.5 Decision problems
Let L be a fragment of the separation logic kSL, k ≥ 1. Below, we introduce the
satisfiability/validity/model-checking/frame inference/abduction problems. Some
of the problems have been already mentioned earlier but we prefer to present all
of them below, even if repetitions are witnessed.

The satisfiability problem for L is defined as follows:

Input: A sentence ϕ in L.

Question: Is there a memory state (s, h) such that (s, h) |= ϕ?

Similarly, the validity problem for L is defined as follows:

Input: A sentence ϕ in L.

Question: Is it the case that for all memory states (s, h), we have (s, h) |= ϕ?

A variant of the validity problem is the entailment problem for L that is
defined as follows:

Input: Two sentences ϕ and ψ in L.

Question: Is it the case that ϕ |= ψ? (ϕ |= ψ is a shortcut for: for all memory
states (s, h), (s, h) |= ϕ implies (s, h) |= ψ)

Obviously the validity problem is more general than the entailment problem and
such a subproblem makes particularly sense when L is not closed under negation,
see e.g. the rule strenghtening preconditions in Section 1.1.1. Decidability of the
entailement problem implies the decidability of the proof checking in Hoare-style
proof systems in which separation logic is used as an assertion language. For
example, strenghtening of preconditions or weakening of postconditions can be
reduced to instances of the entailment problem. Usually, instances of the other
deduction rules and the small axioms can be decided by a simple syntactic anal-
ysis. For instance, in tools such as Smallfoot, the proof is reconstructed from
partial annotations (e.g., loop invariants) and a calculus of strongest postcondi-
tions is used to build verification conditions that are precisely instances of the
entailment problem.

The model-checking problem for L is defined as follows:

Input: A finite memory state (s, h) and a sentence ϕ in L.
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Question: (s, h) |= ϕ?

As mentioned earlier, the separating implication quantifies over an infinite set of
disjoint heaps and therefore finiteness of (s, h) does not imply straightforwardly
that the model-checking problem for some kSL0 is decidable. However, the infi-
nite set of disjoint heaps can be sometimes abstracted finitely (see Section 5.3).

Herein, even though we mainly focus on the satisfiability problem, and some-
times on its dual version, the validity problem (or on some of its fragments such
as the entailment problem), we present below the frame inference problem and
the abduction problem that are quite specific to separation logics. The frame
inference problem for L is defined as follows:

Input: Two sentences ϕ and ψ in L.

Question: Is there a sentence χ in L such that ϕ |= ψ ∗ χ?

The abduction problem for L is defined as follows:

Input: Two sentences ϕ and ψ in L.

Question: Is there a sentence χ in L such that ϕ ∗ χ |= ψ?

The abduction problem is also called the anti-frame problem. Complexity of the
abduction problem for symbolic heaps fragment of 1SL0 can be found in [GKO11].

1.3 Relationships with Other Logics

1.3.1 Logic of bunched implications and its Boolean variant
The logic of bunched implications BI has been introduced in [OP99, Pym02] and
it combines connectives from intuitionistic logic with connectives from the mul-
tiplicative fragment of linear logic [Gir87]. The logic of bunched implications BI
interprets formulae as resources that can be shared or separated. As mentioned
previously, the works [IO01, OYR04] by O’Hearn, Reynolds and Ishtiaq have
used separation to reason about programs with mutable data structures. More pre-
cisely, the assertion language of separation logic is a specialisation of the logic
of bunched implications BI when the additive connectives (∧, ¬, ⇒, >, ⊥) are
classical and the multiplicative connectives (∗, −∗) admit an intuitionistic interpre-
tation, leading to so-called Boolean BI, see e.g. [IO01, GLW06]. By contrast, BI
admits an intuitionistic interpretation of the additive connectives.
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Below, we recall the Kripke-style semantics for Boolean BI from [GLW06]
providing an alternative to Boolean BI-algebras considered in [Pym02]. A Kripke-
style semantics for BI can be found in [GMP02] too. Of course, the logic of
bunched implications and Boolean BI admit proof-theoretical definitions and re-
markable metatheoretical properties, see e.g. [Pym02], but below we focus on
the semantics in order to better illustrate how separation logic can be understood
as a specialisation of Boolean BI. By way of example, Boolean BI admits sev-
eral proof systems, such as labelled sequent calculi [HTG13], nested sequent
calculi [PSP13], Belnap-style display calculi [Bro12] or Hilbert-style proof sys-
tem for a hybrid extension of Boolean BI [BV14]. A major difference between
propositional separation logic 1SL0 and propositional Boolean BI is certainly that
Boolean BI admits an undecidability validity/satisfiability problem [LG13, BK14]
whereas the satisfiability problem for 1SL0 is PSPACE-complete (see Chapter 5).
Hence, the specialisation of Boolean BI to memory states, and therefore the intro-
duction of that concrete semantics, has a significant advantage computationally.

A BBI-frame is a triple (M, ◦,E) such that

• M is a non-empty set,

• ◦ is binary function ◦ : M × M → P(M) such that ◦ is commutative and
associative,

• E ⊆M is the set of neutral elements, i.e. for all m ∈M, {e ◦m : e ∈ E} = {m}.

A BBI-model [BV14] is a structure (M, ◦,E,V) such that (M, ◦,E) is a BBI-frame
and V is a map V : PROP → P(M) where PROP = {p1, p2, . . .} is a countably
infinite set of atomic propositions.

Let (HSk,],Uk) be the triple such that HSk is the set of memory states with
k ≥ 1 record fields and Uk is the set of memory states of the form (s, ∅) where
∅ is the unique heap with empty domain. Note that (HSk,],Uk) is a BBI-frame
where the non-deterministic monoid (M, ◦, e) is made of memory states such that
the heaps have k record fields and the binary function is the set-theoretical version
of disjoint union.

The set of formulae for Boolean BI is defined with the following grammar.

ϕ,ψ ::= emp | p | ϕ ∧ ψ | ¬ϕ | ϕ ∗ ψ | ϕ−∗ψ.

Let m ∈ M and V : PROP → P(M) be a valuation, the satisfaction relation |=
is defined as follows (we omit the obvious standard clauses for Boolean connec-
tives):
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m |=V emp iff m ∈ E
m |=V p iff m ∈ V(p)
m |=V ϕ1 ∗ ϕ2 iff for some m1,m2 ∈M, we have m ∈ m1 ◦m2,

m1 |=V ϕ1 and m2 |=V ϕ2

m |=V ϕ1 −∗ϕ2 iff for all m′,m′′ ∈M such that m′′ ∈ m ◦m′,
if m′ |=V ϕ1 then m′′ |=V ϕ2.

We keep the constant ‘emp for Boolean BI but elements of the set E should be
understood as units.

A formula ϕ is valid iff for all BBI-models (M, ◦,E,V) and for all m ∈ M,
we have m |=V ϕ. Satisfiability can be formulated as usually, see e.g. [BdRV01].

The satisfiability problem for kSL0 can be reformulated as the satisfiability
problem in the BBI-frame (HSk,],Uk) in which atomic propositions are of the
form xi ↪→ x j or xi = x j and the valuations V are constrained in such a way that
(s, h) ∈ V(xi ↪→ x j) iff h(s(xi)) = s(x j). Similarly, we require that (s, h) ∈ V(xi =
x j) iff s(xi) = s(x j).

Provability in Boolean BI is obtained by adding the rule “from ϕ ` ¬¬ψ
conclude ϕ ` ψ” to the natural deduction calculus of BI [Pym02]. That is why,
Boolean BI is often abbreviated as BI + {¬¬ψ⇒ ψ}. It is also possible to design
an Hilbert-tyle proof system for Boolean BI, as done in [GLW06], so that the
notion of theorem for Boolean BI is clearly defined, but omitted herein.

Theorem 1.3.1. [GLW06] Theorems of Boolean BI are exactly the formulae
valid in the class of BBI-models.

In order to be precise, the BBI-models introduced in [GLW06] assumes that
E is a singleton set (single-unit condition) and it is shown in [BV14] that the
class of single-unit BBI-models is not definable in Boolean BI. By contrast, it has
been shown recently that validity in Boolean BI is not sensitive to the single unit
condition [LG14]. Furthermore, we invite the reader to consult [BV14, LG14] for
additional comparisons between variants of BBI-models and separation models.
By analogy, the modal logic K is complete for the class of irreflexive frames but
irreflexivity is not a property that is modally definable, see e.g. [BdRV01].

1.3.2 First-order logic with second-order features
In this section, let us focus on 1SL without program variables. Models for 1SL
can be viewed as first-order structures of the form (N,R) where R is a finite and
deterministic binary relation. We have seen in Section 1.2.2 that there is a formula
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reach(u, u) in 1SL2(∗) such that h |=f reach(u, u) iff f(u)R?f(u), where R? is the
reflexive and transitive closure of R with

R
def
= {(l, l′) : l ∈ dom(h), h(l) = l′}.

Anyway, 1SL without the separating connectives is clearly a fragment of first-
order logic on structures of the form (N,R) where R is a finite and deterministic
binary relation. Adding the separating conjunction provides a little bit of second-
order logic, for instance by encoding the reachability relation. Given a binary
relation R, we write DTC(R) to denote the deterministic transitive closure of R
defined as the transitive closure of the relation

Rdet = {(l, l′) ∈ R : there is no l′′ , l′ such that (l, l′′) ∈ R}.

So, when (N,R) is an 1SL model, DTC(R) can be defined in 1SL2(∗) itself.
In fragments of classical logic, the presence of the deterministic transitive clo-

sure operator can lead to undecidability where the operator on the binary rela-
tion R amounts to consider the transitive closure of the deterministic restriction
Rdet. In [GOR99], it is shown that FO2 (i.e. first-order logic restricted to two
quantified variables) augmented with the deterministic transitive closure opera-
tor has an undecidable finitary satisfiability problem. By contrast, FO2 has the
finite model property and the satisfiability problem is NEXPTIME-complete, see
e.g. [GKV97]. Recently, FO2 augmented with the deterministic transitive closure
of a single binary relation is shown to have a decidable and EXPSPACE-complete
satisfiability problem [CKM14]. The works [GOR99] and [CKM14] contain nu-
merous undecidability results related to the deterministic transitive closure oper-
ator but this involves more than one binary relation, whereas the models for 1SL
have a unique deterministic binary relation. However, several results presented
in [CKM14] are quite optimal with respect to the syntactic resources.

Meanwhile, Yorsh et al. [YRS+06] study a decidable version of first-order
logic with reachability; they get decidability by making severe syntactic restric-
tions on the placement of quantifiers and on the reachability constraints, although
the resulting logic is capable of describing useful linked data structures (see also
the subsequent works [LQ08, PWZ13]).

1.3.3 Translation into dyadic second-order logic
Next we define weak second-order logic kWSOL, for k ≥ 1. The sets PVAR and
FVAR are defined as for kSL as well as the expressions e.
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We also consider a family SVAR = (SVARi)i≥1 of second-order variables, de-
noted by P, Q, R, . . . that are interpreted as finite relations over N. Each variable
in SVARi is interpreted as an i-ary relation.

As for kSL, models are memory states with k ≥ 1 record fields. A second-
order assignment f is an interpretation of the second-order variables such that for
every P ∈ SVARi, f(P) is a finite subset ofNi.

Atomic formulae take the form

π ::= e = e′ | e ↪→ e1, . . . , ek | P(e1, . . . , en) | emp | ⊥ .

Formulae of kWSOL are defined by the grammar

ϕ,ψ ::= π | ϕ ∧ ψ | ¬ϕ | ∃ u ϕ | ∃ P ϕ

where P ∈ SVARn for some n ≥ 1. We write kMSOL (monadic second-order
logic) to denote the restriction of kWSOL to second-order variables in SVAR1 and
kDSOL (dyadic second-order logic) to denote its restriction to SVAR2. Like kSL,
models for kWSOL are memory states and quantifications are done over all the
possible locations. The satisfaction relation |= is defined as follows (f is a hybrid
valuation providing interpretation for first-order and second-order variables):

(s, h) |=f ∃ P ϕ iff there is a finite relation R ⊆Nn such that
(s, h) |=f[P 7→R] ϕ where P ∈ SVARn

(s, h) |=f P(e1, . . . , en) iff (Je1K, . . . , JenK) ∈ f(P).

The satisfiability problem for kWSOL takes as input a sentence ϕ in kWSOL
and asks whether there is a memory state (s, h) such that (s, h) |= ϕ. By Trakht-
enbrot’s Theorem [Tra63, BGG97], the satisfiability problem for kDSOL (and
therefore for kWSOL) is undecidable since finite satisfiability for first-order logic
with a unique binary relation symbol is undecidable. Note that a monadic second-
order variable can be simulated by a binary second-order variable from SVAR2,
and this can be used to relativise a formula from DSOL in order to check finite
satisfiability.

Theorem 1.3.2. [BDL12] kWSOL and kDSOL have the same expressive power.

It is just necessary to show how to reduce kWSOL to kDSOL since kDSOL is
a syntactic fragment of kWSOL. Atomic formulae P(u) with the monadic second-
order variable P are replaced by Pnew(u, u) where Pnew is a fresh dyadic second-
order variable. Furthermore, P(u1, . . . , un) with n > 2 is substituted by

∃ u

n∧
i=1

Pnew
i (u, ui)
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where Pnew
1 , . . . , Pnew

n are fresh dyadic second-order variables used only for P. The
value k plays no special role here.

It has been recently shown in [DD14] that 1SL2(−∗) is as expressive as 1WSOL.
The proof hinges on the fact that that every sentence from 1DSOL has an equiv-
alent sentence in 1SL2(−∗), as discussed in Chapter 3. Translation in the other
direction concerns us below. Separation logic 1SL can easily be translated into
1DSOL. The presentation given here is by a simple internalisation.

First, some formula definitions useful for the translation.

init(P) def
= ∀ u v (P(u, v)⇔ u ↪→ v)

heap(P) def
= ∀ u v w ((P(u, v) ∧ P(u, w))⇒ v = w) (functionality)

P = Q ] R
def
= ∀ u v ((P(u, v)⇔ (Q(u, v) ∨ R(u, v))) ∧ ¬(Q(u, v) ∧ R(u, v))).

The formula init initialises a binary relation P to be precisely the heap graph;
this is a notational convenience for the top level of the translation. heap requires
that a relation P is functional and is used to ensure that subheaps (as interpreted
by second-order variables) are in fact heaps. Finally, P = Q ] R composes two
relations representing subheaps (Q and R) into one—or alternatively, it can be seen
as decomposing P into two disjoint pieces; it is used in both “directions” in the
translation.

Let the top-level translation t(ϕ) def
= ∃ P

(
init(P) ∧ tP(ϕ)

)
, where tP is the

translation with respect to P as the “current” heap for interpretation. It is homo-
morphic for Boolean connectives, and otherwise has this definition:

tP(u ↪→ v)
def
= P(u, v)

tP(ϕ ∗ ψ) def
= ∃ Q Q′

(
P = Q ] Q′ ∧ tQ(ϕ) ∧ tQ′(ψ)

)
tP(ϕ−∗ψ) def

= ∀ Q
(
((∃ Q′ heap(Q′) ∧ Q′ = Q ] P) ∧ heap(Q) ∧ tQ(ϕ))

⇒ (∃ Q′ heap(Q′) ∧ Q′ = Q ] P ∧ tQ′(ψ))
)
.

Theorem 1.3.3. (see e.g. [BDL12]) There exists a translation t such that for any
1SL sentence ϕ and for any memory state (s, h), we have (s, h) |= ϕ in 1SL iff
(s, h) |= t(ϕ) in 1DSOL.

Note that, then, there must also exist a translation from the smaller fragment
1SL2(−∗) into 1DSOL. This result (along with Theorem 1.3.2 above) will be useful
later in showing expressive power results of separation logic.
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General inductive predicates Using general inductive predicates provides an-
other means to define second-order properties on heaps and this is a very use-
ful feature to describe the shape of data structures, such as linked lists for in-
stance. Semantics for general inductive predicates using least fixpoint opera-
tors can be naturally encoded in second-order logic, see e.g. [QGSM13]. Until
very recently, such predicates are hard-coded but new results on the satisfiabil-
ity and entailment problems for general inductive predicates have been obtained,
see e.g. [IRS13, AGH+14, BFGN14]. Whereas, it is shown in [BFGN14] that the
satisfiability problem for many standard fragments of separation logic augmented
with general inductive predicates is decidable and complexity is characterised (see
also [IRS13] for bounded tree-width structures), other fragments have been shown
to admit decidable entailment problem [IRS13, AGH+14]. These are general re-
sults that are very promising for automatic verification of programs, despite the
generality of the defined predicates.

1.3.4 Undecidability
A remarkable result about the decidability status of (first-order) separation logic
is stated below and is due to [COY01] (see also [Yan01, Section 8.1] for a related
undecidability result).

Theorem 1.3.4. [COY01] The satisfiability problem for 2SL is undecidable.

The proof is based on the fact that finitary satisfiability for classical predicate
logic restricted to a single binary predicate symbol is undecidable [Tra63], see
also [BGG97]. This means that given a first-order sentence ϕ built over the binary
predicate symbol R, checking whether there is a finite structure (D,R) (a finite
directed graph) such that (D,R) |= ϕ (in the first-order sense) is undecidable.
Indeed, any such a structure can be encoded (modulo isomorphism) by some heap
h and some distinguished location l0 such that:

• l0 < dom(h),

• D = {l ∈N : h(l) = (l0, l0)},

• R = {(l, l′) ∈ D2 : there is l′′ such that h(l′′) = (l, l′)}.

Roughly speaking, a pair in R is encoded by a memory cell in h. Let us define the
translation T such that ϕ has a finite model (D,R) iff T(ϕ) is satisfiable in 2SL
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with

T(ϕ) def
= ∃ u, nil

”non−empty domain”︷             ︸︸             ︷
(u ↪→ nil, nil) ∧

”nil not in the domain”︷                        ︸︸                        ︷
(¬∃u′, u′′ nil ↪→ u′, u′′)∧tr(ϕ)

where tr(·) is homomorphic for Boolean connectives and it is defined below:

tr(ui = u j)
def
= (ui = u j) ∧ (ui ↪→ nil, nil) ∧ (u j ↪→ nil, nil)

tr(R(ui, u j))
def
= (ui ↪→ nil, nil) ∧ (u j ↪→ nil, nil) ∧ (∃u (u ↪→ ui, u j))

tr(∃ u ψ) def
= ∃u (u ↪→ nil, nil) ∧ tr(ψ)

tr(∀ u ψ) def
= ∀ u (u ↪→ nil, nil)⇒ tr(ψ).

Observe that nil is understood as a distinguished variable whose interpreta-
tion is not in the heap domain. It is also worth noting that T(ϕ) makes no use of
program variables, separating conjunction, or separating implication. In a sense,
the undecidability of 2SL, as explained above, is not very much related to separat-
ing connectives, but rather to the fact that heaps with two record fields can encode
finite binary relations.

Theorem 1.3.5. [COY01] The set of valid formulae for 2SL is not recursively
enumerable.

As a consequence, 2SL is not finitely axiomatisable. Indeed, ϕ is finitely
valid iff ∀u, nil ((u ↪→ nil, nil) ∧ (¬∃u′, u′′ nil ↪→ u′, u′′)) ⇒ tr(ϕ) is 2SL
valid. Since this is a logarithmic-space reduction and since the set of finitely valid
formulae is not recursively enumerable, this leads to Theorem 1.3.5. It seems that
this fact is not so well-known (this is of course mentioned in [COY01], and in
a few other places such as in [Web04, Section 5] or in [Qiu13, Chapter 2]) but it
has unpleasant consequences for defining proof systems for separation logics with
concrete heaps (see e.g., [GM10, LP14, HCGT14, HGT15]). Note also that the
result applies to any kSL since 2SL can be viewed then as a syntactic fragment of
kSL as soon as k ≥ 2.

In Chapter 3, we are able to show a similar result with 1SL by using directly
first-order theory of natural numbers with addition and multiplication.

1.3.5 Modal logics with updates
The separating connectives ∗ and−∗ force the interpretation of subformulae in alter-
native heaps, which is reminiscent to the destructive aspect of van Benthem’s sab-
otage modal logic [vB05]. Indeed, sabotage modal logic (SML) defined in [vB05]
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has the ability to remove states in a transition system. A variant of SML is intro-
duced in [LR03] with the possibility to withdraw transitions, a feature also shared
with logics from [PW04, Dem05, Göl07], see also logics of public announce-
ments [Lut06]. The satisfiability problem for that variant is shown undecidable
in [LR03] (another variant is shown undecidable in [Roh04] in which deletion of
the transitions is done locally to the current state). Other modal logics updating
the model while evaluating formulae have been considered in a systematic way
in [ABdCH09] and specific instances can be found in [Mer09, AFH14].

1.4 Exercises
Exercise 1.1. Heaps can be understood as canonical elements of equivalence clas-
ses. Given a bijection σ : N→ N, we write h′ = h ◦ σ to denote the heap whose
graph is {(σ(l), σ(h(l))) : l ∈ dom(h)}. Similarly, we write f′ = f ◦ σ to denote the
assignment such that f′(ui) = σ(f(ui)).

a) Show that for all formulae ϕ in 1SL without program variables, we have h |=f
ϕ iff h′ |=f′ ϕ.

b) Extend the property when memory states are involved (i.e. with stores).

Exercise 1.2. Show that ∗ is commutative, associative and emp is a neutral ele-
ment, i.e. show that the formulae below are valid.

a) ϕ1 ∗ ϕ2 ⇔ ϕ2 ∗ ϕ1.

b) (ϕ1 ∗ ϕ2) ∗ ϕ3 ⇔ ϕ1 ∗ (ϕ2 ∗ ϕ3).

c) ϕ ∗ emp⇔ ϕ.

Exercise 1.3. Distributivity laws are best illustrated by showing that the formulae
below are valid.

a) (ϕ1 ∨ ϕ2) ∗ ψ⇔ (ϕ1 ∗ ψ) ∨ (ϕ2 ∗ ψ).

b) (ϕ1 ∧ ϕ2) ∗ ψ⇒ (ϕ1 ∗ ψ) ∧ (ϕ2 ∗ ψ).

c) (∃ u ϕ) ∗ ψ⇔ ∃ u (ϕ ∗ ψ), assuming that u is not free in ψ.

d) (∀ u ϕ) ∗ ψ⇒ ∀ u (ϕ ∗ ψ), assuming that u is not free in ψ.
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Exercise 1.4. Show that if ϕ1 ⇒ ϕ2 and ϕ′1 ⇒ ϕ′2 are valid, then (ϕ1 ∗ ϕ′1) ⇒
(ϕ2 ∗ ϕ′2) is valid too.

Exercise 1.5. Let k ≥ 1 and,ϕ,ψ and χ be formulae in kSL0. Show that (ϕ∗ψ)⇒
χ is valid iff ϕ⇒ (ψ−∗χ) is valid.

Exercises 1.2–1.5 are inspired from properties stated in [Rey02, Section 3].

Exercise 1.6. Show that the local mutation rule from Section 1.2.3 is valid.

Exercise 1.7. Let ϕ be a formula in 1SL0 built without ↪→ and emp. Show that ϕ
is a pure formula.

Exercise 1.8. Let ϕ1 and ψ2 be pure formulae. Show that the formulae below are
valid:

a) (ϕ1 ∧ ϕ2)⇔ (ϕ1 ∗ ϕ2).

b) (ϕ1 ⇒ ϕ2)⇔ (ϕ1 −∗ϕ2).

Exercise 1.9. Assuming that ϕ is intuitionistic, show that (ϕ ∗>)⇒ ϕ and (ϕ⇒
(>−∗ϕ) are valid formulae.

Exercise 1.10. Let e, e′ be two expressions in 1SL and u be a variable that
does not occur in e = e′. Show that for all memory states (s, h) and for all
assignments f, we have JeK = Je′K iff (s, h) under the assignment f satisfies
∀ u ((u ↪→ e)−∗(u ↪→ e′)).

Exercise 1.11. Show that the validity of ϕ ⇒ (ψ−∗χ) and ϕ′ ⇒ ψ implies the
validity of ϕ ∗ ϕ′ ⇒ χ.

Exercise 1.12. The version of kSL0 defined in this chapter admits an intuitionistic
interpretation of the points-to atomic formulae, since whenever (s, h) |=f e ↪→ e′

and h′ is a conservative extension of h (written h v h′), we still have (s, h′) |=f e ↪→
e′. Strictly speaking, a classical version of kSL0 should admit atomic formulae of
the form e 7→ e′ instead, but for kSL0, this does not make a subtantial difference
in the classical framework.

Now, let us restrict ourselves to the formulae below:

ϕ,ψ ::= e ↪→ e′ | e = e′ | e , e′ | | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ ψ |

ϕ ∗ ψ | ϕ−∗ψ | ∀ u ϕ
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(no negation, no atomic formula emp). In order to define the intuitionistic ver-
sion of kSL0, we keep the clauses for the satisfaction relation from classical
kSL0 except that we provide an intuitionistic interpretation for the connective⇒:
(s, h) |=f ϕ ⇒ ψ iff for all h v h′, we have if (s, h′) |=f ϕ, then (s, h′) |=f ψ.
Show that the intuitionistic version of kSL0 admits the monotonicity condition: if
(s, h) |=f ϕ and h v h′, then (s, h′) |=f ϕ.

Exercise 1.13. Let ϕ be a sentence in kSL without any program variable. Show
that ϕ is valid iff (emp ∧ (>−∗ϕ)) ∗ > is satisfiable.

Exercise 1.14. Show that reach(u, u) as defined in the chapter corresponds in-
deed to the reachability predicate.

Exercise 1.15. Show that the formula below in 1SL2 characterizes the heaps with
a unique connected component and with a non-empty domain:

¬emp ∧ ∃ u ∀ u alloc(u)⇒ reach(u, u).
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In this chapter, we consider decidability and computational complexity issues
for propositional fragments of separation logics of the form kSL0 with k ≥ 1. The
upper bounds are mainly proved in Chapter 5. Section 2.1 is dedicated to the pre-
sentation of the PSPACE-completeness for the satisfiability and model-checking
problems for kSL0 based on developments from [COY01]. Proofs for PSPACE-
hardness are provided. Section 2.2 contains a presentation of the fragments of
kSL0 made of symbolic heaps and for which the entailment problem and the sat-
isfiability problem can be solved in polynomial time [CHO+11]. It is very essen-
tial that the reasoning for this fragment is tractable since it is used in early tools
dealing with separation logic such as Smallfoot [BCO05]. Abstract separation
logics are presented in Section 2.3; in such versions of separation logics atomic
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propositions are introduced and can be true in any part of the model (contrary to
points-to formulae), see also Section 1.3.1. Moreover, models are more abstract
and correspond to cancellative partial commutative monoids. We show that the
satisfiability problem for a few abstract separation logics is undecidable based on
developments from [LG13, BK14, DD15a]. A reduction from the halting problem
for Minsky machines is designed.

Highlights of the chapter

1. PSPACE-hardness proof for several fragments of 1SL0 by reduction from
QBF as done in [COY01] (straightforward extensions to kSL0 with k > 1).

2. Presentation of the symbolic heaps fragment (and variants) that is used in
the tool Smallfoot (Section 2.2) as well as recent complexity results.

3. Undecidability proof for propositional separation logic based on mem-
ory states (Theorem 2.3.1) inspired from the original proof in [BK10,
LWG10] but adapted to avoid any proof-theoretical consideration [DD15b].

2.1 PSPACE-Completeness and Expressive Power

2.1.1 PSPACE-hard fragments of kSL0

Most probably, NP-completeness already implies non-tractability but actually,
propositional separation logic of the form kSL0 with k ≥ 1 can be potentially
of even worse complexity, see e.g. [COY01, Rey02].

Theorem 2.1.1. [COY01] For every k ≥ 1, the satisfiability problem for (propo-
sitional) kSL0 is PSPACE-complete.

The proof for the PSPACE upper bound is provided in Section 5.3 in which
other results about the expressive power of kSL0 are discussed. Meanwhile, be-
low, we show that 1SL0 is PSPACE-hard by reduction from QBF, following de-
velopments from [COY01]. QBF formulae are built from propositional formulae
with the addition of propositional quantifications of the form ∀ p ψ and ∃ p ψ.
Below, without any loss of generality, we consider QBF formulae in prenex nor-
mal form. We consider several fragments of 1SL0 in order to pinpoint different
causes for PSPACE-hardness.
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Let Q1 p1 · · · Qn pn ϕ be a QBF formula with {Q1, . . . ,Qn} ⊆ {∃,∀} and ϕ is
a propositional formula built over the atomic propositions in {p1, . . . , pn} and the
Boolean connectives ∧, ∨ and ¬ (only in front of atomic propositions). The for-
mula is said to be in prenex normal form and every QBF formula can be reduced
in logarithmic space to an equivalent formula in such a form. We recall that given
a propositional valuation v : PROP → {⊥,>}, we have v |= ∃ p ϕ iff there is
b ∈ {⊥,>} such that v[p 7→ b] |= ϕ. Similarly, v |= ∀ p ϕ iff for all b ∈ {⊥,>},
we have v[p 7→ b] |= ϕ. Satisfiability problem for QBF formulae is known to be
PSPACE-complete [Sto77].

In the translation of the formula Q1 p1 · · · Qn pn ϕ, we consider n program
variables, say x1, . . . , xn so that the truth of pi is encoded by the satisfaction of
alloc(xi) (that can be defined by (xi ↪→ xi)−∗ ⊥). Similarly, we write xi 7→ − as
an abbreviation for alloc(xi) ∧ ¬(¬emp ∗ ¬emp). Obviously, xi 7→ − holds true
when xi is the unique location belonging to the heap domain.

In order to encode independence between the different variables, we enforce
that all the program variables have distinct values in the original heap. Moreover,
existential quantification over pi amounts to restrict the current heap either by the
empty heap (in that case alloc(xi) holds in the other heap) or by a unique memory
cell so that alloc(xi) holds, which allows to simulate quantification. However,
it is necessary to enforce in the initial heap that alloc(xi) holds for any program
variable xi, i ∈ [1,n]. Let us define the map tr as follows when tr is homomorphic
for Boolean connectives:

tr(pi)
def
= alloc(xi)

tr(∃ pi ψ) def
= (emp ∨ xi 7→ −) ∗ tr(ψ)

tr(∀ pi ψ) def
= ¬((emp ∨ xi 7→ −) ∗ ¬tr(ψ)).

Lemma 2.1.2. The formula Q1 p1 · · · Qn pn ϕ is QBF satisfiable iff

χ
def
= (

∧
i, j

xi , x j) ∧ (
∧

i

alloc(xi)) ∧ tr(Q1 p1 · · · Qn pn ϕ)

is 1SL0 satisfiable.

Proof. Let us start by introducing auxiliary definitions. For every j ∈ [1,n + 1],
we write ϕ j to denote the formula Q j p j · · · Qn pn ϕ. So, by definition, we
have ϕ1 = Q1 p1 · · · Qn pn ϕ and by convention ϕn+1 = ϕ. Note also that the
atomic propositions in ϕ j that are not in the scope of a propositional quantification
belongs to the (possibly empty) set {pi : i ∈ [1, j − 1]}.
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Given a memory state (s, h) and a propositional valuation v, we write (s, h) ≈ j

v to denote the fact that:

• For all i , i′ ∈ [1,n], we have s(xi) , s(xi′) (this only depends on s).

• For all i ∈ [ j,n], we have s(xi) ∈ dom(h) (this only depends on the memory
state).

• For all i ∈ [1, j − 1], we have s(xi) ∈ dom(h) iff v(pi) = >.

It is easy to establish that (s, h) ≈ j v for some v is equivalent to (s, h) |= (
∧

i,i′ xi ,
xi′) ∧ (

∧
i∈[ j,n] alloc(xi)).

By induction on j, we show that for all j ∈ [1,n + 1], if (s, h) ≈ j v, then
(s, h) |= tr(ϕ j) iff v |= ϕ j. The base case in the induction corresponds to j = n + 1
and therefore the induction step goes backwards.

Before providing the proof by induction, let us check that this is sufficient to
establish the statement in the lemma. If (s, h) ≈1 v, then (s, h) satisfies (

∧
i, j xi ,

x j) ∧ (
∧

i alloc(xi)). Suppose that v |= Q1 p1 · · · Qn pn ϕ. Let us consider the
memory state (s, h) such that: for all i ∈ [1,n], we have s(xi) = i and h(i) = i.
Obviously, (s, h) ≈1 v and therefore by the property above, we get (s, h) |= tr(ϕ1),
that is (s, h) |= tr(ϕ). Consequently, (s, h) |= χ. Now suppose that (s, h) |= χ. Let
us take any propositional valuation v. We have (s, h) ≈1 v and therefore by the
property above, we get v |= ϕ1, that is v |= ϕ.

Now let us consider the proof of the above property.
Base case: j = n + 1.
So, ϕ j = ϕn+1 = ϕ. The proof is by structural induction but the cases in the
induction step with ¬ (in front of atomic propositions), ∨ and ∧ are by an easy
verification. We assume that (s, h) ≈n+1 v and let us consider pi with i < n + 1.
If v |= pi, then v(pi) = > and since (s, h) ≈n+1 v, we get s(xi) ∈ dom(h) and
(s, h) |= alloc(xi) (= tr(pi)). Conversely, if (s, h) |= tr(pi), then s(xi) ∈ dom(h)
and since (s, h) ≈n+1 v we get v(pi) = >, whence v |= pi.

For the induction step with j < n + 1, below we deal with the case ϕ j =
∃ p j ϕ j+1. The case ϕ j = ∀ p j ϕ j+1 is omitted since it is very similar. We assume
that (s, h) ≈ j v.

First suppose that v |= ∃ p j ϕ j+1. This means that there is b ∈ {>,⊥} such that
v[p j 7→ b] |= ϕ j+1.
Case 1: b =⊥.
Let h′, h′′ be such that h = h′ ] h′′ and dom(h′′) = {s(x j)}. We know that such
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a separation of h is possible since (s, h) ≈ j v (in particular s(x j) ∈ dom(h)). We
get that (s, h′) ≈ j+1 v[p j 7→⊥] and therefore by the induction hypothesis, we
have (s, h′) |= tr(ϕ j+1). So, (s, h) |= (x j 7→ −) ∗ tr(ϕ j+1) and a fortiori, (s, h) |=
(emp ∨ (x j 7→ −)) ∗ tr(ϕ j+1) (= tr(ϕ j)).
Case 2: b = >.
We get that (s, h) ≈ j+1 v[p j 7→ >] and therefore by induction hypothesis, (s, h) |=
tr(ϕ j+1). So, (s, h) |= emp ∗ tr(ϕ j+1) and a fortiori, (s, h) |= (emp ∨ (x j 7→ −)) ∗
tr(ϕ j+1).

Now suppose that (s, h) |= (emp ∨ (x j 7→ −)) ∗ tr(ϕ j+1).
Case 1: (s, h) |= emp ∗ tr(ϕ j+1).
So, (s, h) |= tr(ϕ j+1) and since (s, h) ≈ j+1 v[p j 7→ >], by the induction hypothesis,
we get v[p j 7→ >] |= ϕ j+1, whence v |= ∃ p j ϕ j+1.
Case 2: (s, h) |= (x j 7→ −) ∗ tr(ϕ j+1).
So, there are heaps h′ and h′′ such that (s, h′′) |= x j 7→ − and (s, h′) |= tr(ϕ j+1).
Since by construction, (s, h′) ≈ j+1 v[p j 7→⊥], by the induction hypothesis, we get
v[p j 7→⊥] |= ϕ j+1 and therefore v |= ∃ p j ϕ j+1. QED

The above reduction implies that the satisfiability problem for the logic kSL0(∗)
is PSPACE-hard too, assuming that the atomic formulae are of the form emp,
alloc(x) and x = y.

Corollary 2.1.3. [COY01] For every k ≥ 1, the satisfiability and model-checking
problems for kSL0 is PSPACE-hard.

Proof. PSPACE-hardness of the satisfiability problem is a direct consequence of
Lemma 2.1.2 since QBF is PSPACE-complete. Note that Lemma 2.1.2 is stated
for k = 1 but it is easy to adapt it to any fixed k > 1 since the heap domain can be
constrained only by atomic formulae of the form alloc(x).

Now, it is easy to design a logarithmic-space reduction from QBF into the
model-checking for 1SL0. Let Q1 p1 · · · Qn pn ϕ be a QBF formula. We define
the memory state (s, h) such that for all i ∈ [1,n], we have s(xi) = i and h(i) = i.
Obviously, (s, h) |= (

∧
i, j xi , x j) ∧ (

∧
i alloc(xi)). Let v⊥ be the propositional

valuation that returns always the constant value ⊥. According to previous devel-
opments, we have (s, h) |= tr(Q1 p1 · · · Qn pn ϕ) iff v⊥ |= Q1 p1 · · · Qn pn ϕ. The
proof for k > 1 is similar since h(i) defined above can be adapted to be a k-tuple
made of k times the value i. QED

A substantial fragment of 1SL0 that admits NP-complete satisfiability and
model-checking problems is presented in Exercise 2.4. Other fragments have been
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considered in [COY01] by restricting further the use of Boolean or separating
connectives. Below we show that decision problems for kSL0(−∗) are PSPACE-
hard too, assuming that the atomic formulae are of the form alloc(x) and x = y
(see a precise formulation of the fragment in Lemma 2.1.6).

Let Q1 p1 · · · Qn pn ϕ be a QBF formula with {Q1, . . . ,Qn} ⊆ {∃,∀} and ϕ is
a propositional formula built over the atomic propositions in {p1, . . . , pn} and the
Boolean connectives ∧, ∨ and ¬ (only in front of atomic propositions). This time,
the truth of the atomic proposition pi is encoded by the truth of alloc(x>i ) whereas
the falsehood of pi is encoded by the truth of alloc(x⊥i ); x>i and x⊥i are new
program variables associated to pi. Obviously, alloc(x>i ) and alloc(x⊥i ) may
hold simultaneously, even if x>i and x⊥i are interpreted differently. That is why, we
introduce the formulae initi and oki below. The formula initi holds true when
the encoding of the truth value of pi is not yet done, i.e. none of alloc(x⊥i ) and
alloc(x>i ) holds true. Similarly, oki holds true when the encoding of the truth
value of pi is done, i.e. exactly one formula among alloc(x⊥i ) and alloc(x>i )
holds true. This is generalized to sets of indices as defined below.

initi
def
= ¬alloc(x>i ) ∧ ¬alloc(x⊥i )

oki
def
= (alloc(x>i ) ∧ ¬alloc(x⊥i )) ∨ (alloc(x⊥i ) ∧ ¬alloc(x>i ))

initX
def
=

∧
j∈X initj (with X ⊆ [1,n])

okX
def
=

∧
j∈X okj (with X ⊆ [1,n]).

