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Abstract

Motivated by uncertain parameters encountered in Markov decision processes (MDPs) and stochastic games, we study the effect of
parameter uncertainty on Bellman operator-based algorithms under a set-based framework. Specifically, we first consider a family of MDPs
where the cost parameters are in a given compact set; we then define a Bellman operator acting on a set of value functions to produce a
new set of value functions as the output under all possible variations in the cost parameter. We prove the existence of a fixed point of this
set-based Bellman operator by showing that it is contractive on a complete metric space, and explore its relationship with the corresponding
family of MDPs and stochastic games. Additionally, we show that given interval set-bounded cost parameters, we can form exact bounds
on the set of optimal value functions. Finally, we utilize our results to bound the value function trajectory of a player in a stochastic game.

Key words: Markov decision process, learning theory, stochastic control, multi-agent systems, learning in games, decision making and
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1 Introduction

Markov decision process (MDP) is a fundamental frame-
work for control design in stochastic environments, re-
inforcement learning, and stochastic games [2,13,18,26].
Given cost and transition probabilities, solving an MDP is
equivalent to minimizing an objective in expectation, and
requires determining the optimal value function as well as
deriving the corresponding optimal policy for each state.
Relying on the fact that the optimal value function is the
fixed point of the Bellman operator, dynamic programming
methods iteratively apply variants of the Bellman operator
to converge to the optimal value function and the optimal
policy [32].

We are motivated to study MDPs where the parameters that
define the environment are sets rather than single-valued.
Such a set-based perspective arises naturally in the analy-
sis of parameter uncertain MDPs and stochastic games. In
this paper, we develop a framework for evaluating MDPs on
compact sets of costs and value functions. Specifically, we

? This work has been partially supported by Feanicses project
ANR-17-CE25-0018.

show that when the cost parameter of the MDP is in a com-
pact set rather than single-valued, we can define a Bellman
operator on the space of compact sets, such that it is con-
tractive with respect to the Hausdorff distance. We prove the
existence of a unique and compact fixed point set that the
operator must converge to, and give interpretations of the
fixed point set in the context of parameter uncertain MDPs
and stochastic games.

When modeling a system as a stochastic process, sampling
techniques are often used to determine cost and transition
probability parameters. In such scenarios, the MDP can be
either interpreted as a standard MDP with error bounds on its
parameters, or as a set-based MDP in which its parameters
are sets rather than single-valued. In the former approach,
an MDP can be solved with standard dynamic programming
methods, and the stability of its solution with respect to pa-
rameter perturbation can be analyzed locally [1,4,7]. How-
ever, these sensitivity results are only local approximations
in the context of compact parameter sets. The latter approach
is not well explored — some research exists on bounded in-
terval set MDPs [20], in which dynamic programming tech-
niques such as value and policy iteration have been shown
to converge. However, while it is known that parameter un-
certain MDPs may result in value function sets such as poly-
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topes [11], there is no convergence guarantees for dynamic
programming with polytopic sets of value functions. In this
paper, we show that for a set-based MDP with a compact
set of cost parameters, and any regular MDP whose cost
is an element of the said compact set of cost parameters,
the associated set-based Bellman operator has a unique and
compact fixed point set that must contain the optimal value
function of the regular MDP.

As opposed to parameter uncertain MDPs where the under-
lying cost and probability parameters are constant albeit un-
certain, stochastic games result in MDPs where the cost and
probability parameters vary with opponents’ changing poli-
cies. An individual player can interpret a stochastic game
as an MDP with a parameter-varying environment, where
holding all opponents’ policies fixed, the stochastic game
played by player i is equivalent to a regular MDP. At a fixed
joint policy, we say that a player’s policy is optimal if it
is optimal with respect to the corresponding MDP. If every
player’s policy is optimal with respect to their opponents’
fixed policies within a joint policy, then we say that the
game has reached a Nash equilibrium — i.e., every player’s
policy is optimal for the current joint policy. A Nash equi-
librium is a joint policy that no player has any incentive
to deviate from. In learning theory for stochastic games, it
is often each player’s goal to achieve the Nash equilibrium
through an iterative process. Therefore, many learning al-
gorithms are based on variants of dynamic programming,
where each player solves an MDP with costs and transition
probabilities changing at each iteration [8,29]. In this pa-
per, we apply a set-based dynamic programming technique
to single controller stochastic games. However, rather than
demonstrating convergence toward a Nash equilibrium, we
show that the set of Nash equilibria must be contained in
the fixed point set of a set-based Bellman operator.

In [27], we began our analysis of set-based MDPs by prov-
ing the existence of a unique fixed point set associated to
the set-based Bellman operator. In this paper, we demon-
strate the significance of this fixed point set by relating it to
the fixed points of parameter uncertain MDPs and the Nash
equilibria set of stochastic games. We further explore the
fixed point set in the context of iterative solutions to stochas-
tic games, and show that the fixed point set of the set-based
Bellman operator bounds the asymptotic behaviour of dy-
namic programming-based learning algorithms.

The paper is structured as follows: we provide references
to existing research in Section 2; we recall the definition of
an MDP and the Bellman operator in Section 3; Section 4
extends these definitions to set-based MDPs, providing the-
oretical results for the existence of a fixed point set of a
set-based Bellman operator. Section 5 relates properties of
the fixed point set to stochastic games. An interval set-based
MDP is presented in Section 6 with a computation of exact
bounds, while the application to stochastic games is illus-
trated in Section 7, where we model unknown policies of
the opponent as cost intervals.

2 Related Research

Bounding the fixed point of the Bellman operator with un-
certain parameters is well studied under robust MDPs such
as in [12,37], where the MDP parameters are either assumed
or estimated as random variables from a known Gaussian
distribution [12,37]. In contrast, we model our MDP cost
parameter uncertainty as a compact set without any proba-
bilistic prior assumptions. Therefore, our results are absolute
as opposed to chance-constrained or stochastic.

A closely related work from robust MDP is [24], where the
author analyzes what we consider as the lower bound on the
value function of parameter uncertain MDPs and connects
parameter uncertain MDPs to perfect information stochastic
games. We generalize these results for cost uncertainty only,
and show that there exists an invariant set corresponding to
parameter uncertain MDPs, and that dynamic programming-
based algorithms can converge to the invariant set itself in-
stead of just obtaining a lower bound.

Our parameter uncertain MDP model also generalizes the
bounded parameter model presented in [20], which considers
interval sets instead of general compact sets.

Other approaches to bound the value functions of cost un-
certain MDPs include [14,21]. MDPs with reachability ob-
jectives are studied in [21] under a graph-theoretical MDP
uncertainty model. However, the techniques utilized in [21]
require abstraction of the MDP state space and therefore do
not directly extend to value functions that are defined per
state. A learning approach to solve cost-uncertain MDPs is
taken in [14], and convergence in terms of regret is shown us-
ing gradient-based algorithms instead of dynamic program-
ming approaches.

Introduced in [34], stochastic games generalize MDPs to
the multi-agent setting, where the goal of each player is
to minimize their individual cost functions, which typi-
cally leads to a Nash equilibrium. In general, it is difficult
to find a Nash equilibrium of a general-sum stochastic
game; the computation complexity has been shown to be
NP hard in [9], while value iteration for such games is
shown to diverge in [25]. Convergence guarantees for Bell-
man operator-based algorithms exist under limited settings
such as two player stochastic games or zero-sum stochastic
games [34,15,31,36]. However, the same algorithms have
been shown to converge empirically in a wide range of
applications including poker and cyber-security [19,35]. In
this paper, we consider single controller stochastic games
with imperfect information [18, Def. 6.3.6], and show that
our set-based value iteration algorithm converges to an in-
variant set that over-approximates the Nash equilibrium set.

The topology of value function sets has also garnered inter-
est in the reinforcement learning community [6,11]. In [11],
the set of value functions generated by policy uncertainty is
shown to be a polytope, and Bellman operator-based meth-
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ods such as value iteration and policy iteration are shown to
converge to the value function polytope.

