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Abstract

Given any quasi-metric space X, d, we can form the space LX of
all lower semicontinuous maps from X to R+, where X is given the
d-Scott topology. We give LX the Scott topology of the pointwise
ordering. We can then form the subspace Lα(X, d) of α-Lipschitz
continuous maps from X, d to R+ (α ∈ R+). We show that, when
X, d is continuous Yoneda-complete, Lα(X, d) is stably compact, and
that its topology coincides with the compact-open topology and with
the topology of pointwise convergence. We also show that the space
L∞(X, d) of all Lipschitz continuous maps from X, d to R+ has a
topology that is determined by the topologies of Lα(X, d), α > 0, if
X, d is Lipschitz regular.

1 Introduction

This work is one of several bricks needed in a study of quasi-metrics on
spaces of continuous valuations (a notion close to measures) and non-linear
extensions of the latter, which should appear in a series of papers1.

1An unpublished version of that work is available on arXiv [7]. The present paper
covers Sections 6.2, 7, 5, 8, and 9 there, in that order.
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Specifically, we are interested in Kantorovich-Rubinshtĕın-like quasi-metrics,
where the distance from the continuous valuation µ on the quasi-metric space
X, d to ν is obtained as a supremum over all 1-Lipschitz continuous maps
f : X → R+ of max(

∫
x∈X f(x)dµ−

∫
x∈X f(x)dν, 0). This requires us to know

as much as we can on spaces of 1-Lipschitz continuous maps from X to R,
more generally on spaces of α-Lipschitz continuous maps. It is the purpose
of this paper to examine the main topological properties of those spaces of
maps.

Outline We recapitulate some preliminary definitions and notions in Sec-
tion 2. This is probably most needed for the theory of quasi-metric spaces
and their d-Scott topology, which is new and not entirely well-known. For
example, a Lipschitz map may fail to be continuous with respect to these
topologies.

In Section 3, we introduce the spaces of maps that form the subject of this
paper. We take the opportunity to state a few new results on the largest α-
Lipschitz continuous map f (α) below f not already given in [8]. In particular,
we give a simple formula for f (α) when X, d is continuous and f is already
α-Lipschitz but not necessarily continuous. We also show how this is related
to Scott’s formula in domain theory.

We collect some required properties on the space LX of all lower semi-
continuous maps from X (with its d-Scott topology) to R+. Those come
from [2], and the most important is that the Scott topology on LX coincides
with the compact-open topology, when X, d is continuous Yoneda-complete.

We make a detour in Section 5 and briefly study the compact saturated
subsets of continuous Yoneda-complete quasi-metric spaces.

At this point, we will have enough material to characterize the induced
topology of the subspace Lα(X, d) of α-Lipschitz continuous maps from X
to R+ when X, d is continuous Yoneda-complete. As we show in Section 6,
this will not only be the compact-open topology, but also the topology of
pointwise convergence. This allows to show that Lα(X, d) is stably compact
in Section 7. A number of pleasing continuity properties are obtained from
that fact.

Finally, we study the space L∞(X, d) of all Lipschitz continuous maps
from X to R+ in Section 8, with no upper bound on the Lipschitz constant. In
that short, final section, we show that the topology of L∞(X, d) is determined
by the topologies of its subspaces Lα(X, d), α > 0, when X, d is Lipschitz
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regular, a notion we introduced in [8]. In that case, the study of L∞(X, d)
reduces in a simple way to that of the spaces Lα(X, d), α > 0.

2 Preliminaries

General topology We refer the reader to [6] for basic notions and theo-
rems of topology, domain theory, and in the theory of quasi-metric spaces.
The book [5] is the standard reference on domain theory, and I will assume
known the notions of directed complete posets (dcpo), Scott-continuous func-
tions, the way-below relation�, continuous posets and dcpos, and so on. We
write ↑↑x for the set of points y such that x � y. The Scott topology on a
poset consists of the Scott-open subsets, namely the upwards-closed subsets
U such that every directed family that has a supremum in U must intersect
U . A Scott-continuous map between posets is one that is monotonic and
preserves existing directed suprema, and this is equivalent to requiring that
it is continuous for the underlying Scott topologies.

The topic of the present paper is on quasi-metric spaces. Chapters 6
and 7 of [6] are a recommended read on that subject. The paper [9] gives
additional information on quasi-metric spaces, which we will also rely on.

As far as topology is concerned, compactness does not imply separation.
In other words, we call a subset K of a topological space compact if and
only if every open cover of K contains a finite subcover. This property is
sometimes called quasicompactness.

We shall always write ≤ for the specialization preordering of a topological
space: x ≤ y if and only if every open neighborhood of x is also an open
neighborhood of y, if and only if x is in the closure of y. As a result, the
closure of a single point y is also its downward closure ↓y. In general, we
write ↓A for the downward closure of any set A, ↑A for its upward closure,
and ↑x = ↑{x}. A saturated subset of a topological space is a set that is
the intersection of all its open neighborhoods; equivalently, it is an upwards-
closed subset in its specialization preordering.

In a topological space, ↑A is also equal to the saturation of A, namely
the intersection of all the open neighborhoods of A. If K is compact, then
so is its saturation ↑K, and we shall usually use the letter Q for compact
saturated subsets.

3



Quasi-metric spaces Let R+ be the set of extended non-negative reals.
A quasi-metric on a set X is a map d : X ×X → R+ satisfying: d(x, x) = 0;
d(x, z) ≤ d(x, y)+d(y, z) (triangular inequality); d(x, y) = d(y, x) = 0 implies
x = y. The pair X, d is then called a quasi-metric space. Given X, d, there
is an ordering ≤d on X given by x ≤d y if and only if d(x, y) = 0.

A trivial example is R+ itself, with the quasi-metric dR defined by dR(x, y) =
0 if x ≤ y, dR(+∞, y) = +∞ if y 6= +∞, dR(x, y) = x − y if x > y and
x 6= +∞. Then ≤dR is the ordinary ordering ≤.

Naturally, every metric space is a quasi-metric space, but every poset can
also naturally be considered as a quasi-metric space, with the quasi-metric
d≤ defined by d≤(x, y) = 0 if x ≤ y, +∞ otherwise.

The space of formal balls B(X, d) of a quasi-metric space X, d is probably
the single most important artifact that has to be considered in the study of
quasi-metric spaces [13, 3]. This has a very simple definition: a formal ball
is syntax for an actual ball, namely a pair (x, r) where x ∈ X (the center)
and r ∈ R+ (the radius). B(X, d) comes with an ordering ≤d+ defined by
(x, r) ≤d+ (y, s) if and only if d(x, y) ≤ r − s.

