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Abstract

The notion of grounding is usually conceived as an objective and ex-
planatory relation. It connects two relata if one—the ground—determines
or explains the other—the consequence. In the contemporary literature
on grounding, much effort has been devoted to logically characterize the
formal aspects of grounding, but a major hard problem remains: defin-
ing suitable grounding principles for universal and existential formulae.
Indeed, several grounding principles for quantified formulae have been
proposed, but all of them are exposed to reflexivity and symmetry para-
doxes in some very natural contexts of application. We introduce in this
paper a first-order formal system that captures the notion of grounding
and avoids, in a novel and non-trivial way, both reflexivity and symme-
try paradoxes. The presented system formally develops Bolzano’s ideas
on grounding by employing Hilbert’s ε-terms and an adapted version of
Fine’s theory of arbitrary objects.

Keywords: grounding; quantifiers; epsilon calculus; arbitrary objects; Bolzano.

1 Introduction

The notion of grounding has recently received increasing attention in different
areas of philosophy: from explanation, to metaphysical dependence and funda-
mentality, to the analysis of logico-linguistic operators [3, 28, 32, 14, 8, 30, 7,
25, 26, 33, 21, 22]. Grounding is usually conceived as an objective and explana-
tory relation. It connects two relata if one—the ground—determines or explains
the other—the consequence. Hence, the ground constitutes a reason why the
consequence holds; the consequence, in turn, holds in virtue of the ground.

A branch of the ancestry tree of the modern notion of grounding leads to
Bernard Bolzano’s analysis of the Abfolge relation [4]; in Bolzano’s terminology,
Abfolge is the relation between a ground and its consequence. Even though
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Bolzano’s Abfolge differs from some modern conceptions of grounding, the con-
nections between the two are of great interest. As we will argue, Bolzano’s
intuitions about grounding still play a vital role in precisely describing the log-
ical features of the grounding relation.

In the contemporary literature on grounding, much effort has been devoted
to logically characterize the formal aspects of grounding, and to provide formal
systems that capture the exact relation holding between a logically complex
formula F and the formulae in virtue of which F holds [32, 14, 8, 7, 25, 26].
This has been done by formalizing the notion of grounding in one of three
main ways:1 as a connective (see [32, 14, 7]), as a predicate (see [17]), or as a
metalinguistic relation (see [26]).

However, regardless of how the grounding relation is captured, a major hard
problem remains: characterizing the grounds of universal and existential for-
mulae [29, 36, 21, 22]. There exist several different attempts to formalize the
relations between quantifiers and their grounds [32, 13, 7], but, as it has been
shown in [12, 18], each of these attempts fails to enforce the irreflexivity of
grounding in some very natural contexts of application. Indeed, even though
cases of reflexive grounding are accepted by some scholars (e.g. [20] and [24]), the
received view is that grounding should be irreflexive (e.g. [4, §204][31, 6, 32]), in
the sense that nothing grounds itself. If we require irreflexivity, the grounding
principles for quantifiers presented in [12] and [18] yield paradoxes of grounding.
By studying the first-order logic counterexamples to irreflexivity in [12] one can
easily see that they are due to a failure of antisymmetry in combination with
transitivity. More precisely, antisymmetry requires that if G is a ground of C,
then C is not a ground of G (see e.g. [4, §209]). Hence, if antisymmetry fails,
there are H and F such that H is a ground of F and F is a ground of H. If,
moreover, grounding is transitive, then H is a ground of H, F is a ground of F ,
and irreflexivity fails too.

The aim of this paper is to present a first-order formal system that cap-
tures the notion of grounding and avoids, in a novel and non-trivial way, both
reflexivity and symmetry paradoxes. To do so, we will formalize grounding
as a meta-linguistic predicate as well as a connective (see [26]), and we will
mainly rely on Bolzano’s ideas on grounding. The solutions adopted to solve
the paradoxes will lead us to define a notion of grounding which is complete
and immediate [27]. The paper is organized as follows. In Section 2, we will
present the informal ideas that motivate our approach. Whilst we will use Sec-
tion 3 to introduce several preliminary notions, Section 4 will serve to provide
our theory of grounding proper, i.e. a natural deduction calculus that includes
grounding rules for quantifiers. In Section 5, we will present the semantics that
is behind our approach. In Section 6, we will outline how our approach avoids
the paradoxes of grounding, and we will draw some conclusions.

1See [27] for a detailed study of the logics of grounding.
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2 A Bolzanian heuristics

We use this section to introduce informally the grounds for quantifiers that we
argue for in this paper. Let us focus on existential formulae first. The grounds
of an existential formula are usually defined by a rule of the following form
[32, 7]:

F (c)

∃xF (x)
Gr

or by an equivalent principle, such as F (c) < ∃xF (x), where < formalizes the
notion of grounding as a connective [13]. According to this rule, a ground for a
formula for the form

∃xF (x)

(informally: “there exists an F”) is a formula of the form

F (c)

(informally: “c is F”), where c is a specific object. This rule is quite simple
and corresponds to a very liberal conception of grounding: the ground of an
existentially quantified formula can be any of its instances.

However, as Fine showed in [12], this rule quickly yields paradoxes of ground.
We present a simplified version of one of them. Suppose we have a unary
predicate T in the object-language, for “true”, and that, for each formula F ,
we have a closed term pFq that names it; informally, we can think of pFq as
a quotation of the formula F . We can now state that F is true in the object-
language, with the atomic formula T (pFq). In order to capture the fact that,
in general, T (pFq) is true in virtue of F being true, we must specify that F is
a ground of T (pFq). This is done by the following rule:

F
T (pFq)

GrT

This is a simple apparatus to talk about the truth of formulae without introduc-
ing higher-order quantifiers that directly range over formulae.2 Nevertheless, it
is enough to give us a symmetric instance of the grounding relation. Indeed,
according to the rule Gr, the formula

T (p∃xT (x)q)

(informally: ““there exists a truth” is true”) is a ground of the formula

∃xT (x)

(informally: “there exists a truth”), because T (p∃xT (x)q) is the instance of
∃xT (x) provided by the term p∃xT (x)q. According to GrT , on the other hand,
∃xT (x) is a ground of T (p∃xT (x)q). If the grounding relation is transitive,

2A version of this counterexample for second-order quantifiers is presented by Krämer [18].
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moreover, we can immediately conclude that ∃xT (x) is a ground of itself, thus
violating the irreflexivity of ground.3

Clearly, it is the liberality of the rule Gr that exposes it to the paradox: since
any instance F (c) of ∃xF (x) can be a ground of the latter, if we instantiate
∃xF (x) with a term that refers to that existential formula itself, we obtain two
mutually dependent formulae, which ground each other.

The notion of grounding on which Gr is based is quite widespread in the
contemporary literature (see e.g. [6, 32, 13]), but it is not the only one. A rather
different conception of grounding is presented by Bolzano in [4]. Bolzano’s idea
of grounding is much less liberal than the one behind Gr. To start with, Bolzano
requires the uniqueness of the ground. As he puts it: “every distinct ground
has a consequence that is at least in some parts distinctly its own” [4, §206].
He therefore rejects the possibility of having different grounds with the same
consequence, thus directly contradicting the basic idea behind the rule Gr.

But Bolzano’s requirements go even further. He claims that “there is not
a variety of consequences belonging to the one given ground” [4, §206]. Here
Bolzano is not simply enforcing a uniqueness requirement for the grounding
relation; he is claiming that the relata of the grounding relation are uniquely
determined in both directions: the ground uniquely determines the consequence,
and the consequence uniquely determines the ground.4 Bolzano’s requirement
excludes the scenario where a pair (F,H) is a consequence of the ground G only
because G determines F . For otherwise a distinct pair (F,H ′), with H ′ 6= H,
could also be a consequence of G, since G determines F ; and the ground G
would have two distinct consequences, against Bolzano’s requirement.

Bolzano makes a similar point in [4, §210]:

Who does not feel that the connection between ground and con-
sequence is much more intimate than it would be if the mere fact
that some of the grounds and consequences are combined in thought
were supposed to make only one ground and one consequence out of
them?

If one accepts Bolzano’s reasoning, and hence rejects that (G,G′) can ground
(F, F ′) only because G grounds F and G′ is grounds F ′, then a fortiori one
should reject that G can ground (F,H) only because G determines F .

We now introduce rules for logical grounding that reflect Bolzano’s insights
on grounding, and block both symmetry and reflexivity. To define these rules,

3Also T (p∃xT (x)q) is a ground of itself if the grounding relation is transitive, but one
reflexive instance of the grounding relation is enough to violate irreflexivity.

4Notice that the uniqueness of the consequence does not imply that only one grounding
rule should be applicable for each ground. Indeed, the conclusion of a grounding rule specifies
a partial consequence of the premisses. That is to say, a rule of the form

Γ

C

indicates that C is one of the consequences of the ground Γ. Compare the notation for
grounding trees used by Bolzano in [4, §220].
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we preserve the constraint that the logical ground of a quantified formula should
be one of its instances, but we also add the following condition:

(∗) the truth of the ground must completely determine that of the conse-
quence.