3 MDP and Bellman Operator

We introduce our notation for existing results in MDP lit-
erature, which is used throughout the paper. Contents from
this section are discussed in further detail in [32].

Notation: Sets of N elements are given by [N ] =
{0, . . . , N − 1}. We denote the set of matrices with i rows
and j columns of real or non-negative valued entries as
Ri×j or Ri×j+ , respectively. Matrices and some integers are
denoted by capital letters, X , while sets are denoted by cur-
sive letters, X . The set of all non-empty compact subsets
of X is denoted by H(X ). The column vector of ones is
denoted by 1N = [1, . . . , 1]> ∈ RN×1. The identity matrix
of size S × S is denoted by IS .

We consider a discounted infinite-horizon MDP defined by
([S], [A], P, C, γ), where

(1) [S] denotes the finite set of states.
(2) [A] denotes the finite set of actions. Without loss of

generality, assume that every action is admissible from
each state s ∈ [S].

(3) P ∈ RS×SA defines the transition kernel. Each com-
ponent Ps′,sa is the probability of arriving in state s′ by
taking state-action (s, a). Matrix P is column stochas-
tic and element-wise non-negative — i.e.,∑

s′∈[S]

Ps′,sa = 1, ∀ (s, a) ∈ [S]× [A],

Ps′,sa ≥ 0, ∀ (s′, s, a) ∈ [S]× [S]× [A].

(1)

(4) C ∈ RS×A defines the cost matrix. Each component
Csa is the cost of state-action pair (s, a) ∈ [S]× [A].

(5) γ ∈ (0, 1) denotes the discount factor.

At each time step t, the decision maker chooses an ac-
tion a at its current state s. The state-action pair (s, a) in-
duces a probability distribution vector over states [S] as
[P1,sa, P2,sa, . . . , PS,sa]. The state-action (s, a) also induces
a cost Csa for the decision maker.

The decision maker chooses actions via a policy. We denote
policy as the function π : RS ×RA → [0, 1], where π(s, a)
denotes the probability that action a is chosen at state s. The
set of all policies of an MDP is denoted by Π. Within Π, a
policy π is deterministic if at each state s, π(s, a) returns 1
for exactly one action, and 0 for all other possible actions.
A policy π ∈ Π that is not deterministic is a mixed policy.

We denote the policy matrix induced by the policy π as
Mπ ∈ RS×SA, where

(Mπ)s′,sa =

{
π(s, a) s′ = s

0 s′ 6= s
. (2)

Every policy induces a Markov chain [16], given by
MπP

> ∈ RS×S . Each stationary policy also induces a
stationary cost given by

ν(π) =
∑
i∈[S]

eie
>
i Mπ(1S ⊗ IA)C>ei, ν(π) ∈ RS , (3)

where ei ∈ RS is the unit vector pointing in the ith coor-
dinate, ⊗ is the Kronecker product, and IA is the identity
matrix of size A.

For an MDP ([S], [A], P, C, γ), we are interested in mini-
mizing the discounted infinite horizon expected cost, defined
with respect to a policy π as

V ?s = min
π∈Π

Eπs
{ ∞∑
t=0

γtCstat
}
, ∀ s ∈ [S], (4)

where Eπs (f) is the discounted infinite horizon expected
value of objective f , st and at are the state and action taken
at time step t, and s is the initial state of the decision maker
at t = 0.

V ?s is the optimal value function for the initial state s. The
policy π? that achieves this optimal value is called an op-
timal policy. In general, the optimal value function V ?s is
unique while the optimal policy π? is not. The set of optimal
policies always includes at least one deterministic stationary
policy in the unconstrained setting [32, Thm 6.2.11]. If there
are constraints on the policy and state space, deterministic
policies may become infeasible [16].

3.1 Bellman Operator

Determining the optimal value function of a given MDP
is equivalent to solving for the fixed point of the associ-
ated Bellman operator, for which a myriad of techniques
exists [32]. We introduce the Bellman operator and its fixed
point here for the corresponding MDP problem.

Definition 1 (Bellman Operator) For a discounted infinite
horizon MDP ([S], [A], P, C, γ), its Bellman operator fC :
RS → RS is given component-wise as(
fC(V )

)
s

:= min
a

Csa+γ
∑
s′∈[S]

Ps′,saVs′ , ∀ s ∈ [S]. (5)

The fixed point of the Bellman operator is a value function
V ∈ RS that is invariant with respect to the operator.

Definition 2 (Fixed Point) V ? is a fixed point of an oper-
ator F : X 7→ X iff

V ? = F (V ?). (6)
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In our discussion of the fixed point of the Bellman operator,
we consider the following operator properties.

Definition 3 (Order Preservation) LetX be a partially or-
dered space with partial order �. An operator F : X → X
is an order preserving operator iff

x � x′ → F (x) � F (x′), ∀ x, x′ ∈ X .

Definition 4 (Contraction) Let (X , d) be a complete met-
ric space with metric d. An operator F : X 7→ X is a con-
tracting operator iff

d(F (x), F (x′)) < d(x, x′), ∀ x, x′ ∈ X .

The Bellman operator fC is known to have both properties
on the complete metric space (RS , ‖·‖∞). Therefore, the Ba-
nach fixed point theorem can be used to show that fC has a
unique fixed point [32]. Because the optimal value function
V ? is given by the unique fixed point of the associated Bell-
man operator fC , we use the terms optimal value function
and fixed point of fC interchangeably.

In addition to obtaining V ?, MDPs are also solved to de-
termine the optimal policy, π?. Every policy π induces a
unique stationary value function V given by

V = ν(π) + γMπP
>V, (7)

where γ ∈ (0, 1). We note that V is a linear function of C
through ν(π) in (3), where the dependency is made implicit
to simplify notation.

Given a policy π, we can equivalently solve for the station-
ary value function V as V = (I − γMπP

>)−1ν(π). From
this perspective, the optimal value function V ? is the min-
imum vector among the set of stationary value functions
corresponding to the set of policies Π. Policy iteration algo-
rithms utilize this fact to obtain the optimal value function
V ? by iterating over the feasible policy space [32].

Given an input value function V , we can also derive a de-
terministic optimal policy π associated with fC(V ) as

π(s, a) :=

1 a = argmin
a′∈[A]

Csa′ + γ
∑

s′∈[S]

Ps′,sa′Vs′

0 otherwise
,

(8)
where argmina′∈[A] returns the first optimal action a′

if multiple actions minimize the expression Csa′ +
γ
∑
s′∈[S]Ps′,sa′Vs′ at state s.

While policies that solve fC(V ) do not need to be unique,
deterministic or stationary, the policy π derived from (8) will
always be unique, deterministic and stationary for a given
ordering of actions within the action set. For the remain-
ing sections, we assume that the action set [A] has a fixed
ordering of actions.

3.2 Termination Criteria for Value Iteration

Among different algorithms that solve for the fixed point of
the Bellman operator, value iteration (VI) is a commonly
used and simple technique in which the Bellman operator is
iteratively applied until the optimal value function is reached
— i.e. starting from any value function V 0 ∈ RS , we apply

V k+1
s = fC(V k)

= min
a∈[A]

Csa + γ
∑

s′∈[S]

Ps′,saV
k
s′ , k = 1, 2, . . . .

(9)

The iteration scheme given by (9) converges to the optimal
value function of the corresponding discounted infinite hori-
zon MDP. The following result presents a stopping criteria
for (9).

Lemma 1 [32, Thm. 6.3.1] For any initial value function
V 0 ∈ RS , let {V k}k∈N satisfy the value iteration given
by (9). For ε > 0, if

∥∥V k+1 − V k
∥∥
∞ < ε

(1− γ)

2γ
,

then V k+1 is within ε/2 of the fixed point V ?, i.e.∥∥V k+1 − V ?
∥∥
∞ <

ε

2
.