The map tr defined below is homomorphic for the Boolean connectives ∧ and
∨ and satisfies the following clauses [COY01]:

tr(pi)
def
= alloc(x>i )

tr(¬pi)
def
= alloc(x⊥i )

tr(∀ pi ϕi+1) def
= (oki ∧ init[1,n]\{i})−∗ tr(ϕi+1)

tr(∃ pi ϕi+1) def
= ∼ ((ok[1,i−1] ∧ init[i,n])∧ ∼ ((ok[1,i] ∧ init[i+1,n]) ∧ tr(ϕi+1))).

with ∼ ψ
def
= ψ−∗ ⊥. Whereas the encoding of the propositional quantification

‘∀ pi’ is rather natural with the help of the separating implication that performs a
universal quantification too, the encoding of ‘∃ pi’ with a double use of ∼ is not
immediate and reflects the beauty of the solution given in [COY01].

The translation tr takes advantage of the formulae of the form ∼ ψ. Below,
we present properties that will be helpful in the sequel. Their proof are left as Ex-
ercise 2.1. First, we define the relation ≈ j (this slightly different from the one in
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the previous PSPACE-hardness proof). Given a memory state (s, h) and a proposi-
tional valuation v, we write (s, h) ≈ j v where the properties below are verified.

• For all x and y in {x>i , x
⊥

i : i ∈ [1,n]}, we have s(x) , s(y) (this only depends
on s).

• For all i ∈ [ j,n], we have {s(x⊥i ), s(x>i )} ∩ dom(h) = ∅ (this only depends on
the memory state).

• For all i ∈ [1, j − 1], we have (s(x>i ) ∈ dom(h) and s(x⊥i ) < dom(h) and
v(pi) = >) or (s(x⊥i ) ∈ dom(h) and s(x>i ) < dom(h) and v(pi) =⊥).

Consequently, (s, h) ≈ j v for some v implies (s, h) |= ok[1,j−1] ∧ init[j,n].

Below, we state essential properties about ∼.

Lemma 2.1.4. . Let (s, h) be a memory state and ϕ, ψ be formulae in kSL0.

(I) (s, h) |=∼ (ϕ ∧ ψ) iff for all heaps h′ disjoint from h, if (s, h′) |= ϕ, then
(s, h′) 6|= ψ.

(II) (s, h) |=∼ (ϕ∧ ∼ ψ) iff for all heaps h′ disjoint from h, if (s, h′) |= ϕ, then
there is a heap h′′ disjoint from h′ such that (s, h′′) |= ψ.

(III) Suppose that (s, h) ≈i v for some v. Then, (s, h) |=∼ ((ok[1,i−1]∧init[i,n])∧ ∼
((ok[1,i] ∧ init[i+1,n]) ∧ ϕ)) iff there is h′ such that h v h′, (s, h′) ≈i+1 v′ for
some v′ and (s, h′) |= ϕ.

Correctness of the translation is stated below.

Lemma 2.1.5. The formula Q1 p1 · · · Qn pn ϕ is QBF satisfiable iff

χ
def
= (

∧
x,y∈{x>i ,x

⊥

i :i∈[1,n]}

x , y ∧ ¬alloc(x)) ∧ tr(Q1 p1 · · · Qn pn ϕ)

is 1SL0 satisfiable.

Proof. For every j ∈ [1,n+1], we writeϕ j to denote the formulaQ j p j · · · Qn pn ϕ.
By induction on j, we show that for all j ∈ [1,n + 1], if (s, h) ≈ j v, then

(s, h) |= tr(ϕ j) iff v |= ϕ j. The base case in the induction corresponds to j = n + 1
and therefore the induction step goes backwards.
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Before providing the proof by induction, let us check that this is sufficient to
establish the statement in the lemma. If (s, h) ≈1 v, then (s, h) satisfies

(
∧

x,y∈{x>i ,x
⊥

i :i∈[1,n]}

x , y ∧ ¬alloc(x)).

Suppose that v |= Q1 p1 · · · Qn pn ϕ. Let us consider the memory state (s, h)
such that: for all i ∈ [1,n], we have s(x>i ) = 2i, s(x⊥i ) = 2i + 1 and dom(h) = ∅.
Obviously, (s, h) ≈1 v and therefore by the property above, we get (s, h) |= tr(ϕ1),
that is (s, h) |= tr(ϕ). Consequently, (s, h) |= χ. Now suppose that (s, h) |= χ. Let
us take any propositional valuation v. We have (s, h) ≈1 v and therefore by the
property above, we get v |= ϕ1, that is v |= ϕ.

Now let us consider the proof of the above property.
Base case: j = n + 1.
So, ϕ j = ϕn+1 = ϕ. The proof is by structural induction but the cases in the induc-
tion step with ∨ and ∧ are by an easy verification. We assume that (s, h) ≈n+1 v
and let us consider pi with i < n + 1. If v |= pi, then v(pi) = > and since
(s, h) ≈n+1 v, we get s(x>i ) ∈ dom(h) and (s, h) |= alloc(x>i ) (= tr(pi)). If
v |= ¬pi, then v(pi) =⊥ and since (s, h) ≈n+1 v, we get s(x⊥i ) ∈ dom(h) and (s, h) |=
alloc(x⊥i ) (= tr(¬pi)). Conversely, if (s, h) |= tr(pi), then s(x>i ) ∈ dom(h) and
since (s, h) ≈n+1 v we get v(pi) = >, whence v |= pi. Similarly, if (s, h) |= tr(¬pi),
then s(x⊥i ) ∈ dom(h) and since (s, h) ≈n+1 v we get v(pi) =⊥, whence v |= ¬pi.

For the induction step with j < n + 1, below we deal with the case ϕ j =
∃ p j ϕ j+1. The case ϕ j = ∀ p j ϕ j+1 is omitted and it is left as Exercise 2.2. We
assume that (s, h) ≈ j v.

First suppose that v |= ∃ p j ϕ j+1. This means that there is b ∈ {>,⊥} such that
v[p j 7→ b] |= ϕ j+1. Let h′ be such that dom(h′) = {s(xb

j)} and h′(s(xb
j)) = 0 (arbi-

trary value). Since (s, h) ≈ j v, we obtain (s, h ] h′) ≈ j+1 v[p j 7→⊥] and therefore
by the induction hypothesis, we have (s, h ] h′) |= tr(ϕ j+1). By Lemma 2.1.4(III),
(s, h) |=∼ ((ok[1,j−1] ∧ init[j,n])∧ ∼ ((ok[1,j] ∧ init[j+1,n])∧ tr(ϕ j+1))) and there-
fore (s, h) |= tr(ϕ j).

Now suppose that (s, h) |=∼ ((ok[1,j−1]∧init[j,n])∧ ∼ ((ok[1,j]∧init[j+1,n])∧
tr(ϕ j+1))) and therefore (s, h) |= tr(ϕ j). By Lemma 2.1.4(III), there is h v h′ such
that (s, h′) ≈ j+1 v′ for some v′ and (s, h′) |= tr(ϕ j+1). Note that v and v′ agree
on the atomic propositions pi with i ∈ [1, j − 1]. By the induction hypothesis, we
have v′ |= ϕ j+1 and therefore v |= ∃ p j ϕ j+1. QED
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Corollary 2.1.6. [COY01] For every k ≥ 1, the satisfiability and model-checking
problems for kSL0 restricted to formulae obeying the grammar below

ϕ ::= ¬(x = y) | alloc(x) | ¬alloc(x) | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ−∗ϕ

(with x, y in PVAR) is PSPACE-hard.

Note that ⊥ can be defined as alloc(x) ∧ ¬alloc(x) for some program vari-
able x. In the above-mentioned fragment, it is remarkable that negation appears
only in front of atomic formulae (to be compared with the formulae involved in
Lemma 2.1.2) and the separating conjunction is banished. The proof of Corol-
lary 2.1.6 is similar to the proof of Corollary 2.1.3 and it is left as Exercise 2.3

2.1.2 Boolean formulae for propositional separation logics
In this section, we present a characterisation of the expressive power of proposi-
tional separation logic 1SL0, and a similar analysis can be done for any kSL0 with
k > 1.

Theorem 2.1.7. [Loz04a, Chapter 5] Any formula ϕ in 1SL0 built over the pro-
gram variables in {x1, . . . , xq} is logically equivalent to a Boolean combination of
atomic formulae among size ≥ k, alloc(xi), xi ↪→ x j and xi = x j (k ∈ N,
i, j ∈ {1, . . . , q}).

The formulae of the form size ≥ k and alloc(xi) are introduced in Sec-
tion 1.2.2 and we recall that alloc(xi) holds when s(xi) belongs to the heap do-
main and size ≥ k holds when the cardinal of the heap domain is at least k. By
way of example (¬emp ∗ (x1 ↪→ x2 −∗ ⊥)) is equivalent to size ≥ 2 ∧ alloc(x1).
Furthermore, the cardinal of the heap domain without the interpretation of x1 and
x2 (in the case it belongs to the domain) is at least k ≥ 0, can be expressed as
follows:

(alloc(x1) ∧ alloc(x2) ∧ size ≥ k + 2)∨

(((alloc(x1) ∧ ¬alloc(x2)) ∨ (¬alloc(x1) ∧ alloc(x2))) ∧ size ≥ k + 1)∨

(¬alloc(x1) ∧ ¬alloc(x2) ∧ size ≥ k).

It is clear that such a formula can be generalised to any finite set of program
variables. We write sizeq ≥ k to denote the atomic formula such that (s, h) |=
sizeq ≥ k iff card(dom(h) \ {s(xi) : i ∈ [1, q]}) ≥ k. The formula size ≥ k can be
expressed as follows:

(x1 , x2 ∧ alloc(x1) ∧ alloc(x2) ∧ size2 ≥ k − 2)∨
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(x1 = x2 ∧ alloc(x1) ∧ size2 ≥ k − 1)∨

(((alloc(x1) ∧ ¬alloc(x2)) ∨ (¬alloc(x1) ∧ alloc(x2))) ∧ size2 ≥ k − 1)∨

(¬alloc(x1) ∧ ¬alloc(x2) ∧ size2 ≥ k).

Such a formula can be generalised to any q ≥ 1. So using atomic formulae of the
form size ≥ k or sizeq ≥ k does not make a substantial difference in terms of
expressive power.

Even though Theorem 2.1.7 provides a nice characterisation of the expressive
power for 1SL0, several features limit its application. First, Theorem 2.1.7 only
deals with the propositional case but we know that this is close to the best we
can hope for. Indeed, a similar result is established in [DGLWM14] for 1SL1
by enriching the set of atomic formulae and by polishing and extending material
from [Loz04a, BDL09] but the extension to 1SL2 is not possible (see develop-
ments in Chapter 3). Moreover, neither Theorem 2.1.7 states how to compute the
equivalent formula nor it provides a precise information about the maximal bound
k in atomic formulae size ≥ k that are used to build a Boolean combination
equivalent to ϕ in 1SL0 (see Corollary 5.3.12). Actually, one can restrict k to be
at most polynomial in the size of ϕ, assuming that formulae are encoded as finite
trees (as opposed to a DAG encoding that would imply an exponential blow-up).
This entails a small model property in which the cardinal of the heap domain is
bounded, see e.g. [COY01, CGH05] or Section 5.3. This feature is at the core of
the translation into first-order logic (with empty signature) designed in [CGH05]
and it regains the PSPACE upper bound for the satisfiability problem for 1SL0
(and for 2SL0 too), see e.g. [CGH05, Section 3.4].

Below, let us be a bit more precise about the way to prove Theorem 2.1.7 and
to explain the main steps to show the PSPACE upper bound, which is reminiscent
to many proofs showing PSPACE upper bound for modal logics by using Ladner-
like algorithms, see e.g. [Lad77, Spa93, Dem03]. More details can be found in
Section 5.3. Let q ≥ 1 and α ∈ N. We write Test′(q, α) to denote the following
set of atomic formulae:

{xi = x j, xi ↪→ x j, alloc(xi) : i, j ∈ [1, q]} ∪ {sizeq ≥ β : β ∈ [0, α]}.

We define an equivalence relation ≈q
α on the class of memory states, so that two

models are in the same equivalence class whenever they cannot be distinguished
by any formula in Test′(q, α): (s, h) ≈q

α (s′, h′) iff

for all ψ ∈ Test′(q, α), we have (s, h) |= ψ iff (s′, h′) |= ψ.
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One can show that for any formula ϕ in 1SL0 with q ≥ 1 program variables
and with size |ϕ| (for some reasonably succinct encoding), for any α ≥ |ϕ|, if
(s, h) ≈q

α (s′, h′), then (s, h) |= ϕ iff (s′, h′) |= ϕ. This result or some of its
variants established in [Loz04a, BDL09, DGLWM14] entails that for checking
the satisfaction of ϕ in some memory state, what matters is really the satisfaction
of atomic formulae in ≈q

|ϕ|
. Theorem 2.1.7 is then a direct consequence of this

property.

Corollary 2.1.8. [COY01, Yan01] Let ϕ be a satisfiable formula in 1SL0 with
q program variables. Then there is memory state (s, h) such that (s, h) |= ϕ and
ran(s) ∪ dom(h) ∪ ran(h) ⊆ [0, q + |ϕ|].

PSPACE upper bound for 1SL0 can be pushed a bit further by allowing a
unique quantified variable.

Theorem 2.1.9. [DGLWM14] The satisfiability problem for 1SL1 is PSPACE-
complete.

PSPACE-hardness is inherited from the PSPACE-hardness of 1SL0 whereas the
PSPACE upper bound requires an adequate abstraction. It is open whether 1SL1
extended with reachability predicates can lead to decidable extensions (which
would capture some version of separation logic considered in [TBR14]).

2.2 NP and PTIME Fragments
Even though performing reasoning in propositional logic kSL0 (with k ≥ 1) can
be computationally expensive, see above the PSPACE-completeness results for va-
lidity and satisfiability, fragments have been designed that are useful for automatic
program analysis and hopefully less demanding computationally.

The fragment presented below, has been introduced in [BCO04] and shown
decidable by providing a complete proof system. More importantly, the tool
Smallfoot has been designed from it, see e.g. [BCO05], and decides the entail-
ment problem for such a fragment, which allows to verify automatically numer-
ous properties. Strangely enough, the precise computational complexity of the
entailment problem for such a fragment is not considered in [BCO04] and it is
only in [CHO+11, HIOP13] that this problem has been successfully solved.

Let SF (’Smallfoot fragment’) be the fragment of 1SL2 defined by the for-
mula ϕ below, where ϕp defines pure formulae (see also Section 1.2.4 for the
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introduction of pure formulae semantically) and ϕs defines spatial formulae:

ϕp ::=⊥ | > | (xi = x j) | ¬(xi = x j) | ϕp ∧ ϕp

ϕs ::= emp | > | xi 7→ x j | sreach(xi, x j) | ϕs ∗ ϕs ϕ ::= ϕp ∗ ϕs

where xi, x j are program variables from PVAR. As usually, the formulae are in-
terpreted on memory states with one record field. Obviously, xi 7→ x j is inter-
preted as the exact points-to relation ((s, h) |= xi 7→ x j iff dom(h) = s(xi) and
h(s(xi)) = s(x j)) whereas (s, h) |= sreach(xi, x j) holds true iff the heap contains
exactly a path from s(xi) to s(x j). As shown in Section 1.2.2, sreach(xi, x j) (and
reach(xi, x j) too) can be specified in 1SL2.

We briefly recall that the entailment problem for SF takes as input two SF for-
mulae ϕ and ψ, and asks whether ϕ |= ψ. Note also that the rule for strengthening
precedent (SP)

ϕ⇒ ψ′ {ψ′} C {ψ}

{ϕ} C {ψ}

involves entailment checking. This is a building block of the verification process
and in particular, proof checking requires that entailment problem is decidable, if
not tractable at all.

Whereas a coNP algorithm is provided in [BCO04], the optimal complexity is
established in [CHO+11] by using an original approach: to represent formulae as
graphs and to search for homomorphisms on these special graphs.

Theorem 2.2.1. [CHO+11, Theorems 16 & 24] (see also [GKO11, Section 4])
The entailment and satisfiability problems for SF can be solved in polynomial
time.

Indeed, it is quite surprising that the entailment problem is computationally
tractable. A slight extension may easily lead to intractability. For instance con-
sidering the variant clause ϕ ::= ϕp ∗ (ϕs ∧ ϕ′s) (i.e., allowing a bit of conjunc-
tion) already leads to coNP-hardness [CHO+11]. The graph-based algorithm pre-
sented in [CHO+11] has been implemented and used for automatic verification,
see [HIOP13].

Demri, Deters: Logical Investigations on Separation Logics (Draft) – September 8, 2015– ESSLLI’15

54



CHAPTER 2. PROPOSITIONAL SEPARATION LOGICS

2.3 Undecidable Propositional Separation Logics

2.3.1 A brief introduction to abstract separation logics
Concrete models for separation logic are memory states or heaps as defined earlier,
but alternative models exist, for instance heaps with permissions, see e.g. [BCOP05,
BK14]. It is also possible to introduce more abstract models with a partial operator
for gluing together models that are separate in some sense. We have already seen
such abstract models in Section 1.3.1 when BBI-models have been introduced.

This is precisely the approach introduced in [COY07] and investigated in great
length in subsequent papers, see e.g. [BK10, LWG10, BV14, HCGT14]. After
all, such an abstraction should not come as a surprise since separation logic is
understood as an assertion language in a Hoare-style framework that interprets
Boolean BI in concrete heaps (see Section 1.3.1). Moreover, sometimes, problems
can be easily solved on abstract models because more freedom is allowed (see
e.g. [BV14, HCGT14] or Theorem 1.3.5).

The structure (HSk,],Uk) satisfies the following properties.

(MONms) ] is a partial binary operation ] : HSk ×HSk → HSk and Uk ⊆ HSk,

(ACms) ] is associative and commutative,

(CANms) ] is cancellative, i.e. if (s, h) ] (s′, h′) is defined and (s, h) ] (s′, h′) =
(s, h) ] (s′′, h′′), then (s′, h′) = (s′′, h′′),

(Ums) for all (s, h) ∈ HSk, we have {(s, h)} = {(s, h)](s′, h′) : (s′, h′) ∈ Uk, (s, h)]
(s′, h′) is defined}.

A separation model defined below satisfies the above properties for the struc-
ture (HSk,],Uk) by abstracting the essential features and can be viewed as a
Kripke frame for a multi-dimensional modal logic with binary modalities, see
e.g. [MV97, HCGT14]. A separation model is a cancellative partial commuta-
tive monoid (M, ◦,U), i.e.

(MON) M is a non-empty set, ◦ is a partial binary operation ◦ : M ×M → M
and U ⊆M,

(AC) ◦ is associative and commutative,

(CAN) ◦ is cancellative, i.e. if m ◦ m′ is defined and m ◦ m′ = m ◦ m′′, then
m′ = m′′,

Demri, Deters: Logical Investigations on Separation Logics (Draft) – September 8, 2015– ESSLLI’15

55



2.3. UNDECIDABLE PROPOSITIONAL SEPARATION LOGICS

(U) For all m ∈ M, we have m ◦ U = {m} where m ◦ U def
= {m ◦ u : u ∈

U, m ◦ u is defined}.

Obviously (HSk,],Uk) is a separation model but other memory models can
be found in the literature, see e.g. [BK10] for many more examples. For instance,
the RAM-domain model (Pfin(N),], {∅}) is a separation model where Pfin(N)
is the set of finite subsets of N and X1 ] X2 is defined only if X1 ∩ X2 = ∅ and
then X1]X2

def
= X1∪X2 (disjoint union). This corresponds to the separation model

(HSk,],Uk) with k equal to zero.
Given a countably infinite set PROP = {p1, p2, . . .} of propositional variables,

a valuation V is a map V : PROP → P(M). Semantical structures of the sep-
aration model (M, ◦,U) are understood as the separation model itself augmented
by a valuation. Hence, the separation logic defined from the separation model
(M, ◦,U) has models that can be understood as Kripke models with underlying
ternary relation induced by the operation ◦ and the interpretation of propositional
variables done via V. The set of formulae is then defined as follows:

ϕ,ψ ::= emp | p | ϕ ∧ ψ | ¬ϕ | ϕ ∗ ψ | ϕ−∗ψ.

Let m ∈ M and V : PROP → P(M) be a valuation, the satisfaction relation |= is
defined as follows (we omit the obvious clauses for Boolean connectives).

• m |=V emp iff m ∈ U (we keep the constant emp in the abstract setting but
elements of U should be understood as units).

• m |=V p iff m ∈ V(p).

• m |=V ϕ1 ∗ ϕ2 iff for some m1,m2 ∈ M, we have m = m1 ◦m2, m1 |=V ϕ1 and
m2 |=V ϕ2.

• m |=V ϕ1 −∗ϕ2 iff for all m′ ∈M such that m ◦m′ is defined, if m′ |=V ϕ1 then
m ◦m′ |=V ϕ2.

In the above definition for the satisfaction relation, the model (M, ◦,U) is im-
plicit but we also sometimes use the notation (M, ◦,U),m |=V ϕ to emphasise
the separation model in use. The satisfaction relation on BBI-models is clearly
defined following the same schema (see Section 1.3.1).

A formula ϕ is valid in the separation model (M, ◦,U) def
⇔ for all m ∈ M

and for all valuations V, we have m |=V ϕ. Similarly, a formula ϕ is satisfiable
in the separation model (M, ◦,U) def

⇔ there exist m ∈ M and a valuation V such
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that m |=V ϕ. We write SL(M, ◦,U) to denote the propositional separation logic
defined from the separation model (M, ◦,U) with propositional variables. When
C is a class of separation models, we can also define the propositional separation
logic SL(C) by admitting a family of separation models instead of a single model.
Satisfiability and validity problems are defined accordingly. For instance, ϕ is
satisfiable for SL(C) iff there exist (M, ◦,U) in C, m ∈M and a valuation V such
that (M, ◦,U),m |=V ϕ.

The satisfiability problem for kSL0 (i.e. kSL without any first-order quantifi-
cation) can be reformulated as the satisfiability problem in the separation model
(HSk,],Uk) in which propositional variables are of the form xi ↪→ x j or xi = x j

and the valuations V are constrained in such a way that (s, h) ∈ V(xi ↪→ x j) iff
h(s(xi)) = s(x j). Similarly, we require that (s, h) ∈ V(xi = x j) iff s(xi) = s(x j).
Of course, this reformulation assumes that atomic formulae have some structure
and it also requires restricting the set of valuations. The set of valuations can be
restricted in many other ways, for instance by imposing that a propositional vari-
able holds true only for a finite number of elements of M (see such restrictions
in [BK10]).

2.3.2 Encoding runs of Minsky machines

Whereas the satisfiability problem for any propositional fragment kSL0 is decid-
able and indeed PSPACE-complete (see Section 2.1), propositional versions of
abstract separation logic with propositional variables are easily shown undecid-
able.

Theorem 2.3.1.
[BK10, LWG10] The satisfiability problems for SL(Pfin(N),], {∅}) and for

SL(HSk,],Uk) –k ≥ 1– are undecidable.

Actually, results in [BK10, LWG10] are much more general. Herein, we
limit ourselves to two separation models that are obviously related to concrete
heaps. Below, by way of example, we provide the undecidability proof for the
logic SL(Pfin(N),], {∅}) by simple semantical arguments (and without using any
proof-theoretical arguments, unlike what is done in [BK10, LWG10]).

Before presenting the undecidability proof, let us mention the equivalence of
the statements below:

1. ϕ is valid in SL(Pfin(N),], {∅}).
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2. ¬ϕ is not satisfiable in SL(Pfin(N),], {∅}).

3. ¬ϕ is not satisfiable in SL(HSk,],Uk) (for any k ≥ 1).

4. ϕ is valid in SL(HSk,],Uk) (for any k ≥ 1).

Whereas the equivalences between instances for validity and satisfiability are stan-
dard (thanks to negation in the logical language), the equivalences related to dis-
tinct separation models are simply due to the fact, in such logics, composition
of heaps only requires that the domain are disjoint, independently of the range
of the heaps. Note also that SL(Pfin(N),], {∅}) can be understood as the logic
SL(HSk,],Uk) with k equal to zero.

Let M be a Minsky machine with α ≥ 1 instructions, 1 is the initial instruction
and α is the halting instruction [Min67]. Machine M has two counters c1 and
c2 and the instructions are of the following types ( j ∈ [1, 2], I ∈ [1, α − 1],
J, J1, J2 ∈ [1, α]):

1. I: c j := c j + 1; goto J.

2. I: if c j = 0 then goto J1 else (c j := c j − 1; goto J2).

3. α: halt.

Machine M halts if there is a run of the form (I0, c1
0, c

2
0), (I1, c1

1, c
2
1), . . . , (IL, c1

L, c
2
L)

such that (Ii, c1
i , c

2
i ) ∈ [1, α] × N2 (i ∈ [1,L]), the succession of configurations

respects the instructions (in the obvious way), I0 = 1, IL = α, and c1
0 = c2

0 = 0. The
halting problem consists in checking whether a machine halts and it is known to
be undecidable, see e.g. [Min67]. Indeed, Minsky machines are Turing-complete.

By way of example, the Minsky machine

1: c1 := c1 + 1; goto 2.

2: c2 := c2 + 1; goto 1.

3: halt.

has a unique computation

(1, 0, 0) −→ (2, 1, 0) −→ (1, 1, 1) −→ (2, 2, 1) −→ (1, 2, 2) −→ (2, 3, 2) . . .

We build a formula ϕM such that M halts iff ϕM is valid in SL(Pfin(N),], {∅}),
which entails the undecidability of the satisfiability problem for SL(Pfin(N),], {∅}).
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Figure 2.1: Set encoding of the configuration (4, 3, 2)

The formula ϕM is built over the propositional variables q, q′, p1 and p2. Given a
valuation V, a configuration (I, c1, c2) of M is encoded by some set X ∈ Pfin(N)
such that

• X ∈ V(q′) (meaning X encodes a configuration),

• X = X0 ]X1 ]X2 (X can be decomposed so that there are disjoint parts about
the instruction counter, the first counter and the second counter),

• card(X0) = I, card(X1) = c1 and card(X2) = c2,

• for all ∅ , Y ⊆ X0, Y ∈ V(q) \ (V(p1) ∪V(p2)),

• for all ∅ , Y ⊆ X1, Y ∈ V(p1) \ (V(p2) ∪V(q)),

• for all ∅ , Y ⊆ X2, Y ∈ V(p2) \ (V(p1) ∪V(q)).

In that case, we write X ≈V (I, c1, c2). The basic idea is that the atomic proposi-
tion p j identifies the sets that contribute to the value for the counter c j whereas the
atomic proposition q identifies the sets that contribute to the value of the instruc-
tion counter. Furthermore, we require more than that:

1. X ∈ V(p) implies that none of the strict non-empty subsets of X belongs to
V(p′) with p′ , p and all its strict non-empty subsets belongs to V(p).

2. The empty set is the only one satisfying both p1 and p2, which should not come
as a surprise since both counters can take the zero value.

Figure 2.1 illustrates how the configuration (4, 3, 2) can be encoded as a set with
the corresponding valuation.

The formula ϕM has the following form:

((emp∧ p1∧ p2∧¬q∧¬q′)∧ closure)⇒ (> ¬−∗ (q′∧ (p1 ∗ p2 ∗ (size = α∧ q))))
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The formula closure guarantees that for any configuration (I, c1, c2) reachable
from the initial configuration (1, 0, 0), there is some X ∈ Pfin(N) such that X ≈V
(I, c1, c2) (in that case, note that card(X) = I + c1 + c2).

The formula> ¬−∗ (q′∧(p1∗p2∗(size = α∧q))) states that there is X ∈ Pfin(N)
such that X = X0 ] X1 ] X2, card(X0) = α, X1 encodes the first counter and X2

encodes the second counter.
In order to define the formula closure, we introduce the universal modalities

〈U〉 and [U]. Let 〈U〉 ψ be an abbreviation for > ¬−∗ ψ and [U] ψ be an abbre-
viation for >−∗ψ, following an obvious analogy with the universal modality in
Kripke models, see e.g. [GP92, Hem96]. The formula closure is defined as the
conjunction of the following formulae:

• 〈U〉 (size = 1∧q∧q′). There is some set X encoding the configuration (1, 0, 0).

• [U](p1 ⇒ (¬((¬p1 ∧ ¬emp) ∗ >) ∧ (¬emp⇒ ¬p2) ∧ ¬q ∧ ¬q′).

• [U](p2 ⇒ (¬((¬p2 ∧ ¬emp) ∗ >) ∧ (¬emp⇒ ¬p1) ∧ ¬q ∧ ¬q′).

• [U](q⇒ (¬((¬q ∧ ¬emp) ∗ >)) ∧ ¬p1 ∧ ¬p2).

In the sequel, the modalities 〈U〉 and [U] are used at the outermost level only and
therefore they are evaluated only on the empty set. More generally, the universal
modality [U] can be defined [U]ϕ def

= (emp ∧ (>−∗ϕ)) ∗ > (see also Exercise 1.13).
Consequently, whenever X |=V (q ∧ size = I) ∗ p1 ∗ p2 for some I ∈ [1, α], there
is no I′ , I such that X |=V (q ∧ size = I′) ∗ p1 ∗ p2. Moreover, there are unique
X0, X1 and X2 such that X = X0 ]X1 ]X2, X0 |=V (q∧ size = I), X1 |=V p1 and
X2 |=V p2. We add to closure the following formulae:

• For all instructions of the form I: c1 := c1 + 1; goto J, we consider

[U]((((q ∧ size = I) ∗ p1 ∗ p2) ∧ q′)⇒

(q ∧ size = I) ∗ (((q ∧ size = J) ∗ (size = 1 ∧ p1)) ¬−∗

(((q ∧ size = J) ∗ p1 ∗ p2) ∧ q′)))

• Formulae for instructions of the form I: c2 := c2 + 1; goto J are defined simi-
larly.
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• For all instructions of the form I: if c1 = 0 then goto J1 else (c1 := c1 − 1; goto
J2), we consider

[U]((((q ∧ size = I) ∗p2)∧ q′)⇒ ((q ∧ size = I) ∗ ((q∧size = J1) ¬−∗ q′)))∧

[U]((((q ∧ size = I) ∗ (p1 ∧ ¬emp) ∗ p2) ∧ q′)⇒

(((q ∧ size = I) ∗ (p1 ∧ size = 1)) ∗ ((q ∧ size = J2) ¬−∗ q′)))

• Formulae for instructions of the form I: if c2 = 0 then goto J1 else (c2 := c2−1;
goto J2), are defined similarly.

Here is the crucial property about the formula closure.

Lemma 2.3.2. LetV be a valuation such that ∅ |=V ((emp∧ p1∧ p2∧¬q∧¬q′)∧
closure) and X ≈V (I, c1, c2). If (I, c1, c2) −→ (I′, c′1, c

′

2) in M, then there is a finite
subset X′ ofN such that X′ ≈V (I′, c′1, c

′

2).

The proof of Lemma 2.3.2 is left as Exercise 2.9. Consequently, if ∅ |=V
((emp∧p1∧p2∧¬q∧¬q′)∧closure), then all the reachable configurations from
(1, 0, 0) have an encoding by a set in the separation model.

The correctness proof works as follows. Suppose that the machine M halts.
This means that for any valuation V, if ∅ |=V (emp ∧ p1 ∧ p2 ∧ ¬q ∧ ¬q′) ∧
closure, then by Lemma 2.3.2, there is some X ∈ Pfin(N) such that X ≈V
(α, c1, c2) for some c1, c2 ∈ N, i.e. there is some X ∈ Pfin(N) such that X |=V
(p1 ∗p2 ∗ (size = α∧q))∧q′, which is equivalent to ∅ |=V (> ¬−∗ ((p1 ∗p2 ∗ (size =
α∧ q)))∧ q′). Now suppose that the machine M does not halt, this means that there
is no configuration of the form (α, c1, c2) reachable from the initial configuration
(1, 0, 0). Let us define the following valuation V0:

• V0(q) def
= Pfin([1, α − 1]) \ {∅}.

• V0(p1) def
= Pfin({α + 2k + 1 : k ∈ N}), V0(p2) def

= Pfin({α + 2k : k ∈ N}). So,
X ∈ V0(p1) and X′ ∈ V0(p2) imply that X ∩ X′ = ∅.

• V0(q′) is equal to the set below:

{X ∈ Pfin(N) : (I, c1, c2) reachable from (1, 0, 0), X = X0 ] X1 ] X2,

card(X0) = I,X0 ∈ Pfin([1, α−1]), card(X1) = c1,X1 ∈ Pfin({α+2k+1 : k ∈N}),

card(X2) = c2,X2 ∈ Pfin({α + 2k : k ∈N})}.
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One can check that

1. for every configuration (I, c1, c2), we have (I, c1, c2) is reachable from (1, 0, 0)
iff there is X such that X ≈V0 (I, c1, c2),

2. ∅ |=V0 (emp ∧ p1 ∧ p2 ∧ ¬q ∧ ¬q′) ∧ closure,

3. there is no X ∈ Pfin(N) such that X |=V0 (p1 ∗ p2 ∗ (size = α ∧ q)) ∧ q′.

Consequently, ϕM is not valid in SL(Pfin(N),], {∅}). This concludes the proof of
Theorem 2.3.1. It is worth noting that this undecidability proof uses only seman-
tical arguments.

2.4 Exercises
Exercise 2.1. Prove Lemma 2.1.4.

Exercise 2.2. Complete the proof of 2.1.5 with the case ϕ j = ∃ p j ϕ j+1 in the
induction step.

Exercise 2.3. Prove Corollary 2.1.6.

Exercise 2.4. [COY01, Section 5] Let L be the fragment of 1SL0 defined by the
grammar below:

ϕ,ψ ::= alloc(x) | ¬alloc(x) | emp | ¬emp | x ↪→ y | ¬(x ↪→ y) | x 7→ y |

¬(x 7→ y) | x = y | ¬(x = y) | > | ⊥ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ ∗ ψ

where x, y ∈ PVAR.

a) Explain why the satisfiability problem for L is NP-hard.

b) Given a propositional formula ϕ built over atomic propositions in {p1, . . . , pn}

in which negation occurs only in front of atomic propositions, we write tr(ϕ) to
denote the formula in L obtained from ϕ by substituting every occurrence of pi

by the atomic formula alloc(xi). We define the memory state (s, h) such that
for all i ∈ [1,n], we have s(xi)

def
= i and h(i) def

= i. Show that (s, h) |= tr(ϕ) ∗> iff
ϕ is satisfiable. Conclude that the model-checking problem for L is NP-hard.

c) By using Corollary 2.1.8, show that if ϕ in L is satisfiable, then ϕ holds true
on a memory state (s, h) with ran(s) ∪ dom(h) ∪ ran(h) ⊆ [0, p(|ϕ|)] for some
polynomial p(·).
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d) Given a memory state (s, h) and a formula ϕ in L, define a witness of polyno-
mial size so that checking whether the witness guarantees that (s, h) |= ϕ can
be done in polynomial time. Conclude that the model-checking problem for L
is NP-complete.

e) Explain why the satisfiability problem for L is NP-complete.

Exercise 2.5. By using Theorem 2.1.7, show that there is no formula in 1SL0
equivalent to the formula ∃ u (x1 ↪→ u) ∧ (u ↪→ x2).

Exercise 2.6. Prove that for all memory states (s, h), we have (s, h) |= (¬emp ∗
(x1 ↪→ x2 −∗ ⊥)) iff (s, h) |= size ≥ 2 ∧ alloc(x1).

Exercise 2.7. Show that the formula ϕ is valid in SL(Pfin(N),], {∅}) iff ϕ is valid
in SL(HSk,],Uk) –k ≥ 1.

Exercise 2.8. Check that (Pfin(N),], {∅}) is a separation model.

Exercise 2.9. Prove Lemma 2.3.2.
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In this chapter, we take care of the expressiveness of first-order separation log-
ics; for the sake of simplicity, we consider fragments without program variables
and therefore no need to consider stores in memory states (the models are re-
stricted to heaps). It is worth recalling a few well-known results about expressive
power of modal or temporal logics. For instance, linear-time temporal logic LTL
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is known to be as expressive as first-order logic by Kamp’s Theorem [Kam68]
(see also [HR05, Rab14]). More references about bibliographical references for
expressiveness of non-classical logics can be found in Section 3.6.

Section 3.1 shows how data words can be encoded as heaps by using formu-
lae in 1SL2. In Section 3.2, we explain how to encode arithmetical constraints
comparing the numbers of predecessors of two locations within 1SL2. Details are
provided when the two locations belong to a specific class of heaps. By using the
formulae built so far, in Section 3.3 we show that the satisfiability problem for
1SL2 is undecidable by reduction from the halting problem for Minsky machines.
In Section 3.4, we explain how formulae in 1DSOL (without program variables)
can be translated into 1SL2(−∗) (without program variables) by respecting faith-
fully the semantics. A reduction with program variables or with k > 1 record
fields is possible but it is not presented in that section.

Highlights of the chapter

1. Presentation of an encoding of data words as heaps that can be specified
in 1SL2 (Section 3.1) [DD15b].

2. Undecidability proof of 1SL2 by reduction from the halting problem for
Minsky machines (Theorem 3.3.7) [DD15b].

3. Proof that 1SL2(−∗) is as expressive as weak second-order logic (Theo-
rem 3.4.14). We use first principles from [BDL12] and the encodings
from [DD14].