Given a quasi-metric space X, d, the open ball Bd
x,<r with center x ∈ X

and radius r ∈ R+ is {y ∈ X | d(x, y) < r}. The open ball topology is the
coarsest containing all open balls, and is the standard topology on metric
spaces.

In the realm of quasi-metric spaces, the d-Scott topology is the topology
we shall always consider, unless specified otherwise. This is defined as follows.
We equip B(X, d) with the Scott topology of ≤d+ . There is an injective map
x 7→ (x, 0) from X to B(X, d), and the d-Scott topology is the coarsest that
makes it continuous. This allows us to see X as a topological subspace of
B(X, d).

The specialization ordering of X, d, whether with the open ball topology
or with the d-Scott topology, is just ≤d. This does not cause any conflict with
the notation ≤d+ for the ordering on B(X, d), since ≤d+ is in fact the ordering
deduced from a quasi-metric d+ on B(X, d), defined by d+((x, r), (y, s)) =
max(d(x, y)− r + s, 0).

The d-Scott topology coincides with the familiar open ball topology when
d is a metric [6, Proposition 7.4.46], or when X, d is Smyth-complete [6,
Proposition 7.4.47]. It coincides with the generalized Scott topology of
[1] when X, d is an algebraic Yoneda-complete quasi-metric space [6, Exer-
cise 7.4.69]. On R+, the dR-Scott topology coincides with the Scott topology
of the usual ordering ≤: its non-trivial opens are the open intervals ]r,+∞],
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r ∈ R+. The d≤-Scott topology on a poset coincides with the Scott topology
of ≤ [9, Example 1.8]. The d+-Scott topology also coincides with the familiar
Scott topology on B(X, d), see [8, Lemma 3.7] or [6, Exercise 7.4.53].

We say that X, d is Yoneda-complete if and only if B(X, d) is a dcpo. We
take this as a definition, although this is really a theorem, due to Kostanek
and Waszkiewicz, see [11] and [6, Theorem 7.4.27]. A metric space is Yoneda-
complete if and only if it is complete in the usual sense. A poset, seen
as a quasi-metric space, is Yoneda-complete if and only if it is a dcpo [9,
Example 1.6].

Outside Yoneda-complete spaces, we would like to avoid certain patholo-
gies and we will therefore concentrate on standard quasi-metric spaces [9,
Section 2]. X, d is standard if and only if, for every directed family of formal
balls (xi, ri)i∈I , for every s ∈ R+, (xi, ri)i∈I has a supremum in B(X, d) if
and only if (xi, ri + s)i∈I has a supremum in B(X, d). Writing the supremum
of the former as (x, r), we then have that r = infi∈I ri, and that the supre-
mum of the latter is (x, r+ s)—this holds not only for s ∈ R+, but for every
s ≥ −r. In particular, the radius map (x, r) 7→ r is Scott-continuous from
B(X, d) to Rop

+ (R+ with the opposite ordering ≥), and for every s ∈ R+, the
map + s : (x, r) 7→ (x, r + s) is Scott-continuous from B(X, d) to itself [9,
Proposition 2.4]. Moreover, and we will use that fact several times, the set
Vε = {(x, r) ∈ B(X, d) | r < ε} is Scott-open for every ε > 0, whenever X, d
is standard. This is because Vε is the inverse image of the Scott-open subset
[0, ε[ of Rop

+ by the radius map.
All Yoneda-complete quasi-metric spaces are standard. Also, all metric

spaces are standard. All posets are standard, too, with the quasi-metric d≤.
Note that R+, dR is standard, being Yoneda-complete.

Directed complete posets (dcpos) come into further varieties: algebraic
dcpos, continuous dcpos, notably, and that extends to algebraic posets and
continuous posets. The same happens with quasi-metric spaces. We say that
X, d is continuous Yoneda-complete if and only if B(X, d) is a continuous
dcpo. This is again originally a theorem, not a definition [11]. More generally,
we say that X, d (not necessarily Yoneda-complete) is continuous if and only
if it is standard and B(X, d) is a continuous poset [9, Section 3].

A point z ∈ X is a center point if and only if Bd+

(z,0),ε is Scott-open in

B(X, d) for every ε > 0. For example, the center points of R+ with the dR
quasi-metric are all points except +∞ [9, Example 5.9]. A standard quasi-
metric space X, d is algebraic if and only if the open balls Bd+

(z,0),ε, where z
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ranges over the center points and ε > 0, form a base of the Scott topology
on B(X, d) [9, Definition 5.11, Theorem 5.16]. Every (standard) algebraic
quasi-metric space is continuous. Moreover, for every center point z, we have
(z, t)� (y, s) if and only if d(z, y) < t− s; more generally, (y, s)� (x, r) if
and only if there is a center point z and some t ∈ R+ such that (y, s) ≤d+ (z, t)
and d(z, x) < t− r [9, Proposition 5.18].

Given a d-Scott open subset U of X, there is a largest Scott open subset
Û of B(X, d) such that U = Û ∩X. (We silently equate X with a subspace of

B(X, d).) The assignment U 7→ Û is monotonic. Being a right adjoint to the
frame homomorphism that maps every open subset V of B(X, d) to V ∩X, it
also preserves arbitrary meets, namely interiors of arbitrary intersections; but
it satisfies no other remarkable property in general. A quasi-metric space X, d
is Lipschitz regular if and only if the assignment U 7→ Û is Scott-continuous.
This is defined and studied in Section 4 of [8]. A Lipschitz regular quasi-
metric space X, d is then finitarily embedded in B(X, d); see [4] for more
information on finitary embeddings.

For algebraic Yoneda-complete quasi-metric spaces, Lipschitz regularity
is equivalent to having relatively compact balls, a stronger requirement than
local compactness. This displays Lipschitz regularity as a rather strong re-
quirement. However, the space of formal balls B(X, d) of any quasi-metric
space X, d, with the d+ quasi-metric, is Lipschitz regular [8, Theorem 4.13].

Given a map f from a quasi-metric space X, d to a quasi-metric space
Y, ∂, f is α-Lipschitz if and only if ∂(f(x), f(y)) ≤ αd(x, y) for all x, y ∈ X.
(When α = 0 and d(x, y) = +∞, we take the convention that 0.+∞ = +∞.)

