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Abstract

We show every Π0
2 subset of a domain-complete space is domain-

complete. This implies that Chen’s countably correlated spaces are all
domain-complete.

1 Introduction
A domain-complete space is a homeomorph of a Gδ subset of a continuous dcpo.
Those spaces were introduced in [4], and contain all continuous dcpos, all of de
Brecht’s quasi-Polish spaces [3], in particular all Polish spaces, all continuous
complete quasi-metric spaces in their d-Scott topology and in particular all
completely metrizable spaces.

The following is mentioned as open problem (v) in [4]: is every subspace
obtained as a Π0

2 subset of a domain-complete space again domain-complete?
We give a positive answer to this problem here. This also solves open problems
(vi) and (vii) of the same paper, as we will see at the end of this paper.

2 Preliminaries
A dcpo is a poset in which every directed family D has a supremum sup↑D.
The way-below relation � on a dcpo Y is defined by x� y if and only if every
directed family D such that y ≤ sup↑D contains an element above x. The
following relations hold: x � y implies x ≤ y; x ≤ y � z implies x � z;
x � y ≤ z implies x � z. We will sometimes write �Y instead of � to make
it clear what dcpo we are reasoning on.

A dcpo X is continuous if and only if, for every x ∈ X, the family ↓↓x of
elements way-below x is directed and sup↑ ↓↓x = x. It is equivalent to require
every x ∈ X to be the supremum of some directed family of elements way-below
it, not necessarily ↓↓x. Continuous dcpos are commonly called domains.
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A subset U of a dcpoX is Scott-open if and only if it is upwards-closed (x ≤ y
and x ∈ U imply y ∈ U) and, for every directed family D such that sup↑D ∈ U ,
some element of D is already in U . The Scott-open subsets form a topology
called the Scott topology. All the dcpos we will consider are equipped with the
Scott topology. In a continuous dcpo X, the sets ↑↑x def

= {y ∈ X | x � y} form
a base of the Scott topology.

Those are classical notions of domain theory and of topology, for which the
reader is directed to [5, 1, 6].

A domain-complete space is any topological space that is homeomorphic to
a Gδ subset of a continuous dcpo, with the subspace topology. A Gδ subset is
by definition a countable intersection of open subsets, or equivalently a subset
of the form

⋂
n∈N Vn, where each Vn is open and V0 ⊇ V1 ⊇ · · · ⊇ Vn ⊇ · · · .

A UCO subset of X is the union of a closed and an open subset, or equiv-
alently a set of the form U ⇒ V

def
= {x ∈ X | x ∈ U implies x ∈ V }, where U

and V are open. A Π0
2 subset of X is a countable intersection of UCO subsets.

Such subsets are fundamental in the study of quasi-Polish spaces [3], because
the subspaces of a quasi-Polish space that are themselves quasi-Polish in the
subspace topology are exactly its Π0

2 subsets [3, Corollary 23]. The fact that
Gδ subsets are profitably replaced by Π0

2 subsets in the descriptive set theory
of domains and further non-Hausdorff topological spaces is due to Selivanov [9].

Note that every open subset, every Gδ subset, every closed subset is Π0
2.

Beware that, outside the realm of metric spaces, closed subsets need not be Gδ;
in a dcpo, closed subsets are downwards-closed, while Gδ subsets are upwards-
closed, for instance.

3 Another characterization of Gδ and Π0
2 subsets

We will rely on the following characterization of Gδ and Π0
2 subsets, which is of

independent interest. A real-valued map f is lower semicontinuous if and only
if f−1(]t,+∞[) is open for every real number t.

Lemma 3.1 Let Y be a topological space.

1. The Gδ subsets of Y are exactly its subsets of the form f−1({1}), where
f ranges over the lower semicontinuous maps from Y to [0, 1].

2. The Π0
2 subsets of Y are exactly its subsets of the form ϕ−1({0}), where ϕ

ranges over the differences f − g of two lower semicontinuous maps from
Y to [0, 1], with f ≥ g.