3.1 Encoding Data Words in 1SL2
In this section, we present a simple encoding of data words with multiple attributes
into heaps that will be useful in the rest of the chapter. Finite data words [Bou02]
are ubiquitous structures that include timed words [AD94], runs of Minsky ma-
chines, and runs of concurrent programs with an unbounded number of processes.
These are finite words in which every position carries a label from a finite al-
phabet and a finite tuple of data values from some infinite alphabet. A wealth of
specification formalisms for data words (and slight variants) has been introduced
stemming from automata (see e.g. [KF94, NSV04, BL10, Fig10]) to adequate
logical languages such as first-order logic [BDM+11, Dav09, SZ12] and temporal
logics [Fig10, DHLT14].
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A data word of dimension β is a finite non-empty sequence in ([1, α] ×Nβ)+

for some α ≥ 1 and β ≥ 0. The set [1, α] is understood as a finite alphabet of
cardinal α whereasN is the infinite data domain. Data words of dimension zero
are simply finite words over a finite alphabet whereas data words of dimension
one correspond to data words in the sense introduced in [Bou02]. Finite runs of
Minsky machines (with two counters) can be viewed as data words of dimension
two over the alphabet [1, α] assuming that the Minsky machine has α distinct
instructions (see Section 2.3.2). In full generality, the setN could be replaced by
any infinite data domainD (for instance byR to define timed words); however, we
do not need to be so general, and in this chapter, we focus on the infinite domain
N.

Let dw = (a1, v1
1, . . . , v

1
β) · · · (a

L, vL
1 , . . . , v

L
β) be a data word in ([1, α] ×Nβ)+,

i.e. dw is of dimension β and its underlying alphabet has cardinal α ≥ 1. The data
word dw shall be encoded by the heap hdw containing a path of the form below:

l10 → l
1
1 → · · · → l

1
β → · · · → l

L
0 → l

L
1 → · · · → l

L
β

where

• for every i ∈ [1,L], li0 has ai + 2 predecessors,

• for all i ∈ [1,L] and all j ∈ [1, β], lij has vi
j + α + 3 predecessors,

• every location in the heap domain is either on that path or points to a location
on that path.

Such a path from l10 to lLβ is called the main path, and h(β+1)L−1
dw

(l10) = lLβ. Other
simple encodings are possible (for instance without shifting the values from the
finite alphabet or from the infinite domain) but the current one is well-suited for
all the developments made in this chapter. In particular, the encoding allows us
to know easily whether a location encodes a letter from the finite alphabet or an
element from the infinite domain. Note also that hdw is not uniquely specified, and
we understand it modulo isomorphism, see Exercise 1.1.

Figure 3.1 presents the encoding of the data word dw0 = (2, 1)(1, 2)(2, 2) of
dimension 1 with α = 2 with its representation of the heap hdw in which the
predecessors of the locations on the main path are provided schematically.

The heap hdw looks like a fishbone. Let us make this precise. A heap h is a
fishbone def

⇔

(fb1) dom(h) , ∅,
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Figure 3.1: The heap for data word dw0 = (2, 1)(1, 2)(2, 2).

(fb2) there is a location reachable from all the locations of dom(h) that is not in
dom(h), and

(fb3) there are no distinct locations l1, l2, l3, l4, l5 such that l1 → l2 → l3 ← l4 ←
l5 in the heap h.

When h is a fishbone, it has a tree-like structure (when looking at the edges back-
ward), equipped with a root (the unique location from (fb2)), but additionally, one
can recognise the locations on the main path as those locations with at least one
predecessor. The existence of such a main path is guaranteed by (fb3). The first
location on the main path satisfies the formula

first(u) def
= (]u ≥ 1) ∧ ¬(]u−1

≥ 1)

and the last location on the main path satisfies precisely the formula

last(u) def
= (]u ≥ 1) ∧ ¬alloc(u)

Let ϕfb be the formula below:

(fb1)︷︸︸︷
¬emp ∧

(fb2)︷                                                         ︸︸                                                         ︷
(∃ u ¬alloc(u) ∧ (∀ u alloc(u)⇒ reach(u, u))) ∧
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(fb3)︷                               ︸︸                               ︷
¬(∃ u (]u−2

≥ 0) ∗ (]u−2
≥ 0)) .

The formulae of the form ]u−i
∼ k and reach(u, u) can be found in Sec-

tion 1.2.2.

Lemma 3.1.1. Let h be a heap. We have h |= ϕfb iff h is a fishbone.

The proof for Lemma 3.1.1 is by an easy verification. Now, let us refine the
notion of a fishbone heap so that it takes into account constraints on numbers of
predecessors. An (α, β)-fishbone is a fishbone heap such that

(C1) the first location on the main path has a number of predecessors in [3, α+2],

(C2) on the main path, a location with a number of predecessors in [3, α + 2], is
followed by β locations with at least α + 3 predecessors, and

(C3) the number of locations on the main path is a multiple of β + 1.

It is easy to check that the formulae ϕC1, ϕC2 and ϕC3 in 1SL2(∗) defined
below are able to express the conditions (C1), (C2) and (C3), respectively. This
assumes that the heap is already known to be a fishbone, which is equivalent to
the satisfaction of ϕfb (by Lemma 3.1.1).

ϕ(C1)
def
= ∃ u first(u) ∧ (3 ≤ ]u ≤ α + 2)

ϕ(C2)
def
= ∀ u (3 ≤ ]u ≤ α + 2)⇒

∧
i∈[1,β]

]u+i
≥ α + 3

ϕ(C3)
def
= ∀ u (3 ≤ ]u ≤ α + 2)⇒ ((¬]u+(β+1)

≥ 0) ∨ (3 ≤ ]u+(β+1)
≤ α + 2)).

We write dw(α, β) to denote the formula ϕfb∧ϕ(C1)∧ϕ(C2)∧ϕ(C3). It specifies
the shape of the encoding of data words in ([1, α] ×Nβ)+ as stated below.

Lemma 3.1.2. Let h be a heap. We have h |= dw(α, β) iff h is an (α, β)-fishbone.

Again, the proof is by an easy verification by using Lemma 3.1.1 and the
correspondence between the condition (Ci) and the formula ϕ(Ci).

Given a data word dw = (a1, v1
1, . . . , v

1
β) · · · (a

L, vL
1 , . . . , v

L
β), we can associate a

(α, β)-fishbone hdw with (1 + β) × L locations on the main path, say

l10 → l
1
1 → · · · → l

1
β → · · · → l

L
0 → l

L
1 → · · · → l

L
β

such that
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• for every i ∈ [1,L], ]̃li0 = ai + 2,

• for all i ∈ [1,L] and all j ∈ [1, β], ]̃lij = vi
j + α + 3.

We recall that ]̃l denotes the number of predecessors of the location l (given an
implicit current heap), see also Section 1.2.1.

The heap hdw is unique modulo isomorphism. This natural encoding gener-
alises the encoding of finite words by heaps in [BDL12, Section 3] (see also a
related encoding in [BBL09]) while providing a much more concise representa-
tion. Note also that the encoding by itself is of no use since it is essential to be
able to operate on it with the logical language at hand.

Conversely, given a (α, β)-fishbone h with (1 + β) × L locations on the main
path, say

l10 → l
1
1 → · · · → l

1
β → · · · → l

L
0 → l

L
1 → · · · → l

L
β

we associate a (unique) data word dwh = (a1, v1
1, . . . , v

1
β) · · · (a

L, vL
1 , . . . , v

L
β) such

that

• for every i ∈ [1,L], ai def
= ]̃li0 − 2 and,

• for all i ∈ [1,L] and all j ∈ [1, β], vi
j

def
= ]̃lij − α − 3.

Lemma 3.1.3. There is a one-to-one map between data words in ([1, α] ×Nβ)+

and (α, β)-fishbone heaps (modulo isomorphism).

The proof is then by an easy verification. So, we have seen that finite words
can be encoded in 1SL2(∗), which allows us to establish that 1SL2(∗) is NEXP-
TIME-hard since first-order logic restricted to two quantified variables on finite
words (written FO2α,0(<,+1,=) herein) is NEXPTIME-complete [EVW97]. In-
deed, consider a sentence ϕ in that fragment of first-order logic. Let us define
tr(ϕ) such that ϕ is satisfiable iff dw(α, 0) ∧ tr(ϕ) is satisfiable in 1SL2(∗). The
logarithmic-space translation tr is homomorphic for Boolean connectives and is
further defined as follows (i, j ∈ {1, 2}).

tr(ui = u j)
def
= ui = u j

tr(a(ui))
def
= (]ui = a + 2)

tr(ui = 1 + (u j))
def
= u j ↪→ ui

tr(ui < u j)
def
= reach(ui, u j) ∧ ui , u j

tr(∃ ui ϕ) def
= ∃ ui (]ui ≥ 1) ∧ tr(ϕ).
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Note that FO2α,0(<,+1,=) and 1SL2(∗) share the same number of quantified vari-
ables and reach(ui, u j) can be expressed in 1SL2(∗) (see Section 1.2.2). We do
not provide the correctness proof herein since we can do much better than NEXP-
TIME-hardness by making a strong connection with Moszkowski’s Interval Tem-
poral Logic ITL (with the locality condition), see Section 4.2.

3.2 Encoding Arithmetical Constraints in 1SL2
Below, we show how to express in 1SL2 the constraints ]u = ]u, ]u = ]u + 1
and ]u = ]u + 1, when u and u are interpreted by locations on the main path of
(α, 2)-fishbone heaps.

We shall use the fact that N ≤ N′ (N,N′ ∈ N) iff for every n ≥ 0, we have
N′ ≤ n implies N ≤ n. Quantification over the set of natural numbers will be
simulated by quantification over disjoint heaps in which n is related to the cardinal
of their heap domains. Such quantification is performed thanks to the magic wand
operator.

A fork in h is a sequence of distinct locations l, l0, l1, l2 such that h(l0) = l,
]̃l0 = 2, h(l1) = l0, h(l2) = l0 and ]̃l1 = ]̃l2 = 0. The endpoint of the fork
is l. Similarly, a knife in h is a sequence of distinct locations l, l0, l1 such that
h(l0) = l, ]̃l0 = 1, h(l1) = l0 and ]̃l1 = 0. The endpoint of the knife is l. By
way of example, the heap of Figure 3.2 contains three knives, two forks and four
endpoints (identified by ‘?’).

? ? ?

? ••• •

•

•

•

•

•
•

•

•

•

•
•

•

•

Figure 3.2: A heap with three knives, two forks and four endpoints.

Lemma 3.2.1. Let h be a (α, β)-fishbone heap with α ≥ 1 and β ≥ 0. Then, h has
no knife and no fork.
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Indeed, in such heaps, any allocated location has no predecessor or at least
three predecessors.

A heap h is a collection of knives def
⇔ there is no location in dom(h) that does

not belong to a knife and no distinct knives share the same endpoint. A heap h is
segmented whenever dom(h) ∩ ran(h) = ∅ and no location has strictly more than
one predecessor.

Lemma 3.2.2. Let h be a (α, β)-fishbone heap with α ≥ 1, β ≥ 0 and h′ be a
segmented heap disjoint from h. Then, h ] h′ has no fork.

Being segmented can be naturally expressed in 1SL2:

seg
def
= ∀ u u (u ↪→ u⇒ ((]u = 1) ∧ (]u = 0) ∧ ¬alloc(u))).

The statement below is counterpart to [BDL12, Lemma 5.2] with simplified
properties and with simpler formulae but using only two quantified variables.

Lemma 3.2.3. There are formulae forky(u), KS and KS1F in 1SL2 such that for
every heap h,

(I) h |=f forky(u) iff all the predecessors of f(u) are endpoints of forks,

(II) h |= KS iff h is a collection of knives,

(III) h |= KS1F iff there are h1, h2 such that h = h1]h2, h1 is a collection of knives
and h2 is made of a unique fork such that its unique endpoint is not in the
range of h1.

Proof. forky(u) is equal to:

∀ u (u ↪→ u)⇒ (∃ u (u ↪→ u) ∧ (]u = 2) ∧ ¬(]u−1
≥ 1)).

A knife is made of two consecutive memory cells that can be respectively

called part 1 and part 2 as shown in l
part 1
−−−→ l′

part 2
−−−→ l′′.

KS
def
= ∀ u alloc(u)⇒ (ϕpart1(u) ∨ ϕpart2(u))

where

ϕpart1(u) def
= (]u = 0) ∧ (]u+1 = 1) ∧ (]u+2 = 1) ∧ ¬(]u+3

≥ 0)

ϕpart2(u) def
= (]u = 1) ∧ (]u−1 = 0) ∧ (]u+1 = 1) ∧ ¬(]u+2

≥ 0).
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KS1F
def
=

unique fork︷                                                                                                      ︸︸                                                                                                      ︷
[∃ u (]u = 2) ∧ (]u+1 = 1) ∧ ¬(]u+2

≥ 0) ∧ ¬(]u−1
≥ 1) ∧ ¬(∃ u (u , u) ∧ (]u = 2))]∧

[∀ u alloc(u)⇒

(ϕpart1(u) ∨ ϕpart2(u)︸                  ︷︷                  ︸
part with knifes

∨ ((]u = 0) ∧ (]u+1 = 2)) ∨ (]u = 2))︸                                     ︷︷                                     ︸
part with one fork

]

In our proof, we use the idea of augmenting the heap with a segmented heap,
then augmenting it further with knives to form forks whose endpoints are prede-
cessors of u; this is borrowed from [BDL12]. As it is, this would not be sufficient
to express arithmetical constraints on fishbone heaps since only two quantified
variables are allowed. This restriction is not considered in [BDL12]—the formu-
lae there use strictly more than two quantified variables. This is why we had to
provide specific developments that are well-tailored to fishbone heaps while tak-
ing into account our limited amount of syntactic resources (this can be generalised
to any heap in [DD14]). Simplifications have also been made in order to focus on
undecidability rather than on questions of expressive power. Note also that there
are versions of separation logics in which arithmetical constraints are built-in, for
instance about the length of lists, see e.g. [BIP10].

Lemma 3.2.4. Let h be a heap with h = h1 ] h2 and f be an assignment such
that h1 is a (α, 2)-fishbone f(u) is on the main path of h1, h2 |=f seg ∧ ]u = 0,
n = card(ran(h2) \dom(h1)) and m is the number of predecessors of f(u) in h1. We
have the following properties:

(I) h |=f ¬(KS −∗ ¬forky(u)) iff n ≥ m.

(II) h |=f ¬(KS1F −∗ ¬forky(u)) iff n ≥ m − 1.

In Figure 3.3, we present three heaps obtained by combining a segmented heap
h2 with collections of knives (corresponding to h3 in the proof of Lemma 3.2.4).
Edges labelled by ‘1’ are part of a fishbone heap h1 (partially represented) whereas
edges labelled by ‘2’ are part of a segmented heap h2 so that no edge points to
f(u) or to f(u). The heap on the left (corresponding to h1 ] h2 in Lemma 3.2.4)
is obtained by adding a segmented heap h2 whereas the heap in the middle (say
h1] h2] h3) is obtained then by adding a collection of knives h3 so that every pre-
decessor of f(u) is the endpoint of a fork. Note that not all edges of the segmented
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Figure 3.3: A segmented heap and collections of knives.

heap are used to build forks. Similarly, the heap on the right (say h1 ] h2 ] h
′

3) is
obtained then by adding a collection of knives h′3 to the heap h1 ] h2 on the very
left so that every predecessor of f(u) is the endpoint of a fork.

Proof. Let us provide the proof for (I). (The proof for (II), being analogous, is
omitted.) So, let h be a heap with h = h1 ] h2 such that h1 is an (α, 2)-fishbone
heap, and h2 |=f seg ∧ ]u = 0. Moreover, f(u) is on the main path, which entails
that h(f(u)) , f(u) (if h(f(u)) is defined at all) and f(u) has at least one predecessor.

One can make the following (obvious) observations.

(O1) The heap h1 has no knives and, h1 and h1]h2 have no forks. (see Lemma 3.2.1
and Lemma 3.2.2).

(O2) h1 ] h2 may not be a (α, 2)-fishbone heap but this is fine since we only
need to focus on the number of predecessors of f(u) (i.e., on the value m).
Indeed, h1] h2 may contain knives (see the left heap in Figure 3.3). A knife
l1 → l2 → l3 in h1 ] h2 is made of l1 ∈ dom(h2) and of l2 ∈ dom(h1). This
observation is not really used below but, hopefully, it could be helpful to
better grasp how the heaps h1 and h2 are combined.

(O3) f(u) has the same number of predecessors in h1 and in h1 ] h2. This is due
to the fact that h2 |=f ]u = 0.

(O4) For every n ≥ 0, there is a disjoint heap h′2 such that h′ = h1 ] h
′

2, h′2 |=f
seg∧]u = 0 and card(ran(h′2)\dom(h1)) = n. See the left heap in Figure 3.3
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with card(dom(h2)) = 5 and card(ran(h2) \ dom(h1)) = 4 (look at edges
labelled by ‘2’). Once more, this observation is not used below but it will
be in the proof of Theorem 3.2.5.

First, let us suppose that h |=f ¬(KS −∗ ¬forky(u)), i.e., (†) there is a heap h3,
disjoint from h1 ] h2, such that (h1 ] h2) ] h3 |=f forky(u) and h3 |=f KS. Let us
make additional observations.

• The only forks in h1]h2]h3 whose endpoints are predecessors of f(u) are those
obtained with l1 → l2 such that l1 ∈ dom(h2) (so h2(l1) = l2), l2 < dom(h1), and
l′1 → l2 → l

′

3 is a knife from h3. This is due to (O1) and to the fact that all the
predecessors of f(u) in h have no predecessors since f(u) is on the main path of
h.

• The number of forks in h1 ] h2 ] h3 whose endpoints are predecessors of f(u)
is therefore less of equal to card(ran(h2) \ dom(h1)).

• The number of predecessors of f(u) in h1 ] h2 ] h3 is greater or equal to the
number of its predecessors in h1 (by using (O3)). So, if h1]h2]h3 |=f forky(u),
then the number of predecessors of f(u) in h1 is smaller or equal to card(ran(h2)\
dom(h1)) = n, i.e. n ≥ m.

Now, let us establish the other direction and let us suppose that n ≥ m and
the predecessors of f(u) are p1, . . . , pm. Let l11, l

2
1, . . . , l

1
n, l

2
n be locations such that

{l11, . . . , l
1
n} = ran(h2) \ dom(h1) and for every i ∈ [1,n], we have h2(l2i ) = l1i . Let

us build h3 so that it satisfies (†), which is quite easy to realise. Let lnew
1 , . . . , lnew

m
be (new) locations that are not in dom(h1 ] h2) ∪ ran(h1 ] h2). We define h3 so
that it contains exactly m knives whose endpoints are exactly all the predecessors
of f(u). For every i ∈ [1,m], we define h3(lnew

i ) def
= l1i and h3(l1i ) def

= pi (well, that is
possible because l1i < dom(h1 ] h2)). It is easy to check that h3 satisfies (†).

Consequently, h |=f ¬(KS −∗ ¬forky(u)) iff n ≥ m. QED

Now, we are able to state the main proposition of this section that allows us
to compare the numbers of predecessors for two locations on the main path of a
fishbone heap. Let us introduce the following abbreviations:

χ1(u, u) def
= seg ∧ ]u = 0 ∧ ]u = 0

χ2(u) def
= ¬(KS−∗ ¬forky(u))

χ3(u) def
= ¬(KS1F−∗ ¬forky(u)).
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Theorem 3.2.5. [DD15b] Suppose h1 is a (α, 2)-fishbone heap and, f(u) and f(u)
are on the main path of h1. We have the following equivalences:

• h1 |=f χ1(u, u)−∗(χ2(u)⇒ χ2(u)) iff ]̃u ≤ ]̃u.

• h1 |=f χ1(u, u)−∗(χ2(u)⇒ χ3(u)) iff ]̃u ≤ ]̃u + 1.

• h1 |=f χ1(u, u)−∗(χ3(u)⇒ χ2(u)) iff ]̃u ≤ ]̃u − 1.

Proof. By way of example, let us show the second property. The other cases
are proved in a similar fashion. Let h1 be a (α, 2)-fishbone heap. The statements
below are equivalent.

1. h1 |=f (χ1(u, u)−∗(χ2(u)⇒ χ3(u)))).

2. For every disjoint heap h2 such that h2 |=f χ1(u, u), if h1 ] h2 |=f χ2(u), then
h1 ] h2 |=f|= χ3(u). (by definition of |=f)

3. For every n ≥ 0, there is a disjoint heap h2 with card(ran(h2) \ dom(h1)) = n
such that h2 |=f χ1(u, u) and if h1]h2 |=f χ2(u), then h1]h2 |=f χ3(u) (see (O4)
in the proof of Lemma 3.2.4). This is possible by using the fact that one can
add a segmented heap so that the resulting heap has n isolated memory cells.
Indeed, given the heap h1, let us build a disjoint heap h2 such that h2 |=f χ1(u, u)
and dom(h2) = n for any fixed n ≥ 0. Since X = dom(h1)∪ran(h2)∪{f(u), f(u)}
is a finite subset of N, there are 2n distinct locations l11, l

2
1, . . . , l

1
n, l

2
n in N \

X. We simply need to define h2 such that dom(h2) def
= {l11, . . . , l

1
n}, ran(h2) def

=

{l21, . . . , l
2
n} and for all i ∈ [1,n], we set h2(l1i ) def

= l2i .

4. for every n ≥ 0, we have n ≥ ]̃u in h1 implies n ≥ ]̃u − 1 in h1. (by
Lemma 3.2.4)

5. ]̃u ≤ ]̃u + 1. QED

Theorem 3.2.5 can be generalised by restricting ourselves to formulae in 1SL2(−∗)
and without assuming any peculiar property on the heap h1.

Theorem 3.2.6. [DD14] There are formulae in 1SL2(−∗) that can express the prop-
erties ]̃u ≤ ]̃u, ]̃u ≤ ]̃u + 1 or ]̃u ≤ ]̃u − 1 (whatever the heap).
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3.3 Undecidabillity of 1SL2

3.3.1 Constraints between locations at distance three
This section is quite technical and it can be skipped for a first reading. Actually,
Theorem 3.3.4 is used in forthcoming Section 3.3.2 in which runs of Minsky ma-
chines are encoded as (α, 2)-fishbone heaps. So, we should be able to compare
the respective numbers of predecessors for two locations on the main path whose
distance is three (number of edges to reach one location from the other one). In-
deed, this is required to guarantee that the encoding of the counter values respects
the instructions of the Minsky machine.

The goal of this section is the following: given a formula χ(u, u) equal to
either ]u = ]u or ]u = ]u+1 (in particular, this means that χ(u, u) only deals with
numbers of predecessors and Section 3.2 explains how to define these formulae in
1SL2), we show how to define a formula in 1SL2, say χ+3(u), such that

h |=f χ+3(u) iff h |=f[u7→h3(f(u))] χ(u, u),

assuming that h3(f(u)) is defined, h |=f dw(α, 2) ∧ (]u ≥ α + 3)) and f(u) is
on the main path. When χ(u, u) is equal to ]u = ]u [resp. ]u = ]u + 1], we
write ]u = ]u+3 [resp. ]u = ]u+3 + 1] instead of χ+3(u). Note that if we had
three quantified variables, defining χ+3(u) would not require much work since the
formula below does the job:

∃ u′ (u ↪→ u′ ∧ ∃ u (u′ ↪→ u ∧ ∃ u′ (u ↪→ u′ ∧ χ(u, u′)))).

Let us start our construction. To do so, let h be a heap and f be an assignment
such that h |=f dw(α, 2) ∧ (]u+3

≥ 0) ∧ (]u ≥ α + 3)). In the statements below,
this property is always satisfied.

The u-3cut of h is the minimal subheap h3cut of h (with respect to set inclusion
of the domain and therefore h3cut v h) such that all the ancestors of l′ = h3(f(u))
in dom(h) are also ancestors of l′ in h3cut. As a consequence, f(u) and l′ have the
same amount of predecessors in h and in the u-3cut heap.

In Figure 3.4, the bottom left heap is the u-3cut of the heap at the top. When
h |=f ]u+4

≥ 0, the almost u-3cut of h is the minimal subheap of h containing the
u-3cut heap and such that ]u+4 = 1 holds true. The almost u-3cut of h contains
the edge from l′ which is the only predecessor of the interpretation of u+4. In
Figure 3.4, the middle left heap is the almost u-3cut of the heap at the top. Below,
we explain how to obtain the u-3cut of some heap, possibly via the construction
of the almost u-3cut, if it exists.
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Lemma 3.3.1 below states that all we need to define χ+3(u) is to be able to
express a property in its u-3cut. In particular, the only location that is unallocated
and on the main path is h3(f(u)).

Lemma 3.3.1. Let h |=f dw(α, 2)∧ (]u+3
≥ 0)∧ (]u ≥ α+3)) and h′ be its u-3cut

heap. Then, h |=f[u 7→h3(f(u))] χ(u, u) iff h′ |=f (∃ u ¬alloc(u) ∧ ]u ≥ 1 ∧ χ(u, u)).

Proof. Let l′ = h3(f(u)) and l = f(u). Let h′ be the u-3cut heap of h. We have (†)
]̃l in h is equal to ]̃l in h′ and ]̃l′ in h is equal to ]̃l′ in h′. Indeed, the u-3cut heap
h′ is a subheap of h such that all the ancestors of l′ in h are also ancestors of l′ in
h′ and l is an ancestor of l′ in h. Note also that l′ is the unique location such that
h′ |=[u 7→l′] ¬alloc(u) ∧ ]u ≥ 1. So, h′ |=f (∃ u ¬alloc(u) ∧ ]u ≥ 1 ∧ χ(u, u)) iff
h′ |=f[u 7→l′] χ(u, u)) iff h |=f[u 7→h3(f(u))] χ(u, u) by (†). Note that we use the fact that
χ(u, u) specifies a property about the numbers of predecessors. QED

When h is equal to its u-3cut, i.e. when (]u+4
≥ 0) does not hold, we have

h |=f[u7→h3(f(u))] χ(u, u) iff h |=f ϕUC(u) with

ϕUC(u) def
= (∃ u ¬alloc(u) ∧ ]u ≥ 1 ∧ χ(u, u))

Now, let us consider the case when h is not equal to its u-3cut (probably, the
most common situation) and let us show how to separate the current heap so that
we can isolate the u-3cut heap.

Lemma 3.3.2. Let h |=f dw(α, 2) ∧ (]u+4
≥ 0) ∧ (]u ≥ α + 3)) and ϕ(u) be an

arbitrary formula. Then, h |=f 1comp ∗ (1comp∧ (]u+4 = 1)∧¬(]u+5
≥ 0)∧ϕ(u))

iff the almost u-3cut of h, say h′, satisfies: h′ |=f ϕ(u).

The formula 1comp was introduced in Section 1.2.2, and it states that the heap
is made of a unique connected component (see also Exercise 1.15). The way h has
to be divided to satisfy the formula is illustrated by the two heaps in the middle of
Figure 3.4.

Proof. Let h be heap such that h |=f dw(α, 2) ∧ (]u+4
≥ 0) ∧ (]u ≥ α + 3). Let

h′ be the almost u-3cut heap of h and h′′ be the heap such that h = h′ ] h′′. By
construction of h′, it is easy to check that h′ |=f 1comp∧ (]u+4 = 1)∧¬(]u+5

≥ 0).
Similarly, h′′ |=f 1comp. This implies that h |=f 1comp ∗ (1comp ∧ (]u+4 = 1) ∧
¬(]u+5

≥ 0)).
So, suppose that the almost u-3cut heap of h satisfies: h′ |=f ϕ(u). This means

that h′′ |=f 1comp and h′ |=f (1comp ∧ (]u+4 = 1) ∧ ¬(]u+5
≥ 0) ∧ ϕ(u)). Hence,

h |=f 1comp ∗ (1comp ∧ (]u+4 = 1) ∧ ¬(]u+5
≥ 0) ∧ ϕ(u)).
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Now, suppose that h |=f 1comp ∗ (1comp ∧ (]u+4 = 1) ∧ ¬(]u+5
≥ 0) ∧ ϕ(u)).

There are heaps h1 and h2 such that h2 |= 1comp and h1 |=f (1comp ∧ (]u+4 =
1) ∧ ¬(]u+5

≥ 0) ∧ ϕ(u)). In particular, this means that h1 |=f 1comp ∧ (]u+4 =
1) ∧ ¬(]u+5

≥ 0).
Let us show that there is a unique pair (h1, h2) of heaps satisfying that property

and h1 = h′, which will entail that h′ |=f ϕ(u). First note that

{f(u), h(f(u)), h2(f(u)), h3(f(u)), h4(f(u))} ⊆ dom(h1) h5(f(u)) < dom(h1)

Since h1 |=f (]u+4 = 1), all the predecessors of h4(f(u)), apart from h3(f(u)),
are in dom(h2) and there are more than two such predecessors since h4(f(u)) is on
the main path of h and therefore has at least three predecessors in h.

Hence, h1 contains also all the ancestors of h3(f(u)), otherwise h2 would have
at least two distinct connected components. So, the u-3cut of h is also a subheap
of h1.

Now, it is easy to check that if any location in dom(h′′) that is not a predecessor
of h4(f(u)) were in dom(h1), then h1 would have more than two connected compo-
nents. Hence, h1 is the almost u-3cut heap of h and therefore h′ |=f ϕ(u). QED

Let us build on Lemma 3.3.2 so as to be able to specify properties on the
u-3cut heap.

Lemma 3.3.3. Let h |=f dw(α, 2) ∧ (]u+4
≥ 0) ∧ (]u ≥ α + 3)) and ϕ(u) be the

formula (size = 1)∗(¬(]u+4
≥ 0)∧ϕUC(u)). Then, h |=f 1comp∗(1comp∧(]u+4 =

1) ∧ ¬(]u+5
≥ 0) ∧ ϕ(u)) iff the u-3cut of h, say h′, satisfies: h′ |=f ϕUC(u).

Below, the auxiliary formulae ϕ(u)) and ϕAUC(u) (in 1SL2):

ϕ(u) def
= (size = 1) ∗ (¬(]u+4

≥ 0) ∧ ϕUC(u))
ϕAUC(u) def

= 1comp ∗ (1comp ∧ (]u+4 = 1) ∧ ¬(]u+5
≥ 0) ∧ ϕ(u))

The proof for Lemma 3.3.3 is also by an easy verification by observing that an
almost u-3cut heap is equal to the u-3cut plus one memory cell (see Figure 3.4).

By combining Lemma 3.3.1–3.3.3, we get the following proposition by per-
forming a case analysis depending whether ]u+4

≥ 0 holds true or not on the heap
h.

Theorem 3.3.4. [DD15b] Let h be a heap and f be an assignment such that h |=f
dw(α, 2)∧(]u+3

≥ 0)∧(]u ≥ α+3)). We have h |=f[u7→h3(f(u))] χ(u, u) iff h |=f χ+3(u)
with the formula χ+3(u) defined below:

χ+3(u) def
= (¬(]u+4

≥ 0) ∧ ϕUC(u)) ∨ ((]u+4
≥ 0) ∧ ϕAUC(u)).
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|=f dw(α, 2) ∧ (]u+3
≥ 0) ∧ (]u ≥ α + 3)

h3(f(u)) = l′

Figure 3.4: How to get a u-3cut – Decomposition in two stages.

Proof. We distinguish two cases depending whether h is itself its u-3cut or not.
Case 1: ¬(]u+4

≥ 0), i.e. h is its own u-3cut heap. By Lemma 3.3.1, if h |=f[u7→h3(f(u))]

χ(u, u), then h |=f ϕUC(u) and therefore h |=f χ+3(u). Conversely, if h |=f χ+3(u),
then h |=f ϕUC(u) since (]u+4

≥ 0) does not hold on h. Again, by Lemma 3.3.1,
we get that h |=f[u 7→h3(f(u))] χ(u, u).
Case 2: (]u+4

≥ 0). By Lemma 3.3.1, if h |=f[u7→h3(f(u))] χ(u, u), then h′ |=f ϕUC(u)
where h′ is the u-3cut of h. By Lemma 3.3.3, this implies that h |=f ϕAUC(u)
and therefore h |=f χ+3(u) (thanks to its second disjunction). Conversely, if h |=f
χ+3(u), then h |=f ϕAUC(u) since (]u+4

≥ 0) holds on h. Again, by Lemma 3.3.3,
we get that h′ |=f[u7→h3(f(u))] ϕUC(u) and by Lemma 3.3.1, we conclude h |=f[u7→h3(f(u))]

χ(u, u). QED

Note that the reasoning performed in this section cannot be extended to an
arbitrary formula χ(u, u) since taking a u-3cut or an almost u-3cut preserves the
number of predecessors of f(u) and h3(f(u)) but may not preserve more general
properties. Nevertheless, this is sufficient for our needs in Section 3.3.2.
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3.3.2 Reduction from the halting problem for Minsky machines
Let M be a Minsky machine with α ≥ 1 instructions, where 1 is the initial instruc-
tion and α is the halting instruction. We recall that a machine M has two counters
c1 and c2 and the instructions are of the following types:

1. I: c j := c j + 1; goto J.

2. I: if c j = 0 then goto J1 else (c j := c j − 1; goto J2).

3. α: halt.

When a Minsky machine M has α ≥ 1 instructions, any run starting from the
initial instruction 1 and ending by the halting instruction α (there is a single such
run since M is deterministic) is a data word of dimension two over the finite alpha-
bet [1, α]. We have seen that (α, 2)-fishbone heaps can be characterised thanks to
the formula dw(α, 2). Obviously, more constraints need to be expressed, typically
those related to the first instruction and those related to the halting instruction. Let
us start by specifying the limit conditions thanks to the formulae ϕfirst and ϕlast

below.

• The first three locations on the main path have 3, α+ 3, and α+ 3 predecessors
respectively:

ϕfirst
def
= ∃ u first(u) ∧ (]u = 3) ∧ (]u+1 = α + 3) ∧ (]u+2 = α + 3).

• The main path encoding the run ends by a configuration with the halting in-
struction:

ϕlast
def
= ∃ u ((]u = α + 2) ∧ (]u+2

≥ 0) ∧ ¬(]u+3
≥ 0)).

Let us call ϕ? the conjunction of dw(α, 2)∧ϕfirst∧ϕlast. It specifies the shape
of the encoding of the run without taking care of the constraints about counter
values and instruction counter.

Lemma 3.3.5. Let h be a heap. h |= ϕ? iff h encodes a data word

dw = (a1, v1
1, v

1
2) · · · (aL, vL

1 , v
L
2)

such that a1 = 1, aL = α, and v1
1 = v1

2 = 0.
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Figure 3.5: A (3, 2)-fishbone heap encoding (1, 0, 0) −→ (2, 1, 0) −→ (1, 1, 1) −→
(2, 2, 1)

Figure 3.5 presents an encoding of the sequence of configurations (1, 0, 0) −→
(2, 1, 0) −→ (1, 1, 1) −→ (2, 2, 1) when α = 3. Note that the (3, 2)-fishbone heap
satisfies ϕ?.

We have provided formulae for basic properties about the encoding of the
runs, but this is insufficient. Indeed, three consecutive locations on the main path
encode a configuration of the Minsky machine M. In order to check that two con-
secutive configurations correspond to a step that is valid for M, we need to compare
numbers of predecessors for locations on the main path at distance three from each
other. To do so, we use formulae of the form χ+3(u) when χ(u, u) expresses one
of the following arithmetical constraints: ]u = ]u, ]u = ]u + 1 and ]u = ]u + 1
(see Section 3.3.1). For each instruction I ∈ [1, α − 1], we build a formula ϕI so
that the Minsky machine M halts iff the formula

ϕ? ∧
∧

I∈[1,α−1]

χI

is satisfiable in 1SL2. It remains to define χI for each instruction I.
If the instruction I is of the form “I: c j := c j + 1; goto J” then we need to

check the following properties:

1. If a location l encodes the instruction I on the main path (i.e. ]̃l = I + 2) and
h3(l) is defined, then the location h3(l) encodes the instruction J.
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2. If a location l encodes the value for the counter c j in a configuration with

instruction I (i.e., ]̃l ≥ α + 3 and the jth ancestor of l has I + 2 predecessors)
and h3(l) is defined, then ]̃l + 1 = ]̃h3(l).

3. Similarly, if a location l encodes the value for the counter c3− j (i.e., the counter
c3−J is not updated after instruction I) in a configuration with instruction I (i.e.,
]̃l ≥ α+ 3 and the jth ancestor of l has I + 2 predecessors) and h3(l) is defined,
then ]̃l = ]̃h3(l).

The properties can be expressed by the formula χI below:

∀ u (]u+3
≥ 0)⇒ [

(1)︷                                 ︸︸                                 ︷
((]u = I + 2)⇒ (]u+3 = J + 2))∧

(2)︷                                                         ︸︸                                                         ︷
((]u ≥ α + 3) ∧ (]u− j = I + 2)⇒ (]u = ]u+3

− 1))∧
(3)︷                                                     ︸︸                                                     ︷

((]u ≥ α + 3) ∧ (]u j−3 = I + 2)⇒ (]u = ]u+3))].

Each subformula decorated by a curly bracket with (i) expresses exactly the
property (i) above. Note that ]u+3 = J + 2 states that the number of predecessors
of h3(f(u)) is J + 2, which is quite easy to express in 1SL2 (see Section 1.2.2).
By contrast, the formula ]u = ]u+3

− 1 states that the number of predecessors of
h3(f(u)) is equal to the number of predecessors of f(u) plus one, which requires
the more sophisticated formulae introduced in Section 3.2 and in Section 3.3.1.

Similarly, let I be the instruction “I: if c j = 0 then goto J1 else (c j := c j − 1;
goto J2)” then χI is defined as follows:

∀ u (]u+3
≥ 0)⇒ [

(4)︷                                                        ︸︸                                                        ︷
((]u = I + 2) ∧ (]u+ j = α + 3)⇒ (]u+3 = J1 + 2))∧

(5)︷                                                        ︸︸                                                        ︷
((]u = I + 2) ∧ (]u+ j > α + 3)⇒ (]u+3 = J2 + 2))∧

(6)︷                                                         ︸︸                                                         ︷
((]u > α + 3) ∧ (]u− j = I + 2)⇒ (]u+3 = ]u − 1))∧
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(7)︷                                                        ︸︸                                                        ︷
((]u = α + 3) ∧ (]u− j = I + 2)⇒ (]u+3 = α + 3))∧

(8)︷                                                     ︸︸                                                     ︷
((]u ≥ α + 3) ∧ (]u j−3 = I + 2)⇒ (]u = ]u+3))].