For every α ∈ R+, and every map f : X, d→ Y, ∂, let Bα(f) map (x, r) ∈
B(X, d) to (f(x), αr) ∈ B(Y, ∂). Then f is α-Lipschitz if and only if Bα(f)
is monotonic.

Contrarily to the case of spaces with the open ball topology, a Lipschitz
map need not be continuous. The simplest way to appreciate this difficulty
is to contemplate the case of posets, seen as quasi-metric spaces: a map
between posets is Lipschitz if and only if it is monotonic [9, Example 6.1],
and certainly not every monotonic map is continuous with respect to the
underlying d≤-Scott (i.e., Scott) topologies; examples abound on R+.

There is a notion of Lipschitz Yoneda-continuous map, characterized as
preserving so-called d-limits. When both X, d and Y, ∂ are standard, f is
α-Lipschitz Yoneda-continuous if and only if Bα(f) is Scott-continuous [9,
Lemma 6.3]. We take the latter as our definition: a map f : X, d → Y, ∂
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between quasi-metric spaces is α-Lipschitz continuous if and only if Bα(f) is
Scott-continuous [8, Definition 2.3]. While “α-Lipschitz continuous” should
be thought of as one epithet, not as the conjunction of “α-Lipschitz” and
“continuous” in general, we have the following. When both X, d and Y, ∂
are standard, f : X → Y is α-Lipschitz continuous if and only if f is both
α-Lipschitz, and continuous from X with its d-Scott topology to Y with its
∂-Scott topology [8, Proposition 2.5].

We are interested in the α-Lipschitz continuous functions from X, d to
R+, dR. Given a map f : X → R+, whereX, d is standard, define f ′ : B(X, d)→
R ∪ {+∞} by f ′(x, r) = f(x) − αr. Then f is α-Lipschitz if and only if f ′

is monotonic, and f is α-Lipschitz continuous if and only if f ′ is Scott-
continuous [8, Lemma 2.7].

The Lipschitz continuous maps from a standard quasi-metric space to
R+, dR enjoy the usual closure properties [9, Proposition 6.7]: if f is β-
Lipschitz continuous then αf is αβ-Lipschitz continuous; if f is α-Lipschitz
continuous and g is β-Lipschitz continuous then f + g is (α + β)-Lipschitz
continuous; if f , g are α-Lipschitz continuous, then so are min(f, g) and
max(f, g); if (fi)i∈I is any family of α-Lipschitz continuous maps, then the
pointwise supremum supi∈I fi is also α-Lipschitz continuous; if α ≤ β and f is
α-Lipschitz continuous then f is β-Lipschitz continuous; every constant map
is α-Lipschitz continuous. Moreover, if f : X → Y is α-Lipschitz continuous
and g : Y → Z is β-Lipschitz continuous, then g◦f is αβ-Lipschitz continuous
[8, Lemma 2.9].

3 Spaces of Continuous and Lipschitz Maps

We equip R+ with the Scott topology of its ordering ≤, or equivalently, with
the dR-Scott topology. For a topological space X, the continuous maps from
X to R+ are usually called lower semicontinuous.

Definition 3.1 (LX) Let LX denote the set of lower semicontinuous maps
from X to R+. We give it the Scott topology of the pointwise ordering.

When X, d is standard, every α-Lipschitz continuous map from X, d to R+, dR
is lower semicontinuous [8, Lemma 5.1].

Definition 3.2 (Lα(X, d), L∞(X, d)) Let Lα(X, d) be the set of α-Lipschitz
continuous maps from X, d to R+, dR, and let L∞(X, d) =

⋃
α∈R+

Lα(X, d) be
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the set of all Lipschitz continuous maps from X, d to R+, dR. We give those
spaces the subspace topology from LX.

We also write L∞X for L∞(X, d), and LαX for Lα(X, d).
Beware that there is no reason why the topologies on Lα(X, d) and

L∞(X, d) would be the Scott topology of the pointwise ordering. When
X, d is Lipschitz regular and standard, the (subspace) topology of Lα(X, d)
does coincide with the Scott topology, by Proposition 5.6 of [8]. Remark 5.8
of ibid. states that, under the same conditions, the subspace topology of the
following spaces Laα(X, d) are also the same as the Scott topologies. This
works for fixed α, not for L∞(X, d) or La∞(X, d).

Definition 3.3 (Laα(X, d), La∞(X, d)) Let LaαX or Laα(X, d) be the space of
all α-Lipschitz continuous maps from X, d to [0, αa], dR, for α ∈ R+, where
a ∈ R+, a > 0. Give it the subspace topology from LαX, or equivalently,
from LX.

Definition 3.4 (Lb
∞(X, d)) Let Lb

∞(X, d) be the subspace of all bounded
maps in L∞(X, d), and Lb

α(X, d) be the corresponding subspace of all bounded
maps in Lα(X, d), with the subspace topologies.

Since the specialization ordering on LX is the pointwise ordering (f ≤ g if
and only if for every x ∈ X, f(x) ≤ g(x)), the same holds for all the spaces
defined above as well. We shall always write ≤ for that ordering.

We note the following, although we will only use it much later.

Lemma 3.5 Let X, d be a quasi-metric space. For every a > 0, Lb
∞(X, d) =⋃

α>0 Laα(X, d).

Proof.Consider any bounded map f from L∞(X, d). By definition, f ≤ b.1
for some b ∈ R+, where 1 is the constant map equal to 1, and f ∈ Lα(X, d)
for some α > 0. Since Lα(X, d) grows as α increases, we may assume that
α ≥ b/a. Then f is in Laα(X, d). The converse inclusion is obvious. 2

Assuming X, d standard, for each α ∈ R+, there is a largest α-Lipschitz
continuous map f (α) below any lower semicontinuous map f ∈ LX. More-
over, the family (f (α))α∈R+

is a chain, and supα∈R+
f (α) = f , where suprema

are taken pointwise [9, Theorem 6.17].
There is in fact a largest α-Lipschitz continuous map f (α) below any map

f : X → R+ at all (still assuming X, d standard). Indeed, the constant map
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0 is α-Lipschitz continuous, and the (pointwise) supremum of any family
of α-Lipschitz continuous maps is again α-Lipschitz continuous [9, Proposi-
tion 6.7 (4)]. We make that a definition.

Definition 3.6 For every map f from a standard quasi-metric space X, d to
R+, for every α ∈ R+, let f (α) be the largest α-Lipschitz Yoneda-continuous
map from X, d to R+, dR below f .