Lemma 1 connects relative convergence of the sequence
{V k}k∈N to absolute convergence towards V ? by showing
that the former implies the latter. In general, the stopping
criteria differ for different MDP objectives (see [21] for re-
cent results on stopping criteria for MDPs with a reachabil-
ity objective).

4 Set-based Bellman Operator

The classic Bellman operator with respect to a cost C is
well studied. Motivated by parameter uncertain MDPs and
stochastic games, we extend the classic Bellman operator by
lifting it to operate on sets rather than individual value func-
tions in RS . For the set-based operator, we analyze its set-
based domain and prove relevant operator properties such
as order preservation and contraction. Finally, we show the
existence of a unique fixed point set V? and relate its prop-
erties to the fixed point of the classic Bellman operator.

4.1 Set-based operator properties

For the domain of our set-based operator, we define a new
metric space (H(RS), dH) based on the Banach space
(RS , ‖·‖∞) [33], where H(RS) denotes the collection of
non-empty compact subsets of RS . We equip H(RS) with
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partial order, �, where for V,V ′ ∈ H(RS), V � V ′ iff
V ⊆ V ′. The metric dH is the following Haussdorf dis-
tance [22] defined as

dH(V,V ′) := max{ sup
V ∈V

inf
V ′∈V′

‖V − V ′‖∞ , (10)

sup
V ′∈V′

inf
V ∈V
‖V − V ′‖∞}. (11)

Lemma 2 [22, Thm 3.3] If X is a complete metric space,
then its induced Hausdorff metric space (H(X ), dH) is a
complete metric space.

From Lemma 2, since (RS , ‖·‖∞) is a complete metric
space, H(RS) is a complete metric space with respect to
dH . On the complete metric space H(RS), we define a set-
based Bellman operator which acts on compact sets.

Definition 5 (Set-based Bellman Operator) For a family
of MDP problems, ([S], [A], P, C, γ), where C ⊂ RS×A is
a non-empty compact set, its associated set-based Bellman
operator is given by

FC(V) := cl
⋃

(C,V )∈C×V

fC(V ), ∀ V ∈ H(RS),

where cl is the closure operator.

Since FC is the union of uncountably many bounded sets,
the resulting set may not be bounded, and therefore it is not
immediately obvious that FC(V) maps into the metric space
H(RS).

Proposition 1 If C is non-empty and compact, then
FC(V) ∈ H(RS), ∀ V ∈ H(RS).

PROOF. For a non-empty and bounded subsetA of a finite-
dimensional real vector space, we define its diameter as
diam (A) = supx,y∈A ‖x− y‖∞. The diameter of a set in
a metric space is finite if and only if it is bounded [33].

Take any non-empty compact set V ∈ H(RS). As FC(V) ⊆
RS , it suffices to prove that FC(V) is closed and bounded.
The closedness is guaranteed by the closure operator. A
subset of a metric space is bounded iff its closure is bounded.
Hence, to prove the boundedness, it suffices to prove that
diam

(
∪(C,V )∈C×VfC(V )

)
< +∞. For any two cost-value

function pairs (C, V ), (C ′, V ′) ∈ C × V ,

fC(V )−fC′(V ′) =
(
fC(V )−fC′(V )

)
+
(
fC′(V )−fC′(V ′)

)
.

(12)
We bound (12) by bounding the two terms on the
right hand side separately. The second term satisfies
‖fC′(V )− fC′(V ′)‖∞ ≤ γ ‖V − V ′‖∞ , due to contrac-
tion properties of fC′ . To bound the first term, we note that

for any two vectors a, b ∈ RS ,

‖a− b‖∞ = max
{

max(a− b),max(b− a)
}
, (13)

where the operator max{. . .} returns the maximum element,
and max(a) returns maximum component of vector a. Eval-
uating fC′(V )− fC(V ) with (13),

max(fC′(V )− fC(V ))

≤max(ν′(π) + γMπP
>V − ν(π)− γMπP

>V )

≤max
(
ν′(π)− ν(π)

)
≤
∑
i∈[S]

∥∥e>i ∥∥∞ ‖Mπ‖∞ ‖1S ⊗ IA‖∞
∥∥(C ′ − C)>

∥∥
∞ ‖ei‖

2
∞ ,

where π is an optimal policy corresponding to fC . Since
‖1S ⊗ IA‖∞ = ‖ei‖∞ =

∥∥e>i ∥∥∞ = ‖Mπ‖∞ = 1 for
any π ∈ Π, max(fC′(V ) − fC(V )) ≤ S

∥∥(C ′ − C)>
∥∥.

Similarly, we can show max(fC(V ) − fC′(V )) ≤
S
∥∥(C ′ − C)>

∥∥
∞. Finally it follows from (12) that

‖fC(V )− fC′(V ′)‖∞ ≤ S
∥∥(C ′ − C)>

∥∥
∞+γ ‖V − V ′‖∞ .

(14)
Since (14) holds for all (C, V ), (C ′, V ′) ∈ C × V , and fur-
thermore, for all C,C ′ ∈ C and V, V ′ ∈ V ,∥∥(C ′ − C)>

∥∥
∞ ≤ diam

(
C>
)
, ‖V − V ′‖∞ ≤ diam (V) ,

the inequality diam
(
∪(C,V )∈C×VfC(V )

)
≤ S diam

(
C>
)
+

γ diam (V) < +∞ holds as both C> and V are bounded. 2

Proposition 1 shows that FC is an operator from H(RS) to
H(RS). Having established the space which FC operates
on, we can draw many parallels between FC and fC . Sim-
ilar to fC having a unique fixed point V ? in the real vec-
tor space, we consider whether a unique fixed point set V?
which satisfies FC(V?) = V? exists. To take the comparison
further, since V ? is optimal for an MDP problem defined by
([S], [A], P, C, γ), we consider if V? correlates to the fam-
ily of optimal value functions that correspond to the MDP
family ([S], [A], P, C, γ). We explore these parallels in this
paper and derive sufficient conditions for the existence and
uniqueness of the fixed point of the set-based Bellman op-
erator FC .

We demonstrate the existence and uniqueness of V? by uti-
lizing the Banach fixed point theorem [32], which states that
a unique fixed point must exist for all contraction operators
on complete metric spaces. First, we show that FC has prop-
erties given in Definitions 3 and 4 on the complete metric
space (H(RS), dH).

Proposition 2 For any V ∈ H(RS) and C ⊂ RS×A closed
and bounded, FC is an order preserving and a contracting
operator in the Hausdorff distance.
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PROOF. Consider V , V ′ ∈ H(RS) which satisfy V ⊆ V ′,
then

FC(V) = cl
⋃

(C,V )
∈C×V

fC(V ) ⊆ cl
⋃

(C,V ′)
∈C×V′

fC(V ′) = FC(V ′).

We conclude that FC is order-preserving. To see that FC is
contracting, we need to show

sup
V ∈FC(V)

inf
V ′∈FC(V′)

‖V − V ′‖∞ < dH(V,V ′) (15)

sup
V ′∈FC(V′)

inf
V ∈FC(V)

‖V − V ′‖∞ < dH(V,V ′), (16)

First we note that taking sup (inf) of a continuous function
over the closure of a set A is equivalent to taking the sup
(inf) overA itself. Furthermore, the single-cost Bellman op-
erator fC(V ) is an element of the set-based Bellman oper-
ator ∪(C,V )∈C×VfC(V ) iff (C, V ) ∈ C × V . Therefore tak-
ing the sup(inf) of ‖V − V ′‖∞ over V ∈ FC(V) is equiv-
alent to taking the sup(inf) of ‖fC(V )− fC′(V ′)‖∞ over
(C, V ) ∈ C × V .