The subformula decorated by a curly bracket with (4) states that if a location l
encodes the instruction I and h j(l) has α+3 predecessors (i.e., counter c j has value
zero), then the location h3(l) has J1 + 2 predecessors (i.e., the next instruction is
J1). Similarly, the subformula decorated by a curly bracket with (5) states that
if a location l encodes the instruction I and h j(l) has strictly more than α + 3
predecessors (i.e., counter c j has non-zero value), then the location h3(l) has J2 +2
predecessors (i.e., the next instruction is J2). Moreover, the subformula decorated
by a curly bracket with (6) states that if a location l has at least α+ 3 predecessors
and its jth ancestor has I + 2 predecessors (i.e., counter c j has non-zero value
and we are really dealing with instruction I), then the number of predecessors of
h3(l) is equal to the number of predecessors of l minus one, which corresponds
to encode a decrement on counter c j. Subformulae (7) and (8) admit a similar
reading.

It is now easy to show the following lemma since we have seen that all the
constraints between consecutive configurations can be encoded in 1SL2, assuming
that the heap encodes a data word in ([1, α] ×N2)+.

Lemma 3.3.6. M has a halting run iff

dw(α, 2) ∧ ϕ f irst ∧ ϕlast ∧

∧
I∈[1,α]

χI

is satisfiable in 1SL2.

Below, we conclude by a major undecidability result.

Theorem 3.3.7. [DD15b] 1SL2 satisfiability problem is undecidable.

We know that if the number of quantified variables is not restricted, 1SL(−∗)
is undecidable too [BDL12] and recently the satisfiability problem for 1SL2(−∗)
has been shown undecidable as well [DD14], but this requires a far more complex
proof passing via an equivalence to weak second-order logic (see the main steps
of the proof in forthcoming Section 3.4).
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3.4 Expressive Completeness
In Section 1.3.3, we have seen how 1SL2 can be translated into 1DSOL. Below,
we provide the translation in the other direction with the fragment 1SL2(−∗), which
is much more complicated as explained below. Material from this section is quite
involved and can be skipped for a first reading; it is mainly taken from the sub-
mitted paper [DD14]. A reduction from 1DSOL into 1SL(−∗) can be also found
in [BDL12].

In order to express sentences in DSOL by sentences in 1SL2(−∗), a hybrid
valuation is encoded in the heap by building a disjoint valuation heap that takes
care of pairs of locations (for interpretation of second-order variables) and that
takes care of locations (for interpretation of first-order variables). In principle,
this makes sense since every heap has a finite domain and therefore there is always
an infinite set of locations that is not in its domain. This leaves enough room to
encode a finite amount of information such as the interpretation of second-order
variables when they are interpreted by finite sets. We can easily add to the original
heap with the magic wand; this permits us to create and update the valuation heap.
However, we then must always be able to distinguish between the original heap
and the valuation heap.

The main idea to build such a valuation heap rests on the fact that a pair of
locations (l, l′) belongs to the interpretation of a second-order variable Pi whenever
l and l′ can be identified in the valuation heap by special patterns involving l and
l′ that uniquely characterise the interpretation by Pi. Similarly, a location l is the
interpretation of a first-order variable whenever l can be identified in the valuation
heap thanks to some dedicated pattern around l.

Before explaining further the general principles, let us first provide more in-
formation about the above-mentioned patterns. An entry of degree d ≥ 2 is a
sequence of distinct locations l1, . . . , ld, lind, l such that

• h(l1) = · · · = h(ld) = lind,

• ]̃lind = d,

• ]̃l1 = · · · = ]̃ld = 0, and

• h(lind) = l.

The location l is called the element, lind the index and the locations l1, . . . , ld,
the pins. Entries generalise the notions of forks and large forks from Section 3.2
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and are called markers in [BDL12]. See an entry of degree 4 in the middle of
Figure 3.6. So, the pair of locations (l, l′) is identified as part of the interpretation
of Pi when l and l′ are elements of entries with very large degree. The above-
mentioned special patterns are therefore entries, but we require that the degree of
the respective entries for l and l′ satisfy some arithmetical constraints, which is
possible thanks to Theorem 3.2.5, and which allows us to relate l with l′.

Then, the principle of the translation consists in building the valuation heap
on demand (typically when a quantification appears) and to find special patterns
involving entries with large degree whenever an atomic formula needs to be eval-
uated.

These principles have been introduced in [BDL12] to translate 1DSOL formu-
lae into 1SL(−∗) formulae. However, because we are restricted to two first-order
variables and because we also require that the separating conjunction is banished,
we present below a different way to apply these principles so that we can show
that 1SL2(−∗) is expressively equivalent to DSOL (and therefore to 1WSOL).

This high-level description of the formula translation and of the encoding
of some hybrid valuation in the heap hides many of the details, which can be
found below. However, before explaining how we apply these principles within
1SL2(−∗), let us emphasise the most obvious and difficult problems to be solved:

• we must be able to distinguish the pairs of locations from distinct second-order
variables,

• we also need to encode first-order valuations, and

• the main problem is certainly to access the original heap properly without in-
terference from the valuation heap.

3.4.1 Left and right parentheses
We introduce variants of entries that are used as delimiters.

A left j-parenthesis of degree d ≥ 3 with j ≥ 0 is a sequence of distinct
locations l′j+1, . . . , l′1, l1, . . . , ld, lind such that

(u) h(l1) = · · · = h(ld) = lind; ]̃lind = d; ]̃l′j+1 = ]̃l3 = ]̃l4 = · · · = ]̃ld = 0,

(v) lind < dom(h); l′j+1 → l
′

j → l
′

j−1 → · · · → l
′

1 → l1; ]̃l′j = ]̃l′j−1 = · · · = ]̃l′1 =

]̃l1 = 1, and
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(w) ]̃l2 = 0.

The location lind is called the index. The heap at the left of Figure 3.6 presents a
left j-parenthesis of degree 3.

A right j-parenthesis of degree d ≥ 3 with j ≥ 0 is a sequence of distinct
locations l′j+1, . . . , l′1, l′′j+1, . . . , l′′1 , l1, . . . , ld, lind such that (u), (v), and

• ]̃l′′j+1 = 0,

• ]̃l′′j = ]̃l′′j−1 = · · · = ]̃l′′1 = ]̃l2 = 1, and

• l′′j+1 → l
′′

j → l
′′

j−1 → · · · → l
′′

1 → l2.

The location lind is also called the index. The heap at the right of Figure 3.6
presents a right j-parenthesis of degree 5. A j-parenthesis can be understood as
an entry, except that the index location is not allocated, and containing one or two
paths of length j + 1, depending whether it is a left or a right parenthesis.

Lemma 3.4.1. For all j ≥ 0, there is a formula lp j(u) [resp. rp j(u)] in 1SL2(−∗)
such that for all heaps h and valuations f, we have h |=f lp j(u) [resp. h |=f rp j(u)]
iff f(u) is the index of some left [resp. right] j-parenthesis in h.

Proof. Let us start by defining formulae for backward paths of length j + 1:

• bpath(1, u) def
= (]u = 1) ∧ ∀ u (u ↪→ u)⇒ ]u = 0.

• bpath( j + 1, u) def
= (]u = 1) ∧ ∃ u (u ↪→ u) ∧ bpath( j, u).

So, whenever j ≥ 0, we have h |=f bpath( j + 1, u) iff there are l0, . . . , l j such that

l0 → l1 → · · · → l j ↪→ f(u) and ]̃l0 = 0, for every k ∈ [1, j] ]̃lk = 1 and ]̃f(u) = 1.
The formula below characterises the locations such that the predecessors either

have no predecessor or have a backward path of length j + 1 exactly:

χ j+1(u) def
= ∀ u (u ↪→ u)⇒ (]u = 0 ∨ bpath( j + 1, u)).

Then, the formulae lp j(u) and rp j(u) are defined as follows:

• lp j(u)
def
= ¬alloc(u)∧χ j+1(u)∧ (]u ≥ 3)∧ (∃ u (u ↪→ u)∧ bpath( j + 1, u))∧

((size = 1) ¬−∗ χ j+2(u)).
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• rp j(u)
def
= ¬alloc(u)∧χ j+1(u)∧ (]u ≥ 3)∧ (∃ u (u ↪→ u)∧ bpath( j + 1, u))∧

¬((size = 1) ¬−∗ χ j+2(u)) ∧ ((size = 1) ¬−∗ ((size = 1) ¬−∗ χ j+2(u))).

The formula lp j(u) states that f(u) is not allocated, it has at least three pre-
decessors and any predecessor of f(u) either has no predecessor or has a back-
ward path of length j + 1. Moreover, there is at least one predecessor of f(u) that
has a backward path of length j + 1 thanks to the satisfaction of the subformula
(∃ u (u ↪→ u) ∧ bpath( j + 1, u)). Satisfaction of the subformula (size = 1) ¬−∗
χ j+2(u) entails that there is only one such backward path of length j + 1. A similar
analysis can be performed with the formula rp j(u) with the exception that it is
required to guarantee that there are exactly two predecessors of f(u) that have a
backward path of length j + 1. QED

In several places, we need to identify the indices from entries as well as their
pins. Let eindex(u) be defined as follows:

eindex(u) def
= (]zu ≥ 2) ∧ allzpred(u) ∧ ∃ u u ↪→ u

that characterises indices from entries. The formula ]zu ≥ 2 states that the number
of predecessors of uwith zero predecessor is at least 2 and allzpred(u) holds true
when all the predecessors of u have no predecessor, see Exercise 3.5. Let epin(u)
characterise pins from entries:

epin(u) def
= ∃ u u ↪→ u ∧ eindex(u).

Similarly, we need to characterise the locations from parentheses. We already
know how to identify their indices (Lemma 3.4.1). It remains to identify the
other locations via the formula onpari(u) to characterise the locations on some
i-parenthesis: roughly speaking, such locations are exactly those that can reach
the index of some i-parenthesis in less than i + 2 steps. Let onpari(u) be the
formula

onpari(u)
def
=

i+2∨
j=0

disti( j, u)

with disti(0, u)
def
= lpi(u)∨rpi(u), and disti( j+1, u) def

= ∃ u (u ↪→ u)∧disti( j, u)
for all j ≥ 0.

Lemma 3.4.2. Let h be a heap, f be a valuation and i ≥ 0. Then, h |=f onpari(u)
iff f(u) is on some left or right i-parenthesis in h.
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Proof. The proof takes advantage of the following properties.

• h |=f disti( j, u) iff f(u) can reach an index location from a left i-parenthesis or
from a right i-parenthesis, in j steps for some j ≥ 0. The proof is obvious, by
induction on j.

• If f(u) can reach an index location from an i-parenthesis, then f(u) is necessarily
on an i-parenthesis.

• Every location on an i-parenthesis can reach its index in less than i + 2 steps.

As a conclusion, f(u) is on an i-parenthesis iff it can reach the index of some i-
parenthesis in less than i + 2 steps, which is exactly the way onpari(u) is defined
with the help of the generalised disjunction. QED

3.4.2 The role of parentheses
Before explaining the role of parentheses, we introduce the interval of variable in-
dices [1,K] (K ∈N \ {0}) assuming that for each j ∈ [1,K], either P j or u j occurs
in the 1DSOL formula to be translated (but not both of them). So, the develop-
ments below are relative to a finite set of first-order and second-order variables
and this is concretised by the interval [1,K] (always possible since a formula has
a finite number of variables).

Let us come back to parentheses and assume that X is a subset of [0,K]. In
an X-well-formed heap h (see Definition 3.4.9 below), the parentheses play the
following role. For each j ∈ X, we have the index location lp j from a distin-
guished left j-parenthesis and the index location rp j from a distinguished right

j-parenthesis. Moreover, let dl
j = ]̃lp j and dr

j = ]̃rp j (in h). When j ∈ X is related
to a first-order variable, we require that dr

j = dl
j + 2 and there is an entry of degree

dl
j + 1 such that its element is understood as the interpretation of the variable u j

(see Figure 3.6 with dr
j = 5 and dl

j = 3). That explains why the parentheses are
viewed as delimiters.

Similarly, let {(l1, l′1), . . . , (lβ, l′β)} be a finite set of pairs of locations, understood
as the interpretation of a second-order variable P j with j ∈ X. In h, there are 2β
entries whose respective degrees are exactly {dl

j +3(i−1)+1, dl
j +3(i−1)+2 : i ∈

[1, β]} with dr
j = dl

j +3β+1. A pair of entries of respective degrees dl
j +3(i−1)+1

and dl
j + 3(i − 1) + 2 have exactly as elements li and l′i respectively, which allows
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l

length ( j + 1)

Figure 3.6: Encoding [u j 7→ l].

to encode the pair (li, l′i). All this underlying encoding makes sense only if the
left and right parentheses as well as the entries whose degrees are related to their
degrees are uniquely determined (see Condition (1) in Definition 3.4.5, below).

For this reason, we introduce a left 0-parenthesis and a right 0-parenthesis with
dr

0 = dl
0 + 1 (0 is not a variable index), the degree dl

0 is strictly greater than the
degree of any location in the original heap, all degrees dl

j with j , 0 are strictly
greater than dl

0 and finally, the above-mentioned entries and parentheses are the
only ones with their respective degrees. This guarantees that any entry from a pair
of entries with successive degrees serving for the interpretation of a second-order
variable, cannot serve twice for another pair or for another variable. Below, we
provide the technical developments.

We say that a heap h is made of entries and parentheses only def
⇔ every

location in dom(h) belongs either to a left i-parenthesis for some i ≥ 0, to a right
i-parenthesis for some i ≥ 0, or to an entry. Given a heap h made of entries and
parentheses only, we define the set indspect(h) as follows:

indspect(h) def
= {]̃l : l is the index of some entry or parenthesis in h}

This set indspect(h) is called the index spectrum of h.
Let hB be a heap such that α = max({]̃l : l ∈N}). For instance, if hB has empty

domain, then α = 0.
We can now find locations in a heap with a maximal number of predecessors,
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and we conclude this section with a definition useful in later constructions. Let us
introduce the formula maxdeg(u):

maxdeg(u) def
= ¬∃ u ]u > ]u

Corollary 3.4.3. For all heaps h and valuations f, we have h |=f maxdeg(u) iff
]̃f(u) = max({]̃l : l ∈N}).

A valuation heap hV for hB is made of entries and parentheses only whose de-
grees are greater than max(3, α + 1). The heap hV satisfies the following simple
conditions (more constraints will follow): min(indspect(hV)) is greater than the
value max(3, α + 1) and it is witnessed by the degree of some left 0-parenthesis;
each degree in indspect(hV) is witnessed by exactly one entry or parenthesis. For-
mula indmin(u) below is satisfied in h = hB ] hV by a location l witnessing the
minimal value in indspect(hV):

indmin(u) def
= lp0(u) ∧ (∀ u ((u , u) ∧ lp0(u))⇒ ]u < ]u).

Thanks to Section 3.2, we know that it is possible to compare numbers of prede-
cessors as expressed above. So, indmin(u) holds when f(u) is the unique location
that is the index of some left 0-parenthesis with greatest degree.

Lemma 3.4.4. Let f be a valuation and h be a heap. We have h |=f indmin(u) iff
f(u) is an index of some left 0-parenthesis and there is no other location l , f(u)
such that ]̃l ≥ ]̃f(u) and l is the index of some left 0-parenthesis.

The proof is by an easy verification by using Lemma 3.4.1. Once a heap h
satisfies the formula ∃ u indmin(u), the unique location l0 such that h |=[u 7→l0]

indmin(u) (say with ]̃l0 = d0) plays the role of a delimiter between the original
heap and the part of the heap that encodes the hybrid valuation.

We have seen that an index spectrum is defined for heaps made of entries
and parentheses only. This is fine, but below we adapt the definition to heaps h
satisfying ∃ u indmin(u). Let us define the set spect(h) as follows:

spect(h) def
= {]̃l : l is an index of some entry or parenthesis in h} ∩ [d0,+∞[.

The set spect(h) is called the spectrum of h. This illustrates how the location l0
and the degree ]̃l0 = d0 play the role of separator between the original heap and
the valuation heap.
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The subheap encoding the valuation is made of parentheses and entries and we
shall need to identify the indices of such patterns. The formula Lindex(u) defined
below suffices for this purpose:

Lindex(u) def
= (∃ u indmin(u)∧]u ≤ ]u)∧

(( ∨
i∈[0,K]

(lpi(u)∨rpi(u))
)
∨eindex(u)

)
(u is interpreted as a large index). Given X ⊆ [0,K], we shall use also the follow-
ing formula:

LindexX(u) def
= (∃ u indmin(u)∧]u ≤ ]u)∧

((∨
i∈X

(lpi(u)∨rpi(u))
)
∨eindex(u)

)
.

Entries and parentheses with large indices are also called large entries and
parentheses, respectively. It is easy to define a large index that is also the index of
a left [resp. right] parenthesis. Let llpi(u)

def
= Lindex(u) ∧ lpi(u) and lrpi(u)

def
=

Lindex(u) ∧ rpi(u) (see Lemma 3.4.1). The large index with a maximal degree
can be also characterised as follows:

maxLindex(u) def
= (∀ u Lindex(u)⇒ (]u ≤ ]u)) ∧ Lindex(u).

Below, we state how the parentheses are organised.

Definition 3.4.5. Let X = {i0, . . . , is} ⊆ [0,K] with 0 = i0 < i1 < · · · < is. A heap
h is X-almost-well-formed def

⇔

1. For every j ∈ [0, s], there is a unique location llj [resp. lrj] such that h |=[u7→llj]

llpi j
(u) [resp. h |=[u 7→lrj]

lrpi j
(u)].

2. For every j ∈ [0, s], ]̃llj < ]̃l
r
j, and ]̃lr0 = ]̃ll0 + 1.

3. For every j ∈ [1, s], we have ]̃llj = ]̃lrj−1 + 1.

4. h |=[u 7→lrs] maxLindex(u).

5. For every j ∈ [1, s], if i j is the index of a first-order variable, then ]̃llj = ]̃lrj − 2
(see Figure 3.6).

6. For every j ∈ ([1,K] \ X), there is no location l such that h |=[u7→l] llp j(u) ∨
lrp j(u). ∇
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The definition for X-almost-well-formed heaps mainly specifies the existence
of j-parentheses with j ∈ X and how their respective degrees are related. The
degrees are organised as follows and they all belong to the spectrum of h (below
we let dl

j = ]̃llj and dr
j = ]̃lrj).

dl
0

|= indmin(u)

< dr
0

||

dl
0 + 1

< dl
1 < dr

1

||

dr
0 + 1

< dl
2 < dr

2

||

dr
1 + 1

< . . . < dl
s < dr

s

||

dr
s−1 + 1

|= maxLindex(u)

Moreover, when i j is the index of a first-order variable, we have dr
j = dl

j + 2.

Lemma 3.4.6. There exists a formula awfhX in 1SL2(−∗) such that h |= awfhX iff
h is X-almost-well-formed.

The proof is left as Exercise 3.1.
Let h be an X-almost-well-formed heap for some {0} ⊆ X ⊆ [0,K] and i ∈ X.

We write vindi(u) to denote

Lindex(u) ∧ eindex(u) ∧ (∃ u llpi(u) ∧ ]u < ]u) ∧ (∃ u lrpi(u) ∧ ]u > ]u)

It characterises indices whose degree is strictly between the degree of some large
left i-parenthesis and the degree of some large right i-parenthesis. We write
degrees(i, h) to denote the set:

degrees(i, h) def
= {]̃l ∈N : h |=[u 7→l] vindi(u), l ∈N}.

Lemma 3.4.7. Let h be a heap such that h |= ∃ u indmin(u) and i ≥ 0 be such that
there are unique locations lp and rp with h |=[u7→lp] llpi(u) and h |=[u7→rp] lrpi(u).
For every l ∈ N, we have h |=[u7→l] vindi(u) iff l is the index of some entry and
]̃lp < ]̃l < ]̃rp.

The proof of Lemma 3.4.7 is left as Exercise 3.2.
The formula elt j(u) defined below holds true when u is interpreted as the

element of the unique entry attached to the first-order variable u j.

elt j(u)
def
= ∃ u (u ↪→ u) ∧ vind j(u)
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l l′

Figure 3.7: How the translation of Pi(u j, uk) works ( j < i < k): (l, l′) ∈ Vh(Pi).

Then, the translation of Pi(u j, uk) can be designed as follows:

∃ u (elt j(u) ∧ ∃ u (u ↪→ u ∧ vindi(u) ∧

∃ u (]u = ]u + 1 ∧ vindi(u) ∧ ∃ u (u ↪→ u ∧ eltk(u))))).

These definitions take advantage of the fact that there are unique large left
and right parentheses for each variable index. Figure 3.7 illustrates the con-
straints satisfied by the formula when j < i < k. From left to right, the figure
represents explicitly a left j-parenthesis, then a right j-parenthesis, then a left i-
parenthesis, a right i-parenthesis and a left k-parenthesis, followed finally by a
right k-parenthesis. Other entries and parentheses are present in the figure, but
they are represented by dots in order to focus on the memory cells relevant to
evaluate the formula obtained by translation of Pi(u j, uk). The degrees of paren-
theses and entries increase from left to right.

3.4.3 Taking care of valuations
Now that we have a way of identifying that part of the heap that encodes our valu-
ation, we turn our attention to encoding the valuation itself. Below, we introduce
a condition for a subheap to be “glued” to an existing valuation. We distinguish
three cases.

• A local 0-valuation is a heap made of a left 0-parenthesis of degree d and a
right 0-parenthesis of degree d + 1 only, for some d ≥ 3.

• Let i ∈ [1,K] be the index of some first-order variable. A local i-valuation is
a heap made of a left i-parenthesis of degree d, an entry of degree d + 1 and a
right i-parenthesis of degree d + 2 only, for some d ≥ 3.
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• Let i ∈ [1,K] be the index of some second-order variable. A local i-valuation
is a heap h such that

1. every location l in dom(h) belongs either to a left i-parenthesis, to a right
i-parenthesis, or to an entry,

2. h contains a unique left [resp. right] i-parenthesis,
3. min(indspect(h)) is the degree of some left i-parenthesis,
4. max(indspect(h)) is the degree of some right i-parenthesis,
5. indspect(h) is of the form below for some α ≥ 3, β ≥ 0,

{α} ∪ {α + 3(i − 1) + 1, α + 3(i − 1) + 2 : i ∈ [1, β]} ∪ {α + 3β + 1}

(when β = 0, indspect(h) is equal to {α, α + 1}),
6. there are no two distinct indices with the same degree.

Since local i-valuations are typically heaps that are added to the current heap to
encode the interpretation of a variable, it is essential to be able to characterise
them by 1SL2(−∗) formulae. This is the purpose of the result below.

Lemma 3.4.8. Let i ∈ [0,K]. There is a formula localvali(u) in 1SL2(−∗) such
that h |=f localvali(u) iff h is a local i-valuation and f(u) is the index of its left
i-parenthesis.

Proof. For characterising local 0-valuations, it is sufficient to express the proper-
ties below:

1. any location in the domain is on some left or on some right 0-parenthesis,

2. there is exactly one left 0-parenthesis whose index is f(u),

3. there is exactly one right 0-parenthesis,

4. ]̃l = ]̃f(u) + 1 where l is the index of the unique right 0-parenthesis.

(1)-(4) can be expressed by the formula below:

(∀ u alloc(u)⇒ onpar0(u)) ∧ (lp0(u) ∧ ¬(∃ u lp0(u) ∧ u , u)) ∧

(∃ u (rp0(u) ∧ ¬(∃ u rp0(u) ∧ u , u)) ∧ (]u = ]u + 1))

Formulae of the form lpi(u) and rpi(u) are provided in the proof of Lemma 3.4.1
whereas formulae of the form onpari(u) are provided before Lemma 3.4.2.

For characterising local i-valuations for some first-order variable ui, it is suffi-
cient to express the properties below:
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1. any location in the domain is on some left i-parenthesis, or on some right i-
parenthesis or on some entry,

2. there is exactly one left i-parenthesis whose index is f(u),

3. there is exactly one right i-parenthesis,

4. there is a unique entry, whose degree is d, such that ]̃l = ]̃f(u) + 2 and ]̃f(u) =
d − 1 where l is the index of the unique right i-parenthesis.

(1)-(4) can be expressed by the formula below:

(∀ u alloc(u)⇒ onpari(u) ∨ epin(u) ∨ eindex(u))∧

(lpi(u)∧¬(∃ u lpi(u)∧u , u))∧(∃ u (rpi(u)∧¬(∃ u rpi(u)∧u , u)∧(]u = ]u+2))∧

(∃ u eindex(u) ∧ (¬∃u (u , u) ∧ eindex(u)) ∧ (]u = ]u + 1))

For characterising local i-valuations for some second-order variable Pi, it is
sufficient to express the properties below:

1. any location in the domain is on some left i-parenthesis, or on some right i-
parenthesis or on some entry,

2. there is exactly one left i-parenthesis whose index is f(u),

3. there is exactly one right i-parenthesis whose index is the location l,

4. any entry has degree in []̃f(u) + 1, ]̃l − 1] and its index is the unique one with
that degree,

5. ]̃l > ]̃f(u),

6. if ]̃l > ]̃f(u) + 1, then

1. there is an entry with degree ]̃f(u) + 1,

2. there is an entry with degree ]̃f(u) + 2,

3. if there are entries with respective degree d and d+1, then there is no entry
or right i-parenthesis of degree d + 2,

4. if there are entries with respective degree d and d + 1 and d + 3 < ]̃l, then
there are entries of respective degree d + 3 and d + 4.
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(1)–(5) can be expressed by the formula below:

(∀ u alloc(u)⇒ onpari(u) ∨ epin(u) ∨ eindex(u))∧

(lpi(u)∧¬(∃ u lpi(u)∧u , u))∧ (∃ u (rpi(u)∧¬(∃ u rpi(u)∧u , u)∧]u > ]u))

∀ u eindex(u)⇒ ¬(∃ u ((eindex(u) ∨ lpi(u) ∨ rpi(u)) ∧ ]u = ]u)

(∃ u rpi(u) ∧ (∀ u eindex(u)⇒ ]u < ]u − 1)) ∧ (∀ u eindex(u)⇒ ]u > ]u)

(6a)–(6d) can be expressed by the formula below:

(∃ u rpi(u) ∧ ]u > ]u + 1)⇒

(∃ u eindex(u) ∧ ]u = ]u + 1) ∧ (∃ u eindex(u) ∧ ]u = ]u + 2)∧

∀ u (eindex(u)∧(∃ u eindex(u)∧]u = ]u+1))⇒ ¬(∃ u (eindex(u)∨rpi(u))∧]u = ]u+2)∧

∀ u (eindex(u) ∧ (∃ u eindex(u) ∧ ]u = ]u + 1) ∧ (∃ u rpi(u) ∧ ]u > ]u + 3))⇒

((∃ u eindex(u) ∧ ]u = ]u + 3) ∧ (∃ u eindex(u) ∧ ]u = ]u + 4))

QED

The definition for X-almost-well-formed heaps mainly takes care of parenthe-
ses. In Definition 3.4.9, constraints on the degrees of large indices are specified.

Definition 3.4.9. Let X = {i0, . . . , is} ⊆ [0,K] with 0 = i0 < i1 < · · · < is. A heap
h is X-well-formed def

⇔ the following conditions hold:

1. h is X-almost-well-formed,

2. for every j ∈ [1, s], if i j is the index of a first-order variable, then degrees(i j, h)
is a singleton,

3. for every j ∈ [1, s], if i j is the index of a second-order variable, then degrees(i j, h)
is the set below for some α j ≥ 3, β j ≥ 0:

{α j + 3(i − 1) + 1, α j + 3(i − 1) + 2 : i ∈ [1, β j]},

4. for every location l such that h |=[u 7→l] Lindex(u), there is no l′ , l such that
h |=[u 7→l′] Lindex(u) and ]̃l = ]̃l′.

5. If a location has degree greater than the degree of the unique large left 0-
parenthesis, then it is a large index.
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When h is X-well-formed, we write h = hB ] hV such that dom(hV) is made
of entries and parentheses of degree d ≥ ]̃l0 for some l0 ∈ N such that h |=[u 7→l0]

indmin(u) (i.e., l0 is the index of the left 0-parenthesis with the maximal degree).
By Definition 3.4.9, we have spect(h) = indspect(hV) and clearly the decomposi-
tion is unique since l0 is unique.

Again, well-formed heaps can be characterised by formulae in 1SL2(−∗) whose
size is linear in K.

Lemma 3.4.10. Given {0} ⊆ X ⊆ [0,K], there is a formula wfhX in 1SL2(−∗) such
that h |= wfhX iff h is X-well-formed.

Proof. We consider the conjunction of the formulae below, each of them deals
with one of the four conditions. Condition (1) is obviously taken care by the
formula awfhX (see the proof of Lemma 3.4.6). Condition (2) is dealt with the
formula below: ∧

j∈[1,s], FO i j

∃ u vindi j(u)

Note that since the heap is already X-almost-well-formed, at most one location can
satisfy the above existential quantification for each FO variable index i j. Similarly,
Condition (3) is taken care by the formula below (see the proof of Lemma 3.4.8
and more specifically Condition (6) in that proof with indices from second-order
variables): ∧

j∈[1,s], SO i j

(∃ u ∃ u llpi j
(u) ∧ lrpi j

(u) ∧ (]u > ]u + 1))⇒

[

(a)︷                                                 ︸︸                                                 ︷
(∃ u ∃ u llpi j

(u) ∧ vindi j(u) ∧ ]u = ]u + 1)∧

(b)︷                                                 ︸︸                                                 ︷
(∃ u ∃ u llpi j

(u) ∧ vindi j(u) ∧ ]u = ]u + 2)∧

(c)︷                                                           ︸︸                                                           ︷
∀ u (vindi j(u) ∧ (∃ u vindi j(u) ∧ ]u = ]u + 1)) ⇒

(c)︷                                               ︸︸                                               ︷
¬(∃ u (vindi j(u) ∨ rpi j

(u)) ∧ ]u = ]u + 2)∧
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(d)︷                                                                                                  ︸︸                                                                                                  ︷
∀ u (vindi j(u) ∧ (∃ u vindi j(u) ∧ ]u = ]u + 1) ∧ (∃ u lrpi j

(u) ∧ ]u > ]u + 3))⇒

((∃ u vindi j(u) ∧ ]u = ]u + 3) ∧ (∃ u vindi j(u) ∧ ]u = ]u + 4))].

The above formula expresses the conditions below, mimicking Condition (6) from
the proof of Lemma 3.4.8:

(a) there is an entry with degree dl + 1 where dl is the degree of the unique left
i j-parenthesis,

(b) there is an entry with degree dl + 2,

(c) if there are entries with respective degree d and d + 1 in degrees(i j, h), then
there is no entry or right i j-parenthesis of degree d + 2 in degrees(i j, h),

(d) if there are entries with respective degree d and d + 1 in degrees(i j, h) and
d + 3 < dr where dr is the degree of the unique right i j-parenthesis, then there
are entries of respective degree d + 3 and d + 4 in degrees(i j, h). QED

Condition (4) is expressed as follows by simply internalising the condition in
1SL2(−∗):

∀ u Lindex(u)⇒ ¬(∃ u Lindex(u) ∧ (u , u) ∧ ]u = ]u).

Condition (5) can be expressed as follows:

∀ u (∃ u indmin(u) ∧ ]u ≥ ]u)⇒ LindexX(u).

Let us define formally a valuation from a valuation heap.

Definition 3.4.11. Let h be an X-well-formed heap for some {0} ⊆ X ⊆ [0,K].

• For every second-order i ∈ X, we define

Vh(Pi)
def
= {(hV(l), hV(l′)) : ]̃l′ = ]̃l+1, ]̃l, ]̃l′ ∈ degrees(i, h), l, l′ are index locations}

• For every first-order i ∈ X, Vh(ui)
def
= hV(l) where l is the unique index location

such that ]̃l ∈ degrees(i, h).

We say that Vh is the valuation extracted from h. ∇
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Below, we present an essential technical result stating how heaps can be com-
posed when a new variable needs to be interpreted. The formulae involved to
compose the X-well-formed heap h and the local i-valuation heap h′ are directly
used in the translation of quantified formulae (see Section 3.4.4). Lemma 3.4.12
is used in the proof of Lemma 3.4.13.

Lemma 3.4.12 (Composition). Let f be a valuation, h be an X-well-formed heap
with {0} ⊆ X ⊆ [0,K], i ∈ [1,K] \ X with i > max(X), and h′ be a disjoint heap
such that:

(I) h |=f indmin(u) ∧ isoloc(u),

(II) h′ |=f localvali(u),

(III) h ] h′ |=f wfhX∪{i} ∧ indmin(u) ∧ llpi(u).

Then, spect(h ] h′) = spect(h) ] indspect(h′).

Roughly speaking, Lemma 3.4.12 states that given an X-well-formed heap h,
adding a disjoint local i-valuation h′ with i < X, leads to an (X ∪ {i})-well-formed
heap so that the interpretation of variables with variable indices in X from the
extracted valuation, is the same with h and with h ] h′. The heap h′ can be then
understood as a conservative extension of the heap h.

The proof of Lemma 3.4.12 is quite combinatorial and this is the place where
we check that the original heap cannot be confused with the valuation heap (and
the other way around). It is important to guarantee, as the proof does, that adding
a new part of the valuation does not destroy what has been built so far.

3.4.4 A reduction from DSOL into 1SL2(−∗)
Below, we define a translation from a sentence ϕ in 1DSOL into a sentence in
1SL2(−∗) that uses only logarithmic space. Without any loss of generality, we
assume that

1. two occurrences of quantified variables in ϕ have distinct variable indices
(e.g., P4 and u4 cannot both occur in ϕ and “∀ u4” cannot occur more than
once) and

2. if ∃ ui ψ1 is a subformula of ∃ u j ψ2, then i > j and this holds for any combi-
nation of first-order/second-order variables.
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At the outset, we may rename variables so that these simple conditions are satis-
fied. We assume that the variable indices for (first-order or second-order) variables
are among [1,K].

The translation of the formula ϕ, written T(ϕ), first applies a top-level trans-
lation ttop(·) which takes care of initialising the valuation heap; then, a recursive
map t(·) is applied. So, T(ϕ) def

= ttop
(
ϕ
)

where ttop
(
ϕ
)

is defined as follows:

ttop
(
ϕ
) def

= ∃ u isoloc(u) ∧ (localval0(u) ¬−∗ (wfh{0}∧

indmin(u) ∧ (∀ u ((u , u) ∧ ¬lrp0(u))⇒ (]u < ]u)) ∧ t
(
{0}, ϕ

)
))

The first step of the translation consists in adding 0-parentheses so that the
heap that evaluates t

(
{0}, ϕ

)
is {0}-well-formed. The translation map t(·) has two

arguments: the formula to be transformed and the set of variable indices for vari-
ables that have been quantified so far. The map t(·) is inductively defined as fol-
lows (X ⊆ [0,K], ψ subformula of ϕ) and it is homomorphic for Boolean connec-
tives:

t
(
X, ui = u j

)
def
= ∃ u elti(u) ∧ elt j(u)

t
(
X, ui ↪→ u j

)
def
= ∃ u ∃ u (elti(u) ∧ elt j(u) ∧ u ↪→ u)

t
(
X, Pi(u j, uk)

)
def
= ∃ u (elt j(u) ∧ ∃ u (u ↪→ u ∧ vindi(u)∧

∃ u
(
]u = ]u + 1 ∧ vindi(u) ∧ ∃ u (u ↪→ u ∧ eltk(u))

)
))

t
(
X,∃ ui ψ

) def
= ∃ u ∃ u ((indmin(u) ∧ isoloc(u)) ∧ (localvali(u)

¬
−∗

(wfhX∪{i} ∧ indmin(u) ∧ llpi(u) ∧ t
(
X ∪ {i}, ψ

)
)))

t
(
X,∃ Pi ψ

) def
= ∃ u ∃ u ((indmin(u) ∧ isoloc(u)) ∧ (localvali(u)

¬
−∗

(wfhX∪{i} ∧ indmin(u) ∧ llpi(u) ∧ t
(
X ∪ {i}, ψ

)
))).

Every subformula t
(
X, ψ

)
has no free variable from free(ψ) ⊆ X where free(ψ)

denotes the set of variable indices in ψ from either first-order or second-order free
variables.

Below, we state the correctness lemma that allows us to get Theorem 3.4.14
(the proof is by structural induction).

Lemma 3.4.13 (Correctness). Let ϕ be a DSOL sentence of the above form, ψ
be one of its subformulae and (free(ψ) ∪ {0}) ⊆ X ⊆ [0,K]. Let h = hB ] hV be
a X-well-formed heap and Vh be the valuation extracted from h. Then, hB |=Vh ψ
iff h |= t

(
X, ψ

)
.
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Proof. The proof is by structural induction.
Base case 1: ψ is equal to ui = u j.
Since h is X-well-formed and i, j ∈ X,Vh(ui) is equal to hV(l) where l is the unique
index location such that ]̃l ∈ degrees(i, h). Similarly, Vh(u j) is equal to hV(l′)

where l′ is the unique index location such that ]̃l′ ∈ degrees( j, h). Uniqueness is a
consequence of Definition 3.4.9(2).

Let us recall that elti(u) = ∃ u (u ↪→ u) ∧ vindi(u) with vindi(u) =
Lindex(u) ∧ eindex(u) ∧ (∃ u llpi(u) ∧ ]u < ]u) ∧ (∃ u lrpi(u) ∧ ]u > ]u).
Similarly, elt j(u) = ∃ u (u ↪→ u) ∧ vind j(u).