Proof. 1. Let (Vn)n∈N be any sequence of open subsets of Y . Define f(x) def
=∑

n∈N
1

2n+1χVn
(x), for every x ∈ Y . Then f is lower semicontinuous from Y

to [0, 1], and f(x) = 1 if and only if x is in every Vn. Conversely, for every
lower semicontinuous map f from Y to [0, 1], f−1({1}) =

⋂
n∈N Vn where Vn

def
=

f−1(]1− 1/2n,+∞[).
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2. Let X def
=
⋂
n∈N(Un ⇒ Vn), where Un and Vn are open in Y , and Vn ⊆ Un.

For every x ∈ Y , let f(x) def
=
∑
n∈N

1
2n+1χUn(x), g(x)

def
=
∑
n∈N

1
2n+1χVn(x), and

let ϕ def
= f − g. Since Vn is included in Un, χUn

− χVn
= χUnrVn

, so ϕ def
= f − g

is such that ϕ(x) =
∑
n∈N

1
2n+1χUnrVn for every x ∈ Y . In particular, ϕ(x) ≥ 0

for every x ∈ X, meaning that f ≥ g. Also, ϕ(x) > 0 if and only if x ∈ UnrVn
for some n ∈ N, if and only if x is in

⋃
n∈N(Un r Vn), namely not in X. Hence

X = ϕ−1({0}).
Conversely, let X def

= ϕ−1({0}), where ϕ = f−g, and f , g are lower semicon-
tinuous maps from Y to [0, 1], with f ≥ g. For every x ∈ Y , ϕ(x) > 0 if and only
if f(x) > g(x), if and only if there is a rational number q such that f(x) > q ≥
g(x). Hence the complement of X is equal to

⋃
q∈Q f

−1(]q,+∞[)rg−1(]q,+∞[),
so X is the Π0

2 subset
⋂
q∈Q(f

−1(]q,+∞[)⇒ g−1(]q,+∞[)). ut

4 The main theorem
We will show that every Π0

2 subset X of a continuous dcpo Y is homeomorphic
to a Gδ subset of some continuous dcpo Z. The plan of the proof is as follows.
By Lemma 3.1, item 2, X = ϕ−1({0}) where ϕ = f − g and f , g are lower
semicontinuous maps from Y to [0, 1], f ≥ g. We will build Z as the set
{(x, r) ∈ Y × R+ | ϕ(x) ≤ r}, ordered by (x, r) ≤ (y, s) if and only if x ≤ y,
r ≥ s, and ϕ(x)− r ≤ ϕ(y)− s. Despite the fact that ϕ is not Scott-continuous
in general, and that the ordering is somewhat strange, we will show that Z is a
continuous dcpo, and that the map x 7→ (x, 0) defines a homeomorphism from
X onto a Gδ subset of Z.

In order to work with a more standard ordering, we will consider the function
ψ : Y×]−∞, 0] →]−∞, 1] defined by ψ(y,−r) def

= ϕ(y) − r. Then Z will be
isomorphic to the poset of triples (y, r, s) such that s = ψ(y, r) and s ≤ 0, with
the usual componentwise ordering.

4.1 Extracting a subdcpo
Since ϕ and ψ may fail to be Scott-continuous, we will need to observe that they
are still continuous, but as maps from Yd to [0, 1]λ. The d and λ subscripts refer
to the so-called d-topology [7, Section 5] and to the so-called Lawson topology
[5, Section III.1], and will be introduced shortly.

For every subset E of a dcpo P , let ↑E denote its upward closure {y ∈
P | ∃x ∈ E, x ≤ y}. The Lawson topology on P is the coarsest topology that
contains all Scott-open subsets and the complements of all the sets ↑E, E finite.
Let us write Pλ for P with its Lawson topology.

A subset C of a dcpo Y ′ is d-closed if and only if every directed family
included in C has a supremum in C. The complements of d-closed sets (the
d-open sets) form a topology called the d-topology [7, Section 5]. A set U is
d-open if and only if every directed family whose supremum is in U intersects
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U . Every Scott-open subset is d-open, but also every downwards-closed subset.
We write Y ′d for Y ′ with its d-topology.

We will repeatedly use the following, easily proved fact: in a dcpo, any
cofinal subfamily of a directed family D is itself directed, and has the same
supremum as the original family. A subfamily E of D is cofinal if and only if
every element of D is below some element of E. A first consequence, which can
be used to give a simple proof that the d-topology is a topology, is as follows.