Given V,V ′ ∈ H(RS) and for arbitrary V ∈ V , C ∈ C,

inf
(C′,V ′)
∈C×V′

‖fC(V )− fC′(V ′)‖∞ (17a)

≤ inf
(C′,V ′)
∈C×V′

S
∥∥(C − C ′)>

∥∥
∞ + γ ‖V − V ′‖∞ (17b)

≤S
∥∥(C ′ − C ′)>

∥∥
∞ + inf

V ′∈V′
γ ‖V − V ′‖∞ (17c)

≤γ inf
V ′∈V′

‖V − V ′‖∞ , (17d)

where in (17b) we take the upper bound derived in (14).
In (17c) we haven chosen the matrix C = C ′ to minimize∥∥(C − C ′)>

∥∥
∞. This eliminates the cost term and we arrive

at (17d).

Then (15) and (16) simplifies to

sup
V ∈FC(V)

inf
V ′∈FC(V′)

‖V − V ′‖∞ ≤ γ sup
V ∈V

inf
V ′∈V′

‖V − V ′‖∞ ,

and

sup
V ′∈FC(V′)

inf
V ∈FC(V)

‖V − V ′‖∞ ≤ γ sup
V ′∈V′

inf
V ∈V
‖V − V ′‖∞ .

Therefore dH(FC(V), FC(V ′)) ≤ γdH(V,V ′). Since γ ∈
(0, 1), FC is a contracting operator on H(RS). 2

The contraction property of FC implies that any repeated
application of the operator to a set V0 ∈ H(RS) results in a
sequence of sets where consecutive sets become increasingly
closer in the Hausdorff distance. It is then natural to consider
if there is a unique set which all FC(Vk) converges to.

Theorem 1 There exists a unique fixed point V? of the set-
based Bellman operator FC as defined in Definition 1, such
that FC(V?) = V?, and V? is a closed and bounded set in
RS .

Furthermore, for any set V0 ∈ H(RS), the iteration

Vk+1 = FC(Vk), (18)

converges in the Haussdorf distance — i.e.,

lim
k→∞

dH(FC(Vk),V?) = 0.

PROOF. As shown in Proposition 2, FC is a contracting
operator. From the Banach fixed point theorem [32, Thm
6.2.3], there exists a unique fixed point V?, and any arbitrary
V0 ∈ H(RS) will generate a sequence of sets {FC(Vk)}k∈N
that converges to V?. 2

4.2 Properties of fixed point set

In the case of the Bellman operator fC on metric space RS ,
the fixed point V ? corresponds to the optimal value function
of the MDP associated with cost C. Because there is no
direct association of an MDP problem to the set of cost
parameters C, we cannot claim the same for the set-based
Bellman operator and V?. However, V? does have many
interesting properties on H(RS), especially in terms of set-
based value iteration (18).

We consider the following generalization of value iteration:
suppose that instead of a fixed cost parameter, we have that at
each iteration k, aCk that is randomly chosen from the com-
pact set of cost parameters C. In general, limk→∞ fCk(V k)
may not exist. However, we can infer from Theorem 1 that
the sequence {V k} converges to the set V? in the Hausdorff
distance.

Proposition 3 Let {Ck}k∈N ⊆ C be a sequence of costs in
C, where C is a compact set within RS×A. Let us define the
iteration

V k+1 = fCk(V k),

for any V 0 ∈ RS . Then the sequence {V k}k∈N satisfies

lim
k→∞

inf
V ∈V?

∥∥fCk(V k)− V
∥∥
∞ = 0,

where V? is the unique fixed point set of the operator FC .

PROOF. Define V0 = {V 0}, then from Definition 5 and
Definition 1, V k+1 = fCk(V k) ∈ FC(Vk) for all k ≥ 0.

At each iteration k, we write Vk+1 = FC(Vk). From
Theorem 1, Vk converges to V? in Hausdorff distance,
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limk→∞ dH(Vk,V?) = 0. Therefore for every δ > 0,
there exists K such that for all k ≥ K, dH(Vk,V?) < δ.
Since fCk(V k) ∈ Vk+1, infV ∈V?

∥∥fCk(V k)− V
∥∥
∞ ≤

dH(Vk+1,V?) < δ must also be true for all k ≥ K. There-
fore limk→∞ infV ∈V?

∥∥fCk(V k)− V
∥∥
∞ = 0. 2

Proposition 3 implies that regardless of whether or not the se-
quence {fCk(V k)}k∈N converges, the sequence {V k} must
become arbitrarily close in Hausdorff distance to the set V?.
This has important interpretations in the game setting that
is further explored in Section 5. On the other hand, Propo-
sition 3 also implies that if limk→∞ V k does converge, its
limit point must be an element of V?.

Corollary 1 We define the set of fixed points of fC for each
C ∈ C as

U =
⋃
C∈C
{V ∈ RS | fC(V ) = V },

i.e., U is the set of optimal value functions for the set of
MDPs ([S], [A], P, C, γ) where C ∈ C. Furthermore, we
consider all sequences {Ck}k∈N ⊆ C such that for V 0 ∈
RS , the iteration V k+1 = fCk(V k) approaches a limit point
V = limk→∞ V k, and define the set of all such limit points
as

W =
⋃

{Ck}k∈N⊆C

{V ∈ RS | lim
k→∞

fCk(V k) = V, where

V 0 ∈ RS , V k+1 = fCk(V k), k = 0, 1, . . .},
(19)

then U ⊆ W ⊆ V?.

PROOF. For any V ∈ W and V ? ∈ V?,

‖V ? − V ‖∞ ≤
∥∥V ? − fCk(V k)

∥∥
∞ +

∥∥fCk(V k)− V
∥∥
∞

is satisfied for all k ∈ N. Furthermore, by assumption, each
V ∈ W has an associated iteration V k+1 = fCk(V k) whose
limit point is equal to V , i.e. limk→∞

∥∥fCk(V k)− V
∥∥
∞ =

0. Additionally,

lim
k→∞

inf
V ?∈V?

∥∥fCk(V k)− V ?
∥∥
∞ = 0,

follows from Proposition 3. Therefore,

inf
V ?∈V?

‖V ? − V ‖∞ ≤ 0, ∀ V ∈ W.

From the fact that the infimum over a compact set is always
achieved for an element of the set [33], V = V ? ∈ V?.
Therefore W ⊆ V?. To see that U ⊆ W , take Ck = C for
all k = 0, 1, . . ., then U ⊆ W . 2

Remark 1 We make the distinction between V?,W , and U
to emphasize that V? is not simply the set of fixed points
corresponding to fC for all possible C ∈ C, given by U , or
the limit points of fCk for all possible sequences {Ck}k∈N ⊂
C, given by W . The fixed point set V? contains all possible
limiting trajectories of {fCk(V k)}k∈N without assuming a
limit point exists.

In Corollary 1, U can be easily understood as the set
of optimal value functions for the set of standard MDPs
([S], [A], P, C, γ) generated by C ∈ C. An interpretation for
W is perhaps less obvious. We use the following example
to illustrate the differences between these three sets.

Example 1 Consider a single state, two action MDP
with a discount factor γ = 0.9, where C is given
by {

[
0 1
]
,
[
0 2
]
,
[
1 1
]
}. Here, U = {0, 10} corre-

sponds to the three optimal value functions when cost
is fixed —i.e., where Ck = C ∈ C. We note that if
{Ck} ⊆ {

[
0 1
]
,
[
0 2
]
}, then V ? = 0 regardless of how

Ck is chosen. Therefore W = {0} ∪ U = U . Finally, if Ck
is randomly chosen from C and V 0 = 0, V k will randomly
fluctuate but satisfy V k ∈ V? = [0, 10].

In the context of robust MDPs, U contains all the fixed point
value functions of regular MDPs. The value function setW
contains the fixed point value functions that are invariant to
fluctuating costs within any subset of C. On the other hand,
if the value functions do not converge, the value function
trajectory will still converge to V?, even if V 0 /∈ V?. There-
fore if the goal is to bound the asymptotic behaviour of V k,
it is more useful to determine V?.