First, let us suppose that hB |=Vh ui = u j. This means thatVh(ui) andVh(u j) are
equal, say to l′ and therefore there is a unique index location li such that hV(li) = l′

and ]̃li ∈ degrees(i, h). Moreover, there is a unique index location l j such that

hV(l j) = l′ and ]̃l j ∈ degrees( j, h). Since ]̃li and ]̃l j belong to the index spectrum
of hV, the locations li and l j, have the same number of predecessors in h and in
hV and they are also indices in h (see Lemma 3.4.12). Consequently, h |=[u 7→l′]

elti(u) ∧ elt j(u) (see also Lemma 3.4.7), whence h |= ∃ u elti(u) ∧ elt j(u).
Now suppose that h |= ∃ u elti(u) ∧ elt j(u). There is a location l′ such that

h |=[u7→l′] elti(u) ∧ elt j(u). Therefore there are index locations li and l j such that

]̃li ∈ degrees(i, h), ]̃l j ∈ degrees( j, h), h(li) = l′ and h(l j) = l′. By Lemma 3.4.12,

hV(li) = l′, ]̃li ∈ indspect(hV), hV(l j) = l′ and ]̃l j ∈ indspect(hV). By defini-
tion of Vh (see Definition 3.4.11), this implies that Vh(ui) = Vh(u j) and therefore
hB |=Vh ui = u j.

Base case 2: ψ is equal to ui ↪→ u j.
Again, since h is X-well-formed and i, j ∈ X, Vh(ui) is equal to hV(l) where l is
the unique location such that ]̃l ∈ degrees(i, h). Similarly, Vh(u j) is equal to hV(l)

where l is the unique location such that ]̃l ∈ degrees( j, h).
First, let us suppose that hB |=Vh ui ↪→ u j. This means that hB(Vh(ui)) =

Vh(u j), and there is a unique location li such that hV(li) = Vh(ui) and ]̃li ∈
degrees(i, h). There is also a unique location l j such that hV(l j) = Vh(u j) and

]̃l j ∈ degrees( j, h). Since ]̃li and ]̃l j belong to the index spectrum of hV, the
locations li and l j, have the same number of predecessors in h and in hV and
they are also indices in h (see Lemma 3.4.12). There are index locations l′, l′′

such that h |=[u 7→l′,u7→l′′] elti(u) ∧ elt j(u) ∧ u ↪→ u. Note that hB(Vh(ui)) =
Vh(u j) implies h(Vh(ui)) = Vh(u j) since hB is a subheap of h. Consequently,
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h |= ∃ u ∃ u elti(u) ∧ elt j(u) ∧ u ↪→ u.
Now suppose that h |= ∃ u ∃ u elti(u)∧elt j(u)∧u ↪→ u. Consequently, there

are locations l′ and l′′ such that h |=[u 7→l′,u7→l′′] elti(u)∧elt j(u)∧u ↪→ u. Therefore

there are locations li and l j such that ]̃li ∈ degrees(i, h), ]̃l j ∈ degrees( j, h), h(li) = l′,
h(l j) = l′′ and of course h(l′) = l′′. By Lemma 3.4.12 and since indspect(hV) =

spect(h), hV(li) = l′, ]̃li ∈ indspect(hV), hV(l j) = l′′ and ]̃l j ∈ indspect(hV). By
construction of Vh (see Definition 3.4.11), this implies that h(Vh(ui)) = Vh(u j)
and therefore hB |=Vh ui ↪→ u j. Note that Vh(ui) < dom(hV) since h is X-well-
formed.

Base case 3: ψ is equal to Pi(u j, uk).
Suppose that hB |=Vh Pi(u j, uk). By definition of the satisfaction relation |=, this
is equivalent to (Vh(u j),Vh(uk)) ∈ Vh(Pi). By definition of Vh, Vh(u j) is equal

to hV(l j) where l j is the unique index location such that ]̃l j ∈ degrees( j, h). Sim-
ilarly, Vh(uk) is equal to hV(lk) where lk is the unique index location such that
]̃lk ∈ degrees(k, h). So, h |=[u7→l j] vind j(u) and h |=[u7→lk] vindk(u). Moreover, by
definition of Vh, there are index locations li and l′i such that

1. ]̃l′i = ]̃li + 1,

2. ]̃li, ]̃l′i ∈ degrees(i, h),

3. h(li) = Vh(u j) and h(l′i) = Vh(uk),

4. h |=[u 7→li] vindi(u) and h |=[u7→l′i ]
vindi(u).

Finally, the formulae elt j(u) and eltk(u) are defined so that h |=[u 7→Vh(u j)] elt j(u)
and h |=[u7→Vh(uk)] eltk(u). So, we have

• li → Vh(u j),

• ]̃l′i = ]̃li + 1,

• l′i → Vh(uk).

This guarantees the satisfaction of

h |= ∃ u
(
elt j(u) ∧ ∃ u

(
u ↪→ u ∧ vindi(u)∧
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∃ u
(
]u = ]u + 1 ∧ vindi(u) ∧ ∃ u (u ↪→ u ∧ eltk(u))

)))
The proof in the other direction is by an easy verification and similar since all of
the above implications are indeed equivalences.

Induction step. The induction hypothesis is the following: for every subfor-
mula ψ′ of size strictly less than the size of ψ, for every free(ψ′) ⊆ X′ ⊆ [0,K],
we have hB |=Vh ψ

′ iff h |= t
(
X′, ψ′

)
. The cases when the outermost connective is

Boolean are by an easy verification.
Case 1: ψ is equal to ∃ ui ψ′. Suppose that hB |=Vh ∃ ui ψ′. By definition

of the satisfaction relation |=, there is l ∈ N such that hB |=Vh[ui 7→l] ψ
′. In case l

belongs to the set Y defined below,

Y = dom(hV) ∪ {l ∈N : h |=[u7→l]

∨
j∈X

(llp j(u) ∨ lrp j(u))}

(and therefore l is an isolated location in hB), we pick another location l′ that
does not belong to Y and that is also isolated in hB. It is then easy to show that
hB |=Vh[ui 7→l] ψ

′ iff hB |=Vh[ui 7→l′] ψ
′. So, without any loss of generality, below we

assume that l does not belong to Y.
Let us build hi

V and an assignment f such that:

1. hi
V |=f localvali(u),

2. h |=f indmin(u) ∧ isoloc(u),

3. h ] hi
V |=f wfhX∪{i} ∧ indmin(u) ∧ llpi(u).

Assume that max(X) = j and m be the degree of the right j-parenthesis with
greatest degree. It is easy to define a local i-valuation hi

V disjoint from h such that
the degree of the left i-parenthesis is m + 1, the degree of the right i-parenthesis is
m + 3, the degree of the unique entry is m + 2, its element is precisely l and all the
locations in its domain are isolated in h (always possible since dom(h) ∪ ran(h) is
finite).

It is not difficult to check that hi
V and f satisfy the above conditions. Since h]

hi
V is (X∪{i})-well-formed by construction, by Lemma 3.4.12, we haveVh[ui 7→ l]

equal to Vh]hiV . Hence, hB |=V
h]hiV

ψ′ and by the induction hypothesis, we get

h ] hi
V |= t

(
X ∪ {i}, ψ′

)
. However, it is easy to conclude then that h |= t

(
X, ψ′

)
.

Indeed, h satisfies the formula below

∃ u ∃ u (indmin(u) ∧ isoloc(u) ∧ (localvali(u)
¬
−∗
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(wfhX∪{i} ∧ indmin(u) ∧ llpi(u) ∧ t
(
X ∪ {i}, ψ

)
)))

whenever there are locations l? and l?? and a disjoint heap h? such that:

1. l? is the unique large 0-parenthesis in h and l?? is isolated in h,

2. h? is an i-local valuation such that the index of the left i-parenthesis is l??,
h ] h? is (X ∪ {i})-well-formed,

3. l? is the left 0-parenthesis in h ] h? and l?? is the left i-parenthesis in h ] h?,

4. h ] h? |=[u 7→l?,u7→l??] t
(
X ∪ {i}, ψ

)
.

It is clear that such objects exist by considering the above construction.
The proof in the other direction (i.e. h |= t

(
X, ψ

)
implies hB |=Vh ∃ ui ψ′) is

actually very similar since most of the above implications are indeed equivalences.

Case 2: ψ is equal to ∃ Pi ψ′. Suppose that hB |=Vh ∃ Pi ψ′. By definition
of the satisfaction relation |=, there is a finite binary relation R ⊆ N2 such that
hB |=Vh[Pi 7→R] ψ′. In case R involves locations in Y defined below,

Y = dom(hV) ∪ {l ∈N : h |=[u 7→l]

∨
j∈X

(llp j(u) ∨ lrp j(u))}

(and therefore R involves some isolated locations in hB), we pick another R′ (of
same cardinality β) that does not involve locations in Y. It is then easy to show
that hB |=Vh[Pi 7→R] ψ′ iff hB |=Vh[Pi 7→R′] ψ′. So, without any loss of generality, below
we assume that R does not involve locations in Y (see also [BDL12, Lemma 2.1]).

Let us build hi
V and an assignment f such that:

1. hi
V |=f localvali(u),

2. h |=f indmin(u) ∧ isoloc(u),

3. h ] hi
V |=f wfhX∪{i} ∧ indmin(u) ∧ llpi(u).

Assume that max(X) = j and m be the degree of the right j-parenthesis with
greatest degree. It is easy to define a local i-valuation hi

V disjoint from h such that

1. the degree of the left i-parenthesis is m + 1,

2. the degree of the right i-parenthesis is (m + 1) + 3β + 1 for some β ≥ 0,
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3. there are 2β entries,

4. for every pair (l, l′) in R, there are two entries of consecutive degrees whose
elements are l and l′ respectively.

This is always possible since dom(h) ∪ ran(h) and R are finite.
It is not difficult to check that hi

V and f satisfy the above conditions. Since h]
hi

V is (X ∪ {i})-well-formed by construction, by Lemma 3.4.12, we have Vh[Pi 7→

R] equal to Vh]hiV . Hence, hB |=V
h]hiV

ψ′ and by the induction hypothesis, we get

h ] hi
V |= t

(
X ∪ {i}, ψ′

)
. However, it is easy to conclude then that h |= t

(
X, ψ′

)
.

Indeed, h satisfies the formula below

∃ u ∃ u (indmin(u) ∧ isoloc(u) ∧ (localvali(u)
¬
−∗

(wfhX∪{i} ∧ indmin(u) ∧ llpi(u) ∧ t
(
X ∪ {i}, ψ

)
)))

whenever there are locations l? and l?? and a disjoint heap h? such that:

1. l? is the unique large 0-parenthesis in h and l?? is isolated in h,

2. h? is an i-local valuation such that the index of the left i-parenthesis is l??,
h ] h? is (X ∪ {i})-well-formed,

3. l? is the left 0-parenthesis in h ] h? and l?? is the left i-parenthesis in h ] h?,

4. h ] h? |=[u 7→l?,u7→l??] t
(
X ∪ {i}, ψ

)
.

It is clear that such objects exist by considering the above construction.
The proof in the other direction (i.e. h |= t

(
X, ψ

)
implies hB |=Vh ∃ Pi ψ′)

is actually very similar since most of the above implications are indeed equiva-
lences. QED

Here is the major expressiveness result.

Theorem 3.4.14. For every sentence ϕ in 1DSOL, for every heap h, we have
h |= ϕ iff h |= T(ϕ), so WSOL and 1SL2(−∗) have the same expressive power.

The proof of Theorem 3.4.14 is left as Exercise 3.3.
Observe that T(ϕ) can be computed in logarithmic space in the size of ϕ (to

do this, one must also check the size of all the formulae built in the previous
proofs). So, the restriction to two variables in 1SL2(−∗) does not reduce the ex-
pressive power, unlike restrictions in [Ven91, EVW97] but we know also other
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logics restricted to two variables that are expressively complete, see e.g. [LSW01,
MdR05].

We get the ultimate undecidability result below (no separating conjunction,
two quantified variables, one record field).

Corollary 3.4.15. [DD14] The satisfiability problem for 1SL2(−∗) is undecidable.

The absence of program variables in the logic 1SL2(−∗) makes the proof of
Corollary 3.4.15 even more difficult to design, which is perfect to obtain the
sharpest undecidability result. An expressiveness result with program variables
is possible and it is left as Exercise 3.6.

Theorem 3.4.16. The set of valid formulae in 1SL2(−∗) is not recursively enumer-
able.

Indeed, finitary validity for classical predicate logic restricted to a single bi-
nary predicate is not recursively enumerable, which implies a similar property for
DSOL and therefore for 1SL2(−∗) by Theorem 3.4.14.

A quick argument for proving Theorem 3.4.16 consists in noting that second-
order logic is not finitely axiomatizable and 1SL2(−∗) is equivalent to it, but this
would be too sloppy since there are so many variants of second-order logic, and
some of them are indeed finitely axiomatizable. In order to be more precise and
to show Theorem 3.4.16, a more direct proof consists in combining the following
arguments.

• First-order theory of natural numbers with addition and multiplication is not
recursively enumerable by Gödel’s first incompleteness theorem.

• There is a logarithmic-space reduction tr1 such that for any formula ϕ from
first-order arithmetic, ϕ is valid iff tr1(ϕ) is valid in 1WSOL. To show this, it is
sufficient to represent natural numbers by the cardinals of finite sets and to deal
with addition and multiplication by performing equality tests between finite set
cardinalities. This can be done by using dyadic or ternary predicate symbols,
for instance to state the existence of some bijection between two finite sets (see
Theorem 1.3.2). By way of example, the atomic formula u1 × u2 = u3 amounts
to check whether the product set made of the interpretation of the monadic
second-order variables P1 and P2 has the same cardinality as the interpretation
of the monadic second-order variable P3. Obviously, this assumes that each
variable ui has a unique corresponding monadic second-order variable Pi. So
the formula u1 × u2 = u3 can be encoded by:

∃ P PRODUCT(P, P1 × P2) ∧ EQCARD(P, P3)
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where PRODUCT(P, P1 × P2) def
= ∀ u, u′ P(u, u′) ⇔ P1(u) ∧ P2(u′). The formula

EQCARD(P, P3) stating that the interpretation of the binary second-order variable
has the same cardinality as the interpretation of the unary second-order variable
can be defined similarly, but this requires to introduce a ternary second-order
variable specified as a bijection between the two sets.

3.5 Exercises
Exercise 3.1. Prove Lemma 3.4.6.

Exercise 3.2. Prove Lemma 3.4.7.

Exercise 3.3. Prove Theorem 3.4.14.

Exercise 3.4. Let 1SL∞ be the variant of 1SL in which the heap domain can be
either finite or infinite (in 1SL, the heap domain is necessarily finite).

a) Show that the set of valid formulae for 1SL∞ without separating connectives
is recursively enumerable.

b) Define a formula seg in 1SL∞ that characterises the segmented heaps, i.e.
those heaps h such that dom(h) ∩ ran(h) = ∅ and no location has strictly more
than one predecessor.

c) Show that for any heap for 1SL∞, dom(h) is infinite iff h satisfies seg ¬−∗
∀ u alloc(u).

d) Conclude that 1SL∞ (with separating connectives) does not admit a recursively
enumerable set of valid formulae.

Exercise 3.5.

a) Define a formula in 1SL2 that states that the number of predecessors of u with
zero precedessor is at least 2.

b) Define a formula allzpred(u) in 1SL2(−∗) that holds true exactly when all the
predecessors of u have no predecessor.

c) Define a formula (]zu = 0) in 1SL2(−∗) that holds true exactly when all the
predecessors of u have at least one predecessor.

Demri, Deters: Logical Investigations on Separation Logics (Draft) – September 8, 2015– ESSLLI’15

108



CHAPTER 3. EXPRESSIVENESS OF SEPARATION LOGICS

d) Define a formula size = 1 in 1SL2(−∗) that holds true exactly when the heap
domain has exactly one location (the separating implication −∗ is not even
needed).

e) Assuming that ϕ charaterises the heaps such that the number of predecessors
of u that have no predecessor is at most k−1, define a formula that characterises
the heaps such that the number of predecessors of u that have no predecessor
is at most k (by using size = 1, ϕ and the septraction operator).

f) Show that for all ./∈ {≤,≥, <, >} and k ≥ 2, there is a formula in 1SL2(−∗)
that holds true exactly that the number n of predecessors of u that have no
predecessor verifies n ./ k.

Exercise 3.6. . Extend the translation provided in Section 3.4 to deal with pro-
gram variables.

3.6 Bibliographical References on Expressiveness
Expressive completeness. The literature is rich with results comparing the ex-
pressive power of non-classical logics with most standard logics such as first-
or second-order logic. For instance, the celebrated Kamp’s Theorem [Kam68,
Rab14] amounts to stating that linear-time temporal logic (LTL) is equal in ex-
pressive power to first-order logic. More generally, we know the expressive com-
pleteness of Stavi connectives for general linear time, see e.g. [GHR94]. This
has been refined to the restriction to two variables, leading to the equivalence be-
tween unary LTL and FO2, see e.g. [EVW97, Wei11]. Monadic second-order
logic (MSO) is another yardstick logic and, for instance, it is well-known that
ω-regular languages (those definable by Büchi automata) are exactly those de-
finable in MSO, see e.g. [Str94]. Similarly, extended temporal logic ETL, de-
fined in [Wol83] and extending LTL, is also known to be equally expressive with
MSO. This applies also to linear µ-calculus [Var88] or to PSL [Lan07], to quote
a few more examples. On non-linear structures, bisimulation invariant fragment
of MSO and modal µ-calculus have been shown equivalent [JW96]. In addi-
tion, there is a wealth of results relating first-order logic with two variables and
non-classical logics, providing a neat characterisation of the expressive power of
many formalisms since first-order logic and second-order logic are queen logics.
For instance, Boolean modal logic with converse and identity is as expressive
as first-order logic with two quantified variables (FO2) [LSW01]. Sometimes, a
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third variable is needed to get expressive completeness. For instance, in [Ven91]
it is proved that interval logic with connectives Chop, D and T is expressively
complete over linear flows of time with respect to first-order logic restricted to
three quantified variables. In the realm of interval temporal logics, we also know
expressive completeness of metric propositional neighborhood logic with respect
to the two-variable fragment of first-order logic for linear orders with successor
function, interpreted over natural numbers [BDG+10].

Expressiveness of separation logics It is known since [COY01] that first-order
separation logic with two record fields (herein called 2SL) is undecidable (see
also Section 1.3.4) and this is sharpened in [BDL12] by showing that 1SL is
also undecidable, as a consequence of the expressive equivalence between 1SL
and weak second-order logic. More recently, 1SL restricted to two variables
(1SL2) is shown undecidable too [DD15b] (see Section 3.3). From the very be-
ginning, the relationships between separation logic and second-order logic have
been quite puzzling (see e.g. an interesting answer with infinite arbitrary struc-
tures in [KR04]). Moreover, comparisons of fragments have been also studied, for
instance 1SL(∗) has been established strictly less expressive than MSO in [AD09]
(see also the related work [Mar06] or Section 4.4). So, in this chapter, we have
shown that first-order separation logic with one record field, two quantified vari-
ables, and no separating conjunction is as expressive as weak second-order logic
on heaps; in short, 1SL2(−∗) ≡ 1WSOL [DD14]. Because we forbid ourselves
the use of many syntactic resources, this underlines even further the power of the
magic wand. By way of comparison with [GOR99, IRR+04], we show undecid-
ability of a two-variable logic with second-order features. Our main undecidabil-
ity result cannot be derived from [GOR99, IRR+04] since in 1SL models, we deal
with a single functional binary relation, namely the finite heap.
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RELATIONSHIPS TO OTHER LOGICS
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In this chapter, we investigate further how to reduce the satisfiability prob-
lem for non-classical logics into similar problems for separation logics. In Sec-
tion 4.1, we introduce several versions of separation logics with data values and
we show undecidability by reduction from the satisfiability problem for Freeze
LTL. In that section, we also explain how to obtain undecidability of 1SL2 by re-
ducing first-order logics on data words; this provides an alternative undecidability
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proof for 1SL2 (see also Section 3.3). Section 4.2 is dedicated to interval tem-
poral logic PITL and we establish that the satisfiability problem for 1SL2(∗) is
non-elementary by reduction from the satisfiability problem for PITL. Section 4.3
introduces a modal logic for heaps MLH and shows the decidability of MLH(∗) by
translation into 1SL2(∗) by using a translation similar to the one from the modal
logic K into FO2. The non-elementarity of the satisfiability problem for MLH(∗)
is also established. Section 4.4 is about the decidability status of 1MSOL and
1SL(∗) and their difference of expressivenesss. 1SL(∗) is an important fragment
to consider—and an important one to show decidable—as some verification ap-
plications do not require the use of the separating implication.

Highlights of the chapter

1. The satisfiability problem for the logic 1SL3(∗)[Z,=] with data values
in Z is undecidable (Theorem 4.1.1) [BBL09, Theorem 3] . The proof is
obtained by reducing an undecidable version of linear-time temporal logic
LTL with the freeze operator [FS09].

2. The satisfiability problem for 1SL2(∗) has non-elementary complexity (The-
orem 4.2.7). This is shown by reduction from propositional interval tem-
poral logic with the locality condition [DD15b].

4.1 Data Logics

4.1.1 Separation logic with data
In memory states defined in Section 1.2.1, heaps are of the formN⇁Nk when k
record fields are involved. No record field is really distinguished and the logic kSL
mainly allows to reason about the shape properties of the heap (and not so much
on functional correctness). However, it is often important to be able to reason
about data values, a typical example would be to consider programs that produce
sorted lists. In that case, we would like to specify that the values occurring in a
list are linearly ordered. Pointer arithmetic is another means to reason about data
values when the set of locations (herein, represented by the set N) is equipped
with relations other than equality. Even though it is well-known that adding data
domains easily leads to undecidable logics, see e.g. [DD07, BMS+06], there exist
several successful examples of logics able to reason about heap structures and
data values, while having decidable reasoning tasks, see e.g. [BHJS07, BBL09,

Demri, Deters: Logical Investigations on Separation Logics (Draft) – September 8, 2015– ESSLLI’15

112



CHAPTER 4. RELATIONSHIPS TO OTHER LOGICS

BDES09, MPQ11, Bro13]. Reasoning about data values mainly means to be able
to distinguish at least one record field dedicated to data values and to express data
constraints in the formulae. That is why, in full generality, data domains need to
be introduced in the semantics.

A data domain is a pair (D, (Ri)i∈I) where D is a non-empty set, I is an index
set and each Ri is a relation of arity a(i) on D, that is, it is a subset of Da(i). A
typical example of data domain is (Z, <,=). The index set I is not necessarily
finite and below, we assume that D is infinite and the family (Ri)i∈I contains the
diagonal relation onD so that equality tests between data values can be expressed
in the logic. Indeed, this makes the data domain all the more interesting and non-
trivial. A memory state with data (with respect to the data domain (D, (Ri)i∈I))
is a triple (s, h, d) such that (s, h) is a memory state and d is a partial functionN⇁
D. Below, we also assume that dom(h) = dom(d) in order to have correspondences
between partial functions of the form N ⇁ D × Nk (the first record field is
therefore dedicated to data values) and pairs of the form (h, d) when h is a heap
with k record fields. This is analogous to what is defined in [BBL09], a pioneering
work for separation logic with data values but other options are possible, even
though not investigated below.

The logic kSL[D, (Ri)i∈I] is defined as kSL except that atomic formulae of the
form Ri(e1, . . . , ea(i)) are added for each i ∈ I and the models are memory states
with data with respect to (D, (Ri)i∈I). In order to avoid confusion with equality
between locations (by contrast to equality between their data values, if any), we
write e ∼ e′ to denote the equality formula between two data values, following
a similar convention from [BMS+06]. For instance, linear ordered data domains
have been considered in [DD07, ST11] with LTL-like logics or in [BBL09] with
separation logic where 1SL[Z,≤,=] has been investigated. The satisfaction rela-
tion is extended in order to cope with the new atomic formulae:

• (s, h, d) |=f Ri(e1, . . . , ea(i))
def
⇔ d(Je1K), . . . , d(Jea(i)K) are defined and

Ri(d(Je1K), . . . , d(Jea(i))K)).

In the logic kSL[D, (Ri)i∈I], there is no quantification on data values but this
would be possible by defining a multi-sorted separation logic to distinguish lo-
cations from data values, as done in [BBL09]. Similarly, the logics of the form
kSL happen to be quite expressive (see Chapter 3) and adding the ability to rea-
son about data can only increase the computational complexity of the reasoning
tasks. That is why, most of the variants of separation logic with data considered
in [BBL09] banish the magic wand operator and provide even further restrictions.
Let 1SLsdc

< be the fragment of 1SL(∗)[Z,≤,=] (without magic wand) such that the
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atomic formulae about data values can only occur in subformulae of the one of the
forms below:

e ↪→ e′ ∧ (e ≤ e′) e ↪→ e′ ∧ (e′ ≤ e)

As noted in [BBL09], only short-distance comparisons are possible in 1SLsdc
<

and this may allow to specify sorted lists. For example, the formula below spec-
ifies that the list between x1 and x2 (assuming that reach(x1, x2) ∧ alloc(x1) ∧
alloc(x2) holds true) is sorted:

∀u, u′ ((reach(x1, u) ∧ reach(u, u′) ∧ reach(u′, x2))⇒ u ≤ u′)

where ≤ is “less than or equal relation” that is definable in the data domain (Z, <
,=).

Other types of logics with data have been considered in the literature. One of
the most prominent ones is the logic STRAND introduced [MPQ11] that can state
constraints on the heap structures but also on the data. Recursive structures are
defined thanks to monadic second-order logic whereas the use of data constraints
is significantly limited. The very combination of the two types of properties al-
low to reason with heap-manipulation programs using deductive verification and
SMT solvers, such as Z3 [dMB08]. Another related logic is the one introduced
in [BDES09] for which a quite general framework is proposed to reason about
heap structures and data values.

4.1.2 Undecidability for separation logic with data

The logic 1SL(∗) happens to be decidable (see forthcoming Section 4.4). Below,
we show that 1SL3(∗)[Z,=], i.e. 1SL3(∗) augmented with data values in which
only equality tests are possible is undecidable. The definition of 1SL(∗)[Z,=] can
be found in Section 4.1.1. We provide a reduction from the satisfiability problem
for some temporal logic with the freeze operator, see e.g. [DL09, FS09] whereas
the original proof in [BBL09] uses a first-order logic on data words.

Below, we only consider data words of dimension 0. In Section 3.1, we have
seen that there is a formula dw(α, 0) such that h |= dw(α, 0) iff h is an (α, 0)-
fishbone. Let us consider a subclass of (α, 0)-fishbone heaps so that the main path
has at least two locations. We write dw′(α, 0) to denote the formulae charac-
terizing such heaps. There is also a formula mp(u) in 1SL2(∗) such that for any
(α, 0)-fishbone heap h with the above definition, h |=f mp(u) iff f(u) is on the main
path and it has exactly one predecessor.
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Now, let us show that the satisfiability problem for 1SL3(∗)[Z,=] is undecid-
able by designing a reduction from an undecidable logic whose models are data
words. We have already explained how 1SL3(∗)[Z,=] can encode data words.
As mentioned earlier, there exist many formalisms to specify properties about
data words; among them can be found temporal logics with the freeze opera-
tor [DL09, FS09]. Let LTLα

↓
(F,F−1) be the set of formulae defined as follows:

ϕ ::= a | ↑ | ↓ ϕ | ¬ϕ | ϕ ∧ ϕ | Fϕ | F−1ϕ

with a ∈ [1, α]. The operators F and F−1 are the standard (non-strict) temporal
operators stating the existence of some future [resp. past] position satisfying a
given property. The atomic formula ↑ and the freeze operator ↓ are interpreted
as in hybrid logics [ABM01] except that instead of storing a node address, a data
value is stored. Formulae in LTLα

↓
(F,F−1) are interpreted over data words dw =

(a1, v1) · · · (aL, vL) in ([1, α]×N)+ via the satisfaction relation |=v (Boolean clauses
are omitted and i ∈ [1,L]):

dw, i |=v a def
⇔ ai = a

dw, i |=v↑
def
⇔ vi = v

dw, i |=v↓ ϕ
def
⇔ dw, i |=vi ϕ

dw, i |=v Fϕ
def
⇔ there is i′ ∈ [i,L] such that dw, i′ |=vi ϕ

dw, i |=v F−1ϕ
def
⇔ there is i′ ∈ [1, i] such that dw, i′ |=vi ϕ.

A sentence is satisfiable
def
⇔ there is a data word dw in ([1, α]×N)+ such that

dw, 1 |= ϕ (no need to specify a data value since ϕ is closed). The satisfiability
problem for LTLα

↓
(F,F−1) is known to be undecidable [FS09, Theorem 4].

Let us define T(ϕ) as follows:

T(ϕ) def
= dw′(α, 0) ∧ tr(u0, ϕ) ∧ mp(u0) ∧ ¬∃ u1 (u1 ↪→ u0 ∧ mp(u1))

We aim at satisfying that ϕ is satisfiable iff T(ϕ) is satisfiable in 1SL3(∗)[Z,=].
The map tr takes two arguments: a quantified variable among {u0, u1} (variables
are indeed recycled, see e.g. [Gab81]) and a formula. A third variable u2 is used
but its purpose is to store a data value because of the presence of the freeze oper-
ator.

We define the logarithmic-space translation tr as follows (i ∈ {0, 1}) where tr
is homomorphic for Boolean connectives:
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tr(ui, ↑)
def
= (u2 ∼ ui)

tr(ui, a) def
= (]ui = a + 2)

tr(ui, ↓ ψ) def
= ∃ u2 ((u2 ∼ ui) ∧ tr(ui, ψ))

tr(ui, Fψ) def
= ∃ u1−i (tr(u1−i, ψ) ∧ mp(u1−i) ∧ last(u1−i) ∧ reach(ui, u1−i))

tr(ui, F−1ψ) def
= ∃ u1−i (tr(u1−i, ψ) ∧ mp(u1−i) ∧ last(u1−i) ∧ reach(u1−i, ui)).

We recall that u2 ∼ ui holds true when u2 and ui are allocated and have the same
data value.

We have already seen how to define the formulae ]ui = a + 2, reach(ui, u1−i),
mp(u1−i) and dw′(α, 0). It is easy to check thatϕ is satisfiable iff T(ϕ) is satisfiable
in 1SL3(∗)[Z,=] since the map tr only internalizes the semantics of LTLα

↓
(F,F−1)

in 1SL3(∗)[Z,=].

Theorem 4.1.1. [BBL09, Theorem 3]
The satisfiability problem for 1SL3(∗)[Z,=] is undecidable.

Other undecidability results about separation logics with data values can be
found in [BBL09].

4.1.3 A decidable fragment
In Section 4.1.1, we introduce an extension of 1SL(∗) in which data interpreted
in Z are added and can be compared only locally. The translation from 1SL(∗) to
1MSOL can be extended to 1SLsdc

< , which provides a quite strong new decidability
result.

Proposition 4.1.2. [BBL09, Corollary 1] The satisfiability problem for 1SLsdc
< is

decidable.

It remains open to characterize a significant class of data domains for which
the extension of 1SL(∗) with data from those data domains would lead to decid-
ability too. Other decidability results about 1SL(∗) extended with data values can
be found in [BBL09, Section 5.2].

4.1.4 First-order data logics
As mentioned earlier, there exist many formalisms to specify properties about data
words; among them can be found first-order languages. Below, we recall a few
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standard definitions. Finally, we sketch the proof of a reduction from an unde-
cidable variant of first-order logic on data words into 1SL2. These results show
interesting relationships between first-order logics on data words and separation
logics.

Let us present the first-order language FO2α,β(<,+1,=,∼,≺) to interpret data
words in ([1, α] × Nβ)+ following developments from [BDM+11]. Most of the
time, a fragment of the full language is needed, but it is helpful to provide the
most general definition once and uniformly.

Let FO2α,β(<,+1,=,∼,≺) be the set of formulae defined below:

ϕ ::= a(v) | v ∼ j v | v ≺ j v | v < v | v = 1+(v) | v = v | ¬ϕ | ϕ∧ϕ | ∃ vϕ

with v ::= u1 | u2, j ∈ [1, β] and a ∈ [1, α]. When β = 0, this implies that there is
no atomic formula using ∼ j or ≺ j. We write FO2α,β(<,+1,=,∼) to denote the re-
striction of FO2α,β(<,+1,=,∼,≺) without ≺. Formulae in FO2α,β(<,+1,=,∼,≺)
are interpreted over data words

dw = (a1, v1
1, . . . , v

1
β) · · · (a

L, vL
1 , . . . , v

L
β)

in ([1, α] ×Nβ)+ via the satisfaction relation |=f parameterised by f : {u1, u2} →

[1,L] (Boolean clauses are omitted, and i, i′ ∈ {1, 2}):

dw |=f a(ui)
def
⇔ af(ui) = a

dw |=f ui ∼ j ui′
def
⇔ v

f(ui)
j = v

f(ui′ )
j

dw |=f ui ≺ j ui′
def
⇔ v

f(ui)
j < vf(ui′ )

j

dw |=f ui = ui′
def
⇔ f(ui) = f(ui′)

dw |=f ui = 1 + (ui′)
def
⇔ f(ui) = f(ui′) + 1

dw |=f ui < ui′
def
⇔ f(ui) < f(ui′)

dw |=f ∃ ui ϕ
def
⇔ there is p ∈ [1,L] such that dw |=f[ui 7→p] ϕ.

A sentence ϕ in FO2α,β(<,+1,=,∼,≺) is satisfiable
def
⇔ there is a data word

dw in ([1, α] ×Nβ)+ such that dw |= ϕ (no need to specify a variable assignment
since ϕ is closed).

Let us recall major results about FO2 on data words.

Proposition 4.1.3.

(I) The satisfiability problem for
⋃
α≥1 FO2α,0(<,+1,=) is NEXPTIME-comple-

te [EVW97] (see also [Wei11, Corollary 2.2.4]).
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(II) The satisfiability problem for
⋃
α≥1 FO2α,1(<,+1,=,∼) is decidable and clo-

sely related to the reachability problem for Petri nets [BDM+11, Dav09, The-
orem 3].

(III) The satisfiability problem for
⋃
α≥1 FO2α,2(<,+1,=,∼) is undecidable

[BDM+11, Proposition 27][Dav09].

(IV) The satisfiability problem for
⋃
α≥1 FO2α,1(<,+1,=,∼,≺) is undecidable

[BDM+11, Dav09].

Proposition 4.1.3(IV) shall be used in this section but decidability can be re-
gained, as shown in [SZ12], where finite satisfiability of FO2 over data words with
a linear order on the positions and a linear order and a corresponding successor
relation on the data values shown in EXPSPACE [SZ12].

A slightly simpler undecidability proof for 1SL2 can be also obtained from
the undecidability of the satisfiability problem for

⋃
α≥1 FO2α,1(<,+1,=,∼,≺) on

data words [BDM+11] (see Theorem 4.1.3(IV)). Let us briefly provide the main
ingredients for such a proof. We define a logarithmic-space translation tr as fol-
lows. A position u in the data word corresponds to a location on the main path
of the fishbone encoding the same position but for the (unique) part related to the
(unique) datum. In the translation process, we freely use macros defined earlier
(i, j ∈ {1, 2}) and tr is homomorphic for Boolean connectives:

tr(ui = u j)
def
= ui = u j

tr(ui < u j)
def
= reach(ui, u j) ∧ ui , u j

tr(u j = 1 + (ui))
def
= > ∗ (reach′(ui, u j) ∧ (]u+2

i = 1) ∧ ¬(]u+3
i ≥ 0))

tr(a(ui))
def
= ∃ u3−i (u3−i ↪→ ui) ∧ (]u3−i = a + 2)

tr(ui ∼1 u j)
def
= ]ui = ]u j

tr(ui ≺1 u j)
def
= ]ui + 1 ≤ ]u j

tr(∃ ui ϕ) def
= ∃ ui (]ui ≥ α + 3) ∧ tr(ϕ).

The arithmetical constraints of the form ]ui = ]u j and ]ui + 1 ≤ ]u j are those
defined in Section 3.2 when the quantified variables are interpreted by locations
on the main path of some (α, 1)-fishbone heap.

Lemma 4.1.4. Let ϕ be a formula in FO2α,1(<,+1,=,∼,≺).

(I) For every data word dw in ([1, α]×N)+, dw |= ϕ iff hdw |= dw(α, 1)∧ tr(ϕ).
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(II) Let h be a heap such that h |= dw(α, 1)∧ tr(ϕ), then there is a data word dw
in ([1, α] ×N)+ such that h and hdw are isomorphic and dw |= ϕ.

As a corollary, the satisfiability problem for 1SL2 is undecidable.

4.2 Interval Temporal Logics
Interval-based temporal logics admit time intervals as first-class objects (instead
of time points), and an early and classical study for reasoning about intervals
can be found in [All83]. One of the most prominent interval-based logics is
Propositional Interval Temporal Logic (PITL), introduced by Ben Moszkowski
in [Mos83] for the verification of hardware components. It contains the so-called
‘chop’ operation that consists of chopping an interval into two subintervals. This
is of course reminiscent of separating conjunction in separation logic, and in this
section we make a formal statement about this correspondence. Before doing
so, it is worth noting that even though most standard point-based temporal logics
used in computer science are decidable (CTL, CTL?, ECTL?, etc.), undecidabil-
ity is much more common in the realm of interval-based temporal logics (see
e.g. [BMG+14]). Below, we consider PITL in which propositional variables are
interpreted under the locality condition and for which decidability is guaranteed
but computational complexity is very high. This will allow us to derive similar
bounds for 1SL2(∗).

Below, we recall the main definitions about PITL under the locality condition
and we explain why formulae from PITL can be faithfully translated into formulae
in 1SL2(∗), leading to insights about both formalisms and new complexity results.

4.2.1 The logic PITL
Given α ≥ 1, we consider the finite alphabet Σ = [1, α] and we write PITLΣ to
denote propositional interval temporal logic in which the models are non-empty
finite words in Σ+. We write PITL instead of PITLΣ when the finite alphabet Σ is
clear from the context. Formulae for PITLΣ are defined according to the following
abstract grammar:

ϕ ::= a | pt | ¬ϕ | ϕ ∧ ϕ | ϕCϕ

with a ∈ Σ. Even though elements of Σ are natural numbers (for the sake of
technical convenience), we write a to denote such an arbitrary element in order to
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emphasise that a is a letter from a finite alphabet. Roughly speaking, a holds true
at word w when a is the first letter of w. Similarly, the atomic formula pt holds
true at a word w when the word w is only a single letter. The connective C is the
chop operator, which chops a word.