Condition (∗), while necessary for a stricter, Bolzanian concept of grounding,
is not sufficient to ensure the uniqueness of ground. To obtain the latter, we
also need to include some ground-theoretic equivalences (see e.g. [6, 25, 26]),
which enable us to treat some formulae as equivalent from the ground-theoretic
point of view. More precisely, according to [25, 26], the idea behind ground-
theoretic equivalence is that, if A grounds C, and A′ results from A by applying
commutativity and associativity to it (any number of times, in any order), then
A′ is not a distinct ground of C. As far as the grounding relation is concerned, A
and A′ are completely indistinguishable. For instance, if A∧B grounds C, then
also B ∧A grounds C, but this does not mean that C has two grounds: it just
means that there are two, completely equivalent ways to represent the unique
ground of C. Similar considerations go for consequences (in the grounding
relations)—so, for the “C” in the foregoing sentences. Condition (∗) together
with the ground-theoretic equivalences enforces the uniqueness of the ground.

The requirement of ground uniqueness, in line with the spirit of Bolzano’s
own approach, entails that we develop a notion of grounding which is com-
plete and immediate. As for completeness, ground uniqueness does not, strictly
speaking, imply that every ground must be a complete ground. We could indeed
introduce rules for partial grounding5 without violating the ground uniqueness
requirement, but if we did so we would have the undesirable consequence that
certain truths cannot have a complete ground just because they have a partial
ground which is unique. Moreover, ground uniqueness implies that every full
ground is a complete ground.6 Hence we present a set of grounding rules that
formalize a notion of complete grounding. As for immediateness, if we defined
the grounding relation as transitive, we would immediately violate uniqueness:
from the assumptions that A grounds B, and that B grounds C, we would
conclude that C has two grounds: A and B. Therefore, to comply with the
uniqueness requirement, we must formalize grounding as immediate, and thus
as anti-transitive.7

5A partial ground of a formula C is a multiset of formulae Γ such that Γ ∪ ∆, for some
multiset of formulae ∆, is a full ground of C. The notion of full ground [12, 13] differs with
respect to the notion of complete ground in that if Γ is a full ground of C, then C must follow
from Γ but ¬C does not have to follow from the negation of the elements of Γ; while if Γ is a
complete ground of C, then C must follow from Γ and ¬C must follow from the negation of
the elements of Γ.

6Given a unique full ground Γ of a formula C, ¬C must follow from the negation of the
elements of Γ since the formulae of Γ are the only formulae in virtue of which C holds.

7Notice that, nevertheless, our solution to the paradoxes does not rely on anti-transitivity:
it is possible to define a transitive grounding relation based on the anti-transitive one defined
here and the resulting relation still does not incur in the reflexivity and symmetry paradoxes.
Indeed, according to our calculus there cannot be any list of formulae A1, . . . , An such that (for
1 ≤ i < n) Ai grounds Ai+1 and An grounds A1 because, as shown in the proof of Theorem
4.1, the premisses of all grounding rules are logically simpler than the respective conclusions.
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2.1 Indeterminate objects and the existential quantifier

According to what has been said so far, in order to define a grounding rule for
existential formulae, we just need to find a method that enables us to completely
determine the truth of an existential formula by the truth of one of its instances.
Luckily, there is a well-established device to solve this problem, going back to
Hilbert’s times: the ε-calculus [15].8

The ε-symbol enables us, for each formula F (x), to form an expression
εxF (x) which is a name for an indeterminate object satisfying F (x) [19, In-
troduction, §4]. For instance, if we suppose that some object satisfies F (x),
then the formula

G(εxF (x)) ∧H(εxF (x))

expresses “some indeterminate object that is F is G, and it is H”. Notice that,
even if εxF (x) is a name for an indeterminate object that satisfies F (x), and
hence we never specify which object we refer to, the object denoted by εxF (x)
is fixed; therefore, we can use the same name several times to refer to the same
indeterminate object. In other words, the ε-symbol enables us to formulate
statements about a generic individual with a certain property.

The key use of the ε-symbol is in formulae of the form F (εxF (x)). A formula
of this form is true only in case an object satisfying F (x) can be found and can
be shown to be F . Indeed, if no object satisfies F (x), the term εxF (x) cannot
denote an object that does. In this case, then, the term εxF (x) just denotes any
object. It does not matter which object, it only matters that the denoted object
does not satisfy F (x). It is therefore impossible to show that F (x) holds for
the term εxF (x) or, equivalently, that F (εxF (x)) is true. Hence, F (εxF (x)) is
both an instance of ∃xF (x) and equivalent to it. Indeed, quite obviously, there
exists an object that is F if and only if F (x) holds for some object that is F .
Using ε, we can therefore define a grounding rule for existential formulae that
satisfies condition (∗):

F (εxF (x))

∃xF (x)
∃G

The rule states that ∃xF (x) is true in virtue of the fact that F (x) holds for some
indeterminate object that satisfies F (x). Even though intuition might strongly
suggest that ∃xF (x) holds in virtue of its instances F (t1), F (t2), . . . , an arbitrary
instance F (t) does not constitute a ground which completely determines ∃xF (x).
An arbitrary instance F (t) only provides one example of a term that satisfies
F (x), but many more could exist. The ε-symbol, on the other hand, provides
us with a name that abstracts away from the specific terms t1, t2 . . . that satisfy
F (x), and can be used to talk in general about a generic object that satisfies
F (x). To say that εxF (x) is the ground of ∃xF (x), then, amounts to claiming

Hence, transitivity cannot generate any reflexive or symmetric instance of grounding since no
grounding loop is possible in the first place.

8Hilbert introduced the ε-symbol in order to provide explicit definitions of the quantifiers
∀ and ∃, formalize arithmetic and analysis, and establish consistency results for them. See
[19, 37, 1] for more details, and [34] for applications of the ε-calculus in philosophy of language.

6



that ∃xF (x) is true in virtue of the fact that F (x) holds for some indeterminate
object, of which we only know that it satisfies F (x). For instance, consider
the sentence “there exists an even number”, in symbols ∃nE(n). The rule ∃G
identifies the ground of this formula (correctly, in our view) as E(εxE(x)), which
states that an unspecified even number is, in fact, even.

Hence, unlike Gr, the rule ∃G requires the ground to be a very specific
instance of the existential formula: one which completely determines it. Let
us briefly consider the paradox again. Even if we admit both ∃G and GrT
as grounding rules, now we do not introduce any symmetric instance of the
grounding relation. No ground for a formula of the form F (εxF (x)) can be found
by applying GrT . Indeed, by using ε, we completely eliminate any reference to
the existential quantifier (more on this in Section 6).

2.2 Arbitrary objects and the universal quantifier

We turn now to universal formulae. We first discuss the grounding rules for
them that are currently available in the literature. As for existential formulae,
we can ground a universal formula by using instances of the formula itself. A
simple way to do so is the following [32]:

A(t)

∀xA(x)

where t is any term. Even though this rule correctly specifies that the instance
A(t) is part of the reason why ∀xA(x) is true,9 the truth of A(t) alone does not
determine the truth of ∀xA(x) since A(t) alone does not imply ∀xA(x).

If one were to extend this rule to a classically sound one—that is, one in
which the conclusion is a logical consequence of the premisses—one would obtain
a rule with a possibly infinite list of premisses, because in order to guarantee
that A(x) holds for every object, we need a premiss for each possible instance
of ∀xA(x). But even an infinite list of premisses would not be enough. As
Rosen [28] and Correia [7] point out, a list of formulae A(a1), A(a2), . . . about
individuals, even if exhaustive, does not entail a universal generalization. In
order to define a classically sound rule, one would need to include a premiss
that guarantees that the list A(a1), A(a2), . . . is enough to show that all objects
enjoy A(x). Fine [13] and Correia [7] adopt precisely this solution. Such a
premiss corresponds to what is called a totality fact and has the form

∀x(x = a1 ∨ x = a2 ∨ . . .)

By this formula we assert that the list a1, a2, . . . contains a name for each object
of the domain. If we then assert that each object in the list a1, a2, . . . satisfies
F (x), then ∀xF (x) holds.

9A grounding relation that holds between part of a ground and one of its its consequences
is usually called a relation of partial grounding.
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Even though this makes the rule classically sound, there are three problems
with this solution. First, it is widely recognized that a ground should be logi-
cally simpler than its consequences [4, 13, 7], and the logical complexity of the
formula ∀x(x = a1 ∨ x = a2 ∨ . . . ) is clearly greater than that of any finite
universally quantified statement. It is indeed a universal statement itself, and
an infinite one. Second, the formulation of the totality fact requires a radical
change of logic: one must adopt an infinitary logic [2]. But if the grounds of
quantified statements are expressible without resorting to infinitary extensions
of classical logic, that would be preferable. Third, each application of the above
rule requires infinitely many premisses, and hence to use infinite lists of formulae
as grounds. But this conflicts with the fact that grounding is regarded as an
explanatory relation, as effectively argued by Bolzano himself.10,11

A solution to the problem of defining a sound grounding rule for the univer-
sal quantifier only using finitely many premisses can be found by considering
the proof-theory of first-order logic and, in particular, the notion of eigenvari-
able. An eigenvariable is a variable that represents an arbitrary object. The
basic intuition can be spelled out as follows: since an object can be considered
arbitrary as long as we make no particular assumption about it, if we show
that a property holds for such an assumption-free object, then we are showing
that it holds for any object, and hence that it holds universally. By exploiting
this idea, we can ground a universal formula by one of its instances about an
individual a, as in the following rule:

F (a)

∀xF (x)

provided that a is a name for an arbitrary object. Technically, we need to make
sure that the derivation of F (a) does not depend on any hypothesis on a. Under
this restriction, we are guaranteed that F (x) holds universally, because we could
substitute any term t for a in the derivation of F (a) and thus show that F (x)
holds for t.