We summarize our results on set-based Bellman operator as
the following: given a compact set of cost parameters C, FC
converges to a unique compact set V?. The set V? contains
all the fixed points of fC for C ∈ C. Furthermore, V? also
contains the limit points of fCk(V k) for any {Ck}k∈N ⊆ C,
V 0 ∈ RS , given that limk→∞ V k converges. Even if the
limit does not exist, V k must asymptotically converge to V?
in the Hausdorff distance.

5 Stochastic Games

In this section, we further elaborate on the properties of
the fixed point set V? in the context of stochastic games,
and show that with an appropriate over-approximation of
the Nash equilibria cost parameters, V? contains the optimal
value functions for player one at Nash equilibria.

A stochastic game extends a standard MDP to a multi-agent
competitive setting [34]. In the interest of clarity, we define
Nash equilibria as well as player value functions in the con-
text of two player stochastic games. However, the following
definitions also extend to N player stochastic games [18].

7



We note that the stochastic games we discuss here implicitly
assume imperfect information [18, Def. 6.3.6] — at every
state, both players have multiple actions to choose from.
Therefore, each player’s choice of action induces uncertainty
in their opponent’s costs.

In a two-player stochastic game, both players solve their
own MDP while sharing the same states and dynamics. As
opposed to standard MDPs, each player’s cost and transition
kernel depends on the joint policy, π = (π1, π2), where π1

and π2 are respectively player one and player two’s policies
as defined for standard MDPs in Section 3. The set of joint
policies is given by Π, while player one’s and player two’s
sets of policies are given by Π1 and Π2, respectively. We de-
note the actions of player one by a and the actions of player
two by b. Players share a common state, given by s ∈ [S].
The transition kernel of the shared dynamics is determined
by the tensor Q ∈ RS×S×A1×A2 , where Q satisfies∑

s′∈[S]

Qs′sab = 1, ∀ (s, a, b) ∈ [S]× [A1]× [A2],

Qs′sab ≥ 0, ∀ (s′, s, a, b) ∈ [S]× [S]× [A1]× [A2].

Each player’s cost is given byDi ∈ RS×A1×A2 , whereD1
sab

and D2
sab denote player one and player two’s cost when the

joint action (a, b) is taken from state s, respectively.

For a specific policy adopted by player two, player one’s
transition kernel and cost can be represented using the same
notation of Section 3. When player two applies policy π2,
player one’s transition kernel is given by

P 1(π2) ∈ RS×SA1 , P 1
s′,sa(π2) =

∑
b∈[A2]

(π2)sbQs′sab.

(20)
Furthermore, player one’s cost is given by

C1(π2) ∈ RS×A1 , C1
sa(π2) =

∑
b∈[A2]

(π2)sbD
1
sab. (21)

For a specific π1 adopted by player one, player two’s cost
C2(π1) and transition kernel P 2(π1) can be similarly de-
fined. Each player then solves a discounted MDP given by
([S], [Ai], P

i(πj), C
i(πj), γi). Since each player only con-

trols a part of the joint action space, the generalization to
joint action space introduces non-stationarity in the transi-
tion and cost, when viewed from the perspective of an indi-
vidual player solving an MDP.

Given a joint policy (π1, π2), each player attempts to min-
imize its value function. Player i’s optimal discounted infi-
nite horizon expected cost is given by

V is = min
πi∈Πi

Eπi
s

{ ∞∑
t=0

γtiC
i
stat(πj)

}
, ∀ s ∈ [S]. (22)

Given a joint policy π = (π1, π2), both players have unique
stationary value functions

(
V (π1, π2),W (π1, π2)

)
given by

V 1(π1, π2) =ν1(π1, π2) + γ1Mπ1
P 1(π2)>V 1(π1, π2),

(23a)

V 2(π1, π2) =ν2(π1, π2) + γ2Mπ2P
2(π1)>V 2(π1, π2),

(23b)

where ν1(π1, π2) =
∑
i∈[S] eie

>
i Mπ1

(1s⊗ IA1
)C1(π2)>ei

and ν2(π1, π2) =
∑
i∈[S] eie

>
i Mπ2

(1s ⊗ IA2
)C2(π1)>ei.

Since a stochastic game can be viewed as coupled MDPs,
the MDP notion of optimality must be expanded to reflect
dependency of a player’s individual optimal policy on the
joint policy space. We define a Nash equilibrium in terms
of each player’s value function [18, Sec.3.1].

Definition 6 [Two Player Nash Equilibrium] A joint policy
π? = (π?1 , π

?
2) is a Nash equilibrium if the corresponding

value functions as given by (23) satisfy

V 1(π?1 , π
?
2) ≤ V 1(π1, π

?
2), ∀ π1 ∈ Π1,

V 2(π?1 , π
?
2) ≤ V 2(π?1 , π2), ∀ π2 ∈ Π2.

We also denote the Nash equilibrium value functions as
V 1(π?) and V 2(π?) and the set of Nash equilibria for a
stochastic game as ΠNE ⊂ Π.

Definition 6 implies that a Nash equilibrium is achieved
when the joint policy simultaneously generates both
value functions V 1(π?) and V 2(π?), which are the
fixed points of the Bellman operator with respect to pa-
rameters

(
C1(π2), P 1(π2)

)
and

(
C2(π1), P 2(π1)

)
, re-

spectively — i.e. V 1(π?1 , π
?
2) = min

π1∈Π1

{
ν1(π1, π

?
2) +

γ1Mπ1
P 1(π?2)>V 1(π?1 , π

?
2)
}

, and V 2(π?1 , π
?
2) = min

π2∈Π2{
ν2(π?1 , π2) + γ2Mπ2

P 2(π?1)>V 2(π?1 , π
?
2)
}

.

A Nash equilibrium is not unique for general-sum stochastic
games. Furthermore, Nash equilibria policies are not neces-
sarily composed of deterministic individual policies. There-
fore while each player’s Nash equilibrium value function is
always the fixed point of the associated Bellman operator,
the Nash equilibrium policy for each player is not the opti-
mal deterministic policy associated to the Nash equilibrium
value function in general. The existence of at least one Nash
equilibrium for any general-sum stochastic game is given
in [18]. When the stochastic game is also zero-sum, all Nash
equilibria correspond to a unique value function.

Since the technical content of this paper does not address
non-stationarity in the transition kernel, we focus on analyz-
ing non-stationarity in the cost term. Specifically, we con-
strain our analysis to a single controller game [18], i.e. when
the transition kernel is controlled by player one only. Single
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controller stochastic games form an important class of games
that models dynamic control in queueing networks [3] and
attacker-defender games with stochastic transitions [5,17].
Similar to our discussion of a two player Nash equilibrium,
we exclusively consider a two player single controller game.
However, we note that the following definition can be ex-
tended to an N player single controller stochastic game in
which the transition kernel is independent of all but one
player’s actions.

Definition 7 (Single controller game) A single controller
game is a two player stochastic game where the probability
transition kernel is independent of player two’s actions, i.e.,
for each (s′, s, a) ∈ [S]× [S]× [A]

Qs′sab = Qs′sab′ , ∀ b, b′ ∈ [A],

i.e. P 1(π2) = P , ∀ π2 ∈ Π2 and P 2(π1)s′,sb =
P 2(π1)s′,sb′ , ∀ b, b′ ∈ [A], π1 ∈ Π1.

Although both players are still optimizing their value func-
tions in a single controller game, player two’s policy only
affects its immediate cost at each state, while its transition
dynamic becomes a time-varying Markov chain. However,
player two’s policy still affects player one’s MDP through
cost matrix C1(π2).

We analyze a single controller game from the set-based MDP
perspective by utilizing Proposition 3. Suppose we are given
a compact set C ⊂ RS×A that over-approximates the set
of CNE — i.e. cost parameters that player one observes at
Nash equilibria,

CNE = {C1(π?2) ∈ RS×A | (π?1 , π?2) ∈ ΠNE} ⊆ C. (24)

Then we show that the Nash equilibria value functions be-
long to the fixed point set of FC .

Valid over-approximations to CNE can be easily found —
the simplest being the interval set of all feasible costs.