Formally, we have a nonempty word w ∈ Σ+, its length |w|, extractions of the
ith letter wi where 1 ≤ i ≤ |w|, and extractions of nonempty subwords wi.. j =
wiwi+1..w j, where 1 ≤ i ≤ j ≤ |w|. We define a ternary relation chops on words:

chops def
= {(w1,w2,w3) | ∃ a,w′,w′′ s.t. w1 = w′aw′′,w2 = w′a,w3 = aw′′} .

Observe that when a word w1 is chopped into two subwords w2 and w3, there is
an overlap between the last letter of w2 and the first letter of w3. For instance,
(abb, ab, bb) ∈ chops but (ab, a, b) < chops.

Let us define the satisfaction relation |= for PITLΣ between a word w ∈ Σ+

and a formula ϕ:

w |= a def
⇔ the first letter of w is a

w |= pt
def
⇔ the length of w is equal to one

w |= ¬ϕ
def
⇔ w 6|= ϕ

w |= ϕ ∧ ψ
def
⇔ w |= ϕ and w |= ψ

w |= ϕCψ def
⇔ there exist words w1,w2 such that

chops (w,w1,w2), w1 |= ϕ and w2 |= ψ.

The satisfiability problem for PITLΣ consists in checking whether a PITLΣ

formula admits a model satisfying it. Note that the models are nonempty, finite
words and the satisfaction of a letter on a word depends only on its first letter (the
locality condition).

Two examples Consider the alphabet Σ with two distinct letters a and b and the
PITLΣ formula below:

(b C a) C¬pt
This formula is satisfiable; many words satisfy this formula, for example the word
“bab”—the top-level chop is satisfied since ba |= b C a and ab |= ¬pt. This gives
insight on how to specify a lower bound on word length, by applying sufficiently
many chops and ¬pt to force a particular (minimum) length. Of course, b C a also
enforces a minimum word length (of 2), but constrains also the word content.

Consider another example:

pt ∧ (a C b) .
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For this formula to be satisfiable, there must exist a wordw for which bothw |= pt
and w |= a C b. This is impossible, as the first implies |w| = 1, and there is no way
to chop a single-letter word into subwords that satisfy both a and b; the formula is
unsatisfiable.

Proposition 4.2.1. (see e.g. [Mos83, Mos04]) Given α ≥ 1 and Σ = [1, α], the
satisfiability problem for PITLΣ is decidable, but with α ≥ 2 is not elementary
recursive.

4.2.2 A correspondence between words and heaps
From now on, we use the data word representation from Section 3.1. Thanks
to Lemma 3.1.3, we know there is a fishbone heap hw corresponding to each
nonempty word w ∈ Σ+. Let us define a relation ∼ that establishes this corre-
spondence between words and their fishbone representations, adding also a corre-
spondence between the empty word and the empty heap:

∼
def
=

{
(w, hw) |w ∈ Σ+}

∪ {(ε, ∅)} .

Here, observe that:

1. ∼ is a bijection between the set of finite words in Σ∗ and the set of (equivalence
classes of isomorphic) (α, 0)-fishbone heaps augmented with the empty heap;

2. so, every word w is in dom(∼);

3. so, every (α, 0)-fishbone heap is in ran(∼);

4. so, if w ∼ h, h is either empty or an (α, 0)-fishbone heap; and

5. if w ∼ h, then w is empty iff dom(h) is empty.

In this section, we will only employ (α, 0)-fishbone heaps, with α = card(Σ).
The correspondence between finite words in Σ+ and (α, 0)-fishbone heaps sat-

isfies a nice property as far as splitting a word into two disjoint subwords is con-
cerned (which is a slight variant of chopping). Before making a formal statement,
let us introduce the following notion.

A clean cut of a (α, 0)-fishbone heap h is a pair of (α, 0)-fishbone heaps (h1, h2)
such that h = h1]h2, and for some wordsw1 ∼ h1 andw2 ∼ h2, we havew1w2 ∼ h.
That is, a clean cut is one that neatly cleaves a heap representation of a word
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into two subheaps in correspondence with two subwords. Figure 4.1 illustrates
examples of a clean cut and a non-clean cut on a fishbone heap. Clockwise from
left: the original (α, 0)-fishbone heap; a clean cut of the original heap; a non-clean
cut of the original heap. Note that clean cuts must result in two (α, 0)-fishbone
heaps. A non-clean cut may or may not do so; the figure depicts a non-clean cut
that does result in two (α, 0)-fishbone heaps. Informally, a non-clean cut is one
that either results in one subheap (or both) no longer satisfying the (α, 0)-fishbone
conditions, or that results in subheaps that don’t preserve predecessor counts and
thus don’t represent subwords of the original.
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Figure 4.1: A visual depiction of clean and non-clean cuts.

Lemma 4.2.2. Let w ∼ h with w = w1w2 ∈ Σ∗. There exist heaps h1 and h2 such
that h = h1 ] h2, w1 ∼ h1, and w2 ∼ h2.

Proof. Suppose that w ∼ h and w = w1w2 ∈ Σ∗. If w1 = ε or w2 = ε, then the
proof is by an easy verification with h equal to h1 or h2 respectively. In particular,
if w = ε, then h is the empty heap and therefore w1 = w2 = ε and h1 = h2 = ∅,
which satisfies the statement.

Demri, Deters: Logical Investigations on Separation Logics (Draft) – September 8, 2015– ESSLLI’15

122



CHAPTER 4. RELATIONSHIPS TO OTHER LOGICS

Otherwise suppose that w = a1 · · · aK ∈ Σ+, w1 = a1 · · · aK′ ∈ Σ+, w2 =
aK′+1 · · · aK ∈ Σ+ (K > K′). Since w is nonempty and w ∼ h, h is a fishbone
heap and the main path of h is of the form l1 −→ l2 −→ · · · −→ lK and for every
i ∈ [1,K], ]̃li = ai + 2. Let h1 be the subheap of h whose domain is {l′ ∈ N :
l′ is an ancestor of lK′ in h}, and let h2 be the unique heap such that h = h1 ] h2.
It is easy to show that w1 ∼ h1 and w2 ∼ h2. Moreover, it is not difficult to see
that (h1, h2) is a clean cut of h. QED

Lemma 4.2.2 entails the following lemma, that will be useful to show the cor-
rectness of our reduction from PITLΣ into 1SL2(∗). It is tailored to the semantics
of the chop operator in PITLΣ.

Lemma 4.2.3. For all letters a, b ∈ Σ, words w ∈ Σ+ and w′,w′′ ∈ Σ∗, and heaps
h such that w ∼ h and chops (aw, aw′b, bw′′), there exist heaps h1, h2 such that
w′b ∼ h1, w′′ ∼ h2, and h = h1 ] h2.

4.2.3 A reduction and its three ways to chop
In this section, we present a satisfiability-preserving translation of PITLΣ into
1SL2(∗). This translation hinges on the insight that the chop operation is very
similar to the separating conjunction in separation logic. However, the correspon-
dence is not an exact one: the connective C of PITLΣ does not cut into disjoint
pieces, but rather preserves one letter on both sides, in a sense “duplicating” the
letter upon which the chop operates.

To handle this discrepancy, our translation uses the standard separating con-
junction on heaps, but internally carries a “ghost letter” (a parameter to the trans-
lation) on one side to represent this “lost” letter. In the translation, we denote this
ghost letter parameter a ∈ Σ. Figure 4.2 illustrates how a chop operation on words
is translated into a separation on heaps. It is worth noting that we must always
obtain a clean cut from the original heap.

Before presenting the formal definition of the translation, let us present a for-
mula that allows us to perform a clean cut for which one of the subheaps contains
all the ancestors of f(u). Such a formula will be used in the translation and this is
the purpose of Lemma 4.2.4 below.

Lemma 4.2.4. Given a fishbone heap h and a word w such that w ∼ h, and an
assignment f such that f(u) is a location on the main path of h with h |=f alloc(u),
any pair of heaps (h1, h2) such that h = h1 ] h2, h1 |=f dw(α, 0) ∧ ¬alloc(u), and
h2 |=f dw(α, 0) ∧ ]u = 0, is a clean cut of h.
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Figure 4.2: The correspondence between PITL’s chop ‘C’ and separation logic’s
separating conjunction ‘∗’ (before and after).

Proof. Since h1 |= f dw(α, 0) and h2 |= f dw(α, 0), we know the heaps h1 and h2

are (α, 0)-fishbones. Fishbones are single components, so we know that hmust be
separated into exactly two connected components. It remains to analyse precisely
how h can be separated into two fishbones, and to show that it must be a clean cut.

We know l = f (u) is on the main path of h, so that means h |= f ]u > 0.
Since h2 |= f ]u = 0, that means l must have the same number of predecessors in
h as it does in h1. We know h1 |= f ¬alloc(u), and we know l has at least one
predecessor in h1. Therefore, l is on the main path of h1. We know h2 |= f ]u = 0,
so l is not on the main path of h2. However, it is allocated (since h |= f alloc(u)
and h1 |= f ¬alloc(u)), so its successor (call the location l′) is on the main path
of h2. Let f ′ = f [u 7→ l′]. Now, note that h |= f ′ u ↪→ u and h1 6|= f ′ u ↪→ u, and
recall that that on a fishbone, no two predecessors of an element can both have
predecessors (fb3). Therefore, l′ must have the same number of predecessors in
h2 as it did in h, and none of these predecessors can be on the main path.

Thus l is the final location on the main path of h1, and l′ is the first location
on the main path of h2. Further, l has 0 predecessors in h2 and the same number
of predecessors in h and h1. l′ has 0 predecessors in h1 and the same number of
predecessors in h and h2.
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Putting the above together, since l and l′ are positions on the main path of h
such that h(l) = l′, and since l < dom(h1), l ∈ dom(h2), l ∈ ran(h1), l < ran(h2), we
must have a clean cut. QED

We reduce a PITLΣ formula ϕ to a 1SL2(∗) formula t
(
ϕ
)

with the help of the
main translation t(·). We use the auxiliary translation map ta(·) parameterised by
a ghost letter a. The three disjuncts in the translation of ϕCψ correspond to three
types of chopping ofw that leads to three ways of separating the heap h (assuming
that w ∼ h):

1. When (w, aw1b, bw2) ∈ chops and the ghost letter is a, the heap h is separated
into the heap h1 with w1b ∼ h1 (with ghost letter a) and into the heap h2 with
w2 ∼ h2 (with ghost letter b).

2. When (w,w, b) ∈ chops and the ghost letter is a, the heap h is separated into
itself (again with ghost letter a) and into the empty heap (with ghost letter b).

3. When (w, a,w) ∈ chops and the ghost letter is a, the heap h is separated into
the empty heap (with ghost letter a) and into itself (again with ghost letter a).

These are the three possible cases and the rest of the translation is quite straight-
forward.

t
(
ϕ
) def

=
(
dw(α, 0) ∨ emp

)
∧

∨
a∈Σ

ta
(
ϕ
)

The map ta(·) is homomorphic for Boolean connectives and it is defined as
follows for the remaining cases:

ta(b) def
= > if b = a

ta(b) def
= ⊥ if b , a

ta(pt)
def
= emp

ta
(
ϕCψ

) def
= chop1a ∨ chop2a ∨ chop3a (see below)

chop1a
def
=

∨
b∈Σ ∃ u(]u = b + 2 ∧

[dw(α, 0) ∧ ¬alloc(u) ∧ ta
(
ϕ
)
∗ dw(α, 0) ∧ ]u = 0 ∧ tb

(
ψ
)
])

chop2a
def
=

∨
b∈Σ(∃ u last(u) ∧ ]u = b + 2) ∧ [ta

(
ϕ
)
∗ (emp ∧ tb

(
ψ
)
)]

chop3a
def
= (emp ∧ ta

(
ϕ
)
) ∗ ta

(
ψ
)
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In full generality, ta(·) is also parameterised by the alphabet Σ (see the clause
for formulae with outermost chop operator C) and the formulae chop1a, chop2a,
and chop3a are parameterised by ϕCψ. Clearly the translation t(·) can only
produce 1SL2(∗) formulae, as the right-hand side of each translation step above is
in 1SL2(∗). Note also that ta

(
ϕ
)

always produces a closed formula (i.e., without
free occurrences of individual variables).

The correctness of the translation is stated below, making completely explicit
the role of the ghost letter in the translation process.

Lemma 4.2.5. Let a ∈ Σ, w ∈ Σ∗, and h be a heap such that w ∼ h. For every
PITLΣ formula ϕ, we have aw |= ϕ iff h |= ta

(
ϕ
)
.

Since ta
(
ϕ
)

has no free occurrences of individual variables, in Lemma 4.2.5,
there is no need to specify what the assignments are. The proof is by structural
induction and it is left as Exercise 4.3.

As a result, we obtain a reduction between the satisfiability problems, as stated
below.

Lemma 4.2.6. Given α ≥ 1 and Σ = [1, α], a PITLΣ formula ϕ is satisfiable if
and only if the 1SL2(∗) formula t

(
ϕ
)

is satisfiable.

Proof. (⇒) Suppose that ϕ is satisfiable. This means that there exists a nonempty
word w such that w |= ϕ. The word w can be written in the form w = aw′

for some letter a. If w′ = ε, we have w′ ∼ ∅ and by Lemma 4.2.5, we have
∅ |= emp ∧ ta

(
ϕ
)
. So ∅ |= t

(
ϕ
)

and therefore t
(
ϕ
)

is satisfiable. If w′ , ε, then
there is a (α, 0)-fishbone heap h′ such that w′ ∼ h′. By Lemma 4.2.5, we have
h′ |= dw(α, 0) ∧ ta

(
ϕ
)
. So h′ |= t

(
ϕ
)

and therefore t
(
ϕ
)

is satisfiable.
(⇐) If t

(
ϕ
)

is satisfiable, then there exists a heap h such that

h |= (dw(α, 0) ∨ emp) ∧
∨
a∈Σ

ta
(
ϕ
)
.

If h |= emp ∧ ta
(
ϕ
)

for some letter a, then by Lemma 4.2.5, we have a |= ϕ. Oth-
erwise, if h |= dw(α, 0)∧ ta

(
ϕ
)
, then h is an (α, 0)-fishbone heap by Lemma 3.1.2

and then there is a word w such that w ∼ h such that by Lemma 4.2.5, we have
aw |= ϕ. In both cases, ϕ is a satisfiable formula in PITLΣ. QED

Theorem 4.2.7. The satisfiability problem for 1SL2(∗) is decidable but not ele-
mentary recursive.
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Proof. Satisfiability for PITLΣ is known to be decidable with non-elementary
complexity when Σ has at least two elements, see e.g. [Mos83, Mos04], and
1SL(∗) is decidable [BDL12] (see also Section 4.4). From the correctness of our
translation t(·) of PITLΣ to 1SL2(∗) (Lemma 4.2.6), we then conclude that 1SL2(∗)
is decidable but not elementary recursive. Note that the map t(·) may require ex-
ponential time and space in the size of the input formula in the worst-case but this
is still fine to establish that 1SL2(∗) is not elementary recursive, since this adds
only a single exponential. QED

As mentioned earlier, Theorem 4.2.7 refines the non-elementarity result for
1SL(∗) established in [BDL12]. So, solving the satisfiability problem for 1SL2(∗)
requires time bounded below by towers of exponentials of height that depend on
the formula size, see e.g. [Sch15].

Remark. The reduction from PITL to 1SL2(∗) [DD15b] allows us to underline
the common features of both formalisms. To our knowledge, this is the first time
that the similarity has been turned into a concrete, interesting result. The possibil-
ity to relate separation logic and interval temporal logic has been already envis-
aged by Tony Hoare, see e.g. [Zho08] (We thank Ben Moszkowski for pointing us
to this work.)

However, non-elementarity of 1SL2(∗) can be established in a slightly differ-
ent way as explained below. First, non-elementarity of PITL is due to Dexter
Kozen (see e.g. [Mos04, Appendix A.3]) (We thank Ben Moszkowski for point-
ing us to this fact.), and the proof is by reduction from the nonemptiness problem
of regular expressions built over a binary alphabet with union, concatenation and
complement [Sto74]. Nonelementarity of 1SL2(∗) can be obtained by defining a
similar reduction, but this is of course less insightful to understand the relation-
ships between interval temporal logic and separation logic. Alternatively, it is
also possible to consider the variant of PITL in which the chop operator does not
share a letter, since this variant is of identical expressive power and complexity.
In that way, we may avoid the introduction of the ghost letter but at the cost of
introducing empty models (which may occur when chopping has no sharing) and
of using a less standard interval temporal logic. So, the current reduction from
PITL is quite an attractive option to relate the logics. Finally, as noted in [Mos04,
Appendix A], complexity results about PITL presented in [Mos83] were obtained
in collaboration with Joseph Halpern.

In Section 4.3.2 below, we establish an even stronger result about 1SL2(∗)
(see Theorem 4.3.5). The proof uses the same principles as for the proof of Theo-
rem 4.2.7 and we only need to express the properties in modal lingua.
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4.3 Modal Logics

4.3.1 A modal logic for heaps
Let us introduce a new modal logic that is closely related to 1SL2. Modal Logic
for Heaps (MLH) is a multimodal logic in which models are exactly heap graphs
and it does not contain propositional variables (as 1SL does not contain unary
predicate symbols). In a sense, it is similar to Hennessy-Milner logic HML [HM80]
in which the only atomic formulae are truth constants. However, the language con-
tains modal operators and separating connectives, which is a feature shared with
the logics defined in [CG13]. We define below the formulae of the modal logic
MLH.

ϕ ::= ⊥ | ¬ ϕ | ϕ ∧ ϕ | ^ ϕ | ^−1 ϕ | 〈,〉 ϕ | 〈?〉 ϕ | ϕ ∗ ϕ | ϕ −∗ ϕ.

There are no quantified variables involved in formulae, which is a feature shared
with most known propositional modal logics, see e.g. [BdRV01]. We write MLH(∗)
to denote the fragment of MLH without the magic wand operator −∗.

A model for MLH M is a pair (N,R) such that R is a binary relation on N
that is finite and functional. Otherwise said, the models for MLH are heap graphs
(when the heaps encode a unique record field, i.e. k = 1). Models for MLH
could be alternatively defined as heaps but we prefer to stick to the most usual
presentation for modal logics with frames. The satisfaction relation |= is defined
below and it provides a standard semantics for the modal operators and separating
connectives (we omit the clauses for Boolean connectives):

neverM, l |= ⊥
M, l |= ^ϕ

def
⇔ there is l′ such that (l, l′) ∈ R andM, l′ |= ϕ

M, l |= ^−1ϕ
def
⇔ there is l′ such that (l′, l) ∈ R andM, l′ |= ϕ

M, l |= 〈?〉ϕ
def
⇔ there is l′ such that (l, l′) ∈ R∗ andM, l′ |= ϕ

(R∗ is the reflexive and transitive closure of R)
M, l |= 〈,〉ϕ

def
⇔ there is l′ , l such thatM, l′ |= ϕ

M, l |= ϕ1 ∗ ϕ2
def
⇔ (N,R1), l |= ϕ1 and (N,R2), l |= ϕ2

for some partition {R1,R2} of R
M, l |= ϕ1 −∗ϕ2

def
⇔ for all modelsM′ = (N,R′) such that R ∩R′ = ∅

and R ∪R′ is functional,
M′, l |= ϕ1 implies (N,R ∪R′), l |= ϕ2

We use the following standard abbreviations:
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〈U〉ϕ def
= ϕ ∨ 〈,〉 ϕ

[U]ϕ def
= ¬〈U〉¬ϕ

[,]ϕ def
= ¬〈,〉¬ϕ

^−1
≥k>

def
= ^−1

> ∗ · · · ∗^−1
> (k ≥ 1 times)

^−1
≤k−1>

def
= ¬^−1

≥k>

^−1
[k1,k2]>

def
= ^−1

≥k1
> ∧^−1

≤k2
>

^−1
=k>

def
= ^−1

≥k> ∧^
−1
≤k>

Wheneverϕ is already in MLH(∗), these abbreviations allow to remain in MLH(∗).
A formula ϕ is satisfiable whenever there is a modelM and a location l such

thatM, l |= ϕ. The satisfiability problem for MLH is therefore defined as any such
problem for modal logics.

Note that MLH has forward and backward modalities as in Prior’s tense logic
(see e.g. [Pri67]), the inequality modal operator (see e.g. [dR92]) and the transitive
closure operator as in PDL (see e.g. [HKT00]). The most non-standard feature of
MLH is certainly the presence of the separating connectives.

It is possible to design a relational translation from MLH formulae into 1SL2
formulae by recycling variables (only u1 and u2 are used, so i ∈ {1, 2}) and tr is
homomorphic for the connectives ¬, ∧, ∗ and −∗:

tr(⊥, ui)
def
= ⊥

tr(^ ϕ, ui)
def
= ∃ u3−i (ui ↪→ u3−i) ∧ tr(ϕ, u3−i)

tr(^−1 ϕ, ui)
def
= ∃ u3−i (u3−i ↪→ ui) ∧ tr(ϕ, u3−i)

tr(〈,〉 ϕ, ui)
def
= ∃ u3−i (ui , u3−i) ∧ tr(ϕ, u3−i)

tr(〈?〉 ϕ, ui)
def
= ∃ u3−i reach(ui, u3−i) ∧ tr(ϕ, u3−i).

The formulae of the form reach(ui, ui′) have been introduced in Section 1.2.2
and states the reachability of ui′ from ui.

Lemma 4.3.1. A formula ϕ in MLH is satisfiable iff ∃ u1 tr(ϕ, u1) is satisfiable
in 1SL2. Moreover, if ϕ is in MLH(∗), then ∃ u1 tr(ϕ, u1) is in 1SL2(∗).

Proof. (sketch) The proof is obtained as an obvious adaptation of the proof for
the relational translation from modal logic K into FO2, see e.g. [Mor76, vB76,
BdRV01]. Indeed, the models (N,R) for MLH are heap graphs and therefore
formulae in 1SL2 can be equivalently interpreted on MLH models; for instance,
we get (N,R) |=f u1 ↪→ u2 iff (f(u1), f(u2)) ∈ R. Similarly, (N,R) |=f ϕ1 −∗ϕ2
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iff for all MLH models (N,R′) such that (N,R ∪ R′) is an MLH model too and
(N,R′) |=f ϕ1, we have (N,R ∪R′) |=f ϕ2.

Note that u j is the only free variable in tr(ϕ, u j). The standard translation tr is
semantically faithful in the following sense: for all MLH models (N,R), l ∈ N
and formulae ϕ in MLH, we have (N,R), l |= ϕ iff (N,R) |=[u1 7→l] tr(ϕ, u1). This
is sufficient to establish Lemma 4.3.1.

We show that for all i ∈ {1, 2}, for all formulae ψ in MLH, for all MLH models
M = (N,R) and for l ∈N, we haveM, l |= ψ iffM |=[ui 7→l] tr(ψ, ui). The proof is
by structural induction. The base case for⊥ and the cases in the induction step for
the Boolean connectives are straightforward. By way of example, let us provide
the cases in the induction step for ψ = 〈?〉 ψ′ and for ψ = ψ1 ∗ ψ2. The proof for
the other cases is similar and quite standard.
Case ψ = 〈?〉 ψ′. The following are equivalent:

• M, l |= ψ,

• M, l′ |= ψ′ for some l′ ∈ R∗(l) (by definition of |=),

• M |=[u3−i 7→l′] tr(ψ′, x3−i) for some l′ ∈ N such that l′ ∈ R∗(l) (by the induction
hypothesis),

• M |=[ui 7→l] ∃ u3−i reach(ui, u3−i) ∧ tr(ψ′, x3−i) (by definition of |= in 1SL2 and
by the fact that reach is the reachability predicate),

• M |=[ui 7→l] tr(ψ, ui) (by definition of tr).

Case ψ = ψ1 ∗ ψ2. The following are equivalent:

• M, l |= ψ,

• (N,R1), l |= ψ1 and (N,R2), l |= ψ2 for some partition {R1,R2} of R, (by
definition of |= in MLH),

• (N,R1) |=[ui 7→l] tr(ψ1, ui) and (N,R2) |=[ui 7→l] tr(ψ2, ui) for some partition
{R1,R2} of R, (by the induction hypothesis),

• M |=[ui 7→l] tr(ψ1, ui) ∗ tr(ψ2, ui) (by definition of the satisfaction relation in
1SL2)

• M |=[ui 7→l] tr(ψ, ui) (by definition of tr). QED
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Modal logic MLH can be viewed as a fragment of 1SL2. Any formula ψ1 ∗ψ2

[resp. ψ1 −∗ψ2] in tr(ϕ, u1) has at most one free variable. A similar restriction can
be found in monodic fragments for first-order temporal logics, see e.g. [DFL02].

Since MLH(∗) can be translated into 1SL2(∗) and 1SL(∗) is decidable [BDL12,
Corollary 3.3] (see also Section 4.4), we get decidability of MLH(∗) as a corollary.

Corollary 4.3.2. The satisfiability problem for MLH(∗) is decidable.

Note that to be more uniform, we could have added to the modal language
the converse operators 〈,〉−1 and 〈?〉−1. However, since the inequality relation
is symmetric, 〈,〉−1ϕ is logically equivalent to 〈,〉ϕ. The above translation can
be obviously extended with the modal operator 〈?〉−1 and therefore decidability
holds also for this extension. However, we have introduced MLH mainly to estab-
lish non-elementarity of MLH(∗) (shown below), refining the result for 1SL2(∗).
We did not include 〈?〉−1 because the proof of non-elementarity result does not re-
quire it. By contrast, we do not know whether the satisfiability problem for MLH
is decidable. As far as we know, the characterisation of the computational com-
plexity of MLH without separating connectives is open too. This corresponds to a
fragment of deterministic PDL with (restricted) graded modalities and inequality
modality.

4.3.2 A refinement with the modal fragment of 1SL2(∗)
In this section, we show that the satisfiability problem for MLH(∗) is decidable
but it is not elementary recursive. Decidability is due to the fact that the standard
translation leads to formulae in 1SL2(∗), see Section 4.3.1. In order to establish the
lower bound, we express in MLH(∗) all the properties that were useful to translate
PITLΣ formulae into 1SL2(∗). For instance, note that the empty heap is the only
heap validating the formula ([U]¬^>). Similarly, a location with at least one
predecessor and with no successor (for instance, last location on the main path in
a fishbone heap) satisfies the formula (^−1

> ∧ ¬^>).
More interestingly, the formula in 1SL2(∗) characterising the (α, β)-fishbone

heaps has a modal counterpart. Let us consider the following formulae.

• The formula ϕ�fb defined below is designed exactly as the formula ϕfb (see
Section 3.1).

(〈U〉^>)∧

〈U〉((^−1
>∧¬^>)∧[,]¬(^−1

>∧¬^>))∧[U](^> ⇒ 〈?〉(^−1
>∧¬^>))∧
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(¬〈U〉(^−1^−1
> ∗^−1^−1

>)).

This is a faithful translation except that we use the specification language
MLH(∗).

• The formula ϕ�(C1) defined below is also designed exactly as the formula ϕ(C1)

(see Section 3.1).

〈U〉((^−1
>) ∧ (¬^−1^−1

>) ∧^−1
[3,α+3]>).

• The formula ϕ�(C2) is equal to [U](^−1
[3,α+3]> ⇒

∧
i∈[1,β]

i times︷ ︸︸ ︷
^ · · ·^^−1

≥α+3>).

• The formula ϕ�(C3) is defined below:

[U](^−1
[3,α+3]> ⇒ (¬

β+1 times︷ ︸︸ ︷
^ · · ·^>) ∨

β+1 times︷ ︸︸ ︷
^ · · ·^(^−1

[3,α+3]>)).

We write dw�(α, β) to denote the formulaϕ�fb∧ϕ
�
(C1)∧ϕ

�
(C2)∧ϕ

�
(C3). It specifies

the shape of the encoding of data words in ([1, α] ×Nβ)+ as stated below. Note
that since dw�(α, β) is a Boolean combination of formulae whose outermost con-
nectives are [U] or 〈U〉, then dw�(α, β) holds true at some location iff dw�(α, β)
holds true at any location.

Lemma 4.3.3. LetM = (N,R) be a model for MLH.M, l |= dw�(α, β) for some
location l iffM is the graph of an (α, β)-fishbone heap.

Again, the proof is by an easy verification by using Lemma 3.1.1 and the
correspondence between condition (Ci) and the formula ϕ�(Ci). In the rest of this
section we are back to the case β = 0.

Given a formula ϕ in PITLΣ with Σ = [1, α], we define a modal formula t
(
ϕ
)�

such that ϕ is satisfiable iff t
(
ϕ
)� is satisfiable. Actually, the modal formula t

(
ϕ
)�

will express exactly the same properties as in the translation into 1SL2(∗). For
instance, t

(
ϕ
)� is precisely the formula below:

(dw�(α, 0) ∨ ([U]¬^>)) ∧ (
∨
a∈Σ

t
(
ϕ
)�

a )

The formula t
(
ϕ
)�

a is defined inductively as follows.
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• t(a)�a
def
= > and t(b)�a

def
=⊥ for every letter b ∈ Σ \ {a}.

• t(·)�a is homomorphic for Boolean connectives.

• t(pt)�a
def
= ([U]¬^>).

• The formula t
(
ϕCψ

)�
a is defined as chop1�a ∨ chop2�a ∨ chop3�a where:

– chop1�a
def
=

∨
b∈Σ〈U〉((^−1

=b+2>∧ dw�(α, 0) ∧ ¬^>∧ t
(
ϕ
)�

a ) ∗ (dw�(α, 0) ∧
¬^−1

> ∧ t
(
ψ
)�

b )),

– chop2�a
def
= (

∨
b∈Σ〈U〉 ((^−1

> ∧ ¬^>) ∧ ^−1
=b+2>) ∧ (t

(
ϕ
)�

a ∗ (t
(
ψ
)�

b ∧

([U]¬^>)))),

– chop3�a
def
= ((t

(
ϕ
)�

a ∧ ([U]¬^>)) ∗ t
(
ψ
)�

a ).

Lemma 4.3.4. Let α ≥ 1, Σ = [1, α], ϕ be a PITLΣ formula and t
(
ϕ
)� be its

translation in MLH. We have ϕ is satisfiable iff t
(
ϕ
)� is satisfiable.

The proof goes as in the case for the direct translation into 1SL2(∗) since the
modal subformulae express exactly the same properties. Therefore, we can refine
Theorem 4.2.7 as follows.

Theorem 4.3.5. The satisfiability problem for MLH(∗) is decidable but not ele-
mentary recursive.

Interestingly, we do not know the decidability status for full MLH (i.e., with
the magic wand operator).

4.4 Monadic Second-Order Logic
We have seen that 1SL(∗) is decidable with non-elementary recursive complexity
(actually two variables suffice). Below, we briefly explain why decidability comes
from the decidability of 1MSOL and we provide a property that can separate the
expressive power of 1SL(∗) and 1MSOL.

First, note that 1MSOL on memory states with one record field is decidable
by taking advantage of [Rab69, BGG97]. Indeed, the weak monadic second-order
theory of unary functions is the theory over structures of the form (D, f,=) where
D is a countable domain, f is a unary function, and = is equality. Weakness means
that quantifications are over finite sets.
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This theory is decidable, see e.g. [BGG97, Corollary 7.2.11]. Since it is pos-
sible to express that D is infinite and to simulate that f is a partial function with
finite domain, one can specify that (D, f,=) augmented with a first-order valuation
is isomorphic to a heap. It is then possible to define a simple translation trP(.),
computable in logarithmic space, such that a 1MSOL sentence ϕ is satisfiable iff

infinity︷           ︸︸           ︷
(¬∃ P ∀u P(u))∧∃ P trP(ϕ)

is satisfiable in the weak monadic second-order theory of one unary function. See
details in [BDL12]. Using a similar technique, it is possible to translate 1SL(∗)
into 1MSOL. Any formula ϕ in 1SL(∗) is satisfiable iff

∃ P (∀u P(u)⇔ (∃u′ u ↪→ u′)) ∧ trP(ϕ)

is satisfiable where trP(·) is defined with the following clauses:

trP(u ↪→ u′)
def
= P(u) ∧ u ↪→ u′

trP(u = u′) def
= u = u′

trP(ϕ ∗ ψ) def
= ∃ Q, Q′ (P = Q ] Q′) ∧ trQ(ϕ) ∧ trQ′(ψ)

where P = Q]Q′ is an abbreviation for ∀u (P(u)⇔ (Q(u)∨Q′(u)))∧¬(Q(u)∧Q′(u)).
We leave out the Boolean connectives and first-order quantification, for which trP
is homomorphic.

Theorem 4.4.1. [BDL12, Corollary 3.3] The satisfiability problem for 1SL(∗) is
decidable.

As conjectured in [BDL08], we have the following separation result.

Proposition 4.4.2. [AD09, Corollary 5.3] (see also [Ant10]) 1SL(∗) is strictly less
expressive than 1MSOL.

A standard tool to show non-expressibility in first-order logic or in second-
order logic is to use Ehrenfeucht-Fraı̈ssé games, see e.g. [Lib04] (called EF-
games in the sequel). These games have been adapted for some versions of
separation logic, see e.g. [AD09, Ant10] based on similar games on spatial log-
ics [DGG04, Mar06, DGG07]. In [AD09, Ant10], using EF-games, it is shown
that there is no formula in 1SL(∗) that characterises the forests of binary trees such
that there is one binary tree whose number of leaves is a multiple of 3.
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Even though the principle of the method with EF-games is standard, the proof
is quite complex and tedious, since it requires designing two families of heaps, to
define an adequate strategy for the Duplicator player and to show that the strat-
egy does the job, see e.g. [Ant10] for most of the details as well as for additional
bibliographical references. In particular, Duplicator has a winning strategy for
a game on (h1, h2) with rank r iff h1 and h2 agree on all formulae of 1SL(∗) of rank
r. See [Ant10] for more details about the notion of game and rank, for instance.

By way of example, we explain below why the above-mentioned property can
be expressed in 1MSOL. First, let us express in 1SL(∗) that the heap is a forest of
binary trees, which entails that this can be stated in 1MSOL too. It is sufficient
to state that every location has at most two predecessors and every location l can
reach a non-allocated location (the root of the tree to which l belongs too if l is in
the heap domain):

∀ u (]u ≤ 2 ∧ ∃ u (reach(u, u) ∧ ¬alloc(u))).

Note that the quantification above is fine even when u is not in the heap domain
(take the value for u to witness the satisfaction of ∃ u (reach(u, u)∧¬alloc(u))).
In order to express in 1MSOL that there is a binary tree whose number of leaves
is a multiple of 3, we first identify the locations of the tree (via the second-order
variable P), we label each location of the tree by either P0, P1 and P2 (depending
on the number of leaves (modulo 3) below the location) and we state consistency
constraints (obviously simulating the behavior of some bottom-up three-state tree
automaton) and finally we require that the root of the tree is labelled by P0. The
formula defined below assumes that the heap is already known as a forest of binary
trees.

∃ u (¬alloc(u) ∧ ]u ≥ 1) ∧

∃ P, P0, P1, P2 ((∀ u P(u)⇔ reach(u, u)) ∧ (P = P0 ] P1 ] P2) ∧ P0(u) ∧

(∀ u (P(u) ∧ ]u = 0)⇒ P1(u))∧

(∀ u, u′ ((u ↪→ u′) ∧ P(u) ∧ ]u′ = 1)⇒
2∧

i=0

(Pi(u)⇔ Pi(u
′)))∧∧

i, j,k∈{0,1,2},i≡3 j+k

(∀ u, u′, u′′(P j(u
′)∧Pk(u

′′)∧(u′ , u′′)∧(u′ ↪→ u)∧(u′′ ↪→ u))⇒ Pi(u)))

Note that we used a shortcut formula (P = P0 ] P1 ] P2) to state that the
interpretation of P is the disjoint union of the interpretation of P0, P1 and P2, details
are omitted.
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4.5 Exercises
Exercise 4.1. Given α ≥ 1, define a formula mp(u) that holds true on (α, 1)-
fishbone heaps whenever u is interpreted as a location on the main path.

Exercise 4.2. Assuming that card(Σ) ≥ 2, show that computing t
(
ϕ
)

(in Sec-
tion 4.2.3) may require exponential time in the worst-case.

Exercise 4.3. Show Lemma 4.2.5.

Exercise 4.4. With the abbreviation [U] introduced in Section 4.3, show that
M, l |= [U]ϕ iff for all l′ ∈N, we haveM, l′ |= ϕ.

Exercise 4.5. Show that the formula below holds true on heaps that are made of a
(finite) collection of trees in which each node has branching-degree at most two.

∀ u (]u ≤ 2 ∧ ∃ u (reach(u, u) ∧ ¬alloc(u))).

Exercise 4.6. Design a formula in 1MSOL that characterises the forests of binary
trees such that there is one tree whose number of leaves is a multiple of 5.

Exercise 4.7. Let SL′(∗) be the extension of 1SL(∗) in which the separating im-
plication can used but only in a very restricted way, typically in formulae of the
form ((size ≤ k) ∧ ϕ)−∗ϕ′. Show that the satisfiability problem for SL′(∗) is
decidable by using the decidability of 1SL(∗).
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Numerous decision procedures have been designed for fragments of separa-
tion logics, from analytic methods [GM10, HCGT14] to translation to theories
handled by SMT solvers [PWZ13, PR13, BRK+15], passing via graph-based al-
gorithms [HIOP13]. However, the framework of satisfiability modulo theories
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(SMT), strongly related to the mechanisation of the problems SAT and QBF, re-
mains probably the most promising one to develop decision procedures dedicated
to reasoning tasks for separation logics. This chapter is dedicated to present sev-
eral distinct ways to decide fragments of separation logics.

Section 5.1 briefly presents the standard dichotomy between the direct ap-
proach and the translation-based approach to decide non-classical logics. In Sec-
tion 5.2 we present a translation from a symbolic heaps fragment of separation
logic into the logic GRASS, following developments in [PWZ13]. In Section 5.3,
we establish that the satisfiability and model-checking problems for 1SL0 can be
solved in polynomial space by using a non-deterministic algorithm. An equiv-
alence relation on memory states with finite index is designed so that infinity
involved in the interpretation of the magic wand operator can be tamed finitely.
Then, we characterise precisely the expressiveness of 1SL0 and it is the key step
to show a small heap property. Section 5.4 presents a translation from 1SL0 into
QBF and into a PSPACE fragment of first-order logic by encoding the quantifica-
tions in the algorithm from Section 5.3. The chapter concludes by Section 5.5 in
which bibliographical references about the design of proof systems are provided.