When f is lower semicontinuous, there is a slightly more explicit formula for
f (α), see [8, Proposition 5.3]. We are interested in the case where f is not nec-
essarily lower semicontinous. What the largest α-Lipschitz (not necessarily
continuous) map below f looks like is given in the following lemma—that is
already well-known in the metric case—, and we will give an explicit formula
for f (α) when f is already known to be α-Lipschitz in Lemma 3.8, assuming
X, d continuous.

Lemma 3.7 Let X, d be a quasi-metric space, and α ∈ R+. The largest
α-Lipschitz map below an arbitrary function f : X → R+ is given by:

fα(x) = inf
z∈X

(f(z) + αd(x, z)). (1)

Proof.For all x, y ∈ X, fα(y)+αd(x, y) ≥ infz∈X(f(z)+αd(x, y)+αd(y, z)) ≥
infz∈X(f(z) + αd(x, z)) = fα(x), so fα is α-Lipschitz. It is clear that fα is
below f : take z = x in the infimum defining fα.

Assume another α-Lipschitz map g below f . For all x, z ∈ X, g(x) ≤
g(z) + αd(x, z) ≤ f(z) + αd(x, z), hence by taking infima over all z ∈ X,
g(x) ≤ fα(x). 2

Every monotonic map g from a space Y to R+ has a lower semicontinuous
envelope g, defined as the (pointwise) largest map below g that is lower
semicontinuous. When Y is a continuous poset, one can define g(y) as the
directed supremum supy′�y g(y′) (see for example [6, Corollary 5.1.61]). This
is sometimes called Scott’s formula.

Now assume that f : X → R+ is already α-Lipschitz, but not necessarily
continuous. There are two ways one can find an α-Lipschitz continuous map
below f : either consider f (α), the largest possible such map, or, if X, d is
continuous, extend f to f ′ : (x, r) 7→ f(x) − αr, apply Scott’s formula to
obtain f ′, then restrict the latter to the subspace X of B(X, d). We show
that the two routes lead to the same function.
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Lemma 3.8 Let X, d be a continuous quasi-metric space, and α ∈ R+. For
every α-Lipschitz map f : X → R+, the largest α-Lipschitz continuous map
below f , f (α), is given by:

f (α)(x) = sup
(y,s)�(x,0)

(f(y)− αs). (2)

Moreover, (f (α))′, defined as mapping (x, r) to f (α)(x) − αr, is the largest
lower semicontinuous map f ′ from B(X, d) to R+ below f ′ : (x, r) 7→ f(x)−
αr.

Proof.Take Y = B(X, d). Since f is α-Lipschitz, the map f ′ : B(X, d) →
R∪{+∞} defined by f ′(x, r) = f(x)−αr is monotonic, since f is α-Lipschitz.
Then f ′(x, r) = sup(y,s)�(x,r)(f(y)− αs).

By definition, f ′ is Scott-continuous. Note that f ′(x, 0) is exactly the
right-hand side of (2). For clarity, let g(x) = f ′(x, 0) = sup(y,s)�(x,0)(f(y) −
αs).

We check that for every r ∈ R+, f ′(x, r) = g(x) − αr. For that, we use
the fact that, when X, d is a continuous quasi-metric space, the way-below
relation � on B(X, d) is standard [9, Proposition 3.6], meaning that, for
every a ∈ R+, for all formal balls (x, r) and (y, s), (y, s)� (x, r) if and only
if (y, s+ a)� (x, r + a). It follows that f ′(x, r) = sups≥r,(y,s−r)�(x,0)(f(y)−
αs) = sup(y,s′)�(x,0)(f(y) − α(s′ + r)) = sup(y,s′)�(x,0)(f(y) − αs′) − αr =
g(x)− αr.

In other words, f ′ = g′. Since f ′ is Scott-continuous, so is g′, and therefore
g is α-Lipschitz continuous.

We check that g takes its values in R+, not just R ∪ {+∞}. We recall
that, since X, d is continuous hence standard, the set Vε of all formal balls
whose radius is strictly less than ε is Scott-open. For every x ∈ X, (x, 0) is
in Vε, and since (x, 0) is the supremum of the directed family of all formal
balls (y, s)� (x, 0), one of them is in Vε; this implies that g(x) ≥ −αε, and
as ε is arbitrary, that g(x) ≥ 0.

Also, g ≤ f , since for every x ∈ X, g(x) = f ′(x, 0) ≤ f ′(x, 0) = f(x).
Hence g is an α-Lipschitz continuous map from X to R+ below f , from which
we deduce that it must also be below the largest such map, f (α).

We show that g is equal to f (α). To that end, we take any α-Lipschitz
continuous map h : X → R+ below f , and we show that h ≤ g. Since
h ≤ f , h′ ≤ f ′. Since h is α-Lipschitz continuous, h′ is Scott-continuous.
We use the fact that f ′ is the largest Scott-continuous map below f ′ to
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obtain h′ ≤ f ′, and we apply both sides of the inequality to (x, 0) to obtain
h(x) = h′(x) ≤ f ′(x, 0) = g(x).

Since g = f (α) and g(x) = sup(y,s)�(x,0)(f(y) − αs) by definition, (2)
follows.

Finally, we have seen that f ′ = g′, namely that f ′ = (f (α))′, and that is
the final part of the lemma. 2

Corollary 3.9 Let X, d be a continuous quasi-metric space, and α, β ∈ R+.
For every map f : X → R+ that is both α-Lipschitz and β-Lipschitz, f (α) =
f (β).

Proof.Since B(X, d) is a continuous poset, for every x ∈ X, (x, 0) is the
supremum of the directed family of formal balls (y, s) � (x, 0), and since
X, d is standard, the inf of the radii s must be equal to 0; in other words,
such formal balls have arbitrarily small radii s.

By (2), f (α)(x) = sup(y,s)�(x,0)(f(y) − αs). For every (y, s) � (x, 0), for
every ε > 0, we can find another formal ball (z, t) � (x, 0) such that t < ε,
by the remark we have just made. Using directedness, we can require (z, t)
to be above (y, s). Then f(y) − αs ≤ f(z) − αt since f is α-Lipschitz, and
f(z)− αt = f(z)− βt+ (β − α)t is less than or equal to f (β)(x) + |β − α|ε.
Indeed, f(z)−βt ≤ f (β)(x) since (z, t)� (x, 0) and (β−α)t ≤ |β−α|ε since
t < ε.