Example 2 (Interval set approximation) An approxima-
tion to CNE can always be given by interval sets. At
each state-action pair (s, a), the MDP cost parameter
for player one is given by (21). Then we can take the
maximum and minimum elements of the set {D1

sab}b∈[A2]

for all state actions pairs (s, a) to form an interval set
C = C11 × . . .× CSA1

∈ H(R)S×A1 , such that

Csa = {D1
sab}b∈[A2] = [Csa, Csa],

where Csa = minb∈[A2]D
1
sab and Csa = maxb∈[A2]D

1
sab

can be directly observed.

Interval sets will always give an admissible approximation.
However, more general sets such as polytopes allow for more
precise representations of the limiting value function trajec-
tories for the game player.

Example 3 (Polytope set approximation) Consider the
set of costs at a particular state s in a two player single
controller stochastic game, for which A1 = 2 and A2 = 3.
Player one’s costs corresponding to player two’s deter-
ministic policies are given by points (1, 0, 0), (0, 1, 0), and
(0, 0, 1) in Figure 1. Any mixed policy from player two will
result in an expected cost for player one that corresponds
to a point within the blue region in Figure 1. On the other
hand, the interval set approximation from Example 2 is
given by the yellow polytope. In this example, we can ob-
serve that the interval set is a generous over-approximation
of player one’s feasible costs.

An over-approximation of the set of feasible costs also over-
approximates possible limiting trajectories for a player’s
learning algorithm. We consider the point ×1 = (C ′2, C

′
1)

in Figure 1. Fixed at this cost, value iteration would choose
a2 corresponding to C ′2, and return the corresponding dis-
counted value function and transition kernel from state s.
However, the feasible cost when action a2 has equivalent
cost C ′2 is at ×2 = (C̄1, C

′
2) on the boundary of the blue

polytope. Since ×2 lies below the line C1 = C2, a1 corre-
sponding to C̄1 is actually the optimal action. Therefore, the
resulting cost and transition kernel would have been differ-
ent. This corresponds to a different value function trajectory
that would have been infeasible.

Fig. 1. Feasible player costs vs interval set over-approximation.

The set of feasible costs itself is an over-approximation of
the set of Nash equilibria costs CNE . As Example 3 shows,
the extension from interval sets to compact sets enables addi-
tional information (feasible costs, knowledge of opponents’
action constraints) to be used to approximate CNE to greater
accuracy.

Given a compact set C that over-approximates the set of
player one’s cost parameters at Nash equilibria, CNE , we
now show that the Nash equilibria value functions for player
one must lie within V?, the fixed point set of FC .

Theorem 2 In a single controller game, let C ⊂ RS×A be
an over-approximation of Nash equilibria costs for player
one as in (24). If C is compact, then the set of stationary value
functions for player one at Nash equilibria policies (23a) is
a subset of V?, the fixed point set of FC .
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PROOF. We define the set of Nash equilibria value func-
tions for player one as

VNE =
{
V ∈ RS | V = fC1(π?

2 )(V )
}
, (25)

where the Bellman operator fC1(π?
2 ) is defined with P , the

π2-independent transition kernel for both players. For any
V ? ∈ VNE , there exists C? = C1(π?2) ∈ C such that V ? is
the fixed point of fC? . Then from Corollary 1, V ? ∈ V?. 2

Remark 2 Although the Nash equilibrium value function
V ? is always the unique fixed point of fC? given by (5),
where C? is player one’s cost at Nash equilibrium, we note
that in general, player one’s policy at Nash equilibrium is
not the optimal deterministic policy of fC?(V ?) given by (8);
this is because the joint policy at Nash equilibrium may not
be composed of deterministic individual policies, while the
solution to (8) is always deterministic.

However, if we consider the set of all deterministic policies
that solves (8), then player one’s policy at Nash equilibrium
must be a convex combination within this set [18].

We summarize the application of set-based MDP framework
to single controller stochastic games as the following: when
C over-approximates the set of costs at Nash equilibria, the
fixed point set V? of operator FC contains all of the Nash
equilibria value functions for player one in a single controller
stochastic game.

6 Application to Interval Set-Based Bellman Operator

In this section, we show that when the cost parameter set
C and the initial value function set V0 are interval sets, the
fixed point set V? of FC is also an interval set, as done sim-
ilarly in [20]. However, we note that convergence in [20]
is shown under an unconventional partial ordering scheme.
Leveraging our set-based Bellman operator framework and
the Hausdorff distance as our metric, our result is derived
in a much more straightforward manner using interval arith-
metic.

As shown in Example 2 and Example 3, one over-
approximation of the set of Nash equilibria costs is given
by interval sets. In this section we show how to compute the
fixed point set V? of an interval set-based Bellman operator.
Suppose the set C is given by

C =
{
C ∈ RS×A |Csa ∈ [Csa, Csa], ∀ (s, a) ∈ [S]×[A]

}
.

(26)
and the input value function set is given by

V =
{
V ∈ RS | Vs ∈ [V s, V s], ∀ s ∈ [S]

}
. (27)

6.1 Hausdorff distance between interval sets

We first show that the Hausdorff distance between two inter-
val sets V,V ′ ∈ H(RS) can be computed by only compar-
ing the upper and lower bounds of the intervals themselves.

Lemma 3 For two intervals X ,Y ∈ H(RS , ‖·‖∞) given
by X = [x, x], Y = [y, y ], where x, x, y, y ∈ RS , the
Hausdorff distance between X and Y can be calculated as

dH(X ,Y) = max{
∥∥x− y∥∥∞ , ‖x− y‖∞}.

PROOF. We consider the component-wise Hausdorff dis-
tance by noting that when coupled with the infinity norm on
RS , the Hausdorff distance satisfies

dH(X ,Y) = max
i∈[S]

dH(Xi,Yi),

where X = X1 × . . .XS and Y = Y1 × . . .YS [10].

We first compute dH(Xi,Yi), where Xi = [xi, xi] and Yi =
[yi, yi] are interval sets. Recall that the infinity norm can
be written using max operators given in (13). The nested
max representation of the infinity norm allows us to directly
evaluate the infimum and supremum of ‖xi − yi‖∞ over Xi
and Yi respectively, as

sup
yi∈Yi

inf
xi∈Xi

‖xi − yi‖∞ = max{max(xi−yi),max(yi−xi)}.

Similarly, we can derive

sup
xi∈Xi

inf
yi∈Yi

‖xi − yi‖∞ = max{max(y
i
−xi),max(xi−yi)}.

Finally we recall the definition of Hausdorff distance:

dH(Xi,Yi) = max{ sup
yi∈Yi

inf
xi∈Xi

‖xi − yi‖∞ ,

sup
xi∈Xi

inf
yi∈Yi

‖xi − yi‖∞}

= max{max(xi − yi),max(yi − xi),
max(yi − xi),max(xi − yi)}

= max{
∥∥xi − yi∥∥∞ , ‖xi − yi‖∞}.

(28)

Then the total Hausdorff distance between X and Y is given
by

dH(X ,Y) = max
i∈[S]
{max{

∥∥xi − yi∥∥∞ , ‖xi − yi‖∞}}

= max{
∥∥x− y∥∥∞ , ‖x− y‖∞}.

(29)
2
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Lemma 3 shows that interval sets are nice in that their Haus-
dorff distances can be derived via component-wise opera-
tions on the boundaries of the intervals. We use Lemma 3
later in this section to obtain convergence guarantees of set-
based value iteration to the fixed point set of the interval
set-based Bellman operator.

6.2 Interval arithmetic

To compute the fixed point of an interval set-based Bellman
operator, we introduce some relevant interval arithmetic op-
erators [30].

α[a, b] = [αa, αb], α ≥ 0,

[a, b] + [c, d] = [a+ c, b+ d],

[a, b]− [c, d] = [a− d, b− c],
min{[a, b], [c, d]} = [min{a, c},min{b, d}],

(30)

where the last operator min{[a, b], [c, d]} denotes the small-
est interval that contains {min{x, y}, | x ∈ [a, b], y ∈ [c, d]}.
The equivalence relationship for the min operator in (30) is
not as obvious as the standard addition and subtraction op-
erators. Here we prove that the equivalence for min operator
is indeed as given.