Highlights of the chapter

1. Presentation of the NP upper bound for the satisfiability problem for SLLB
relying on an SMT-based translation into the logic GRASS defined from
the combination of two logical theories [PWZ13] (Corollary 5.2.8).

2. Characterisation of the expressiveness of 1SL0 by using Boolean combi-
nations of test formulae (Theorem 5.3.7). This follows and refines devel-
opments from [Yan01, Loz04a, DGLWM14].

3. Presentation of the PSPACE upper bound for the satisfiability and model-
checking problems for 1SL0 (Theorem 5.3.11) based on techniques de-
velopped in [Yan01, COY01, Loz04a].
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5.1 Direct Versus Translation Approach

5.1.1 Direct approach versus translation for deciding modal
logics

In order to mechanise modal logics, there exist at least two main approaches with
well-identified motivations. The direct approach consists in building specialised
proof systems for the logics and requires building new theorem provers but, it has
the advantage to design fine-tuned tools and to propose plenty of optimizations.
The development of tableaux-based provers for modal logics following the semi-
nal work [Fit83] perfectly illustrates this trend (see also [GHSS14]). By contrast,
the translation approach consists in reducing decision problems for the original
logics to similar problems for logics that have already well-established theorem
provers (see e.g. [dNSH00]). Its main advantage is to use existing tools and there-
fore to focus only on the translations, that are usually much simpler to implement.
For example, translation of modal logics into first-order logic, with the explicit
goal to mechanise such logics is an approach that has been introduced in [Mor76]
(see also [Fin75, vB76, Moo77]) and it has been intensively developed over the
years, see e.g. [ONdRG01] for an overview.

5.1.2 Translation versus specialised algorithms for separation
logic

Despite its young age, one can observe that the mechanisation of separation logic
follows a similar dichotomy. This is all the more obvious nowadays since there
are a lot of activities to develop verification methods with decision procedures
for fragments of practical use, see e.g. [CHO+11]. Many decision procedures
have been designed for fragments of separation logics or abstract variants, from
analytic methods [GM10, HCGT14] to translation to theories handled by SMT
solvers [LQ08, PWZ13], passing via graph-based algorithms [HIOP13]. The
translation approach has been already advocated in [CGH05] and in [Hag04,
Chapter 8] in which propositional kSL0 is translated into a fragment of classi-
cal logic that can be decided in polynomial space (see Section 5.4 for an alterna-
tive presentation of that result). However, the framework of satisfiability modulo
theories (SMT) remains probably the most promising one to develop decision
procedures dedicated to reasoning tasks for separation logics, see e.g [BPS09,
RBHC07, PR13, PWZ13]. It is worth noting that the verification of programs
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that manipulate linked-list structures can be also done with a SAT solver, when
the assertions are written in some restricted logical formalism, see a remarkable
example in [IBI+13]. In Section 5.4, we illustrate why QBF solvers (see e.g.
[LB10, HSB14]) can be useful too.

5.1.3 The SMT framework
Deciding logical formulae within a given logical theory is ubiquitous in computer
science and the works around Satisfiability Modulo Theories (SMT) are dedi-
cated to solve this problem by providing methods, proof systems and solvers in
order to be able to decide as much theories as possible, as well as their com-
bination (see e.g. [BT14b]). Nowadays, SMT solvers are essential for most tools
that formally verify programs, from bounded model-checking to abstraction-based
model-checking (actually the number of applications seems unbounded). Roughly
speaking, decision problems for many verification problems are reduced to the
satisfiability of formulae in specific first-order/quantifier-free theories that can be
handled by SMT solvers. Typical theories are quantifier-free Presburger arith-
metic (also known as linear integer arithmetic LIA) or the theory of equality over
uninterpreted functions (EUF).

A nice feature of such solvers is their ability to combine distinct theories al-
lowing to express richer statements. As advocated in [PR13, PWZ13], being able
to integrate decidable fragments of separation logic in some SMT solver not only
allows to decide satisfiability or entailment problems by taking advantage of the
technology behind SMT solvers but also it provides an efficient way to combine
separation logics with other theories, such as linear arithmetic LIA. Actually, the
seminal paper [PWZ13] provides a translation of SLLB (see also Section 5.2) into
a decidable fragment of first-order logic and a decision procedure has been imple-
mented in an SMT solver. This provides an important step to integrate reasoning
about separation logic into SMT solvers. The paper [BRK+15] goes even beyond
since it presents how SMT solvers can be used systematically to obtain decision
procedures for a class of theories that are decidable by using a finite instantiation
of (quantified) axioms.

Some strongly related work can be also found in [PR13] in which the con-
straints added to list segments are much more general than pure equalities. Be-
sides, the first competition of solvers for several fragments of separation logic was
held recently, see e.g. [SC14], witnessing how promising appears this research di-
rection. In the article [SC14] reporting the competition SL-COMP 2014, more can
be found about the list of solvers that competed as well as the fragments of sep-
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aration logic that have been considered (roughly, symbolic heaps with recursive
definitions, see also Sections 2.2 and 1.3.3). By way of examples, we list below
solvers for separation logics involving SMT-based or SAT-based tools [SC14].

1. Asterix [PR13] is a tool for solving entailment problem for symbolic heaps
fragment augmented with theories richer than the one with pure equalities only
that relies on SMT solving technology (Z3). This provides a generalization
to what has been done in [PWZ13], even though results in [PWZ13] are not
restricted to the theory of pure equalities.

2. SLSAT [BFGN14, SC14] is a tool for solving the satisfiability problem for the
so-called SLRD+ fragment with general defined predicates.

3. SPEN [ESS13] is a solver that deals with satisfiability and entailment problems
for SLRD+ for a subclass of recursive definitions. The solver MiniSAT is also
used to resolve Boolean abstraction of separation logic formulae.

In order to solve decision problems for separation logics, there is indeed a
great diversity of techniques. As we have seen, there are reductions to SAT or
SMT problems [PR13, BFGN14, SC14, ESS13] but other approaches exist, for
instance by reduction into tree automata membership/inclusion problems [ESS13,
IRV14]. In the rest of the chapter, two approaches are presented in details.

5.2 Translation Into a Reachability Logic
In this section, we present a reduction from the satisfiability problem for SLLB
into the logic GRASS, following the results from [PWZ13, PWZ14]. Decidability
and even NP-completeness of the satisfiability problem for GRASS are obtained
by a reduction to a slight variant of the combination of two theories, following
a standard approach in SMT, see e.g. [BT14b]. Interestingly, the decision pro-
cedure uses two standard techniques related to SMT: the combination of theories
(see e.g. [NO79, TZ04]) and the handling of quantifiers (see e.g. [BRK+15] for
local theory extensions). Other examples of translations can be found in [Hag04,
CGH05, CHO+11, HIOP13, SC14] but because of lack of space, we focus on the
current one that is very promising to use further SMT solvers in order to decide de-
cision problems for fragments of separation logics. Actually, the work [PWZ13]
goes much beyond what is presented in this section.
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5.2.1 A target logic combining reachability and sets
The logic of graph reachability and stratified sets GRASS [PWZ13] is defined
below as the disjoint combination of a theory of reachability in function graphs
(see e.g. [LQ08, WMK11]) and a theory of stratified sets (see e.g. [Zar03]). This
means that, on the top of a theory of elements, a theory of sets is defined so
that the elements satisfied another theory. In that way, the theory of stratified
sets is two-level. Presently, the theory of elements is a theory about reachability.
Consequently, the logic GRASS contains two sorts: a sort for locations and a
sort for sets of locations. GRASS is presented as the quantifier-free kernel of
a many-sorted first-order logic, following an approach that has been at heart of
modern SMT solvers (see more definitions in [PWZ13, BT14b]). For the ease of
presentation, and since we do not need the full generality of many-sorted first-
order logic, our presentation of GRASS semantics is quite ad-hoc but the reader
should keep in mind that a more orthodox presentation based on standard features
of SMT can be found in [PWZ13].

Below, we present a translation from SLLB into the logic GRASS, follow-
ing the results from [PWZ13]. The tool GRASShopper [PWZ14] implements a
decision procedure for GRASS on top of the SMT solver Z3 [dMB08].

Formulae in GRASS are built from terms T denoting locations and terms S
denoting sets of locations. Atomic formulae of type A state properties between
locations whereas atomic formulae of type B state properties between locations
and sets of locations. Finally, formulae of type R are Boolean combinations of
atomic formulae of type A. These syntactic objects are defined following the
grammars below:

T ::= x | f(T)

A ::= T = T | T
\T
−→ T

R ::= A | ¬R | R ∧ R
S ::= X | ∅ | S \ S | S ∪ S | S ∩ S | {x.R}

proviso: x does not occur below f in R
B ::= S = S | T ∈ S
ϕ ::= A | B | ¬ϕ | ϕ ∧ ϕ

The proviso in the definition of set comprehensions guarantees decidability of the
logic GRASS. The term x is a variable from a countably infinite set of (program)
variables whereas the term X is a set variable from an unspecified countably infi-
nite set of such variables. By contrast, there is a single function symbol f.
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Example 5.2.1. A formula of type R is presented below:

(x1 = f(x2)) ∧ x1
\x2
−→ x3.

An atomic formula of type B is presented below:

f(f(x1)) ∈ {x. (x = x1)} ∩ {x′. (x′
\x2
−→ x3)}.

Now, let us define the models for the logic GRASS and let us explain how
the formulae are interpreted on such semantical structures. A GRASS-model is a
structure of the formA = (L, h) such that

1. L is a non-empty set; for obvious reasons elements of L are called locations.

2. h is a map L→ L satisfying the conditions below.

1. For all l ∈ L, the set {l′ | (l, l′) ∈ h∗} is finite where h∗ is the reflexive and
transitive closure of the graph relation induced by the map h.

2. Similarly, for all l ∈ L, the set {l′ | (l′, l) ∈ h∗} is finite.

The map h corresponds to the interpretation of the function symbol f.

Even though the symbol ’h’ is also used to denote heaps, the map h in a
GRASS-model is not strictly speaking a heap (in the sense provided in Sec-
tion 1.2.1). For instance, L is not necessarily equal to N and h is a total func-
tion. Nevertheless, h satisfies two finiteness conditions. However, the way the
logic GRASS is defined and the semantics is presented allows to use results about
the combination of theories to establish the NP upper bound of the satisfiability
problem. Herein, we do not present the details of the NP upper bound for decid-
ing GRASS since we view such a decision procedure as a blackbox. Indeed, in
the translation-based approach, the essential work is to design a translation into a
logical theory for which decidability/complexity is already established. However,
it would be definitely interesting to present how works the decidability proof for
GRASS satisfiability, but this is currently beyond the scope of this document.

The terms T are interpreted as elements of L whereas the terms S are inter-
preted as subsets of L. More precisely, for any term T, JTKA,f is an element of L
following the clauses below (f is a variable assignment):

JxKA,f
def
= f(x)

Jf(T)KA,f
def
= h(JTKA,f).
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Similarly, for any term S, JSKA,f is a subset of L following the clauses below:

JXKA,f
def
= f(X)

J∅KA,f
def
= ∅ (no syntactic difference between the constant ’∅’

and the empty set)
JS1 O S2KA,f

def
= JS1KA,f O JS2KA,f (O ∈ {\,∪,∩})

J{x.R}KA,f
def
= {l | A |=f[x 7→l] R}

where the satisfaction relation |= is defined below.

Despite the fact that the definition of |= uses the semantics map J·KA,f and the
other way around for set comprehension, these mutually recursive definitions are
well-founded. So, given a variable assignment f, the satisfaction relation |= for
GRASS is defined as follows:

A |=f T1 = T2 iff JT1KA,f = JT2KA,f
A |=f T1

\T2
−→ T3 iff (JT1KA,f, JT3KA,f) ∈ R∗ where

R = {(l, h(l)) | l ∈ L, l , JT2KA,f}
A |=f S1 = S2 iff JS1KA = JS2KA
A |=f T ∈ S iff JTKA,f ∈ JSKA,f
A |=f ¬ϕ iff notA |=f ϕ
A |=f ϕ1 ∧ ϕ2 iff A |=f ϕ1 andA |=f ϕ2.

Clauses for equalities and for Boolean connectives are completely standard and
therefore the only clause that may deserve a bit of explanations if for atomic for-

mulae of the form T1
\T2
−→ T3. Indeed, it holds true whenever JT3KA,f can be reached

from JT1KA,f by using the graph of h, with the proviso that the path does not visit
an edge starting by the location JT2KA,f.

The satisfiability problem for GRASS takes as input a formula ϕ and asks for
the existence of a modelA and a variable assignment f such thatA |=f ϕ.

Proposition 5.2.2. [PWZ13] The satisfiability problem for GRASS is NP-com-
plete.

The underlying theory of reachability in function graphs is not first-order de-
finable not only because of the finiteness constraints on h but also because tran-
sitive closure of relations is not first-order definable. Nevertheless, satisfiability
problem for the quantifier-free fragment of that fragment can be shown in NP, see
details in [TW13, Section 5]. Using Nelson-Oppen combination of the decision
procedures for the two theories [NO79] (see also [TZ04]), the fact that both of
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them are stably infinite with respect to the location sort and other properties, one
can obtain an NP decision procedure for GRASS; again we omit the details that
can be found in [PWZ13, Appendix A]. So, the decision procedure for GRASS
is obtained from the combination of the theory of reachability and the theory of
stratified sets, but some additional work is required, for instance to get rid of set
comprehension, see e.g. [PWZ13, Appendix A] (see also [BRK+15] for a more
general approach using a lazy and finite instantiation of quantified axioms with
the help of E-matching).

5.2.2 A variant separation logic interpreted on GRASS-models
Before designing the translation into GRASS, we introduce SLLB in which spa-
tial formulae are interpreted precisely and equalities and disequalities are spatial
formulae too. Spatial formulae ϕs are defined as follows:

ϕs ::= (xi = x j) | ¬(xi = x j) | xi 7→ x j | sreach(xi, x j) | ϕs ∗ ϕs

Formulae of SLLB are simply Boolean combinations of spatial formulae.
Models of SLLB are GRASS-models and as we have seen earlier, these are

not exactly heaps. Probably, the major difference is due to the fact that the map
h in a GRASS-model is a total function and therefore to regain the semantics
from separation logic, the finite domain is encoded by the interpretation of a set
variable. Finiteness is guaranteed because the satisfaction relation |=X

f
(defined

below) encodes a precise semantics parameterised by the set variable X. Below,
we provide the definition of |=X

f
; we omit the obvious clauses for the Boolean

combinations of spatial formulae.

A |=X
f
xi = x j iff f(xi) = f(x j) and f(X) = ∅

A |=X
f
¬(xi = x j) iff f(xi) , f(x j) and f(X) = ∅

A |=X
f
xi 7→ x j iff h(f(xi)) = f(x j) and f(X) = {f(xi)}

A |=X
f
ϕ1

s ∗ ϕ
2
s iff there are X1,X2 such that f(X) = X1 ] X2,

A |=X
f[X 7→X1] ϕ

1
s andA |=X

f[X7→X2] ϕ
2
s

A |=X
f
sreach(xi, x j) iff either f(xi) = f(x j) and f(X) = ∅, or

there is n ≥ 1 such that hn(f(xi)) = f(x j) and
f(X) = {f(xi), h(f(xi)), . . . , hn−1(f(xi))}.

The (possibly empty) set of locations f(X) is called the footprint of ϕ when
A |=X

f
ϕ and it corresponds to the (unique) domain of the underlying heap. For

instance, the formula (x1 = x3) ∗ (x2 7→ x2) is satisfiable unlike (x1 = x3)∧ (x2 7→

x2). Lemma 5.2.3 below guarantees finiteness and unicity of the footprint.
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Lemma 5.2.3. Let ϕs be a spatial formula, A be a GRASS-model and f,f′ be
variable assignments that differ at most for the set variable X. If A |=X

f
ϕs and

A |=X
f′
ϕs then f = f′ and f(X) is finite.

The proof is left as Exercise 5.3. So, in this section, we have followed a precise
interpretation of the spatial formulae and a memory state (s, h) in the usual sense
in separation logic is encoded by a structure (N, h′, f, X) where

1. (N, h′) is a GRASS-model,

2. s and f agree on the program variables and f(X) = dom(h),

3. h′ restricted to f(X) is equal to h.

We write GRASS-FO to denote the first-order extension of quantifier-free
GRASS by adding existential quantification over set variables: A |=f ∃ Y ϕ iff
there is X ⊆ L such that A |=f[Y 7→X] ϕ. Actually, in the translation described be-
low, existential quantifications shall occur only in front of the formulae obtained
by translation and therefore its satisfiability status is identical to the satisfiability
status of the formulae obtained by removing the existential quantifications. So,
the formulae in GRASS-FO are purely instrumental in this presentation and the
logic GRASS-FO is not studied for itself.

In Lemma 5.2.4 below, we state a few properties that are useful to show the
correctness of the forthcoming translation but these are quite standard in first-
order logic and therefore the proofs are left as Exercise 5.4.

Lemma 5.2.4.

(I) Let ϕ1 and ϕ2 be GRASS-FO formulae so that Y1 is not free in ϕ2 and
Y2 is not free in ϕ1. Then, (∃ Y1ϕ1) O (∃ Y2 ϕ2) is logically equivalent to
∃ Y1, Y2 (ϕ1 O ϕ2) with O ∈ {∧,∨}.

(II) Given a GRASS-FO formula of the form ∃ Y ϕ, we have ϕ is satisfiable iff
∃ Y ϕ is satisfiable.

5.2.3 A logarithmic-space translation
Given an atomic formula ϕ and a (fresh) set variable Y, we introduce in the table
below the formulae ψ1 and ψ2(Y) that are used in the translation from SLLB into
GRASS (implicitly these formulae are parameterised by ϕ). The formula ψ1(Y)
encodes the reachability constraints expressed by ϕ whereas ψ2(Y) takes care of
the footprint.
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Atomic formula ϕ ψ1 ψ2(Y)
xi = x j xi = x j Y = ∅
xi , x j xi , x j Y = ∅
xi 7→ x j f(xi) = x j Y = {y. (xi = y)}

sreach(xi, x j) xi
\x j
−→ x j Y = {x. (xi

\x j
−→ x) ∧ x , x j}

Let X be a distinguished set variable that serves for the footprint. The transla-
tion tr defined below from SLLB formulae into GRASS-FO formulae is implicitly
parameterised by X. Without any loss of generality, we can assume that the SLLB
formulae are in negation normal form (binary connectives are ∧ and ∨, and nega-
tion occurs only in front of spatial formulae). The map tr is homomorphic for ∨
and ∧ and its definition is completed by the clauses below:

tr(ϕ1
s ∗ · · · ∗ ϕ

n
s ) def

= ∃ Y1 · · · Yn ((ψ1
1 ∧ · · · ∧ ψ

n
1 ∧

∧
i,i′
Yi ∩ Yi′ = ∅)∧

((ψ1
2(Y1) ∧ · · · ∧ ψn

2(Yn) ∧ X = Y1 ∪ · · · ∪ Yn),

where the formulae ψi
1(Yi) and ψi

2(Yi) are defined from the previous table with the
atomic formula ϕi

s, and Y1, . . . , Yn are fresh set variables. Similarly,

tr(¬(ϕ1
s ∗ · · · ∗ ϕ

n
s )) def

= ∃ Y1 · · · Yn ¬((ψ1
1 ∧ · · · ∧ ψ

n
1 ∧

∧
i,i′
Yi ∩ Yi′ = ∅)∧

((ψ1
2(Y1) ∧ · · · ∧ ψn

2(Yn) ∧ X = Y1 ∪ · · · ∪ Yn).

So both translations quantify existentially over set variables and the only differ-
ence is the presence of the negation in front of one of the main conjuncts. This
requires some explanation, which is provided below.

It is worth observing that for all GRASS-modelsA and for all variable assign-
ments f, there is exactly one tuple (X1, . . . ,Xn) in Ln such that A |=g (ψ1

2(Y1) ∧
· · · ∧ ψn

2(Yn) ∧ X = Y1 ∪ · · · ∪ Yn where g = f[Y1 7→ X1, . . . , Yn 7→ Xn]. Thanks
to that property that is closely related to preciseness, we can get advantage of the
property below.

Lemma 5.2.5. Let χ1 and χ2(X, Y1, . . . , Yn) be GRASS formulae such that for
all GRASS-models A and for all variable assignments f, there is exactly one
tuple (X1, . . . ,Xn) in Ln such that A |=g χ2(X, Y1, . . . , Yn) where g = f[Y1 7→

X1, . . . , Yn 7→ Xn]. Then, for all GRASS-models A and all variable assignments
f, the statements below are equivalent:
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(I) A |=f ¬(∃ Y1 · · · Yn χ1 ∧ χ2(X, Y1, . . . , Yn)),

(II) A |=f (∃ Y1 · · · Yn ¬χ1 ∧ χ2(X, Y1, . . . , Yn)).

The proof of Lemma 5.2.5 is left as Exercise 5.5 and requires standard ar-
guments from first-order logic. Consequently, tr(¬(ϕ1

s ∗ · · · ∗ ϕ
n
s )) is logically

equivalent to the negation of tr(ϕ1
s ∗ · · · ∗ϕ

n
s ) even though both translations involve

existential quantifications. This is a key property established in [PWZ13]. Let
T(ϕ) be the GRASS formula obtained from tr(ϕ) by removing the sequences of
existential quantifications of the form ∃ Y1 · · · Yn.

Example 5.2.6. The formula ϕ = (x1 7→ x2) ∧ x1 = x3 is not satisfiable and its
translation T(ϕ) in GRASS is given below:

(f(x1) = x2 ∧ Y1 = {y.(x1 = y)} ∧ X = Y1) ∧ (x1 = x3 ∧ Y2 = ∅ ∧ X = Y2).

By contrast, the formula ϕ′ = (x1 , x3) ∗ (x1 7→ x3) ∗ (x3 7→ x3) is satisfiable and
its translation T(ϕ′) is the following:

(x1 , x3∧f(x1) = x3∧f(x3) = x3∧(Y1∩Y2) = ∅∧(Y1∩Y3) = ∅∧(Y2∩Y3) = ∅)∧

Y1 = ∅ ∧ Y2 = {y.(x1 = y)} ∧ Y3 = {y.(x3 = y)} ∧ (X = Y1 ∪ Y2 ∪ Y3).

By Lemma 5.2.4, T(ϕ) is satisfiable iff tr(ϕ) is satisfiable. It remains to show
that the satisfiability status of tr(ϕ) is equivalent to the satisfiability status of ϕ.

Lemma 5.2.7. Let ϕ be an SLLB formula in negation normal form, A be a
GRASS-model, f be a variable assignment and X be a distinguished set variable.
ThenA |=X

f
ϕ iffA |=f tr(ϕ).

Consequently, there is a logarithmic-space reduction from the satisfiability
problem for SLLB into the satisfiability problem for GRASS. Given an SLLB
formula ϕ, we perform the following operations:

1. Compute ϕ′ obtained from ϕ by pushing the negations inwards as much as
possible so that ϕ′ is an equivalent formula in negation normal form.

2. Compute T(ϕ′) by using the recursive definition for tr(ϕ′) but we omit the
prefixes of the form ∃ Y1 · · · Yn on-the-fly.
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The proof of Lemma 5.2.7 is left as Exercise 5.7 and it can be done by a stan-
dard structural induction. In the induction step, the cases for Boolean connectives
∧ and ∨ are by an easy verification whereas the base case for atomic formulae of
the form ¬(ϕ1

s ∗· · ·∗ϕ
n
s ) follows immediately from the base case for atomic formu-

lae of the form ϕ1
s ∗ · · · ∗ ϕ

n
s thanks to Lemma 5.2.5. So, the main difficulty in the

proof is to consider the translation for atomic formulae of the form (ϕ1
s ∗ · · · ∗ ϕ

n
s )

but this is not very difficult since then the translation simply internalises the SLLB
precise semantics into GRASS-FO.

Corollary 5.2.8. The satisfiability, validity and entailment problems for SLLB
can be solved in NP.

NP-hardness is an obvious consequence that SLLB contains equality con-
straints and it is closed under Boolean connectives.

We have seen that the logics SLLB and GRASS have quite a lot of similarities
and it is legitimate to wonder why to bother to introduce the logic GRASS as it
has been done in [PWZ13]. Indeed, the models are quite similar, the encoding of
the reachability constraints and footprint is quite clear. However, the decidability
proof for GRASS (omitted in this document) invokes results about the combi-
nation of theories along the lines of the seminal work of Nelson-Oppen (stably
infinity of the theories) but also about elimination of implicit quantifiers or set
comprehensions. That is why, the way GRASS has been designed allows to use
material about the decidability of combined theories (we recall that the details can
be found in [PWZ13]) and to take advantage of the SMT framework for combi-
nations with other theories. Alternatively, the developments in this section can be
viewed as a piece of evidence that SLLB can be rephrased to fit the SMT frame-
work, as far as several decision problems are concerned (satisfiability, abduction,
etc).

5.3 Direct Approach: An Example
In this section, we show that the satisfiability and model-checking problems for
1SL0 (the propositional version of 1SL without quantifiers and quantified vari-
ables) can be solved in polynomial space. An equivalence relation on memory
states with finite index is designed so that infinity involved in the interpretation of
the magic wand operator can be tamed finitely [Yan01, Loz04b]. This allows to
characterise precisely the expressiveness of 1SL0 and it is the key step to show a
small heap property. The developments made in this section are mainly inspired
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from material and results in [Yan01, COY01, Loz04a] (see also some subsequent
developments in [DGLWM14]).

5.3.1 Expressiveness
Given q ≥ 1 and α ∈N, we write Test(q, α) to denote the following set of atomic
formulae:

1. xi = x j, xi ↪→ x j with i, j ∈ [1, q].

2. alloc(xi) with i ∈ [1, q].

3. size ≥ β with β ∈ [0, α].

Here, alloc(xi) and size ≥ β are not anymore shortcuts as defined in Sec-
tion 1.2.2 but these expressions should be understood as primitive formulae (at
least to build Boolean combinations from it). We recall that size ≥ β holds true
when the heap domain has cardinal at least β. Hence, formulae from Test(q, α)
state very basic properties on memory states.

We can also use sizeq ≥ β as an abbreviation for the Boolean combination
of test formulae defined below that characterises the memory states such that the
cardinal of the heap domain is at least β even if we remove from it the locations
that are interpreted by a program variable among x1, . . . , xq:∨

X⊆{x1,...,xq}

(
∧
x∈X

alloc(x)) ∧ (
∧

x∈{x1,...,xq}\X

¬alloc(x)) ∧ size ≥ (card(X) + β).

Alternatively, we write Test′(q, α) to denote the variant set of Test(q, α) in
which test formulae of the form size ≥ β are replaced by sizeq ≥ β (understood
as primitive formulae this time).

Lemma 5.3.1. Let (s, h) be a memory state and h v h′ (i.e. h′ is a conservative
extension of h). For all ψ ∈ Test′(q, α), (s, h) |= ψ implies (s, h′) |= ψ.

The proof is left as Exercise 5.8. We write (s, h) ≈q
α (s′, h′) (q ≥ 1, α ∈ N)

whenever the memory states (s, h) and (s′, h′) agree on the satisfaction of the test
formulae in Test′(q, α). The equivalence relation is actually an indistinguishabil-
ity relation with respect to a finite set of formulae parameterised by syntactic re-
sources based on q and α. Note that, above sizeq ≥ β is used instead of size ≥ β,
which shall simplify a few forthcoming technical developments (this is therefore
a bit different from what has been done in [Yan01, Loz04a, BDL09] for instance).
However, this is irrelevant for expressiveness, see also Exercise 5.13.
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Lemma 5.3.2. Let q ≥ 1 and α ∈N. Then ≈q
α+1⊆≈

q
α and ≈q+1

α ⊆≈
q
α.

The proof is left as Exercise 5.9. Below, we establish two technical lemmas
that garantee that ≈q

α behave properly. These are essential properties to establish
forthcoming Theorem 5.3.6.

Lemma 5.3.3. Let α, α1, α2 ∈ N with α = α1 + α2 and (s, h), (s′, h′) be memory
states such that (s, h) ≈q

α (s′, h′). For all heaps h1, h2 such that h = h1 ] h2, there
are heaps h′1, h′2 such that h′ = h′1 ] h

′

2, (s, h1) ≈q
α1

(s′, h′1) and (s, h2) ≈q
α2 (s′, h′2).

Proof. Let α, α1, α2, (s, h), (s′, h′) and h1, h2 be defined as in the statement. In
order to build h′1 and h′2, let us make a few basic observations.

1. Since (s, h) ≈q
α (s′, h′), for all i ∈ [1, q], s(xi) ∈ dom(h) iff s′(xi) ∈ dom(h′).

2. Let Cq(s, h) be the cardinal of the set dom(h) \ {s(x1), . . . , s(xq)}. We have
Cq(s, h) = Cq(s, h1) + Cq(s, h2).

Let us define explicitly the heap h′1 and therefore h′2 is defined as the complement
heap with respect to the heap h′. Moreover, we only need to specify explicitly the
domain of h′1 since the images are those from h′. There is only one exception in
the Case 4 below in which h′2 is defined explicitly instead.

• For every i ∈ [1, q], if s(xi) ∈ dom(h1), then s′(x′i) ∈ dom(h′1) by definition.

• So, for every i ∈ [1, q], s′(x′i) ∈ dom(h′1) iff s(xi) ∈ dom(h1) and therefore
s′(x′i) ∈ dom(h′2) iff s(xi) ∈ dom(h2).

The heap h′1 is further populated depending on cardinality constraints.

Case 1: Cq(s, h) ≤ α.
Since (s, h) ≈q

α (s′, h′), we have Cq(s′, h′) = Cq(s, h) ≤ α too. Let β1 = Cq(s, h1).
Since Cq(s′, h′) = Cq(s, h), and β1 ≤ Cq(s′, h′), there are β1 locations l1, · · · , lβ1

in dom(h′) \ {s′(x1), . . . , s′(xq)}. Then {l1, . . . , lβ1} ⊆ dom(h′1) by definition. This
concludes the construction of h′1.
Case 2: Cq(s, h) > α, Cq(s, h1) ≥ α1 and Cq(s, h2) ≥ α2.
Let β1 = min(α1, Cq(s, h1)) = α1. Since min(α, Cq(s, h)) = min(α, Cq(s′, h′)) = α
and β1 ≤ min(α, Cq(s, h)), then β1 ≤ min(α, Cq(s′, h′)). Let l1 < · · · < lβ1 be the β1

smallest locations in dom(h′) \ {s′(x1), . . . , s′(xq)} (for the usual linear ordering on
N). Then {l1, . . . , lβ1} ⊆ dom(h′1) by definition. This concludes the construction of
h′1.
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Case 3: Cq(s, h) > α, Cq(s, h1) < α1 and Cq(s, h2) > α2.
Let β1 = Cq(s, h1). Since min(α, Cq(s, h)) = min(α, Cq(s′, h′)) = α, β1 ≤ α and
β1 ≤ min(α, Cq(s′, h′)), let l1 < · · · < lβ1 be the β1 smallest locations in dom(h′) \
{s′(x1), . . . , s′(xq)}. Then {l1, . . . , lβ1} ⊆ dom(h′1) by definition. This concludes the
construction of h′1.
Case 4: Cq(s, h) > α, Cq(s, h1) ≥ α1 and Cq(s, h2) < α2.
This is symmetrical to Case 3 and the only case for which we define explicitly
the heap h′2 (and therefore h′1 by complementation). Let β2 = Cq(s, h2). Since
min(α, Cq(s, h)) = min(α, Cq(s′, h′)) = α, β2 ≤ α and β2 ≤ min(α, Cq(s′, h′)), let
l1 < · · · < lβ2 be the β2 smallest locations in dom(h′) \ {s′(x1), . . . , s′(xq)}. Then
{l1, . . . , lβ2} ⊆ dom(h′2) by definition. This concludes the construction of h′2.

Note that after the last three cases, the case Cq(s, h1) < α1, Cq(s, h2) < α2 is
excluded because α = α1 + α2 and Cq(s, h) > α .

It remains to show that (s, h1) ≈q
α1

(s′, h′1) and (s, h2) ≈q
α2 (s′, h′2). For the satis-

faction of the test formulae of the form xi = x j, alloc(xi) and xi ↪→ x j, the proof
is by an easy verification. It remains to check the satisfiability status of the for-
mulae sizeq ≥ β with β ∈ [0, α]. This amounts to check that min(α1, Cq(s, h1)) =
min(α1, Cq(s, h′1)) and min(α2, Cq(s, h2)) = min(α2, Cq(s, h′2)). The Case 1 is by an
easy verification since Cq(s, h1) = Cq(s′, h′1) and Cq(s, h2) = Cq(s′, h′2) whereas the
Case 2 is quite immediate because min(α1, Cq(s, h1)) = min(α1, Cq(s′, h′1)) = α1

by construction, and Cq(s′, h′) − α1 > α2 and therefore min(α2, Cq(s′, h′2)) = α2,
i.e. min(α2, Cq(s′, h′2)) is equal to min(α2, Cq(s, h2)).

Below we analyse the Case 3 (we omit the Case 4 since its treatment is sym-
metrical). Cq(s, h1) = Cq(s′, h′1) < α1 and therefore Cq(s′, h′) − Cq(s′, h′1) > α2.
Consequently, Cq(s′, h′2) > α2, whence min(α2, Cq(s′, h′2)) = min(α2, Cq(s, h2)) =
α2. QED

Given a memory state (s, h), we write maxval(s, h) to denote the maximal
value max(ran(s) ∪ dom(h) ∪ ran(h)).

Lemma 5.3.4. Let α ∈ N and (s, h), (s′, h′) be memory states such that (s, h) ≈q
α

(s′, h′). For any heap h1 disjoint from h, there is a heap h′1 disjoint from h′ such
that the conditions below hold:

(I) (s, h1) ≈q
α (s′, h′1).

(II) (s, h ] h1) ≈q
α (s′, h′ ] h′1).

(III) maxval(s′, h′1) ≤ maxval(s′, h′) + α.
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If we give up the condition (III), the condition (I) can be strengthened by:
(s, h1) ≈q

β (s′, h′1) for all β ≥ 0 (i.e. dom(h1) and dom(h′1) have the same cardinal-
ity).

Proof. Let α, (s, h), (s′, h′) and h1 be defined as in the statement. Let us explain
how to build the heap h′1 and then we show that it satisfies the right properties.The
heap h′1 is built incrementally and therefore its initial value is naturally the empty
heap.

• For every s(xi) ∈ dom(h1) with i ∈ [1, q], if h1(s(xi)) = s(x j) for some j ∈ [1, q],
then h′1(s′(xi))

def
= s′(x j), otherwise h′1(s′(xi))

def
= max{s′(x j) | j ∈ [1, q]} + 1.

Since (s, h) ≈q
α (s′, h′) and, h and h1 are disjoint, this implies that the current

value of h′1 after the addition of all the new memory cells (according to the
above definition) is disjoint from h′. Moreover, (s, h1) and (s′, h′1) agree on test
formulae of the form xi = x j, xi ↪→ x j and alloc(xi).

• Let β1 = min(α, Cq(s, h1)). For every i ∈ [1, β1], we extend h′1 so that

h′1(max{s′(x j) | j ∈ [1, q]} + i) def
= max{s′(x j) | j ∈ [1, q]} + i.

Consequently, min(α, Cq(s, h1)) = min(α, Cq(s′, h′1)) and therefore this implies
that (s, h1) and (s′, h′1) agree on the test formulae of the form sizeq ≥ β with
β ∈ [0, α].

From the construction of h′1, we can conclude that (s, h1) ≈q
α (s′, h′1) and

maxval(s′, h′1) ≤ maxval(s′, h′) + α.

It remains to show that (s, h ] h1) ≈q
α (s′, h′ ] h′1). The satisfaction of the test

formulae xi = x j is inherited from (s, h) ≈q
α (s′, h′) (because the stores are un-

changed) whereas the satisfaction of the test formulae xi ↪→ x j and alloc(xi)
requires simple arguments by distinguishing four cases:

1. s(xi) ∈ dom(h),

2. s(xi) < dom(h ] h1),

3. s(xi) ∈ dom(h1) and h1(s(xi)) < {s(x j) | j ∈ [1, q]} and finally

4. s(xi) ∈ dom(h1) and h1(s(xi)) ∈ {s(x j) | j ∈ [1, q]}.

Demri, Deters: Logical Investigations on Separation Logics (Draft) – September 8, 2015– ESSLLI’15

153



5.3. DIRECT APPROACH: AN EXAMPLE

Details are omitted. In order to check that (s, h ] h1) and (s′, h′ ] h′1) agree on
test formulae of the form sizeq ≥ β with β ∈ [0, α], it is sufficient to observe
that min(α, Cq(s, h)) = min(α, Cq(s′, h′)) and min(α, Cq(s, h1)) = min(α, Cq(s′, h′1))
imply

min(α, Cq(s, h ] h1)) = min(α, Cq(s′, h′ ] h′1))

since Cq(s, h]h1) = Cq(s, h)+Cq(s, h1) and Cq(s′, h′]h′1) = Cq(s′, h′)+Cq(s′, h′1).QED

For each formulaϕ, we define its memory size msize(ϕ) following the clauses
below [Yan01]. This is just a refinement of the size of ϕ when formulae are rep-
resented by their syntactic trees.

msize(xi ↪→ xi′)
def
= 1

msize(xi = xi′)
def
= 0

msize(emp) def
= 1

msize(¬ψ) def
= msize(ψ)

msize(ψ1 ∧ ψ2) def
= max(msize(ψ1), msize(ψ2))

msize(ψ1 ∗ ψ2) def
= msize(ψ1) + msize(ψ2)

msize(ψ1 −∗ψ2) def
= max(msize(ψ1), msize(ψ2)).