Taking suprema over (y, s)� (x, 0), we obtain f (α)(x) ≤ f (β)(x)+|β−α|ε.
Since ε can be made arbitrarily small, f (α)(x) ≤ f (β)(x). We show f (β)(x) ≤
f (α)(x) symmetrically, using the fact that f is β-Lipschitz. The equality
follows. 2

Lemma 3.10 Let X, d be a standard algebraic quasi-metric space, and α ∈
R+. For any α-Lipschitz map f : X → R+, the largest α-Lipschitz continuous
map below f , namely f (α), is given by:

f (α)(x) = sup
z center point
t>d(z,x)

(f(z)− αt). (3)

Moreover, (f (α))′, defined as mapping (x, r) to f (α)(x) − αr, is the largest
lower semicontinuous map f ′ from B(X, d) to R+ below f ′ : (x, r) 7→ f(x)−
αr.
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Note that (3) simplifies to f (α)(x) = supz center point(f(z)−αd(z, x)) when
d(z, x) 6= +∞ for all center points z, or when f(z) 6= +∞.

Proof.Easy consequence of Lemma 3.8, using the fact that, in a standard
algebraic quasi-metric space, (y, s) � (x, r) if and only if there is a center
point z and some t ∈ R+ such that (y, s) ≤d+ (z, t) and d(z, x) < t− r. 2

4 Topologies on LX
Every continuous Yoneda-complete quasi-metric spaceX, d is domain-complete
in its d-Scott topology [2, Theorem 4.1], meaning that it embeds as a Gδ sub-
set of some continuous dcpo. Explicitly, the continuous dcpo is B(X, d). The
sets Vε, ε > 0 of those formal balls (x, r) such that r < ε are Scott-open be-
cause X, d is standard (being the inverse image of [0, ε[ by the radius map
(x, r) 7→ r), and X embeds through x 7→ (x, 0) as the Gδ set

⋂
n∈N V1/2n .

Since every continuous dcpo is locally compact and sober, such an X is
automatically LCS-complete, meaning that it embeds as a Gδ subset of a
locally compact sober space [2, Proposition 3.3].

It so turns out that, given any LCS-complete space X, the compact-open
topology coincides with the Scott topology on LX [2, Corollary 13.5]. As a
consequence, we obtain:

Proposition 4.1 Let X, d be a continuous Yoneda-complete quasi-metric
space. The compact-open topology on LX is equal to the Scott topology on
LX. 2

5 Compact Subsets of Continuous Yoneda-

Complete Quasi-Metric Spaces

The compact saturated subsets of LCS-complete spaces were characterized
in [2, Section 17]. Specializing Theorem 17.4 of ibid. to the case where X, d
is a continuous Yoneda-complete quasi-metric space in its d-Scott topology,
where Y = B(X, d) and where µ is the radius map, we obtain that the non-
empty compact saturated subsets of X are exactly the filtered intersections⋂
i∈I ↑Ai in Y , where each set Ai is a non-empty finite subset of Y , and

infi∈I r(Ai) = 0. Here, for every finite set A = {(x1, r1), · · · , (xn, rn)}, the
radius of A, r(A), is defined as max{r1, · · · , rn}. Because infi∈I r(Ai) = 0,
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one sees that
⋂
i∈I ↑Ai is a subset of X (up to the identification of x ∈ X

with (x, 0) ∈ B(X, d)).
One may recast this as follows. The closed ball Bd

x,≤r of center x and
radius r is the set of points y ∈ X, such that d(x, y) ≤ r. This is merely
↑(x, r) ∩ X. Hence the result we have just stated says that the non-empty
compact saturated subsets of X are exactly the filtered intersections of finite
unions of closed balls whose radii tend to 0. This is the quasi-metric analogue
of the result that, in a complete metric space, the compact subsets are the
closed and precompact subsets.

Remark 5.1 Despite the name, closed balls are not closed in general—except
when X, d is metric. Indeed, closed balls are upwards-closed, whereas closed
sets must be downwards-closed. Closed balls need not be compact either, de-
spite the fact that they are the intersection of a compact set ↑(x, r) of B(X, d)
with X.

The following is an easy consequence of our previous discussion. We
provide an explicit proof for completeness.

Lemma 5.2 Let X, d be a continuous quasi-metric space. For every compact
saturated subset Q of X, for every open neighborhood U of Q, for every ε > 0,
one can find a finite union A of closed balls Bd

xi,≤ri with ri < ε, and such that
Q ⊆ int(A) ⊆ A ⊆ U .

Proof.The image of Q by the embedding x 7→ (x, 0) of X into B(X, d) is
compact. If we agree to equate x with (x, 0), then Q is compact not only

in X, but also in B(X, d). Recall that Û is a Scott-open subset of B(X, d)

and that Û ∩ X = U . By intersecting it with Vε = {(x, r) | x ∈ X, r < ε}
(a Scott-open subset, owing to the fact that X, d is standard), we obtain an

open neighborhood Û ∩ Vε of Q in B(X, d).

Since B(X, d) is a continuous poset, Û∩Vε is the union of all open subsets

↑↑(x, r), (x, r) ∈ Û∩Vε. By compactness, Q is therefore included in some finite

union
⋃n
i=1 ↑↑(xi, ri), where every (xi, ri) is in Û ∩ Vε. In particular, ri < ε for

each i. Note also that ↑(xi, ri) is included in Û , since Û is upwards-closed, so
↑(xi, ri) ∩ X = Bd

xi,≤ri is included in U . Therefore A =
⋃n
i=1B

d
xi,≤ri , whose

interior contains the open neighborhood
⋃n
i=1(↑↑(xi, ri) ∩X) of Q, fits. 2
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6 Topologies on Lα(X, d) and Laα(X, d)
The topology we have taken on Lα(X, d) and on Laα(X, d) is the subspace
topology from LX (with its Scott topology). Proposition 4.1 immediately
implies that, when X, d is continuous Yoneda-complete, the topologies of
Lα(X, d) and Laα(X, d) are the compact-open topology, i.e., the topology
generated by the subsets of the form {f ∈ LαX | f [Q] ⊆]r,+∞]} (resp.,
{f ∈ LaαX | f [Q] ⊆]r,+∞]}), Q compact saturated in X, and which we
write as [Q > r].

The topology of pointwise convergence, on any set of functions from X
to Y , is the subspace topology from the ordinary product topology on Y X .
It is always coarser than the compact-open topology. When Y = R+ or
Y = [0, a], with its Scott-topology, a subbase for the pointwise topology is
given by the subsets [x > r] = {f | f(x) > r}, where x ∈ X and r ∈ R+.