Lemma 4 The min operator for interval sets can be calcu-
lated as

min{[a, b], [c, d]} = [min{a, c},min{b, d}].

PROOF. Let us consider the sets A = min{[a, b], [c, d]}
and B = [min{a, c},min{b, d}]. We first show that A ⊆ B:
for z ∈ min{[a, b], [c, d]}, there exists x ∈ [a, b] and
y ∈ [c, d] such that z = min{x, y}. Then necessarily,
min{a, c} ≤ z and z ≤ min{b, d} must be satisfied.

To prove the inclusionB ⊆ A, take v ∈ [min{a, c},min{b, d}].
If v ∈ [a, b], then v = min{v,max{v, d}}. If max{v, d} =
d, then v ∈ min{[a, b], [c, d]} follows from v ∈ [a, b] and
d ∈ [c, d]. If max{v, d} = v, then d < v ≤ b. This contra-
dicts v ∈ [min{a, c},min{b, d}].

If v /∈ [a, b], then either a 6= min{a, c} or b 6= min{b, d}.
This is equivalent to either c ≤ v < a or b < v ≤ d
being true. b < v ≤ d cannot be true since v ∈
[min{a, c},min{b, d}]. c ≤ v < a implies that v ∈ [c, d]
and v = min{v, a}, then v ∈ min{[a, b], [c, d]}. 2

With Lemma 3 and 4, we can analytically compute the fixed
point set of an interval set-based Bellman operator and give
convergence guarantees of interval set-based value iteration.

Proposition 4 For interval sets C and V given by (26)
and (27), respectively, FC(V) defined in Definition 5 is an

interval set that satisfies

FC(V) = {V | V ≤ Vu, −V ≤ −Vl, V ∈ RS},

for Vl = fC(V ) and Vu = fC(V ).

Furthermore, the sequence {Vk}k∈N generated by the iter-
ation Vk+1 = FC(Vk) starting from any interval set V0 will
converge to V? in Hausdorff distance: for every ε > 0, there
exists Vk which satisfies

dH(Vk,V?) ≤ ε/2, (31)

where (31) is satisfied if dH(Vk,Vk−1) 2γ
1−γ < ε.

PROOF. We recall the set-based Bellman operator Defini-
tion 5 and the component-wise definition of fC in Defini-
tion 1. Using these definitions and the fact that C = [C, C]
and V = [V , V ] are both interval sets, the set-based Bellman
operator can be written as

(
FC(V)

)
s

= cl
⋃

C∈[C,C ]

V ∈[V ,V ]

min
a∈[A]

Csa + γ
∑
s′∈[S]

Ps′,saVs′ .

Let G(Csa, V ) = Csa + γ
∑
s′∈[S] Ps′,saVs′ . G be a con-

tinuous function and order preserving in its inputs Csa and
V . Therefore the union over interval sets in

(
FC(V)

)
s

can
be written using interval arithmetic notation as

⋃
C∈[C,C ]

V ∈[V ,V ]

min
a∈[A]

Csa + γ
∑
s′∈[S]

Ps′,saVs′ (32)

={min
a∈[A]

Csa + γ
∑
s′∈[S]

Ps′,saVs′ | C ∈ [C,C ], V ∈ [V , V ]}

(33)

= min
a∈[A]

[Csa, Csa] + γ
∑
s′∈[S]

Ps′,sa[V s′ , V s′ ]. (34)

Since interval sets are closed by definition, the closure
of (32) must also equal (34). Therefore, FC(V) can be
equivalently written component-wise as

(
FC(V)

)
s

= min
a∈[A]

[Csa, Csa] + γ
∑
s′∈[S]

Ps′,sa[V s′ , V s′ ].

(35)
Then, γ > 0 and Ps′,sa ≥ 0 for all (s′, s, a) ∈ [S]×[S]×[A]
allow us to directly perform interval arithmetic component-
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wise for FC as(
FC(V)

)
s

= min
a∈[A]

[
Csa + γ

∑
s′∈[S]

Ps′,saV s′ ,

Csa + γ
∑
s′∈[S]

Ps′,saV s′
]

(36a)

=
[

min
a∈[A]

Csa + γ
∑
s′∈[S]

Ps′,saV s′ ,

min
a∈[A]

Csa + γ
∑
s′∈[S]

Ps′,saV s′
]

(36b)

= [
(
fC(V )

)
s
,
(
fC(V )

)
s
], (36c)

where (36b) utilizes the interval set-based minimization de-
rived in Lemma 4, and (36c) follows from Definition 1.

The image of FC is another closed interval, as shown
by (36c). From Theorem 1, any interval set V0 =
[V , V ] generates an iteration Vk+1 = FC(Vk) which
satisfies limk→∞ FC(Vk) = V?. We can use inter-
val arithmetic to derive V? = limk→∞ FC(Vk) =[

limk→∞ fC(V k), limk→∞ fC(V k)
]

= [V ? , V ? ], where

V ? and V ? are the fixed points of fC and fC , respectively.

At each iteration, the Hausdorff distance between Vk and V?

is given by dH(Vk,V?) = dH

(
[fC(V k), fC(V k)], [V ? , V ? ]

)
.

Using Lemma 3, dH(Vk,V?) is given by

max
{∥∥fC(V k)− V ?

∥∥
∞ ,
∥∥∥fC(V k)− V ?

∥∥∥
∞

}
.

Similarly, dH(Vk+1,Vk) is given by

max
{∥∥fC(V k)− fC(V k+1)

∥∥
∞ ,∥∥∥fC(V k)− fC(V k+1)
∥∥∥
∞

}
.

From Lemma 1, if
∥∥fC(V k)− fC(V k+1)

∥∥
∞ < ε 1−γ

2γ

for some ε > 0, then
∥∥fC(V k)− V ?

∥∥
∞ < ε

2 . Sim-

ilarly, if
∥∥∥fC(V k)− fC(V k+1)

∥∥∥
∞

< ε 1−γ
2γ for some

ε > 0, then
∥∥∥fC(V k)− V ?

∥∥∥
∞

< ε
2 . Therefore if

max
{∥∥fC(V k)− V ?

∥∥
∞ ,
∥∥∥fC(V k)− fC(V k+1)

∥∥∥
∞

}
<

ε, then max
{∥∥fC(V k)− V ?

∥∥
∞ ,
∥∥∥fC(V k)− V ?

∥∥∥
∞

}
<

ε
2 . Since dH(Vk+1,Vk) = max

{∥∥fC(V k)− V ?
∥∥
∞,∥∥∥fC(V k)− fC(V k+1)

∥∥∥
∞

}
and dH(Vk+1 − V?) =

max
{∥∥fC(V k)− V ?

∥∥
∞ ,

∥∥∥fC(V k)− V ?
∥∥∥
∞

}
, we con-

clude that if dH(Vk+1,Vk) < (1−γ)ε
2γ , then dH(Vk+1 −

V?) < ε
2 . 2

Remark 3 In existing work, Vl is equivalent to the opti-
mistic value function in [24] when the transition kernel is
known and cost uncertainty is given by bounded intervals.
Furthermore, Proposition 4 specializes interval value itera-
tion from [20] to cost uncertainty only and proves stronger
convergence results due to this specialization.

We note that whileVk converges toV? in Hausdorff distance,
it is not an over-approximation of V?. In fact, if V k > V ? for
some k ∈ N, then each V? ( Vk for all k. Nonetheless, we
can still utilize Vk to obtain an over-approximation of V? by
using estimate intervals Ṽk+1 = [fC(V k)−1Sε, fC(V k) +
1Sε].