Therefore, in order to formalize the grounds of universal formulae, it is not
enough to apply eigenvariable conditions on the grounding rules:12 we need to
explicitly introduce names for arbitrary objects, thus internalizing the notion
of eigenvariable in the object-language. Calculi employing names for arbitrary
objects have been first introduced by Fine [10, 11] in order to explicitly formalize
the role of free variables in logical systems. Our approach is based on similar

10As Rumberg reports [30], Bolzano clearly stated that conceptual grounding trees should
be finite [4, §221.3]. And if a grounding tree is finite, each grounding inference must certainly
have only a finite number of premisses.

11A way to avoid the first of these problems is to introduce an infinite atomic predicate
A(a1, a2, . . .) defined as ∀x(x = a1 ∨ x = a2 ∨ . . . ) [7]. This solution seems quite artificial
though, and still requires a rule with infinitely many premisses and a change in the logical
system, since the atom A(a1, a2, . . .) is possibly infinite.

12An eigenvariable, from a technical point of view, is just a normal variable. The eigenvari-
able conditions, indeed, restrict the form of the derivations in which eigenvariables occur, but
nothing in the logical language explicitly indicates that a particular variable is meant as an
eigenvariable.

8



intuitions but our framework is much simpler than Fine’s, as we confine the use
of arbitrary objects to the grounding rules.13 While explicitly talking about
arbitrary objects in the object-language might not be entirely uncontroversial,
we reckon that such an addition is less contentious, at the logical as well as at
the conceptual level, than adding totality facts and employing infinitary logics
to express the grounds of universal generalizations. We are now in a position
to say that F (a), where a is a name for an arbitrary object, is the ground
of ∀xF (x). And a grounding rule for the universal quantifier devised along
these lines solves all the above problems: it has only one premiss, it does not
involve any infinitary language expressions, the logical complexity of its premiss
is obviously lower than that of its conclusion, and, finally, the truth of its premiss
completely determines the truth of its conclusion.

3 Technical preliminaries

In this section, we briefly introduce some technical preliminaries (mostly based
on [25]), which will be required for our theory of grounding proper (both the
calculus and its semantics).

3.1 The object-language

In order to specify our object-language, we extend some standard definitions
for the language of first-order logic. The only unusual elements consist in the
addition of ε-terms and of a class of constants to be used as names for arbitrary
objects.

Definition 3.1 (Terms and Formulae of the Language L). Terms and formulae
of the logical language L are inductively defined as follows.

• Any variable x, y, x1, y1, x2, y2, . . ., constant c, c1, c2, . . . or arbitrary object
name a, a1, a2, . . . is a term.

• If t1, . . . , tn are terms and f is an n-ary function symbol, then f(t1, . . . , tn)
is a term.

• If t1, . . . , tn are terms and P is an n-ary predicate symbol, then P (t1, . . . , tn)
is a formula.

• If A is a formula and x is a free variable of A, then εxA is a term.

• If A, B and C are formulae and x is a variable, then A∧B, A∨B, A→ B,
¬A, ∀xA, ∃xA, Gr(A | B : C), Gr(A : B), and Gr(A,B : C) are formulae.

The connectives ∧,∨,→ and ¬, and the quantifiers ∀ and ∃ are standard.
The connective Gr represents the grounding relation. A formula of the form
Gr(A : B) expresses that A is the ground of B, one of the form Gr(A,B : C)

13General treatments of arbitrary objects can be found in [9, 16].
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that the ground of C consists of A and B, and one of the form Gr(A | B : C)
expresses that A is the ground of C under the condition that B is true.

We will use capital Latin letters for formulae and capital Greek letters for
lists of formulae. Moreover, we will often use the notation Gr(Γ : A) to represent
a formula of one of the following forms: Gr(B : A), Gr(B,C : A), Gr(B | C : A).

Definition 3.2 (Free Variables). Free variables of terms and formulae are in-
ductively defined as follows.

• For any variable x, x is the only free variable of x.

• For any constant c, c has no free variables. For any arbitrary object name
a, a has no free variables.

• The free variables of f(t1, . . . , tn) are all free variables of t1, . . . , tn.

• The free variables of εxF are all free variables of F except for x.

• The free variables of P (t1, . . . , tn) are all free variables of t1, . . . , tn.

• The free variables of ¬A are all free variables of A.

• The free variables of A ∧ B, A ∨ B, A → B and Gr(A : B) are all free
variables of A and B.

• The free variables of Gr(A | B : C), Gr(A,B : C) are all free variables of
A,B and C.

• The free variables of ∀xA and ∃xA are all free variables of A except for x.

Definition 3.3 (Uniform Substitution). For any formula F , variable x and term
t, we denote by F [t/x] the result of simultaneously replacing all free occurrences
of x in F by t. We adopt the usual renaming conventions to avoid the capture
of variables.

We will write A(x) to highlight that x is one of the free variables of A. We
say, moreover that A(x) holds for t, or for the object denoted by t, if A[t/x] is
true.

3.2 Preliminary ground-theoretic notions

We provide now some definitions that will be used to define the formal notion
of grounding underlying our calculus. The first one is the definition of negation
prefix, which simply introduces some vocabulary to talk more conveniently about
the number of negations that occur at the beginning of a formula. A formula
A has an odd negation prefix if it is of the form ¬2n+1B and B does not have
¬ as outermost connective, and it has an even negation prefix otherwise. The
formal definition is the following.

Definition 3.4 (Negation Prefix np). For any formula A, the negation prefix
np(A) of A is inductively defined as follows:

10



• np(P (t1, . . . , tn)) = np(B ∧ C) = np(B ∨ C) = np(B → C) = np(Gr(Γ :
B))
= np(∀xB) = np(∃xB) = even

• np(¬B) = odd if np(B) = even

• np(¬B) = even if np(B) = odd

In order to formalize the grounding relation as defined in [25], we need a no-
tion of simplification, in order to capture the fact that grounds are simpler than
their consequences. We will base this notion on the so-called “g-complexity” of
formulae, generalizing the definition in [25] to the case of quantified formulae.

Definition 3.5 (G-Complexity). The g-complexity gc(F ) of a formula F is
inductively defined as follows:

• gc(P (t1, . . . , tn)) = gc(¬P (t1, . . . , tn)) = 0 for any atom P (t1, . . . , tn)

• gc(A ∧B) = gc(A ∨B) = gc(A→ B) = gc(A) + gc(B) + 1

• gc(¬A) = gc(A) if np(A) = even

• gc(¬A) = gc(A) + 1 if if np(A) = odd

• gc(∀xA) = gc(∃xA) = gc(A) + 1

• gc(Gr(A : B)) = gc(A) + gc(B) + 1

• gc(Gr(A,B : C)) = gc(Gr(A | B : C)) = gc(A) + gc(B) + gc(C) + 1

For any Γ = A1, . . . , An, we define gc(Γ) as gc(A1) + . . .+ gc(An).

By the above definition, for each formula F of g-complexity n, we always
have a formula of the same g-complexity such that one outermost negation
distinguishes it from F . Some examples are: P and ¬P , ¬¬P and ¬¬¬P , for
any atomic formula P , A ∧B and ¬(A ∧B), ∀xA and ¬∀xA.

We define now the converse relation, which associates formulae of the form
F with formulae of the form ¬F that have the same g-complexity. Intuitively,
the converse of A is built by adding a negation to A if this does not produce
a formula of higher g-complexity, and by removing a negation to A otherwise.
Here is the formal definition.

Definition 3.6 (Converse Formula). For any formula A, the converse A⊥ of A
is defined as follows.

• if A has an even negation prefix, A⊥ = ¬A

• if A has an odd negation prefix, then A = ¬B for some formula B and
A⊥ = B

11



Examples of pairs of converse formulae are precisely those mentioned above:
P and ¬P , ¬¬P and ¬¬¬P , A ∧B and ¬(A ∧B), ∀xA and ¬∀xA.

Since negation plays a special role with respect to g-complexity, we must
adjust the usual notion of immediate subformula accordingly. To this aim, we
generalize the notion of immediate g-subformula introduced in [25] to quantified
formulae.