Lemma 4.1 Let U be a d-open subset of a dcpo Y ′. For every directed family
(xi)i∈I whose supremum x is in U , xi is in U for i large enough; namely, there
is an i0 ∈ I such that, for every i ∈ I such that xi0 ≤ xi, xi is in U .

Proof. We assume the contrary: for every i0 ∈ I, there is an i ∈ I such that
xi0 ≤ xi but xi is not in U . Hence the family E of points xi, i ∈ I, such that
xi 6∈ U , is cofinal. E is directed, included in the complement of U , which is
d-closed by assumption, so its supremum, which must be x, must also be in the
complement of U : contradiction. ut

A subdcpo of a dcpo Y ′ is just a d-closed subset G. Every subdcpo of Y ′ is, in
particular, a dcpo, and one in which suprema of directed families are computed
as in the ambient dcpo Y ′. The latter condition is important. For example, the
lattice of closed subsets of a topological space X is not in general a subdcpo
of P(X) (both being ordered by inclusion), although it is a dcpo, and even a
complete lattice. Indeed, directed suprema are computed as unions in the latter,
and as closures of unions in the former.

Lemma 4.2 Let Y ′ and P be two dcpos. Let P ′ be the set of points of P ,
equipped with a Hausdorff topology coarser than the d-topology, and ψ be a con-
tinuous map from Y ′d to P ′. The graph G(ψ) def

= {(x, ψ(x)) | x ∈ Y ′} ⊆ Y ′ × P
of ψ is a subdcpo of Y ′ × P .

Proof. Let us consider a directed family ((xi, ψ(xi)))i∈I in G(ψ), and let (x, t)
be its supremum in Y ′ × P . Note that (xi)i∈I and (ψ(xi))i∈I are directed, in
particular—we certainly do not deduce the latter from the former, since ψ is
not assumed to be monotonic in any way.

If t were different from ψ(x), by Hausdorffness there would be disjoint P ′-
open sets U , V containing t and ψ(x) respectively. Since t = sup↑i∈I ψ(xi) is
in U , and U is d-open, ψ(xi) is in U for i large enough, using Lemma 4.1, so
xi is in ψ−1(U) for i large enough. Since x = sup↑i∈I xi is in the d-open set
ψ−1(V ), xi is in ψ−1(V ) for i large enough. This is impossible, since ψ−1(U)
and ψ−1(V ) are disjoint.

Therefore t = ψ(x), so (x, t) = (x, ψ(x)) is in G(ψ). ut
This lemma applies notably when P ′ = Pd. When P is a continuous (or even
a quasi-continuous dcpo), Pλ is Hausdorff, and this allows us to weaken our
assumptions on ψ:

Corollary 4.3 Let Y ′ be a dcpo, P be a continuous dcpo, and let ψ be a con-
tinuous map from Y ′d to Pλ. The graph G(ψ) of ψ is a subdcpo of Y ′ × P .
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Remark 4.4 Every Scott-continuous map f : Y ′ → P is continuous from Y ′d to
Pλ, because inverse images of Scott-open sets are Scott-open and inverse images
of sets of the form ↑E are upwards-closed, owing to the fact that f , being Scott-
continuous, is monotonic. When P = [0, 1], the topology Pλ is the usual metric
topology, for which addition and subtraction are continuous. (The latter would
fail if we replaced Pλ by Pd.) It follows that the map ϕ def

= f − g considered in
Lemma 3.1 (2) is continuous from Yd to [0, 1]λ.

4.2 Extracting a continuous dcpo
Definition 4.5 A subdomain of a continuous dcpo Y ′ is any subdcpo G which,
as a dcpo, is a continuous dcpo, and whose way-below relation is the restriction
of that of Y ′.

In that case, the Scott topology on G is also the subspace topology inherited
from the Scott topology of Y ′. It is not enough for the subdcpo G to be a
continuous dcpo in order to be a subdomain. For example, the lattice of open
subsets of a locally compact spaceX is a subdcpo of P(X) (ordered by inclusion),
and a continuous dcpo, but U is way-below V in X if and only if U ⊆ Q ⊆ V
for some compact set Q, while U is way-below V in P(X) if and only if U is
finite and included in V .

Lemma 4.6 Let G be a subdcpo of a continuous dcpo Y ′. Then G is a sub-
domain of Y ′ if and only if the following cofinality condition holds: for every
g ∈ G, ↓↓g ∩G is cofinal in ↓↓g.