Proposition 6.1 Let X, d be a continuous Yoneda-complete quasi-metric
space. For every α ∈ R+, the topology of Lα(X, d) (resp., Laα(X, d), for
any a > 0) coincides with the topology of pointwise convergence.

Proof.We already know that the topology of Lα(X, d), and of Laα(X, d), is
the compact-open topology, as a consequence of Proposition 4.1. It therefore
suffices to show that every subset [Q > r] of Lα(X, d) or Laα(X, d), Q compact
saturated in X and r ∈ R+, is open in the topology of pointwise convergence.
We assume without loss of generality that Q is non-empty. Let f ∈ Lα(X, d),
resp. f ∈ Laα(X, d), be an arbitrary element of [Q > r]. Since f is lower
semicontinuous, i.e., continuous from X to R+ (resp., to [0, αa]), the image
of Q by f is compact, and its upward closure is compact saturated. The non-
empty compact saturated subsets of R+ (resp., [0, αa]), in its Scott topology,
are the intervals [b,+∞], b ∈ R+ (resp., [b, αa], b ∈ [0, αa]); hence the image
of Q by f is of this form, and b is necessarily the minimum value attained by
f on Q, minx∈Q f(x). Since f ∈ [Q > r], we must have b > r, and therefore
there is an η > 0 such that b > r + η.

Let ε > 0 be such that αε ≤ η. Put in a simpler form, let ε = η/α if
α 6= 0, otherwise let ε > 0 be arbitrary.

We apply Lemma 5.2, and we obtain finitely many closed balls Bxi,≤ri ,
1 ≤ i ≤ n, included in U = f−1(]r + η,+∞]), with ri < ε, and whose union
contains Q. Now consider W =

⋂n
i=1[xi > r+η]. Since each xi is in U , f is in

W . For every g ∈ Lα(X, d) (resp., g ∈ Laα(X, d)) that is in W , we claim that
g is in [Q > r]. For every x ∈ Q, there is an index i such that x ∈ Bxi,≤ri ,
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and since g is α-Lipschitz, g(xi) ≤ g(x) + αri. By assumption g(xi) > r + η,
and ri < ε, so g(x) > r, proving the claim. Since W is open in the topology
of pointwise convergence, we have proved that every element of [Q > r] is an
open neighborhood, for the topology of pointwise convergence, of each of its
elements, which proves the result. 2

7 Stable Compactness

We shall now use some results in the theory of stably compact spaces [6,
Chapter 9]. A stably compact space is a sober, locally compact, compact
and coherent space, where coherence means that the intersection of any two
compact saturated subsets is compact. For a compact Hausdorff space Z
equipped with an ordering � whose graph is closed in Z2 (a so-called com-
pact pospace), the space Z with the upward topology, whose opens are by
definition the open subsets of Z that are upwards-closed with respect to �, is
stably compact. More: all stably compact spaces can be obtained this way.
If X is stably compact, then we may form a second topology, the cocompact
topology, whose closed subsets are the compact saturated subsets of the orig-
inal space. With the cocompact topology, we obtain a space called the de
Groot dual of X, Xd, which is also stably compact. We have Xdd = X. Also,
with the join of the original topology on X and of the cocompact topology,
one obtains a compact Hausdorff space Xpatch, the patch space of X. To-
gether with the specialization ordering ≤ of X, Xpatch is then a compact
pospace. Moreover, passing from X to its compact pospace, and conversely,
are mutually inverse operations.

We require the following auxiliary notion.

Definition 7.1 (Lα(X, d), Laα(X, d)) Let Lα(X, d) denote the space of all
α-Lipschitz (not necessarily α-Lipschitz continuous) maps from X, d to R+.
Let also Laα(X, d) be the subspace of all h ∈ Lα(X, d) such that h ≤ αa.

Please pay attention to the change of font compared with Lα(X, d).
R+ (resp., [0, αa]), with its Scott topology, is stably compact, and its

patch space Rpatch

+ (resp., [0, αa]patch) has the usual Hausdorff topology. Since
the product of stably compact spaces is stably compact (see [6, Proposi-

tion 9.3.1]), RX

+ (resp., [0, αa]X) is stably compact. Moreover, the patch oper-

ation commutes with products, so (RX

+ )patch = (Rpatch

+ )X (resp., ([0, αa]X)patch =
([0, αa]patch)X), and the specialization ordering is pointwise.
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The subset Lα(X, d) (resp., Laα(X, d)) is then patch-closed in RX

+ (resp.,

[0, αa]X), meaning that it is closed in (RX

+ )patch = (Rpatch

+ )X (resp., in ([0, αa]X)patch =

([0, αa]patch)X). Indeed, Lα(X, d) = {f ∈ RX

+ | ∀x, y ∈ X.f(x) ≤ f(y) +

αd(x, y)} is the intersection of the sets {f ∈ RX

+ | f(x) ≤ f(y) + αd(x, y)},
x, y ∈ X, and each is patch-closed, because the graph of ≤ is closed in

(Rpatch

+ )2 and the maps f 7→ f(x) are continuous from (Rpatch

+ )X to Rpatch

+ —
similarly with [0, αa] in lieu of R+ and Laα(X, d) instead of Lα(X, d). It is
well-known (Proposition 9.3.4, ibid.) that the patch-closed subsets C of sta-
bly compact spaces Y are themselves stably compact, and that the topology
of Cpatch is the subspace topology of Y patch. It follows that:

Lemma 7.2 Let X, d be a continuous quasi-metric space. Lα(X, d) and
Laα(X, d), for every a ∈ R+, a > 0, are stably compact in the topology of
pointwise convergence. 2

Lemma 7.3 Let X, d be a continuous quasi-metric space, α ∈ R+, and a ∈
R+, a > 0. Let ρα be the map f ∈ Lα(X, d) 7→ f (α) ∈ Lα(X, d). Then:

1. ρα is continuous from Lα(X, d) to Lα(X, d) (resp., from Laα(X, d) to
Laα(X, d)), both spaces being equipped with the topology of pointwise
convergence;

2. Lα(X, d) is a retract of Lα(X, d) (resp., Laα(X, d) is a retract of Laα(X, d)),
with ρα the retraction and where inclusion serves as section; again both
spaces are assumed to have the topology of pointwise convergence;

3. Lα(X, d) and Laα(X, d), with the topology of pointwise convergence, are
stably compact;

4. If X, d is also Yoneda-complete, then Lα(X, d) and Laα(X, d) are stably
compact (in the subspace topology of the Scott topology on LX).