Definition 3.7 (Immediate G-Subformula). The immediate g-subformulae of
a formula F are:

• A and B if F is of the form A∧B,A∨B,A→ B,¬(A∧B),¬(A∨B),¬(A→
B)

• A if F is of the form ¬¬A

• A[t/x], for any term t, if F is of the form ∀xA, ∃xA,¬∀xA,¬∃xA

4 The grounding calculus

We present now our grounding calculus, which adapts and extends the propo-
sitional grounding calculus introduced in [26]. Grounding, in the calculus, will
be both represented as a meta-linguistic relation—by the double inference line
of grounding rules—and as a linguistic relation—by the operator Gr. The cal-
culus consists of five groups of rules: propositional logical rules, propositional
grounding rules, the rules for Gr, first-order logical rules, and first-order ground-
ing rules. We introduce and discuss them in turn.

4.1 Logical and grounding propositional rules

The propositional logical rules are presented in Table 1. They constitute a
standard calculus for classical propositional logic. We indicate that a rule ap-
plication discharges a hypothesis by marking both the rule application and the
hypothesis with the same natural number.

The propositional grounding rules are presented in Table 2. They corre-
spond to the grounding rules in [26], but their presentation is different. Firstly,
we do not use a unique rule for negation, as in [26], but we use separate rules
for negated conjunctions, disjunctions, implications, and for double negations.
This enables us to avoid side conditions on the propositional rules. Secondly,
we use the | separator instead of square brackets to distinguish between a pre-
miss representing a ground and a premiss representing a condition:14 in a rule
application of the form

A | B
C

A is the ground of C under the condition B. Notation aside, both the grounding
rules of the calculus in [26] and the grounding rules in Table 2 are defined
according to the following conditions (notation adapted):

14What we call condition here corresponds to what is called robust condition in [26].
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D A B
A ∧B ∧I

A ∧B
A

∧E A ∧B
B

∧E

A
A ∨B ∨I

B
A ∨B ∨I A ∨B

An....
C

Bn....
C

C
∨En

An....
B

A→ B
→ In

A→ B A
B

→ E

An....
⊥
¬A ¬I

n

¬A A
⊥ ¬E

⊥
A
⊥E ¬¬A

A
¬¬E

where n ∈ N and D does not contain any arbitrary object name

Table 1: Propositional Rules for Classical Logic

Definition 4.1 (Rules for Logical Grounding). A rule of the form

A1 . . . An | B
C

is a grounding rule if, and only if, the following conditions are met:

• Positive Derivability: the rule
A1 . . . An

C
is classically sound.

• Negative Derivability: the rule
¬A1 . . . ¬An B

¬C
is classically sound.

• Immediateness: gc(A1, . . . , An, B) + 1 = gc(C) and the list A1, . . . , An, B
contains exactly one element G or G⊥ for each immediate g-subformula
G of C.

4.2 Rules for the grounding operator

The propositional fragment of our logic does not only feature classical connec-
tives, but also a grounding operator Gr. This operator enables us to construct
formulae of the form Gr(Γ : A) stating that the formulae in Γ constitute the
ground of the formula A. The introduction rule for the Gr operator is in Ta-
ble 3. This rule enables us to introduce Gr only if we have a legitimate grounding
rule application to justify the resulting grounding formula. For instance, if we
ground P ∧Q by the atoms P and Q, we can infer the formula Gr(P,Q : P ∧Q)
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A B

A ∧B ∧G
A B

A ∨B ∨G
A | B⊥

A ∨B ∨G
B | A⊥

A ∨B ∨G

B | A
A→ B

→ G
A⊥ B

A→ B
→ G

A⊥ | B⊥

A→ B
→ G

A

¬¬A ¬¬G

A⊥ B⊥

¬(A ∧B)
¬ ∧G

A⊥ | B
¬(A ∧B)

¬ ∧G
B⊥ | A
¬(A ∧B)

¬ ∧G

A⊥ B⊥

¬(A ∨B)
¬ ∨G

A B⊥

¬(A→ B)
¬ → G

Table 2: Propositional Grounding Rules

If

....
Γ |

....
C

B

is a derivation, then the following is a derivation:

....
Γ |

....
C

B
Gr(Γ | C : B)

GrI

(the condition C might not occur)

Table 3: Introduction Rule for the Grounding Operator Gr

stating that the atoms P and Q constitute the ground of P ∧Q:

P Q

P ∧Q ∧G

Gr(P,Q : P ∧Q)
GrI

The elimination rules for the grounding operator Gr are presented in Table 4.
The first two rules are justified by the fact that the grounding relation holds
between truths. If, for instance, A grounds B, then both A and B must be
true. This feature is usually referred to as the factivity of ground. If the ground
has a condition, the condition must be obviously true as well. The last rule of
Table 4 is needed to negate grounding statements that violate the immediateness
condition of Definition 4.1. By using it we can, for instance, formally show that
the formula P ∧Q does not ground the atom P :

Gr(P ∧Q : P )1

⊥ GrE⊥

¬Gr(P ∧Q : P )
¬I1
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Gr(Γ : A)

A
GrE

Gr(Γ : A)

G
GrE

Gr(∆ : A)

⊥ GrE⊥

where G ∈ Γ, and either gc(∆) + 1 6= gc(A) or ∆ does not contain exactly one
element D or D⊥ for each immediate g-subformula D of A

Table 4: Elimination Rules for the Grounding Operator

since gc(P ∧Q) = 1, gc(P ) = 0 and 1 + 1 6= 0. We can also formally show that,
for instance, the atoms P and Q do not ground the conjunction R ∧ S:

Gr(P,Q : R ∧ S)1

⊥ GrE⊥

¬Gr(P,Q : R ∧ S)
¬I1

since the list “P,Q” does not consist of formulae among R,S,¬R,¬S.
The negation of inconsistent grounding statements can be derived by factiv-

ity. We know, for instance, that ¬Gr(A,¬A : B) is true for any formulae A and
B, since we can construct the following derivation:

Gr(A,¬A : B)1

¬A GrE
Gr(A,¬A : B)1

A
GrE

⊥ ¬E

¬Gr(A,¬A : B)
¬I1

And this can be similarly derived for any grounding statement in which grounds,
condition, and consequence are inconsistent.

4.3 Ground-theoretic equivalences

We have now a propositional calculus that enables us to build grounding in-
ferences and derive grounding formulae accordingly. Nevertheless, the calculus
that we just introduced is too strict, and does not yet enable us to derive all the
formulae we would like to. Indeed, as anticipated in Section 2, if we transform
a formula D according to the laws of commutativity and associativity

B ∧A ↔ A ∧B (A ∧B) ∧ C ↔ A ∧ (B ∧ C)

B ∨A ↔ A ∨B (A ∨B) ∨ C ↔ A ∨ (B ∨ C)

we obtain a formula D′ which is logically equivalent to D and, as argued
in [6, 25], also equivalent to it as far as grounding is concerned. Therefore,
we need some way to account for these ground-theoretic equivalences in the
calculus, and derive the corresponding grounding statements. In order to do so,
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we stipulate some equalities that enable us to freely transform formulae inside
derivations according to the commutativity and associativity laws. To simplify
our presentation, we introduce the following notation:

Definition 4.2 (Formula context). A formula context C[X] is a formula contain-
ing a distinguished propositional atom X. For any formula A, by the notation
C[A], we denote the formula obtained by replacing X with A in C[X].

Definition 4.3 (Derivations with Formula Equalities). We admit the following
equivalences as equalities in the calculus:

C[B ∧A] ≡ C[A ∧B] C[(A ∧B) ∧ C] ≡ C[A ∧ (B ∧ C)]

C[B ∨A] ≡ C[A ∨B] C[(A ∨B) ∨ C] ≡ C[A ∨ (B ∨ C)]

To be more precise, we can define the rules of the calculus as rules acting
on equivalence classes with respect to ≡. For any list S0, S1, . . . , Sn of such
equivalence classes, a rule application

S1 . . . Sn
S0

is legal if there is a list of formulae A0, . . . , An such that Ai ∈ Si and

A1 . . . An
A0

is an instance of a rule schemata.

For the sake of simplicity, inside derivations we will simply treat the equiv-
alence relation ≡ as a syntactic equality, thus not distinguishing between ≡-
equivalent formulae. Therefore, for instance, the following is a legal derivation:

A ∧B1

(B ∧A)1 (B ∧A)→ C

C
→ E

(B ∧A) ∧ C ∧G

Gr(A ∧B,C : (B ∧A) ∧ C)
GrI

B ∧A→ Gr(A ∧B,C : (B ∧A) ∧ C)
→ I1

where we use the equivalence A ∧ B ≡ B ∧ A. As one can see, we can use a
formula as if it were an equivalent one. In particular, the grounding rule uses
its left premiss as the formula B ∧A; the Gr introduction rule uses it as A∧B;
and the → introduction rule uses it as B ∧ A again. Another example, using
the fact that A ∨ (B ∨ C) ≡ (C ∨B) ∨A, is the following:

A ∨ (B ∨ C) D

((C ∨B) ∨A) ∧D
Gr(A ∨ (B ∨ C), D : ((C ∨B) ∨A) ∧D)

Notice that the ground-theoretic equivalences enforce the uniqueness of the
ground. Indeed, if G and G′ occur as the premiss of a grounding rule with
conclusion C, and G ≡ G′, C does not have two distinct grounds, as the calcu-
lus treats G as completely undistinguishable from G′.
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A[x/y]

∀yA ∀I
∀yA
A[t/y]

∀E

x does not occur free in any hypothesis on which A[x/y] depends

A[t/y]

∃yA ∃I ∃yA

A[x/y]n
....
B

B
∃En

x does not occur in B and in any hypothesis H 6= A[x/y] on which B depends

A[x/y]

A[a/y]
aI

A[t/y]

A[εyA/y]
εI

x does not occur free in any hypothesis on which A[x/y] depends

where n ∈ N, x and y are variables, t is any term,
and a is a name for an arbitrary object

Table 5: Predicative Rules for Classical Logic

4.4 Logical and grounding predicative rules

We can now extend the propositional calculus with the logical and grounding
rules for quantifiers, arbitrary object names, and the ε-symbol.