Proof. We recall that ↓↓g denotes the set of points y ∈ Y ′ such that y �Y ′ g.
If G is a subdomain of Y ′, then for every g ∈ G, g is the supremum of the

directed family of elements g′ ∈ G such that g′ �G g, equivalently such that
g′ �Y ′ g. For every y ∈ ↓↓g, therefore, there is a g′ ∈ G such that g′ �Y ′ g and
y ≤ g′, whence the cofinality condition holds.

Conversely, let us assume that the cofinality condition holds.
We first claim that g �Y ′ g′ implies g �G g′. To this end, we consider a

directed family (gi)i∈I in G, whose supremum (in G) lies above g′. Since G is a
subdcpo of Y ′, namely since directed suprema are computed as in Y ′, and since
g �Y ′ g′, g ≤ gi for some i ∈ I. Hence g �G g′.

For every g ∈ G, since ↓↓g∩G is cofinal in ↓↓g, it is directed, and has the same
supremum (in Y ′, hence also in G) than ↓↓g, namely g. For every g′ ∈ ↓↓g ∩ G,
we have g′ �Y ′ g, hence g′ �G g. This shows that G is a continuous dcpo.

In order to show that �G is the restriction of �Y ′ to G, we assume that
g �G g′. Since, as we have just seen, g′ = sup↑(↓↓g′∩G), there is an element g′′
of ↓↓g′ ∩ G such that g ≤ g′′. Now g ≤ g′′ �Y ′ g′. We have already seen that,
conversely, g′ �Y ′ g implies g′ �G g. ut

The following corollary is well-known, see [8, Lemma 2.40] for example. One
merely observes that a Scott-closed subset G is the same thing as a downwards-
closed subdcpo. Downward closure implies that ↓↓g ∩ G = ↓↓g for every g ∈ G,
whence the cofinality requirement in Lemma 4.6 is trivial.
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Corollary 4.7 Every Scott-closed subset of a continuous dcpo Y ′ is a subdo-
main of Y ′. ut

Now we imagine that Y ′ and P are continuous dcpos. In that case, Y ′×P is
continuous, and its way-below relation is the product of the way-below relations.
As before, we consider the subdcpo G(ψ) obtained as the graph of a continuous
map ψ : Y ′d → Pλ. We can simplify the cofinality condition slightly in this case.

Lemma 4.8 Let Y ′ and P be two continuous dcpos, and let ψ be a continuous
map from Y ′d to Pλ. G(ψ) is a subdomain of Y ′ × P if and only if:

(*) for all points y, x ∈ Y ′ such that y �Y ′ x, there is a point z ∈ Y ′ such
that y ≤ z �Y ′ x and ψ(z)�P ψ(x).

Proof. G(ψ) is a subdcpo of Y ′ by Corollary 4.3. It suffices to show that the
cofinality condition of Lemma 4.6 is equivalent to (*).

Let us show that it implies (*). Let y �Y ′ x. Since P is a continuous dcpo,
there is an element t�P ψ(x), so (y, t) is in ↓↓(x, ψ(x)). The cofinality condition
gives us an element (z, ψ(z)) of G(ψ) such that (y, t) ≤ (z, ψ(z)) � (x, ψ(x)),
whence (*) follows.

In the converse direction, let (x, ψ(x)) be any point of G(ψ). In order to
show that ↓↓(x, ψ(x)) ∩ G(ψ) is cofinal in ↓↓(x, ψ(x)), we observe that for every
(y0, s0) ∈ ↓↓(x, ψ(x)), namely if y0 �Y ′ x and s0 �P ψ(x), then x is in the d-
open set U def

= ψ−1(↑↑s0)∩↑↑y0. Since Y ′ is continuous, x is the supremum of the
directed family ↓↓x. By Lemma 4.1, there is a point y ∈ ↓↓x such that, for every
z ∈ ↓↓x such that y ≤ z, z is in U . Note that y �Y ′ x, so (*) applies, giving us an
element z ∈ ↓↓x such that y ≤ z and ψ(z)� ψ(x). Hence (z, ψ(z))� (x, ψ(x)).
We have just seen that z must be in U . Hence y0 �Y ′ z and s0 �P ψ(z), in
particular (y0, s0) ≤ (z, ψ(z)). ut

We apply this to the case where Y ′ def
= Y×]−∞, 0], P def

=]−∞, a], a ∈ R.
Note that ]−∞, 0] and ]−∞, a] are continuous dcpos, and that their way-below
relation is <.