Proof.Recall from Lemma 3.8 that f (α)(x) = sup(y,s)�(x,0)(f(y)− αs).
(1) The inverse image of [x > r] by ρα is the set of α-Lipschitz maps f

such that, for some (y, s)� (x, 0), f(y)− αs > r, hence is the union of the
open sets [y > r + αs] over the elements (y, s) way-below (x, 0).

(2) If ι denotes the inclusion of Lα(X, d) into Lα(X, d) (resp., of Laα(X, d)
into Laα(X, d)), we must show that ρα ◦ ι is the identity map. For every
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f ∈ Lα(X, d), ρα(ι(f)) = f (α). Since f is already α-Lipschitz continuous,
f (α) = f , and we conclude.

(3) follows from Lemma 7.2, from (2), and the fact that retracts of stably
compact spaces are stably compact (see Proposition 9.2.3 in ibid.; the result
is due to Jimmie Lawson [12, Proposition, bottom of p.153, and subsequent
discussion]).

(4) follows from (3) and Proposition 6.1. 2

The proof of (3) above is inspired by a similar argument due to Achim
Jung [10].

Stable compactness has a number of pleasing consequences.

Lemma 7.4 Let X, d be a continuous Yoneda-complete quasi-metric space,
and α ∈ R+. For every center point x in X and every b ∈ R+, the set [x ≥ b]
of all f ∈ Lα(X, d) (resp., f ∈ Laα(X, d)) such that f(x) ≥ b is compact
saturated in Lα(X, d) (resp., in Laα(X, d), for every a ∈ R+, a > 0).

Proof.We deal with the case of Lα(X, d). The case of Laα(X, d) is entirely
similar.

Let us start with the following observation. The projection map πx : Lα(X, d)→
R+ that maps f to f(x) is patch-continuous, that is, continuous from Lpatch

α (X, d)

to Rpatch

+ , where Lα(X, d) has the topology of pointwise convergence. (Be-
ware again: Lα, not Lα.) The reason was given before Lemma 7.2: the map

f 7→ f(x) is continuous from (Rpatch

+ )X to Rpatch

+ , and therefore restricts to

a continuous map on Lpatch
α (X, d), which is a subspace of (Rpatch

+ )X , since

Lα(X, d) is patch-closed in the product space RX

+ .

Since [b,+∞] is closed in Rpatch

+ , π−1x ([b,+∞]) is also closed in Lα(X, d)patch.
It is clearly upwards-closed, and in any stably compact space Y , the closed
upwards-closed subsets of Y patch are the compact saturated subsets of Y (see
[6, Proposition 9.1.20]): so π−1x ([b,+∞]) is compact saturated in Lα(X, d).

Note that π−1x ([b,+∞]) is the set of all α-Lipschitz (not necessarily α-
Lipschitz continuous) maps f such that f(x) ≥ b. We claim that its image
by ρα is exactly [x ≥ b]. This will prove that the latter is compact as well.
The fact that it is upwards-closed (saturated) is obvious.

For every f ∈ π−1x ([b,+∞]), ρα(f)(x) is clearly less than or equal to f(x).
Because x is a center point, for all y, r, and s, (x, r)� (y, s) is equivalent to
d(x, y) < r−s; in particular, (x, ε)� (x, 0). Therefore, ρα(f)(x) ≥ f(x)−αε.
Since ε is arbitrary, ρα(f)(x) = f(x), and since f(x) ≥ b, ρα(f)(x) ≥ b. We
have proved that ρα(f) is in [x ≥ b].
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Conversely, every f ∈ [x ≥ b] is of the form ρα(g) for some g ∈ π−1x ([b,+∞]),
namely g = f , because ρα is a retraction. Hence [x ≥ b] is the image of the
compact set π−1x ([b,+∞]), as claimed.

Our whole argument works provided all considered spaces of functions
have the topology of pointwise convergence. We use Proposition 6.1 to con-
clude. 2

Remark 7.5 Lemma 7.4 does not hold for non-center points x, as we now
illustrate. Let X = Nω be the dcpo obtained by adding a top element ω to
N, with its usual ordering ≤. We consider it as a quasi-metric space with
the quasi-metric d≤. On formal balls, (x, r) ≤d≤ (y, s) if and only if x ≤ y
and r ≥ s, hence its space of formal balls is isomorphic to the continuous
dcpo Nω×]−∞, 0], through the map (x, r) 7→ (x,−r). We consider the point
x = ω, and b = 1, say. The elements of Lα(X, d) are exactly the Scott-
continuous maps, so [x ≥ b] is the set of Scott-continuous maps f : Nω → R+

such that f(ω) ≥ 1. Let us pick a fixed element f of [x ≥ b], for example,
the constant function with value +∞. For every n ∈ N, let fn : X → R+ be
defined by fn(m) = 0 if m ≤ n, fn(m) = f(m) otherwise. The family (fn)n∈N
is a decreasing sequence of elements of [x ≥ b]. If [x ≥ b] were compact, then
the intersection of the decreasing family of closed sets ↓fn would intersect
[x ≥ b]; but the only element in that intersection is the constant zero map.

Corollary 7.6 Let X, d be a continuous Yoneda-complete quasi-metric space,
α ∈ R+, and a ∈ R+, a > 0.

1. For every center point x in X and every b ∈ R+, the set [x < b] of
all f ∈ Lα(X, d) (resp., f ∈ Laα(X, d)) such that f(x) < b is open and
downwards-closed in Lα(X, d)patch (resp., in Laα(X, d)patch).

2. For every center point x ∈ X, the map f 7→ f(x) is continuous from
Lα(X, d)d to (R+)d, and from Laα(X, d)d to [0, αa]d.

Proof.(1) [x < b] is the complement of [x ≥ b]. Since [x ≥ b] is compact
saturated (Lemma 7.4), it is closed and upwards-closed in Lα(X, d)patch (resp.,
in Laα(X, d)patch). (2) is just a reformulation of (1). 2

Corollary 7.7 Let X, d be a continuous Yoneda-complete quasi-metric space,
α ∈ R+, and a ∈ R+, a > 0. For every n ∈ N, for all a1, . . . , an ∈ R+ and
every n-tuple of center points x1, . . . , xn in X, d, the maps:
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1. f 7→
∑n

i=1 aif(xi),

2. f 7→ maxni=1 f(xi),

3. f 7→ minni=1 f(xi)

are continuous from Lα(X, d)d (resp., Laα(X, d)d) to (R+)d.