The predicative logical rules are presented in Table 5 and include natural
deduction rules for first-order quantifiers [35, Chapter 2, Section 1], a rule for
arbitrary objects, and a rule for εxA. Let us focus on the less common rules.
The rule

A[x/y]

A[a/y]

enables us to introduce a name for an arbitrary object and, in particular, to
infer that a property A(x) holds for an arbitrary object a if A(x) can be derived
without using any hypothesis on the variable x. If we have no assumptions on
x, indeed, the derivation of A(x) shows us that A(x) holds for any object. We
make this explicit by introducing the name a for an arbitrary object.

The term εxA, briefly introduced in Section 2, denotes an indeterminate
object for which A(x) holds, if there is one. Technically, we can see ε as an
operator that, when given the formula A(x) as argument, chooses an element
that satisfies A(x), if there is one. For obvious technical reasons, if there is no
object for which A(x) holds, then εxA denotes an object for which A(x) does
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A[a/x]

∀xA ∀G
A[εxA/x]

∃xA ∃G
A⊥[εxA⊥/x]

¬∀xA ¬∀G
A⊥[a/x]

¬∃xA ¬∃G

where x is a variable and a is an arbitrary object name

Table 6: Grounding Rules for Quantifiers

not hold. Hence, the behaviour of εxA is formalized by the axiom

∃xA↔ A[εxA/x]

and, from a proof-theoretical perspective, by the following two rules:

A[εxA/x]

∃xA
A[t/x]

A[εxA/x]

Indeed, if A(x) holds for the object picked by ε, it is obvious that there exists
one object for which A(x) holds: the one picked by ε ! And hence we can infer
∃xA. If, on the other hand, there is a term t for which A(x) holds, we know
that ε will be able to pick an object for which A(x) holds, and the rule above
on the right guarantees us that ε will do so. Since the rule above on the left is
just an instance of the introduction rule for ∃, we do not need to add it to the
calculus.

In Table 6 we present the grounding rules for quantifiers. The rules for the
existential and universal quantifier have been explained in Section 2.15 As for
the rules for negated quantifiers, their justification is as follows. The reasoning
captured by the rule ¬∀G is very similar to the one captured by ∃G. Indeed,
A⊥[εxA⊥/x] implies ∃xA⊥ because it guarantees that there is an object for
which A⊥(x) holds. But this in turn implies that A(x) does not hold for all
objects, and hence that ¬∀xA is true. The rule ¬∃G, on the other hand, relies
on the same principles on which the rule ∀G is based. If A⊥[a/x] is true and a
is a name for an arbitrary object, then A⊥(x) holds for all objects. Therefore,
there is no object for which A(x) holds and ¬∃xA is true.

Now that we introduced and discussed all the required rules, we can formally
define the notion of derivation (which is a standard one), and the notion of
formal explanation.

Definition 4.4 (Derivations and Formal Explanations). Derivations are induc-
tively defined as follows:

• Any formula A is a derivation of A with hypothesis A.

15Note that we cannot define a grounding rule for the universal quantifier by using the
ε-symbol, since such a rule would inevitably rely on reductio ad absurdum, but this principle
is not admissible in a grounding derivation since it would make the argument formalized by
the derivation an indirect one: one which does not prove the conclusion by a direct analysis
of its components.
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• If
Γ....
A

is a derivation of A with hypotheses Γ, then

–
Γ′....
A
B

r

is a derivation of B with hypotheses Γ′ if r is an application of one
of the rules in Table 1, 3, 4 or 5, and Γ′ contains all hypotheses in Γ
which are not discharged by r.

–
Γ....
A

B
rG

is a derivation of B with hypotheses Γ if rG is an application of one
of the rules in Table 2 or 6.

• If
Γ....
A

∆....
B

are derivations of A and B with hypotheses Γ and ∆ respectively, then

–
Γ....
A

∆′....
B

C
r

is a derivation of C with hypotheses Γ ∪∆′ if r is an application of
one of the rules in Table 1 or 5, and ∆′ contains all hypotheses in ∆
which are not discharged by r.

–
Γ....
A

∆....
B

C
rG

is a derivation of C with hypotheses Γ ∪∆ if rG is an application of
one of the rules in Table 2.

A formal explanation is a derivation that only contains grounding rule ap-
plications.
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Before exemplifying how the grounding rules for quantifiers and negated
quantifiers are employed, we formally show that they comply with our conditions
on grounding rules. We do this by proving that these rules meet the criteria of
positive and negative derivability and the complexity restrictions adopted for
propositional grounding rules (Definition 4.1).

Theorem 4.1. All rules in Table 6 are rules for logical grounding (Defini-
tion 4.1).

Proof. We start with positive derivability. We first prove that the rule

(1)
A[a/x]

∀xA ∀G

is classically sound. We do this by showing that whenever we have a derivation
of A[a/x] from some hypotheses, we can derive ∀xA from the same hypotheses.
Since a cannot occur in any open hypothesis, there must be a derivation δ of
A[a/x] in which the name a has been introduced by some rule applications

B1[y1/x]

B1[a/x]
aI . . .

Bn[yn/x]

Bn[a/x]
aI

where each yi does not occur in any hypothesis on which Bi[yi/x] depends. We
construct a derivation δ′ by applying the following three operations to δ: first,
we rename the bound variables in such a way that no ε-symbol binds a variable
among y1, . . . , yn; second, we replace all occurrences of a in δ by a fresh variable
y; third, we replace all free occurrences of y1, . . . , yn in δ by the same variable
y. After the substitutions, the rule applications introducing a become trivial
inferences of the form

Bi[y/x]

Bi[y/x]

We construct a derivation δ′′ by eliminating them from δ′. Now, since a cannot
occur in open hypotheses and since the rule applications imposing eigenvariable
conditions on y1, . . . , yn do not occur in δ′′ anymore, the fresh variable y does
not violate any eigenvariable condition in δ′′. Since, moreover, we replaced
a, y1, . . . , yn everywhere, all rule applications of one of the following forms

A[t/z]

A[εzA/z]
εI

A[εzA/z]

∃zA ∃G
A⊥[εz¬A⊥/z]
¬∀zA ¬∀G

became inferences of the following forms, respectively:

(A[t/z])τ

(A[εzA/z])τ

(A[εzA′/z])τ

(∃zA)τ

(A⊥[εzA⊥/z])τ

(¬∀zA)τ

where τ is the substitution [y/a][y/y1] . . . [y/yn]. Since, by renaming, z /∈
{y, y1, . . . , yn}, we can permute the substitution τ and obtain the following
rule applications, respectively:

(Aτ)[(tτ)/z]

(Aτ)[εz(Aτ)/z]
εI

(Aτ)[εz(Aτ)/z]

∃z(Aτ)
∃G

(A⊥τ)[εz(A⊥τ)/z]

¬∀z(Aτ)
¬∀G
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Therefore, δ′′ is a legal derivation of A[y/x]. Moreover, since a and y1, . . . , yn do
not occur in any open hypothesis of δ, y does not occur in any open hypothesis
of δ′′. Therefore, δ′′ is a derivation of A[y/x] that does not depend on any
hypothesis containing y, and we can derive ∀xA by

A[y/x]

∀xA

The rule

(2)
A[εxA/x]

∃xA
is clearly sound since since A[εxA/x]→ ∃xA is one direction of the axiom that
characterizes the ε-symbol.

Consider now the rule

(3)
A⊥[εxA⊥/x]

¬∀xA

By Definition 3.6, from any derivation of A⊥[εxA⊥/x] we can obtain a derivation
of ¬A[εx¬A/x]. Since the implication ¬A[εx¬A/x]→ ∃x¬A is one direction of
the axiom characterising ε and the implication ∃x¬A→ ¬∀xA is valid, we have
that the rule is sound.

Consider now the rule

(4)
A⊥[a/x]

¬∃xA
By Definition 3.6, from any derivation of A⊥[a/x] we can obtain a derivation of
¬A[a/x] with no new hypotheses. Hence, as shown for rule (1), we can derive
∀x¬A. But since ∀x¬A→ ¬∃xA, we have that the rule is classically sound.