For instance msize(size = 3) = 4 when size = 3 is defined in 1SL0 by the
formula below:

((¬emp) ∗ (¬emp) ∗ (¬emp)) ∧ ¬((¬emp) ∗ (¬emp) ∗ (¬emp) ∗ (¬emp)).

The memory size is bounded above by the size when formulae are encoded as
trees.

Lemma 5.3.5. For every ϕ in 1SL0, msize(ϕ) is smaller that the size of ϕ, as-
suming that formulae are encoded as trees.

Below, we state the main result about the equivalence relation≈q
α: two memory

states in the relation cannot be distinguished by formulae of memory size smaller
than α.

Theorem 5.3.6. Let ϕ be a formula in 1SL0 built over the program variables x1,
. . . , xq. For any α ∈ N such that msize(ϕ) ≤ α, and for all memory states (s, h),
(s′, h′) such that (s, h) ≈q

α (s′, h′), we have (s, h) |= ϕ iff (s′, h′) |= ϕ.
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Proof. Suppose that (s, h) ≈q
α (s′, h′) and ϕ be a formula with msize(ϕ) ≤ α.

By structural induction, we show that (s, h) |= ϕ if and only if (s′, h′) |= ϕ. It is
sufficient to establish one direction of the equivalence thanks to the symmetry.

The base case with the atomic formulae of the form xi ↪→ x j, xi = x j or emp
is by an easy verification due to the very definition of the test formulae. Indeed,
xi ↪→ x j and xi = x j are already test formulae in Test′(q, α) whereas emp is
logically equivalent to

(
∧

i∈[1,q]

¬alloc(xi)) ∧ ¬(sizeq ≥ 1).

In the induction step, the cases with Boolean connectives are even more straight-
forward to prove.
Case 1: ψ = ψ1 ∗ ψ2.
Suppose that (s, h) |= ψ1 ∗ ψ2 and msize(ψ1 ∗ ψ2) ≤ α. There are heaps h1 and
h2 such that h = h1 ] h2, (s, h1) |= ψ1 and (s, h2) |= ψ2. As α ≥ msize(ψ1 ∗

ψ2) = msize(ψ1) + msize(ψ2), there exist α1 and α2 such that α = α1 + α2,
α1 ≥ msize(ψ1) and α2 ≥ msize(ψ2). By Lemma 5.3.3, there exist heaps h′1
and h′2 such that h′ = h′1 ] h

′

2, (s, h1) ≈q
α1

(s′, h′1) and (s, h2) ≈q
α2 (s′, h′2). By the

induction hypothesis, we get (s′, h′1) |= ψ1 and (s′, h′2) |= ψ2. Consequently, we
obtain (s′, h′) |= ψ1 ∗ ψ2.
Case 2: ψ = ψ1 −∗ψ2.
Suppose that (s, h) |= ψ1 −∗ψ2 and msize(ψ1 −∗ψ2) ≤ α. Since msize(ψ1 −∗ψ2) =
msize(ψ2), we also get that msize(ψ1), msize(ψ2) ≤ α.

Let us prove that (s′, h′) |= ψ1 −∗ψ2. Let h′1 be a heap disjoint from h′ such
that (s′, h′1) |= ψ1. By Lemma 5.3.4, there is a heap h1 disjoint from h such that
(s, h1) ≈q

α (s′, h′1) and (s, h ] h1) ≈q
α (s′, h′ ] h′1). By the induction hypothesis, we

conclude that (s, h1) |= ψ1. Since (s, h) |= ψ1 −∗ψ2, this implies that (s, h ] h1) |=
ψ2. By the induction hypothesis, we conclude that (s′, h′ ] h′1) |= ψ2. Since h′1 is
an arbitrary disjoint heap from h′, we obtain (s′, h′) |= ψ1 −∗ψ2. QED

Theorem 5.3.7. Let ϕ be a formula in 1SL0 built over the variables in x1, . . . , xq.
The formula ϕ is logically equivalent to a Boolean combination of test formulae
from Test(q, q + msize(ϕ)).

Theorem 5.3.7 can be viewed as a means to eliminate separating connec-
tives ∗ and −∗ and this is analogous to quantifier elimination in Presburger arith-
metic [Pre29] for which periodicity constraints need to be introduced in order
to eliminate the quantifiers (see e.g. [Coo72]). Similarly, the atomic formulae
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size ≥ k and alloc(xi) would require the use of the separating connectives to
be properly defined in 1SL0 but in the Boolean combinations, these formulae are
understood as primitive.

Proof. Let α = msize(ϕ). Given a memory state (s, h), we write LIT(s, h) to
denote the following set of literals:

{χ ∈ Test′(q, α) | (s, h) |= χ} ∪ {¬χ | (s, h) 6|= χ with χ ∈ Test′(q, α)}.

Since Test′(q, α) is a finite set, LIT(s, h) is finite too and let us consider the well-
defined formula

∧
ψ∈LIT(s,h)ψ. We have the following equivalence:

(s′, h′) |=
∧

ψ∈LIT(s,h)

ψ iff (s, h) ≈q
α (s′, h′).

The expression below

ψ′
def
=

∨
(s,h)|=ϕ

(
∧

ψ∈LIT(s,h)

ψ)

is equivalent to a Boolean combination ϕ′ of formulae from Test′(q, α) because
LIT(s, h) ranges over the finite set of elements from Test′(q, α) (just select a finite
amount of disjuncts). By Theorem 5.3.6, the formula ϕ is logically equivalent to
ϕ′, which concludes the proof since any formula of the form sizeq ≥ β with
β ≤ α is logically equivalent to a Boolean combination of test formulae from
Test(q, q + α).

Indeed, suppose that (s, h) |= ϕ. Obviously, this implies that (s, h) |=
∧
ψ∈LIT(s,h)ψ

and therefore (s, h) |= ϕ′. Conversely, suppose that (s, h) |= ϕ′. This means that
there is a memory state (s′, h′) such that (s′, h′) |= ϕ and (s, h) |=

∧
ψ∈LIT(s,h)ψ.

Since (s, h) ≈q
α (s′, h′), msize(ϕ) ≤ α and (s′, h′) |= ϕ, by Theorem 5.3.6 we get

(s, h) |= ϕ. QED

Now, it is possible to establish the small model property.

Corollary 5.3.8. Let ϕ be a satisfiable 1SL0 formula built over x1, . . . , xq. There
is a memory state (s, h) such that (s, h) |= ϕ and maxval(s, h) ≤ q + msize(ϕ).

The proof is left as Exercise 5.10.
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5.3.2 A model-checking decision procedure

In order to check the satisfiability status of ϕ, only the truth value of formulae in
Test′(q, msize(ϕ)) matters. That is why, instead of operating on memory states
to check satisfiability, it is sufficient to operate on its abstractions (with respect to
the basic properties induced by Test′(q, msize(ϕ))), whence the introduction of
symbolic memory states below. A symbolic memory state sms over (q, α) is a
finite structure (P,A,H, n) such that:

1. P is a partition of {x1, . . . , xq} (encoding equalities) and A ⊆ P (encoding the
subset in the domain).

2. H is a functional relation on P such that dom(H) = A.

3. n ∈ [0, α] and this corresponds to the number of locations in the heap do-
main that are not equal to the interpretation of some program variables in
{x1, . . . , xq}. For values strictly greater than α, a truncation is considered.

Given q ≥ 1 and α ∈ N, the number of symbolic memory states over (q, α) is
“only” exponential in q+α. Given a memory state (s, h), we define its abstraction
Symb[s, h] over (q, α) as the symbolic memory state (P,A,H, n) such that

• n = min(α, card(dom(h) \ {s(xi) | i ∈ [1, q]})).

• P is a partition of {x1, . . . , xq} so that for all x, x′, we have s(x) = s(x′) iff x and
x′ belong to the same set in P.

• A = {X ∈ P | there is x ∈ X, s(x) ∈ dom(h)}.

• X H X′ iff there are x ∈ X and x′ ∈ X′ such that h(s(x)) = s(x′).

Note that given a symbolic memory state sms over (q, α), there exists always a
memory state (s, h) such that Symb[s, h] is equal to sms. Not only every symbolic
memory state has always a concretisation but also symbolic memory states are the
right way to abstract memory states when the language 1SL0 is involved, which
can be formally stated as follows: (s, h) ≈q

α (s′, h′) iff Symb[s, h] = Symb[s′, h′].

Definition 5.3.9. Given symbolic memory states sms, sms1 and sms2, we write
∗s(sms, sms1, sms2) whenever there exist a store s and disjoint heaps h1 and h2

such that Symb[s, h1 ] h2] = sms, Symb[s, h1] = sms1 and Symb[s, h2] = sms2. ∇
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1. if ψ is atomic then return AMC(sms, ψ);

2. if ψ = ¬ψ1 then return not MC(sms, ψ1);

3. if ψ = ψ1 ∧ ψ2 then return (MC(sms, ψ1) and MC(sms, ψ2));

4. if ψ = ψ1 ∗ ψ2 then return > iff there are sms1 and sms2 such that
∗s(sms, sms1, sms2) and MC(sms1, ψ1) = MC(sms2, ψ2) = >;

5. if ψ = ψ1 −∗ψ2 then return ⊥ iff for some sms′ and sms′′ such that
∗s(sms′′, sms′, sms), MC(sms′, ψ1) = > and MC(sms′′, ψ2) = ⊥;

Figure 5.1: Function MC(sms, ψ)

Given q ≥ 1 and α ∈ N, the ternary relation ∗s can be decided in polyno-
mial time in q + log(α) for all the symbolic memory states built over (q, α). In-
deed, assuming that sms = (P,A,H, n) and smsi = (Pi,Ai,Hi, ni), the relation
∗s(sms, sms1, sms2) holds exactly when the conditions below are satisfied:

1. P = P1 = P2,

2. A = A1 ∪ A2 and A1 ∩ A2 = ∅,

3. H = H1 ∪H2,

4. n = max(α, n1 + n2).

A formal proof is left as Exercise 5.12. Note that there is no need to specify that
H1 ∩ H2 = ∅ since this is a consequence of A1 ∩ A2 = ∅, dom(H1) ⊆ A1 and
dom(H2) ⊆ A2.

Figure 5.1 presents a procedure MC(sms, ψ) returning a Boolean value in {⊥
,>} and taking as arguments, a symbolic memory state over (q, α) and a formulaψ
whose size is bounded above by α. All the quantifications over symbolic memory
states are done over (q, α). A case analysis is provided depending on the outermost
connective of the input formula. Its structure is standard and mimicks faithfully
the semantics for 1SL0 except that we deal with symbolic memory states. The
auxiliary function AMC(sms, ψ) also returns a Boolean value in {⊥,>}, makes no
recursive calls and is dedicated to atomic formulae (see Figure 5.2). The design of
MC is similar to nondeterministic polynomial-space procedures, see e.g. [Lad77,
Spa93, COY01, Dem03].
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1. if ψ is emp then return > iff A = ∅ and n = 0;

2. if ψ is xi = x j then return > iff xi, x j ∈ X, for some X ∈ P;

3. if ψ is xi ↪→ x j then return > iff (X,X′) ∈ H where xi ∈ X ∈ P and
x j ∈ X′ ∈ P;

Figure 5.2: Function AMC(sms, ψ)

Lemma 5.3.10. Let q ≥ 1, α ∈ N, sms be a symbolic memory state over (q, α)
andϕ be in 1SL0 built over x1, . . . , xq such that msize(ϕ) ≤ α. We have MC(sms, ϕ)
returns > iff there exists (s, h) such that Symb[s, h] = sms and (s, h) |= ϕ.

Proof. Let us show the equivalence by structural induction. We omit below the
base case with atomic formulae and the case with negated subformulae.

First, let us make a basic observation. Indeed, given a symbolic memory state
sms, the statements below are equivalent:

• there exists (s, h) such that Symb[s, h] = sms and (s, h) |= ϕ,

• for all memory states (s, h) such that Symb[s, h] = sms, we have (s, h) |= ϕ.

Indeed, Symb[s, h] = Symb[s′, h′] implies (s, h) ≈q
α (s′, h′) and therefore we con-

clude (s, h) ≈q
msize(ϕ) (s′, h′) by Lemma 5.3.2 since msize(ϕ) ≤ msize(ϕ) ≤ α.

By Theorem 5.3.6, we get (s, h) |= ϕ iff (s′, h′) |= ϕ.
Case 1: ϕ = ϕ1 ∧ ϕ2.
Suppose that (s, h) |= ϕ and Symb[s, h] = sms. So, (s, h) |= ϕ1 and (s, h) |= ϕ2,
and by the induction hypothesis, both MC(sms, ϕ1) and MC(sms, ϕ2) return >
(msize(ϕ1), msize(ϕ2) ≤ α too). Hence, MC(sms, ϕ) returns >.

Conversely, suppose that MC(sms, ϕ) returns >. By definition of MC, we
have MC(sms, ϕ1) and MC(sms, ϕ2). For all memory states (s′, h′) such that
Symb[s′, h′] = sms, we have (s′, h′) |= ϕ1 and (s′, h′) |= ϕ2. We have seen
that every symbolic memory state admits a concretisation. Consequently, there
is a memory state (s, h) such that Symb[s, h] = sms. By the induction hypothesis,
(s, h) |= ϕ1 and (s, h) |= ϕ2 and therefore (s, h) |= ϕ.
Case 2: ϕ = ϕ1 ∗ ϕ2.
Suppose that (s, h) |= ϕ and Symb[s, h] = sms. So, there are subheaps h1 and h2

such that h = h1 ] h2, (s, h1) |= ϕ1 and (s, h2) |= ϕ2. By the induction hypothesis,
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MC(Symb[s, h1], ϕ1) and MC(Symb[s, h2], ϕ2) return >. By definition of ∗s, we
have

∗s(Symb[s, h], Symb[s, h1], Symb[s, h2])

and therefore there are sms1 and sms2 such that ∗s(sms, sms1, sms2) and MC(sms1, ϕ1)
= MC(sms2, ϕ2) = >, whence MC(sms, ϕ) returns >.

Conversely we assume sms1, sms2 such that

∗s(sms, sms1, sms2) and MC(sms1, ϕ1) = MC(sms2, ϕ2) = >.

By definition of ∗s, there exist a store s and disjoint heaps h1 and h2 such that
Symb[s, h1]h2] = sms, Symb[s, h1] = sms1, Symb[s, h2] = sms2. By the induction
hypothesis, we get that (s, h1) |= ϕ1 and (s, h2) |= ϕ2. Consequently, (s, h) |= ϕ.
Case 3: ϕ = ϕ1 −∗ϕ2. Suppose that (s, h) 6|= ϕ and Symb[s, h] = sms. There is a
heap h′ disjoint from h such that (s, h′) |= ϕ1 and (s, h] h′) 6|= ϕ2. By definition of
∗s, we have ∗s(Symb[s, h ] h′], Symb[s, h], Symb[s, h′]). By the induction hypothe-
sis, we have MC(Symb[s, h′], ϕ1) returns> and MC(Symb[s, h]h′], ϕ2) returns⊥.
So, for some sms′ and sms′′ such that ∗s(sms′′, sms′, sms), we get MC(sms′, ϕ1)
= > and MC(sms′′, ϕ2) = ⊥, whence MC(sms, ϕ) returns ⊥.

Conversely, suppose that MC(sms, ϕ) returns ⊥. For some sms′ and sms′′

such that ∗s(sms′′, sms′, sms) and MC(sms′, ϕ1) = > and MC(sms′′, ϕ2) = ⊥.
By definition of ∗s, there exist a store s and disjoint heaps h1 and h2 such that
Symb[s, h1]h2] = sms′′, Symb[s, h1] = sms, Symb[s, h2] = sms′. By the induction
hypothesis and by using that preliminary equivalence, we have (s, h1 ] h2) 6|= ϕ2

and (s, h2) |= ϕ1 whence (s, h) 6|= ϕ.
For the correction of the proof of the last case, we crucially need to use that

msize(ϕ1 −∗ϕ2) ≤ α implies that msize(ϕ2) ≤ α but also msize(ϕ1) ≤ α –this
last inequality would not necessarily hold with the size function msize(·). QED

Consequently, we get the following complexity characterisation

Theorem 5.3.11. [COY01] Model-checking and satisfiability problems for 1SL0
are in PSPACE.

Proof. PSPACE upper bound is a consequence of Lemma 5.3.10 by recalling that
ϕ is satisfiable iff there is a memory state (s, h) such that (s, h) |= ϕ iff there is
a symbolic memory state sms over (q, msize(ϕ)) such that MC(sms, ϕ) = >. It
is sufficient to guess sms and then check whether MC(sms, ϕ) returns >. All of
this can be done in non-deterministic polynomial space and by Savitch’s Theo-
rem [Sav70], we get the PSPACE upper bound.
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We observe that MC(sms, ϕ) runs in space O(d(q + log(α))) where d is the
depth of syntactic tree for ϕ since the quantifications are over symbolic memory
states over (q, α), there is an exponential amount in q + α and each symbolic
memory state can be encoded with space inO(q+log(α)). Moreover, the recursion
depth of MC is linear in d, which is itself linear in the size of ϕ. Hence, all the
symbolic memory states considered in the algorithm are of polynomial size in the
size of ϕ.

For the model-checking problem, it is sufficient to call MC with the abstraction
of the memory state. Indeed, (s, h) |= ϕ iff MC(Symb[s, h], ϕ) returns true with
α = msize(ϕ) (by Lemma 5.3.10). Now, Symb[s, h] and α can be constructed in
polynomial space and MC runs in polynomial space too. QED

PSPACE-hardness has been presented in Section 2.1.2. An alternative way
to obtain the PSPACE upper bound has been proposed in [Hag04, CGH05] by a
logarithmic-space reduction to the first-order theory of equality shown in PSPACE

in [Sto77] (see also Section 5.4).

Corollary 5.3.12. Given a formula ϕ in 1SL0, computing a Boolean combination
of atomic formulae from Test(q, q + msize(ϕ)) logically equivalent to ϕ can be
done in polynomial space.

Proof. This is actually a quite direct consequence of the proof of Theorem 5.3.7.
Let ϕ be a 1SL0 formula with α = msize(ϕ). By the proof of Theorem 5.3.7 and
Corollary 5.3.8, ϕ is logically equivalent to the formula below∨

{(
∧

ψ∈LIT(s,h)

ψ) | MC(Symb[s, h], ϕ) = > and maxval(s, h) ≤ q + α}.

Note that Symb[s, h] is computed with q and msize(ϕ).
The non-isomorphic copies of memory states (s, h) such that maxval(s, h) ≤

q + α can be enumerated in polynomial space. Moreover, the model-checking
problem for 1SL0 is in PSPACE; so the above formula can be built in polynomial
space (but its size may be exponential in the size of ϕ) by taking advantage of the
fact that

∧
ψ∈LIT(s,h) can be constructed in polynomial space. QED

As by-product, we can also establish the existence of a family of PTIME frag-
ments of 1SL0.

Corollary 5.3.13. Let q ≥ 1. The satisfiability problem for 1SL0 restricted to
formulae with at most q program variables can be solved in polynomial time.
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Proof. Let ϕ be a formula in 1SL0 with at most q program variables. When q
is fixed, the number of symbolic memory states over (q, msize(ϕ)) is polynomial
in the size of ϕ. To check the satisfiability status of the formula ϕ, for each
symbolic memory state sms, we check whether MC(sms, ϕ) returns >. To do
so, we use standard principles from dynamic programming and we maintain a
table A[sms, ψ] taking values in {unknown,>,⊥} to memorize the value returned
by MC(sms, ψ) for each subformula of ψ and for each symbolic memory state
sms over (q, msize(ϕ)). All the initial values are equal to unknown. We launch
a new call to MC(sms, ψ) only when A[sms, ψ] = unknown. Moreover, before
returning a value with MC, we update the table A accordingly. Since the table has
a polynomial number of entries in the size of ϕ, we have that ϕ is satisfiable iff
there is a symbolic memory state such that A[sms, ϕ] = >, which can be verified
in polynomial time in the size of ϕ. QED

All the above results can be extended to k > 1 (see Exercise 5.14) by ade-
quately adapting the previous developments.

5.4 Translation into QBF
Symbolic memory states abstract memory states and their encoding requires a
polynomial amount of bits. In this section, we show how symbolic memory states
can be encoded by propositional variables and then how the model-checking al-
gorithm can be expressed as a QBF formula where the quantification over sym-
bolic memory states in MC (from Section 5.3) can be straighforwardly encoded
by quantification in QBF. This allows us to reduce easily 1SL0 satisfiability to
QBF satisfiability, and then to recall how QBF can be translated into a PSPACE

fragment of first-order logic [Sto77]. In that way, instead of using an SMT solver
as done in Section 5.2 or an ad-hoc algorithm MC based on symbolic memory
states, it becomes possible to use either a QBF solver (see e.g. [LB10, HSB14])
or a theorem prover for first-order logic (see e.g. [WDF+09, KV13]) to solve the
satisfiability/validity problem for 1SL0, as advocated in [Hag04, CGH05]. Nev-
ertheless, it is fair to observe that the translation into QBF presented below takes
advantage of the abstraction made in Section 5.3. It is worth mentioning that an
alternative approach has been developped in [BF12] in which concepts from sepa-
ration logic are directly imported into first-order logic in order to perform program
verification.

In order to encode symbolic memory states over (q, α) of the form (P,A,H, n),
we consider the following atomic propositions.
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• EQ(i, j) (i, j ∈ [1, q]) for encoding whether the program variables xi and x j

belong to the same set X ∈ P.

• A(i) (i ∈ [1, q]) for encoding whether there is P ∈ A such that xi ∈ P.

• H(i, j) (i, j ∈ [1, q]) for encoding whether there is a pair (X,X′) such that xi ∈

X, x j ∈ X′ and (X,X′) belongs to H.

• N(β) (β ∈ [0, α]) for encoding whether n = β. (Of course, a binary encoding is
possible but not needed to illustrate the main ideas.)

We write X to denote the above set of atomic propositions (that is parameterised
by q and α). So, each symbolic memory state comes with its set of atomic propo-
sitions. We write X′ to denote the set of atomic propositions defined as X except
that the atomic propositions are primed. The set X′′ is defined similarly as well as
other variants that decorate differently the atomic propositions.

Given a propositional valuation v built over the sets X1, . . . , Xn, we write Symb[v]
to denote the unique n-tuple of symbolic memory states, if it is defined, such that
the ith element of the tuple is equal to the symbolic memory state corresponding
to the interpretation of the atomic propositions from Xi. Given a symbolic memory
state (P,A,H, n), one can easily design a propositional valuation that encodes it by
the truth value of the atomic propositions in X. Similarly, existence of a symbolic
memory state corresponding to a propositional valuation over X can be specified
by a propositional formula of polynomial size.

Lemma 5.4.1. Let X be a set of atomic propositions possibly encoding a symbolic
memory state. There is a propositional formula SMS(X) built over X such that for
all propositional valuations v, we have v |= SMS(X) iff there is a symbolic memory
state sms such that Symb[v] = sms.

The proof is left as Exercise 5.16. SMS(X) is a conjunction of formulae ex-
pressing simple properties. By way of example, there is a conjunct that states that
exactly one atomic proposition among N(0), . . . , N(α) holds true.

Lemma 5.4.2. Let X, X′ and X′′ be three sets of atomic propositions possibly en-
coding symbolic memory states. There is a propositional formula ∗p(X, X′, X′′)
such that for all propositional valuations v, we have v |= ∗p(X, X′, X′′) iff there are
symbolic memory states sms, sms′ and sms′′ such that ∗s(sms, sms′, sms′′) and
Symb[v] = (sms, sms′, sms′′).
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Proof. (sketch) The formula ∗p(X, X′, X′′) is defined as the conjunction of the
propositional formulae below:

1. X, X′ and X′′ encode a symbolic memory state:

SMS(X) ∧ SMS(X′) ∧ SMS(X′′).

2. Encoding of ‘P = P1 = P2’:∧
i, j∈[1,q]

(EQ(i, j)⇔ EQ′(i, j)) ∧ (EQ′(i, j)⇔ EQ′′(i, j)).

3. Encoding of ‘A = A1 ∪ A2 and A1 ∩ A2 = ∅’:∧
i∈[1,q]

(A(i)⇔ (A′(i) ∨ A′′(i))) ∧ ¬(A′(i) ∧ A′′(i)).

4. Encoding of ‘H = H1 ∪H2’:∧
i, j∈[1,q]

(H(i, j)⇔ (H′(i, j) ∨H′′(i, j))) ∧ ¬(H′(i, j) ∧H′′(i, j)).

5. Encoding of ‘n = max(α, n1 + n2)’:∧
β,β′∈[0,α]

(N′(β) ∧N′′(β′))⇒ N(min(α, β + β′)).

The translation below is a simplification of the translation from Section 1.3.3
by taking into account the structure of the symbolic memory states involved in the
algorithm MC from Section 5.3. The map tr is homomorphic for Boolean con-
nectives (X, X′ and X′′are sets of atomic propositions possibly encoding symbolic
memory states).

tr(emp, X) def
= N(0) ∧ ¬A(1) ∧ · · · ∧ ¬A(q)

tr(xi ↪→ x j, X)
def
= H(i, j)

tr(xi = x j, X)
def
= EQ(i, j)

tr(ψ1 ∗ ψ2, X)
def
= ∃ X′, X′′ ∗p (X, X′, X′′) ∧ tr(ψ1, X′) ∧ tr(ψ2, X′′)

tr(ψ1 −∗ψ2, X)
def
= ∀ X′′, (∃X′ ∗p (X′′, X, X′))⇒

(∃X′ ∗p (X′′, X, X′) ∧ (tr(ψ1, X′)⇒ tr(ψ2, X′′)).
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All the quantifications involved in the translation introduce new atomic proposi-
tions and ∃ {p1, . . . , pm} ψ is understood as a shortcut for ∃ p1, . . . ,∃ pm ψ. More-
over, the atomic propositions N(0), A(1), . . . , A(q), H(i, j) and EQ(i, j) mentioned
above are those from the set X, which is one argument of the translation.

Lemma 5.4.3. Let ϕ be a formula built over the program variables x1, . . . , xq and
α = msize(ϕ). ∃ X SMS(X) ∧ tr(ϕ, X) is QBF satisfiable iff there is symbolic
memory state sms over (q, α) such that MC(sms,ϕ) returns >.

Again, the proof is omitted but one can establish a correspondence between
the QBF quantifications and the quantifications in MC. As a corollary, ϕ in 1SL0
is satisfiable iff ∃ X SMS(X) ∧ tr(ϕ, X) is QBF satisfiable. Since the translation
requires only logarithmic space, this provides a PSPACE upper bound for 1SL0.
More importantly, we have presented a technique to decide separation logic via a
QBF solver and therefore we can take advantage of all the breakthroughs made
recently, see e.g. [LB10, HSB14].

Furthermore, we can also regain a translation into first-order logic restricted
to the equality predicate as done in [Hag04, CGH05]. Actually, the previous
translation composed with the final translation presented below leads again to a
polynomial-space decision procedure. However, we believe that we have simpli-
fied the reduction while we have been able to provide an intermediate step in QBF
that has not been explored and investigated so far.

Let χ = Q1 p1 · · · Qn pn ϕ be a QBF formula with {Q1, . . . ,Qn} ⊆ {∃,∀} and
ϕ is a propositional formula built over the atomic propositions in {p1, . . . , pn}

Let us consider the translated formula below and the translation tr′ is homo-
morphic for Boolean connectives.

∃ x0, x1 (x0 , x1) ∧ tr′(χ)

tr′(∃ p ψ) def
= ∃ xp (xp = x0 ∨ xp = x1) ∧ tr′(ψ)

xp is a fresh variable
tr′(∀ p ψ) def

= ∀ xp (xp = x0 ∨ xp = x1)⇒ tr′(ψ)
xp is a fresh variable

tr′(p) def
= (xp = x1).

It is easy to establish the result below.

Lemma 5.4.4. χ is QBF satisfiable iff ∃ x0, x1 (x0 , x1) ∧ tr′(χ) is satisfiable in
first-order logic restricted to the equality predicate.
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As promised, we have regained the existence of a simple translation from
1SL0 into a PSPACE fragment of first-order logic. Actually, this is essentially
the translation designed in [CGH05] but presented in a different way and with an
intermediate step in QBF (see also [Cha04, Chapter 4]). Alternatively, matching
logic, that is a first-order dialect with patterns built-in, can easily encode separa-
tion logic, see the survey paper [Ros15].

Most probably, it would be possible to design a (labelled) sequent-style cal-
culus for 1SL0 that mimicks a sequent-style calculus for QBF [Egl12], by taking
into account the correspondence between propositional valuations and symbolic
memory states. This may add some theoretical value but we doubt that in prac-
tice, this provides decision procedures more efficient than the ones obtained by
translation into QBF and then use an QBF solver.

5.5 Bibliographical References about Proof Systems

In the previous sections, we have seen that for any k ≥ 1, the set of valid formulae
for kSL is not recursively enumerable and therefore there is no hope to design fi-
nite axiomatization for kSL and to design nice sequent-style proof systems. Never-
theless, calculi exist for abstract separation logics, mostly because first-order con-
ditions are involved in separation models, see e.g. the conditions in [HCGT14].
Similarly, display calculi for bunched logics can be found in [Bro12]. The re-
cent work [HGT15] also presents a sound (but necessarily incomplete) labelled
sequent calculus for the logic 2SL that repairs the deficiencies of previous calculi.

Hilbert-style axiomatizations can be also found in [BV14] by using nominals
but again this involves mainly abstract separation models and does not deal with
concrete heaps as in kSL. Still, it is possible to design complete proof systems
for propositional logics, such as the tableaux-style calculus for 2SL0 in [GM10]
but completeness for full 2SL is not possible (see Theorem 1.3.5). The literature
contains also a few attempts to design complete proof systems for some kSL.
Graph-based decision procedures can be found in [HIOP13], which goes beyond
1SL0 (see also an NP-complete fragment of separation logic that can be decided
using a model-theoretical decision procedure [ESS13]).
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5.6 Exercises
Exercise 5.1. Let A = (N, h) be the structure such that h : N → N, h(0) = 1
and for all i ≥ 1, h(i) = i.

a) Check thatA is a GRASS-model.

b) Given a variable assignment f, characterise the set J{x.x = x} \ SKA,f in terms
of JSKA,f.

c) Given terms T1, . . . , TN, design a term S such that for allA and f, we have

{JT1KA,f, . . . , JTNKA,f} = JSKA,f.

Exercise 5.2. Let ϕs = ϕ1
s ∗ ϕ

2
s be a spatial formula in SLLB such that ϕ1

s is a
non-empty separating conjunction of equalities or inequalities and ϕ2

s is a non-
empty separating conjunction of reachability atomic formulae. Show that ϕs is
satisfiable in SLLB iff ϕ1

s ∧ ϕ
2
s is satisfiable in 1SL0 augmented with the strict

reachability predicate sreach.

Exercise 5.3. Prove Lemma 5.2.3.

Exercise 5.4. Show the statements in Lemma 5.2.4.

Exercise 5.5. Show Lemma 5.2.5.

Exercise 5.6. Construct the translation of the SLLB formula ¬(x1 7→ x2 ∗ x3 7→

x4) into GRASS (by eliminating also adequatly the existential quantifications over
set variables).

Exercise 5.7. Prove Lemma 5.2.7.

Exercise 5.8. Show Lemma 5.3.1.

Exercise 5.9. Proof Lemma 5.3.2.

Exercise 5.10. Show Corollary 5.3.8.

Exercise 5.11. Compute the abstraction over (q, α) with q = 4 and α = 3 for the
three memory states presented in Figure 1.1.

Exercise 5.12. Given symbolic memory states sms, sms1 and sms2, show that
∗s(sms, sms1, sms2) iff the conditions below hold:
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a) P = P1 = P2,

b) A = A1 ∪ A2 and A1 ∩ A2 = ∅,

c) H = H1 ∪H2,

d) n = min(α, n1 + n2).

Exercise 5.13. Let β ≥ 0. Define a Boolean combination of test formulae from
Test(q, β) that is logically equivalent to sizeq ≥ β.

Exercise 5.14. For every k > 1, show that the satisfiability and model-checking
problems for kSL0 can be solved in PSPACE.

Exercise 5.15. Explain why the satisfiability and model-checking problems for
1SL0 remains in PSPACE even if the formulae are encoded as DAGs (instead of
trees, as it is implicitly assumed all over the chapter).

Exercise 5.16. Prove Lemma 5.4.1. For instance, the formula SMS(X) should
enforce that ‘EQ’ is an equivalence relation, ‘EQ’ is a congruence for ’A’ and
’H’, etc.
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Chapter 6

CONCLUSION

In this document, we have presented a puristic version of separation logics in
which the set of locations (resp. values) is equal to the set of natural numbers and
most of the time, the fragments satisfy simple syntactic closure properties. Our
main object of study are fragments of the form kSLk′, i.e. first-order separation
logic with k record fields and at most k′ quantified variables in formulae. Several
proof techniques have been introduced to establish decidability, undecidability,
computational complexity characterisation and expressiveness (see Figure 6.1 for
a partial overview of results). Some of the results are quite standard and have been
proved at the early age of separation logics (see e.g. [Yan01, COY01, Loz04a])
whereas we have also presented more recent results about expressiveness (see
e.g. [BDL12, DD14]) and decision procedures, for instance those based on the
SMT framework (see e.g. [PWZ13]) or QBF. Moreover, we have provided for-
mal relationships with other classes of logics introduced with possibly different
motivations such as, logic of bunched implications [OP99, Pym02], data log-
ics [BMS+06, FS09], interval temporal logics [Mos83], modal logics [DD15b]
or first-order logic [CGH05]. The material in the different chapters has been de-
signed so that unified notations are used and pointers to the literature are provided
as much as possible.

Nevertheless, even though the document deals with separation logics, it fo-
cuses on a selection of logical investigations and does not say much about other
aspects of such logics; the format of an ESSLLI course justifies however the ne-
cessity of such a choice. References to analytic proof systems for (abstract or
concrete) separation logics are provided in Section 5.5 but this topic would de-
serve more developments. Besides, the document provides motivations about sep-
aration logics related to formal verification by extending Floyd-Hoare logic (see
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1SL
≡ 1DSOL ≡ 1WSOL ≡ 1SL(−∗), undec. [BDL12]

2SL
undec. [COY01]

1SL2
undec. [DD15b]

1SL2(−∗)
≡ 1DSOL, undec. [DD14]

1SL2(∗)
dec., non-elem.

1SL1
PSPACE-C.

kSL0
PSPACE-C. [COY01]

MLH(∗)
dec., non-elem. [DD15b]

1SLLB
NP-C. [PWZ13]

SF
in PTIME [CHO+11]

1SL3(∗)[Z,=]
undec. [BBL09]

1SLsdc
<

dec. [BBL09]

Figure 6.1: A few results about decidability and complexity
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e.g. Section 1.1). Certainly, the document could be completed along these lines
by proving program properties by using separation logics and its proof systems.
We invite the reader to consult [O’H12, Gor14, Jen13a] to have first-class devel-
opments about formal verification with separation logics. Similarly, the emerging
use of SMT solvers to decide separation logics (see e.g. Section 5.1.3) witnesses
the power of such a framework (Section 5.2 is nevertheless related to it). Other
aspects about program verification have been quickly presented in order to focus
instead on fundamental properties of separation logics. However, in full general-
ity and in order to illustrate the practical use of separation logics, more material
about data values could be considered (see e.g. [BDES09, BBL09, MPQ11]) as
well as about the use of inductive predicates such as those related to lists, trees,
etc. (see e.g. [IRS13, BFGN14]). We also refer the reader to the slides by P.
O’Hearn from the invited talk given at the “SIGPLAN Programming Languages
Mentoring Workshop (PLMW)”, Roma 2013, for current trends in the mechani-
sation of proofs for formal verification.

As conclusion, let us mention a few research directions related to logical
investigations of separation logics. First, for the first time, SMT-COMP 2014
run a competition with SMT solvers for separation logic as an “off” event, see
e.g. [SC14]. A promising direction consists in developing further SMT-based de-
cision procedures for separation logics allowing even more combinations with
other logical theories. Besides, there is still some need and interest to design even
more tractable fragments useful for formal verification. As far as we know, it is
open whether 1SL0 + sreach is decidable (both separating connectives ∗ and −∗
belong to such a fragment), see e.g. its use in [TBR14]. Finally, designing proof
systems for separation logics from which decision procedures can be designed
(when possible) remains quite open. For instance, as far as we know, no label-free
sequent-style calculus exists for 1SL0 that can lead to a decision procedure that
runs in polynomial space. These are only a few possible directions.
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[BF12] F. Bobot and J.-C. Filliâtre. Separation predicates: A taste of separation
logic in first-order logic. In Formal Methods and Software Engineering -
14th International Conference on Formal Engineering Methods, ICFEM
2012, pages 167–181, 2012. (Cited on page 162)

[BFGN14] J. Brotherston, C. Fuhs, N. Gorogiannis, and J. Navarro Perez. A decision
procedure for satisfiability in separation logic with inductive predicates. In
CSL-LICS’14, 2014. (Cited on pages 11, 12, 38, 141, 171)

[BGG97] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.
Perspectives in Mathematical Logic. Springer, 1997. (Cited on pages 36,
38, 133, 134)

[BHJS07] A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewriting sys-
tems with data. In FCT’07, volume 4639 of Lecture Notes in Computer
Science, pages 1–22. Springer, 2007. (Cited on page 112)

[BIP10] M. Bozga, R. Iosif, and S. Perarnau. Quantitative separation logic and pro-
grams with lists. Journal of Automated Reasoning, 45(2):131–156, 2010.
(Cited on page 73)

Demri, Deters: Logical Investigations on Separation Logics (Draft) – September 8, 2015– ESSLLI’15

175



BIBLIOGRAPHY

[BK10] J. Brotherston and M. Kanovich. Undecidability of propositional separa-
tion logic and its neighbours. In LICS’10, pages 130–139. IEEE, 2010.
(Cited on pages 12, 44, 55, 56, 57)

[BK14] J. Brotherston and M. Kanovich. Undecidability of propositional separa-
tion logic and its neighbours. Journal of the Association for Computing
Machinery, 61(2), 2014. (Cited on pages 33, 44, 55)
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