Proof.By Corollary 7.6, using the fact that scalar multiplication and addi-
tion are continuous on (R+)d. The latter means that those operations are
monotonic and preserve filtered infima. 2

The same argument also shows the following, and an endless variety of
similar results.

Corollary 7.8 Let X, d be a continuous Yoneda-complete quasi-metric space,
α ∈ R+, and a ∈ R+, a > 0. For every family of non-negative reals aij and
of center points xij, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, the maps:

1. f 7→ minmi=1

∑ni
j=1 aijf(xij),

2. f 7→ maxmi=1

∑ni
j=1 aijf(xij),

are continuous from Lα(X, d)d (resp., Laα(X, d)d) to (R+)d.

8 Topologies on L∞(X, d) Determined by Lα(X, d),
α > 0

Recall that L∞(X, d) =
⋃
α∈R+

Lα(X, d). As usual, we equip L∞(X, d) with
the subspace topology from LX, the latter having the Scott topology.

Here is a nasty subtle issue. Imagine we have a function F : L∞(X, d)→
R+, and we wish to show that F is continuous. One might think of showing
that the restriction of F to Lα(X, d) is continuous to that end. This is
certainly necessary, but by no means sufficient.

For sufficiency, we would need the topology of L∞(X, d) to be coherent
with, or determined by, the topologies of its subspaces Lα(X, d), α ∈ R+. The
name “coherent with” is unfortunate, for a coherent space also means a space
in which the intersection of any two compact saturated subsets is compact,
as we have already mentioned. We shall therefore prefer “determined by”.
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Well-known examples are the topologies of CW-complexes, which are de-
fined as being determined by their cells, and topologies of compactly gener-
ated spaces, which are defined as being determined by their compact sub-
spaces.

Let us recall some basic facts about topologies determined by families of
subspaces. Fix a topological space Y , and a chain of subspaces Yi, i ∈ I,
where I is equipped with some ordering ≤, in such a way that i ≤ j implies
Yi ⊆ Yj. Let also eij : Yi → Yj and ei : Yi → Y be the canonical embeddings,
and assume that Y =

⋃
i∈I Yi. Then there is a unique topology Oc on Y that

is determined by the topologies of the subspaces Yi, i ∈ I.
We call it the determined topology on Y , for short. Standard names for

such a topology include the weak topology or the inductive topology.Its open
subsets are the subsets A of Y such that A∩Yi is open in Yi for every i ∈ I. In
particular, every open subset of Y , with its original topology, is open in Oc.
Categorically, Y with the Oc topology, together with the map ei : Yi → Y ,
is the inductive limit, a.k.a., the colimit, of the diagram given by the arrows

Yi
eij // Yj , i ≤ j.

It is known that Y is automatically determined by the topologies of Yi,
i ∈ I, in the following cases: when every Yi is open; when every Yi is closed
and the cover (Yi)i∈I is locally finite; when Y has the discrete topology. The
case of L∞(X, d) and its subspaces Lα(X, d) falls into none of those subcases.

Here is another case of a determined topology.

Proposition 8.1 Let (Yi)i∈I,v be a monotone net of subspaces of a topolog-
ical space Y , forming a cover of Y . Assume there are continuous projections
of Y onto Yi, namely continuous maps pi : Y → Yi such that pi(x) ≤ x for
every x ∈ Y and pi(x) = x for every x ∈ Yi, for every i ∈ I. Then the
topology of Y is determined by the topologies of Yi, i ∈ I.

What the assumption means is that we do not just have arrows Yi
ei // Y ,

i ∈ I, but embedding-projection pairs Yi
ei //

Y
pi
oo , i ∈ I. This is a standard

situation in domain theory. The inequality ei ◦ pi ≤ idY should be read by
keeping in mind the specialization preorder of Y .

Proof.Let A be an open subset in the topology on Y determined by the
subspaces Yi. For every i ∈ I, A∩Yi is open in Yi, and since pi is continuous,
Ui = p−1i (A ∩ Yi) is open in Y .
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We claim that A =
⋃
i∈I Ui, which will show that A is open in the original

topology on Y , allowing us to conclude.
For every x ∈ A, there is an index i ∈ I such that x is in Yi, since (Yj)j∈I,v

is a cover. Then x is in A ∩ Yi. Since pi is a projection, pi(x) = x, so x is in
p−1i (A ∩ Yi) = Ui.

Conversely, for every element x of any Ui, i ∈ I, pi(x) is in the open
subset A ∩ Yi of Yi. Since (Yj)j∈I,v is a cover, there is a j ∈ I such that
x ∈ Yj, and since that is also a monotone net, we may assume that i v j.
Hence Yi ⊆ Yj, so that pi(x) is also in A ∩ Yj. Moreover, pi(x) ≤ x. Since
the specialization preordering on a subspace (here, Yj) coincides with the
restriction of the specialization preordering on the superspace (here, Y ), and
A ∩ Yj is open hence upwards-closed in Yj, x is in A ∩ Yj. In particular, x is
in A. 2

Corollary 5.5 of [8] states that given α > 0 and a Lipschitz regular stan-
dard quasi-metric space X, d, the canonical injection iα : Lα(X, d) → LX
and the map rα : f ∈ LX 7→ f (α) ∈ Lα(X, d) form an embedding-projection
pair, viz., rα and iα are continuous, rα ◦ iα = idLαX and iα ◦ rα ≤ idLX .

Using the fact that L∞(X, d) has the subspace topology from LX, that
implies that there is an embedding-projection pair iα, rα between Lα(X, d)
and L∞(X, d). When α > 0 varies, the spaces Lα(X, d) form a cover of
L∞(X, d). Hence we can apply Proposition 8.1, and we obtain:

Proposition 8.2 Let X, d be a Lipschitz regular standard quasi-metric space.
The topology of L∞(X, d) is determined by those of the subspaces Lα(X, d),
α > 0. 2

We have a similar result for bounded maps. Relying on Lemma 3.5 to
ensure that the spaces Laα(X, d), α > 0, form a cover of Lb

∞(X, d), we obtain:

Proposition 8.3 Let X, d be a Lipschitz regular standard quasi-metric space.
Fix a > 0. Then the topology of Lb

∞(X, d) is determined by those of the sub-
spaces Laα(X, d), α > 0. 2
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