Lemma 4.9 Let Y be a continuous dcpo, a ∈ R, P def
=]−∞, a], and ϕ be a

continuous map from Yd to Pλ. Let Y ′
def
= Y×]−∞, 0]. The function ψ : Y ′ → P

defined by ψ(y, r) def
= ϕ(y) + r is continuous from Y ′d to Pλ, and satisfies (*).

Proof. The map ψ is continuous from Y ′d to Pλ. Indeed, ψ arises as the
composition of +: ] −∞, a]λ×]−∞, 0]λ →]−∞, a]λ, of ϕ × id : Yd×]−∞, 0]λ →
Pλ×]−∞, 0]λ, and of id : Y ′d → Yd×]−∞, 0]λ. (× means topological, not order-
theoretic product here.) The former is continuous, because the Lawson topology
on real intervals is the usual metric topology, for which addition is continuous.
The second map is trivially continuous. For the last one, it suffices to check that
every product C × I of a d-closed subset of Y with a closed interval of ]−∞, 0]λ
is d-closed, and that follows from the fact that directed suprema are computed
componentwise.
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As far as condition (*) is concerned, we need to show that given (y, r) and
(x, s) in Y×]−∞, 0] such that y �Y x and r < s, there is a pair (z, t) in
Y×]−∞, 0] such that: (a) y ≤ z �Y x, (b) r ≤ t < s, and (c) ϕ(z)+t < ϕ(x)+s.
Since ϕ is continuous from Yd to Pλ, U

def
= ϕ−1(Pr↑{ϕ(x)+s−r})∩↑↑y is d-open

in Y . U also contains x, because ϕ(x) < ϕ(x) + s − r, and because y �Y x.
Since Y is a continuous dcpo, x = sup↑ ↓↓x. Using the fact that U is d-open,
there is an element z �Y x inside U . Since z ∈ U , in particular y �Y z, so
y ≤ z, showing (a). We define t as r, whence (b) follows. Since z ∈ U again,
ϕ(z) < ϕ(x) + s− r = ϕ(x) + s− t, so ϕ(z) + t < ϕ(x) + s, establishing (c). ut

Corollary 4.10 Let Y be a continuous dcpo, f and g be two lower semicon-
tinuous map from Y to [0, 1] such that f ≥ g, and let ϕ def

= f − g. Let also
Z

def
= {(x, r) ∈ Y × R+ | ϕ(x) ≤ r}, ordered by (x, r) ≤ (y, s) if and only if

x ≤ y, r ≥ s, and ϕ(x)− r ≤ ϕ(y)− s. Then:

1. Z is a continuous dcpo;

2. the supremum (x, r) of a directed family (xi, ri)i∈I in Z is equal to ( sup↑i∈I xi, inf
↓
i∈I ri),

and ϕ(x)− r = sup↑i∈I(ϕ(xi)− ri);

3. for all (x, r) and (y, s) in Z, (x, r)�Z (y, s) if and only if x�Y y, r > s,
and ϕ(x)− r < ϕ(y)− s.

Proof. By Remark 4.4, ϕ is continuous from Yd to Pλ, where P
def
=]−∞, 1].

Lemma 4.9 and Lemma 4.8 allow us to say that G(ψ) is a subdomain of Y ′×P ,
where Y ′ def

= Y×]−∞, 0]. The subset Z ′ of those points ((y, r), s) of G(ψ) (i.e.,
s = ψ(y, r), equivalently s = ϕ(y) + r) such that s ≤ 0 is Scott-closed, as one
checks easily since suprema in G(ψ) are taken as in Y ′×P . We use Corollary 4.7,
and we obtain that Z ′ is a subdomain of G(ψ), hence of Y ′×P . We now observe
that the map (x, r) 7→ (x,−r, ϕ(x) − r) is an order isomorphism from Z onto
Z ′, and the result follows. ut

4.3 The final argument
We are almost done:

Proposition 4.11 Every Π0
2 subset X of a continuous dcpo Y is homeomorphic

to a Gδ subset of some continuous dcpo Z.