7 Numerical Example

Our analysis of the set-based Bellman operator is moti-
vated by dynamic programming-based learning algorithms
in stochastic games. We demonstrate this by applying in-
terval set-based value iteration in a two player single con-
troller stochastic game, and showing that both transient and
asymptotic behaviours of player one’s value function can be
bounded, regardless of the opponent’s learning algorithm.

We consider a two player single controller stochastic game
as defined in Definition 7, where each player solves a dis-
counted MDP given by ([S], [A1,2], P, C1,2, γ1,2), where
A1 = A2 = A. Both players share an identical state-action
space ([S], [A]) as well as the same transition probabilities
P controlled by player one’s actions. Player one’s cost is
given by

C1
sa(π2) = Csa + Jsbπ2(s, b), ∀ (s, a) ∈ [S]× [A],

while player two’s cost is given by

C2
sb(π1) = Csb − Jsaπ1(s, a), ∀ (s, b) ∈ [S]× [A],

where the matrix J ∈ RS×A+ is the same for the two costs.

While algorithms that converge to Nash equilibrium ex-
ist [28,23] for such single controller games, convergence is
not guaranteed if players do not coordinate on which algo-
rithm to use between themselves. In this section, we utilize
the set-based Bellman operator to show that we can deter-
mine the value function set that player one’s Nash equilib-
rium value function belongs to, and equivalently, the value
function set that player one’s value function trajectory con-
verges to, regardless of what the opponent does.

We define the state space of a stochastic game on a 3 × 3
grid, shown in Figure 2a, where the total number of states is
S = 9 and total number of actions per state is A = 4. State
s′ is a neighbouring state of s if it is immediately connected
to s by a green arrow in Figure 2a. At state s, let Ns denote
the set containing all neighbouring states of s.
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a b

Fig. 2. (a): Each player’s state space [S], S = 9. Green actions
leads to a neighbouring state and yellow actions are infeasible.
(b): Actions space [A], A = 4.

As shown in Figure 2b, the actions available in each state
are labelled ‘left’, ‘right’, ‘up’, or ‘down’. From each state
s, an action is feasible if it coincides with a green arrow in
Figure 2a, and infeasible if it coincides with a yellow arrow.
For feasible actions, its transition probabilities are given as

Ps′sa =


0.7 s′ = target state

0.3
|Ns|−1 s′ 6= target state, s′ ∈ Ns
0 otherwise

. (37)

In (37), we define the target state s′ of state-action pair (s, a)
to be the neighbouring state of s in the direction of action
a. If action a is infeasible, its transition probabilities are
defined as

Ps′sa =

{
1
|Ns| s′ ∈ Ns
0 otherwise

. (38)

We select matricesC, J ∈ R9×4 by randomly sampling each
element Csa, Jsa uniformly from the interval [0, 1]. As in
Example 2, we derive an over-approximation of player one’s
feasible costs as interval set C, given by{
C1 ∈ R9×4 |C1

sa ∈ [Csa, Csa+Jsa], ∀ (s, a) ∈ [9]×[4]
}
,

(39)
where the upper bound Csa + Jsa is achieved when player
two’s probability of taking action b = a from state s is 1.

We consider a two player value iteration algorithm pre-
sented in Algorithm 1 which forms the basis of many dy-
namic programming-based learning algorithms for stochas-
tic games [18,28]. At each time step, player one takes the
optimal policy πk+1 given by (8) that solves the Bellman
operator fCk(V k), where Ck is player one’s cost parame-
ter at step k and V k is player one’s value function at step
k — i.e. player one performs value iteration at every time
step. Player two obtains its optimal policy using function
g : Π1 → Π2, we do not make any assumptions of g, it may
produce any policy π2 in response to the policy π1.

Our analysis provides bounds on player one’s value function
when we do not know how player two is updating its policy
— i.e. when g is unknown. In simulation, we take g to be
different strategies and show that player one’s value func-
tions are bounded by the interval set analysis and converges

Algorithm 1 Two player VI

Input: ([S], [A], P, C1,2, γ1,2), V0.
Output: V ?, π?1

π0
1(s) = π0

2(s) = 0, ∀ s ∈ [S]
for k = 0, . . . , do

C = C1(πk1 , π
k
2 )

(V k+1, πk+1
1 ) = fC(V k)

πk+1
2 = g(πk+1

1 )
end for

towards the fixed point set of the corresponding Bellman
operator.

Suppose both players are updating their policies via value
iteration (8). Player one performs value iteration with a dis-
count factor of γ1 = 0.7, while player two performs value
iteration with an unknown discount factor γ ∈ (0, 1). As-
suming both players’ value functions are initialized to be 0
in every state, we simulate player one’s value function tra-
jectories for different values of γ in Figure 3.

0.0

0.5

1.0

k = 1

0.0

0.5

1.0

V(
s)

k = 49

= 0.10

= 0.20

= 0.30

= 0.40

= 0.50

= 0.60

= 0.70

= 0.80

= 0.90

= 1.00

1 2 3 4 5 6 7 8 9
States

0.0

0.5

1.0

k = 99

Fig. 3. Player one’s value function as a function of state at different
iterations k = {1, 49, 99}. Range shown in blue is the bounded
interval V = [V k, V

k
] at the corresponding iteration k.

Figure 3 shows that when player two utilizes different dis-
count factors, player one experiences different trajectories
despite the fact that both players are utilizing value iteration
to minimize their losses. However, the value function tra-
jectory that player one follows is always bounded between
the thresholds we derived from Proposition 3. As Figure 3
shows, there does not seem to be any direct correlation be-
tween player two’s discount factor and player one’s value
function. However, the interval bounds we derived do tightly
approximate resulting value function trajectories.

Alternatively, suppose we know that player two has the same
discount factor as player one, but we do not know player
two’s initial value function or if it is minimizing or max-
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imizing its discounted objective. We analyze both scenar-
ios: when player two is also minimizing its cost and when
player two is maximizing its cost. In Figure 4, the infinity
norm of player one’s value function at each iteration k is
shown with respect to these two scenarios. Both player one
and player two’s initial value function is randomly initial-
ized as V 0

s ∈ [0, 1], ∀ s ∈ [9]. Figure 4 plots player one’s
value function trajectory when player two utilizes value it-
eration towards different objectives: towards minimizing C2

(player one’s value functions shown in dotted lines) and to-
wards maximizing C2 (player one’s value functions shown
in solid lines). The grey region shows the predicted bounds
as derived from Proposition 3.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations (k)

0.0

0.2

0.4

0.6

0.8

1.0

||V
||

Fig. 4. The infinity norm of player one’s value functions as a
function of iteration k.

As Figure 4 shows, player two’s policy change causes a sig-
nificant shift in player one’s value function trajectory. When
player two attempts to maximize its own cost parameter,
player one’s function achieves the absolute lower bound as
predicted by Proposition 4. This is due to the fact that at
least four actions with different costs are available at each
state. Since both players are only selecting from determinis-
tic policies, they are bound to select different actions unless
all actions have the exact same cost. On the other hand, if
player two is minimizing its value function, then both play-
ers would precisely select the same state-actions at every
time step. Then depending on the coupling matrix A, they
may or may not choose a less costly action at the next step.
This causes the limit cycle behaviour that the dotted trajec-
tories exhibit. In terms of the tightness of the bounds we
derived in Proposition 3, we note that Figure 4 also shows
the existence of trajectories which approach both the upper
and lower bounds, therefore in practice the set-based bounds
are shown to be tight.

8 Conclusion

We have bounded the set of optimal value functions of the
set-based Bellman operator associated with a discounted in-
finite horizon MDP. Our results are motivated by bounding

optimal value functions of parameter uncertain MDPs and
value functions trajectories of a player in a stochastic games.
We demonstrate our example on a grid MDP and show that
while player one’s value function does not converge, the
Hausdorff distance between the value function and the fixed
point set of the set-based Bellman operator converges to
zero. Future work includes extending the set-based analy-
sis to consider uncertainty in the transition kernels to fully
bound value function trajectories of learning algorithms in
a general stochastic game.
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