Let us now move to negative derivability. As for rule (1), we showed above
that we can derive ∀x¬A if we have a derivation of ¬A[a/x]. Negative derivabil-
ity follows because the implication ∀y¬A→ ¬∀yA is valid. As for rule (2), since
∃xA→ A[εxA/x] is valid—it is one direction of the axiom characterising ε—we
can obtain by contraposition that ¬A[εxA/x]→ ¬∃xA is valid. Hence, we can
derive ¬∃xA from ¬A[εxA/x] and thus show that negative derivability holds. As
for rule (3). From ¬(A⊥[εxA⊥/x]) we can derive A[εx¬A/x]. Moreover, from
∃x¬A→ ¬A[εx¬A/x]—which is one direction of the axiom characterising ε—we
can obtain by contraposition ¬¬A[εx¬A/x] → ¬∃x¬A. Therefore, we can de-
rive ¬∃x¬A from A[εx¬A/x] using the validity of A[εx¬A/x]→ ¬¬A[εx¬A/x].
Negative derivability holds because ¬∃x¬A implies ¬¬∀xA. We conclude with
rule (4), first notice that by Definition 3.6 we can derive A[a/x] from ¬(A⊥[a/x]).
We can then see that negative derivability holds because from A[a/x] we can
derive ∃xA and from this, ¬¬∃xA.

Finally, we check immediateness. First notice that, by Definition 3.5, it
holds for any formula A that gc(A) = gc(A[t/x]) for any term t. Moreover, by
Defintions 3.6 and 3.5, we have that for any formula A, gc(A) = gc(A⊥). Hence,
by Definition 3.5, we have that gc(∀yA) = gc(∃xA) = gc(¬∀xA) = gc(¬∃yA) =
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gc(A) + 1. By concatenating all these equalities, we can see that immediateness
holds for the rules (1), (2), (3) and (4).

Notice that, since the equivalence A[εx¬A/x]↔ ∀xA holds, we can use the
the ε-symbol also to define the behaviour of the universal quantifier. Since,
moreover, A[εx¬A/x] is logically simpler than ∀xA, the former formula could
also constitute a reasonable candidate for the ground of the latter. Nevertheless,
the implication from A[εx¬A/x] to ∀xA essentially relies on an argument by
double negation elimination,16 and the arguments of this kind are tantamount
to arguments by reduction to absurdity—also called apagogic proofs—which
are generally not considered suitable means for grounding truths. Proofs by
reduction to absurdity, indeed, do not show in a direct way that their conclusion
is true, but they do it in a roundabout way which does not match the idea
that a ground should constitute a direct simplification or clarification of its
consequence. Bolzano, for instance, states in [4, §530] that “the propositions
by which an apagogic proof supports the propositions it is supposed to prove
can never represent its objective ground.” Therefore, we do not employ the ε-
symbol to define the grounds of universal and negated existential formulae but
we employ names for arbitrary objects instead.

4.5 Examples

We now present some examples of derivations containing the new grounding
rules for quantifiers. The first one is the following:

n = n axiom n+ 1 6= 0
axiom

n = n ∧ n+ 1 6= 0
∧G | n = n axiom

n 6= n ∨ (n = n ∧ n+ 1 6= 0)
∨G

Note that n + 1 6= 0 and n = n are instances of arithmetical axioms. Hence,
the derivation does not depend on any hypothesis but starts with the assertion
of these two truths. We indicate this by the three inferences labeled “axiom”
which have no premisses.

In this derivation, we start from the truths n = n and n+ 1 6= 0 to ground
their conjunction n = n ∧ n + 1 6= 0. Then we have that n = n ∧ n + 1 6= 0 is
the ground of the disjunction n 6= n ∨ (n = n ∧ n+ 1 6= 0) under the condition
that the first disjunct n 6= n does not hold, or, equivalently, that n = n holds.
Technically, n = n is the condition of the ∨G rule application since n 6= n is
defined as ¬n = n and thus (n 6= n)⊥ is exactly n = n.

Since the derivation above depends on no hypothesis but only on axiom
instances, we can introduce an arbitrary object name a instead of the variable
n and obtain a 6= a ∨ (a = a ∧ a + 1 6= 0). Thus, we can ground the universal

16The formula A[εx¬A/x] is true if and only if ¬∃x¬A is true, and ¬∃x¬A is equivalent to
∀x¬¬A and, by double negation elimination, to ∀xA.
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closure ∀n(n 6= n ∨ (n = n ∧ n+ 1 6= 0)) of n 6= n ∨ (n = n ∧ n+ 1 6= 0):

n = n axiom n+ 1 6= 0
axiom

n = n ∧ n+ 1 6= 0
∧G | n = n axiom

n 6= n ∨ (n = n ∧ n+ 1 6= 0)
∨G

a 6= a ∨ (a = a ∧ a+ 1 6= 0)
aI

∀n(n 6= n ∨ (n = n ∧ n+ 1 6= 0))
∀G

In the following example, we ground the universal formula ∀x(x = x→ x =
x) and we derive the statement expressing that its ground is a = a→ a = a:

x = x axiom | x = x axiom

x = x→ x = x → G
a = a→ a = a aI

∀x(x = x→ x = x)
∀G

Gr( a = a→ a = a : ∀x(x = x→ x = x) )
GrI

The→ G rule application corresponds to the fact that the true consequent x = x
of the implication x = x → x = x is the ground of this implication under the
condition that the antecedent, x = x again, is true.17 Since we have grounded
x = x→ x = x without using any hypothesis on x, we can derive that a = a→
a = a holds for an arbitrary object a. This implies that x = x → x = x holds
universally, and hence grounds ∀x(x = x→ x = x). After having grounded the
universal statement on the individual statement about the arbitrary object a,
we can derive the formula Gr( a = a → a = a : ∀x(x = x → x = x) ) which
expresses that the grounding relation holds between the two statements.

Let us consider now an example for the existential grounding rule. Suppose
that we want to ground the formula ∃x(x = b ∨ x = c), where b and c are
constants such that b 6= c. Here is the resulting grounding derivation:

b = b
axiom |

. . .
¬(b = c)

b = b ∨ b = c
∨G

εx(x = b ∨ x = c) = b ∨ εx(x = b ∨ x = c) = c
εI

∃x(x = b ∨ x = c)
∃G

Gr( εx(x = b ∨ x = c) = b ∨ εx(x = b ∨ x = c) = c : ∃x(x = b ∨ x = c) )
GrI

The derivation moves from the truth of b = b, which is just the instance of an
axiom, to the truth of b = b ∨ b = c by a disjunction grounding rule. Since we
can verify x = b ∨ x = c by substituting b for x, we know that there is some
object which has the property expressed by x = b ∨ x = c, that is, the object
denoted by b. Hence, we can introduce a term that stands for an indeterminate
object that verifies x = b∨x = c. Such term is εx(x = b∨x = c). Notice that in

17The truth of the antecedent is a condition and not part of the ground because an impli-
cation is true when either the antecedent is false or the consequent is true.
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spite of the fact that the term εx(x = b ∨ x = c) is introduced here by proving
the instance b = b ∨ b = c of the formula x = b ∨ x = c, it does specifically refer
to b; indeed also c has the property expressed by x = b ∨ x = c and the term
εx(x = b∨x = c), from a logical point of view, expresses no preference between
b and c. This provides us with the generality required to completely determine
the existential formula, and thus to ground it. The derivation then ends with
the introduction of the Gr operator.

Let us consider now an example for the negated universal rule:

0 = 0
axiom

¬¬(0 = 0)
¬¬G

¬(0 6= 0)
def. 6=

εn(¬(n 6= 0)) 6= 0
εI

¬∀n(n 6= 0)
¬∀G

Gr( εn(¬(n 6= 0)) 6= 0 : ¬∀n(n 6= 0) )
GrI

In this derivation, we first ground ¬¬(0 = 0) by the axiom instance 0 = 0.
This shows, in turn, that ¬(0 6= 0) is true, by definition of 6=. Now we have
one n that verifies ¬(n 6= 0) and we can introduce the ε-term εn(¬(n 6= 0)) to
denote an indeterminate number which is not different from 0. Since we showed
that if we look for a number which is not different from 0, we find a number
which actually has this property—that is, we showed that εn(¬(n 6= 0)) 6= 0
is true—we can finally use it to ground ¬∀n(n 6= 0) and to introduce the Gr

operator accordingly.
We finally provide an example concerning the negated existential rule. Sup-

pose that we want to ground the formula corresponding to the fact that there is
no number which is equal to its successor. We can use the following argument.
We consider an arbitrary number n. We assume that it is equal to its successor:
n = n + 1. Then we reason as follows: if n = n + 1, then n + 0 = n + 1,
and, by the left cancellation law, we can infer that 0 = 1, which is false. Hence
n = n + 1 must be false. Therefore, there is no number which is equal to its
successor because the number n we started with is an arbitrary number. The
formal derivation has the following form:

n = n+ 1 1
....