Proof. Let X be any Π0
2 subset of Y . By Lemma 3.1 (2), X = ϕ−1({0}) where

ϕ = f − g and f , g are lower semicontinuous maps from Y to [0, 1], f ≥ g. We
define Z as in Corollary 4.10. It remains to show that f : x 7→ (x, 0) defines a
homeomorphism from X onto a Gδ subset of Z.

The inverse image of the basic open set ↑↑(y, r) by f is the set of elements
x ∈ X such that (y, r) �Z (x, 0), equivalently such that y �Z x, r > 0, and
ϕ(y)−r < ϕ(x)−0. The latter expression simplifies since x ∈ X is equivalent to
ϕ(x) = 0. Hence f−1(↑↑(y, r)) is empty if ϕ(y) ≥ r, otherwise is equal to X ∩↑↑y.
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It follows that f is continuous. It also follows that every basic open set X ∩ ↑↑y
(y ∈ Y ) of X is equal to f−1(↑↑(y, r)), for any r > 0, ϕ(y). Since f is clearly
injective, f is a topological embedding of X into Z, hence a homeomorphism
onto its image.

That image is the set of elements (x, r) of Z such that r = 0, or equivalently
the intersection of the countably many sets Vn

def
= {(x, r) ∈ Z | r < 1/2n}.

Using item (2) of Corollary 4.10, it is easy to check that Vn is open in Z, so the
image of f is a Gδ subset of Z. ut

It follows:

Theorem 4.12 Every Π0
2 subset of a domain-complete space is domain-complete

in the subspace topology.

Proof. Let A def
=
⋂
n∈N(Un ⇒ Vn) be a Π0

2 subset of Y , where Y def
=
⋂
m∈NWm,

each Wm is open in a continuous dcpo X, and Un and Vn are open in Y . We
write Un as U ′n ∩ Y and Vn as V ′n ∩ Y , where U ′n and V ′n are open in X. Then
Un ⇒ Vn = (U ′n ⇒ V ′n) ∩ Y , so A =

(⋂
n∈N(U

′
n ⇒ V ′n)

)
∩
⋂
m∈NWm is a Π0

2

subset of X. By Proposition 4.11, A is homeomorphic to a Gδ subset of some
continuous dcpo, hence is domain-complete. ut

An LCS-complete space is a homeomorph of a Gδ subset of a locally compact
sober space [4]. All domain-complete spaces are LCS-complete, because every
continuous dcpo is locally compact and sober, and the inclusion is strict. We
should note that the analogue of Theorem 4.12 for LCS-complete spaces fails:
by Proposition 14.5 of [4], there is a UCO subset of a compact Hausdorff space
that is not LCS-complete.

5 Consequences
A first immediate consequence of Theorem 4.12 is the following.

Proposition 5.1 A space is domain-complete if and only if it is homeomorphic
to a Π0

2 subset of a continuous dcpo.

Proof. Every Gδ subset is trivially Π0
2. The converse direction is by Theo-

rem 4.12. ut
A second consequence concernes Chen’s countably correlated spaces [2]. Those

are the spaces that are homeomorphic to a Π0
2 subset of P(I), for an arbitrary

set I. Here P(I) is the space of all subsets of I, with the Scott topology of
inclusion. This is a continuous (even algebraic) dcpo, where A � B if and
only if A is a finite subset of B. The countably correlated spaces generalize the
quasi-Polish spaces, which are exactly the homeomorphs of Π0

2 subsets of P(I)
for I countable [3, Corollary 23].

Proposition 5.2 Every countably correlated space is domain-complete.
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Proof. By definition, every countably correlated space is homeomorphic to a
Π0

2 subset of a continuous dcpo of the form P(I). ut
This is a positive answer to open problem (vi) of [4].

Open problem (vii) asks whether every LCS-complete space is countably
correlated. The answer to that problem is negative: by Remark 9.3 of [4], the
space {0, 1}I where {0, 1} is given the discrete topology and I is uncountable is
LCS-complete but not domain-complete, hence not countably correlated.

This leaves one new open question: is the converse of Proposition 5.2 true,
namely is every domain-complete space countably correlated?
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