0 = 1....
⊥

¬(n = n+ 1)
¬I1

¬(a = a+ 1)
aI

¬∃x(x = x+ 1)
¬∃G

Note that, from a technical point of view, n is arbitrary even though we assume
that n = n + 1, because this assumption is discharged before we introduce a
and ground the negated existential formula.
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5 Semantics

A semantics for the theory of first-order, classical grounding is obtained by
improving a semantics for classical logic with (i) an interpretation for the ε-
terms and names for arbitrary objects, (ii) semantic clauses for the grounding
connective. These two tasks are carried out in Section 5.1 and Section 5.2,
respectively.

5.1 A semantics for the ε-term and the grounding quan-
tifier rules

In order to provide a semantics for the ε-calculus-fragment of the theory of
first-order grounding, we follow [37], with a few modifications. Let us start with
classical (Tarskian) semantics, defining a the notion of L-structure.

Definition 5.1 (L-structure). An L-structure M is a set that contains:

• A non-empty set M 6= ∅ as its support.

• An object cM ∈M for every individual constant of L.

• An n-ary function fM : Mn 7−→ M for every n-ary function constant of
L.

• An n-ary relation RM ⊆Mn for every n-ary relation constant of L.

We now define a choice function relative to an M-structure, in order to
interpret ε-terms (we will omit the subscript M when no confusion arises).

Definition 5.2 (Choice function). For any L-structureM, anM-choice func-
tion FM is a function FM : P(M) 7−→ M s.t. for every ∅ 6= X ⊆ M ,
FM(X) ∈ X.

We then proceed to define varible assignments and their variants. Note that
variable assignments associate elements of the domain to variables as well as to
constants for arbitrary terms, thus treating the latter essentially as the former
(this follows [10], but our framework for arbitrary objects is much simpler).

Definition 5.3 (Variable assignments). For any L-structureM, anM-variable
assignment (or simply assignment, for short) σM is a function from the indi-
vidual variables and the names for arbitrary objects of L to M .

Definition 5.4 (xi-variant variable assignments). For any L-structure M and
M-assignment σ, an M-assignment σ′ is an x-variant of σ if it is identical to
σ with the only possible exception of the value σ′ assigns to x.

We now define the denotation of L-terms and the satisfaction relation for
L-formulae, relative to an L-structure M, an M-choice function F , and an
M-assignment σ. In a standard Tarskian semantics, one would typically first
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define denotation and then satisfiaction, where the former definition is incor-
porated and employed in the latter. Due to the presence of ε-terms, however,
it is more convenient to define denotation and satisfaction together, as a single
simultaneous inductive definition (see [23], Lemma 1C.1, pp. 12-13).

Definition 5.5 (Denotation of L-terms, satisfaction for L-formulae). Let M
be an L-structure, F be an M-choice function, and σ an M-assignment. For
every L-term s and L-formula A:

• xM,F,σ = σ(x)

• M, F, σ |= >, and M, F, σ 6|= ⊥

• cM,F,σ = cM

• (f(t1, . . . , tn))M,F,σ = fM(tM,F,σ
1 , . . . , tM,F,σ

n )

• M, F, σ |= s = t iff sM,F,σ = tM,F,σ

• M, F, σ |= R(t1, . . . , tn) iff 〈tM,F,σ
1 , . . . , tM,F,σ

n 〉 ∈ RM,F,σ

• (εxA(x))M,F,σ = F (A(x)M,F,σ), where

A(x)M,F,σ = {σ′(x) ∈M |σ′ is an x-variant of σ and M, F, σ′ |= A(x)}

• M, F, σ |= ∃xA(x) iff for a x-variant M-assignment σ′, M, F, σ′ |= A(x)

• M, F, σ |= ∀xA(x) iff for all x-variantM-assignments σ′,M, F, σ′ |= A(x)

Note that, unlike the original definition in [37], Definition 5.5 is purely
Tarskian, in that it employs only variable assignments and x-variants, rather
than adding new names to the language, for elements of the support.18

With a semantics for the language L at hand, we can proceed to define a
notion of logical consequence.

Definition 5.6 (Logical consequence). A formula ϕ is a logical consequence of
a set of formulae Γ, in symbols Γ |= ϕ, if:

• For every L-structureM and everyM-choice function F andM-assignment
σ, if M, F, σ |= Γ, then M, F, σ |= ϕ.

[37] shows that the above notion of consequence yields soundness and com-
pleteness results for classical logic augmented with an extensional ε-calculus,
that is a calculus featuring an extensionality axiom to the effect that the refer-
ent of εxA only depends on the set of values of x which (under an assignment
σ for a structure M) satisfy A(x). Zach’s proof covers our quantifier rules em-
ploying ε-terms: our rules ∃g and ¬∀g (see Table 6) are instances of Zach’s rules
Ax∃ and Ax∀ (see [37], p. 32). So, we can state the following result.

18For an overview of Tarskian, substitutional, or hybrid semantics, see [5], §§1.3-1.8.
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Theorem 5.1 (Soundness and Completeness). For every set of L-sentences
Γ ∪ {A}:

Γ ` A, if and only if Γ |= A

Proof. See [37], Theorems 28 and 30.

5.2 A semantics for the grounding operator

Definition 5.7 (Satisfaction for grounding formulae). LetM be an L-structure,
F be anM-choice function, and σ anM-assignment. |=∗g is the relation obtained
by closing the definition of |= under the following clause:

M, F, σ |=g Gr(Γ|C : B) iff (letting Γ = {A1, . . . , An})

(i) For every Ai ∈ Γ, M, F, σ |= Ai and M, F, σ |= C

(ii) M, F, σ |= B

(iii) A1, . . . , An |= B and

(iv) ¬A1, . . . ,¬An, C |= ¬B, and

(v) gc(A1, . . . , An, C) + 1 = gc(B) and the list A1, . . . , An, C contains
exactly one element G or G⊥ for each immediate g-subformula G of
C.

Writing it down in extenso, the definition of |=∗g would look exactly like Def-
inition 5.5, with every occurrence of |= replaced by |=∗g but, crucially, where |=
(and not |=∗g) is employed in (i)-(iv). This is because the rules for the grounding
operator require the logical soundness of the inferences codified by (i)-(iv).

Clauses (i) and (ii) are motivated by the factivity of ground—the idea that
the grounding relation holds between truths. In this construal, factivity restricts
the sentences that enter the grounding relation as interpreted by 〈M, F, σ〉
to sentences classically satisfied in it. Any given triple 〈M, F, σ〉 adjudicates
whether a grounding claim follows from another grounding claim by looking at
whether the grounds and its consequence are satisfied by 〈M, F, σ〉. Therefore,
models can be used to reason about arbitrary grounding claims only in a way
which exactly mirrors the calculus (this will be guaranteed by the Soundness
and Completeness theorems that follow), as the examples in section 4.5 can be
reproduced semantically (and this is not surprising, given the clauses (i)-(v)
above).19

Clauses (iii)-(v) are easily seen to be the semantic counterpart of Definition
4.1, with semantic consequence employed rather than derivability. Given the
completeness of the classical calculus, the two are extensionally equivalent.

The consequence relation |=∗g is not the relation we need yet: as pointed out
in Sections 2 and 4.3, we need to include ground-theoretic equivalences which
enable to treat syntactically distinct formulae as identical from the ground-
theoretical point of view. This is done in the next definition.

19We thank an anonymous referee for highlighting this point.
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Definition 5.8 (Satisfaction for grounding formulae, with equivalences). Let
For/≡ be the quotient of the L-formulae under ≡. |=g is the satisfaction relation
defined exactly as in Definition 5.7, but on P(For/≡)× For/≡.

We now extend the satisfaction relation for grounding formulae to a full
consequence relation for the theory of grounding. As the calculus does not
distinguish between ≡-equivalent formulae, we will formulate the next results
for For rather than For/≡, but no confusion will arise from this.

Theorem 5.2 (Soundness). For every set of L-sentences Γ ∪ {A}:

if Γ `g A, then Γ |=g A

Proof. It suffices to check that the rules governing the grounding operator are
sound. We argue by induction on the length of the derivation. We start with
the introduction rule for the grounding operator. Suppose we have introduced
the grounding predicate as a result of an application of the rule GrI applied to
a derivation of length n, concluding Gr(Γ | C : B) from

....
Γ |

....
C

B

where the latter is of length n. By hypothesis, the latter derivation ends with a
grounding rule, i.e. Positive Derivability, Negative Derivability, and Immediate-
ness (from Definition 4.1) hold. By the IH and Theorem 5.1, conditions (i)-(v)
of Definition 5.7 hold as well, i.e. Γ, C |=g B.

Consider now the elimination rules. Suppose there is a derivation of length
n+ 1 ending with an application of GrE of GrE⊥ (conditions as in Table 4):

Σ
...

Gr(Γ : A)
GrE

A

Σ
...

Gr(Γ : A)
GrE

G

Σ
...

Gr(∆ : A)
GrE⊥⊥

Consider GrE. By IH, Σ |=g Gr(Γ : A), and letting Σ = {S1, . . . , Sm}, Γ =
{G1, . . . , Gn}, for every L-structure M, M-choice F , and M-assignment σ:

(i) If M, F, σ |= S1, . . ., M, F, σ |= Sm, then M, F, σ |= A. This shows that
the first GrE rule is sound with respect to |=g.

(ii) If M, F, σ |= S1, . . ., M, F, σ |= Sm, then M, F, σ |= G1, . . ., M, F, σ |=
Gn. This shows that the second GrE rule is sound with respect to |=g.

Consider now GrE⊥. By IH, Σ |=g Gr(∆ : A). Let Σ = {S1, . . . , Sm}, ∆ =
{D1, . . . , Dn}, and assume that gc(D1, . . . , Dn) + 1 6= gc(A), or ∆ does not
contain exactly one element C or C⊥ for each immediate g-subformula C of A.
By Definition 5.7, however:
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(v) gc(D1, . . . , Dn) + 1 = gc(A) and ∆ contains exactly one element C or C⊥

for each immediate g-subformula C of A

Therefore, any L-structureM,M-choice function F , andM-assignment σ that
satisfies Σ fails to satisfy Gr(∆ : A), i.e. Σ |=g ⊥.

We can finally prove a Completeness Theorem. Since the proof adapts the
usual Henkin-style argument, we will only highlight the less standard steps.

Theorem 5.3 (Completeness). For every set of L-sentences Γ ∪ {A}:

if Γ |=g A, then Γ `g A

Proof. The strategy of the proof is the usual Henkin strategy, adapted to the
relation |=g. More precisely:

1. Suppose that Γ |=g A

2. Then, Γ ∪ {¬A} is unsatisfiable.

3. Then, Γ ∪ {¬A} is inconsistent, i.e. Γ ∪ ¬A `g ⊥.

4. Then, Γ `g A.

Steps 1-2 and 3-4 are almost immediate, and require only rules and semantic
clauses for negation that are validated by the calculus and the semantics. The
step from 2 to 3 requires a version of the Henkin construction.

• Henkin Lemma. For every consistent set Γ of L-formulae there is a con-
sistent and saturated Γ′ ⊇ Γ. The proof proceeds as usual, by adding
instances of ∃xA(x)→ A(t) to Γ.

• Lindenbaum Lemma. For every consistent set Γ of L-formulae there is a
consistent and complete Γ′′ ⊇ Γ. The proof proceeds as usual, i.e. for
every formula A, either A or ¬A is added to Γ.

• Derivability entails elementhood. Let Γ be a consistent, saturated, and
complete set of L-formulae. For every L-formula A, if Γ `g A, then
A ∈ Γ.

• Canonical model construction. Following [37], let Γ be a consistent set of
L-formulae. Let Γ∗ be the saturated and complete extension of Γ obtained
by applying the Henkin and then the Lindenbaum Lemma to it. For any
two L-terms s and t, let s ≈ t be the congruence defined by s = t ∈ Γ∗,
i.e. Γ∗ `g s = t. Put (where Ter is the set of L-terms):

[s]≈Γ∗ :={t ∈ Ter | s ≈Γ∗ t}}
Ter/≈Γ∗ :={[s]≈Γ∗ ⊆ Ter | s ∈ Ter}
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Ter/≈Γ∗ is the quotient of Ter under ≈Γ∗ . Let F be a choice function on
Ter/≈Γ∗ and, for every T ∈ Ter/≈Γ∗ , define:

FΓ∗(T ) =

{
{s ∈ Ter | s ≈ εxA(x)}, if T = {[t]≈Γ∗ ∈ Ter/≈Γ∗ |A(t) ∈ Γ∗}
F (T ), otherwise

As [37] shows, FΓ∗ is a well-defined choice function on Ter/≈Γ∗ . The
(quotient) canonical model of Γ∗ is the structureMΓ∗ defined as follows:

- Its support is Ter/≈Γ∗ .

- cMΓ∗ = [c]≈Γ∗ .

- (f([s1]≈Γ∗ , . . . , [sn]≈Γ∗ ))MΓ∗ = [f(s1, . . . , sn)]≈Γ∗ .

- 〈[s1]≈Γ∗ , . . . , [sn]≈Γ∗ 〉 ∈ RMΓ∗ iff R(s1, . . . , sn) ∈ Γ∗.

Finally, let σΓ∗ be an MΓ∗ -assignment.

• Canonical Model Lemma. Let Γ∗, MΓ∗ , FΓ∗ , and σΓ∗ be as above. For
every L-formula A:

MΓ∗ , FΓ∗ , σΓ∗ |=g A iff A ∈ Γ∗

Proof: By induction on the complexity of formulae. We only do the salient
case, i.e. A = Gr(∆ : B) (where, for simplicity, ∆ does not contain any
condition). Suppose MΓ∗ , FΓ∗ , σΓ∗ |=g Gr(∆ : B). Then, by Definition
5.7:

(i) For every Di ∈ ∆, MΓ∗ , FΓ∗ , σΓ∗ |= Di

(ii) MΓ∗ , FΓ∗ , σΓ∗ |= B

(iii) D1, . . . , Dn |= B and

(iv) ¬D1, . . . ,¬Dn |= ¬B, and

(v) gc(D1, . . . , Dn) + 1 = gc(B) and D1, . . . , Dn, B contain exactly one
element G or G⊥ for each immediate g-subformula G of B.

Conditions (i) and (ii) are well-defined, sinceMΓ∗ is a classical structure,
even though the language includes the grounding operator. Formulae of
the form Gr(∆ : B) are treated as propositional atoms by |=. By (i) and
IH, for every Di ∈ ∆, Di ∈ Γ∗. By (ii) and IH, B ∈ Γ∗ as well. Moreover,
by (iii) and (iv), pure logic, and the completeness of the logical calculus:

(iii)∗ Γ, D1, . . . , Dn ` B
(iv)∗ Γ,¬D1, . . . ,¬Dn ` ¬B

By (iii)∗, (iv)∗, and (v), we can conclude Γ∗ `g Gr(∆ : A) and by Deriv-
ability entails elementhood, Gr(∆ : A) ∈ Γ∗, as desired.
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6 Conclusions

This paper proposes a formal theory of grounding in first-order classical logic.
In particular, we offered a solution to the problem of identifying the grounds
for universally and existentially quantified statements, while remaining within
the boundaries of classical first-order logic, or minimal extensions thereof. The
solutions we have developed can be traced back to Bolzano’s intuitions about
grounding (in particular, concerning the strictness of the grounding relation).
However, both conceptually and technically, our theory employs tools that go
beyond the original Bolzanian concept—in particular, ε-terms à la Hilbert, and
arbitrary objects à la Fine. As we have argued in Section 2, employing such
notions can be convincingly justified in the context of grounding for quanti-
fied statements, and using them allows us to avoid the problems of competing
accounts—notably, the use of controversial infinitary resources. Moreover, as
we have shown in Sections 4 and 5, our approach lends itself to an intuitive
natural deduction presentation, and provides a simple yet expressive calculus,
which is sound and complete with respect to a natural Tarskian semantics.

Finally, a few words on the paradoxes of ground. As we have seen in Section
1, a ‘näıve’ approach to grounding for quantified statements, together with
basic extra-logical resources (such as a truth predicate), easily falls prey of
paradoxes—apparently unassailable pieces of reasoning which allegedly show
that the grounding relation can violate irreflexivity and antisymmetry, against
common ground-theoretic wisdom.

However, our framework can not only be shown to be paradox-free, but also
to constitute a suitable basis for a paradox-free theory of truth and ground.
As the proof of Theorem 4.1 shows, the premisses of all grounding rules of the
calculus are logically simpler than their conclusions, and hence there cannot
be any list of formulae A1, . . . , An such that (for 1 ≤ i < n) Ai grounds Ai+1

and An grounds A1, because otherwise each Ai should be logically simpler than
itself, which is absurd. This means in particular that no reflexive or symmetric
instance of grounding can be derived in the calculus. Rigorously showing that
also a theory of truth and ground based on our framework is free from paradoxes
would require developing a proper theory of truth (or some other sufficiently
expressive notion) within our approach. Because of the complexity and lengthy
endeavor of this task, we leave it for future research; we however use the rest of
the section for quickly outlining how this research needs to be developed.

Suppose we extend our grounding calculus with a truth predicate T , and
terms to code formulae of the object-language, letting pFq be the code of F . As
mentioned in Section 2, the grounding rule for the truth predicate that would
be naturally formulated in this context is the following:

F

T (pFq)
GrT

Nevertheless, the rule GrT does not comply with the logical complexity criterion
stated in Definition 4.1 on which our calculus, and in particular the rule GrE⊥,
is based. This is not surprising since the rule GrT is not, strictly speaking, a
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logical rule,20 but a rule that defines the behaviour of the predicate T according
to a particular theory of truth. Technically, this complexity mismatch makes
GrT and the rule GrE⊥ inconsistent. In order to solve this problem, we need to
generalise the complexity measure on which the calculus is based in such a way
that it does not only rely on logical complexity but also on a complexity measure
extracted from the truth theory itself. It will be possible to show, then, that
in any extension of our framework along these lines, no reflexive or symmetric
instance of grounding is possibly validated.
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