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Extensional Denotational Semantics of Higher-Order

Probabilistic Programs, Beyond the Discrete Case

Guillaume Geoffroy

Università di Bologna

Abstract—We describe a mathematical structure that can give
extensional denotational semantics to higher-order probabilistic
programs. It is not limited to discrete probabilities, and it is
compatible with integration in a way the models that have
been proposed before are not. It is organised as a model of
propositional linear logic in which all the connectives have
intuitive probabilistic interpretations. In addition, it has least
fixed points for all maps, so it can interpret recursion.

I. INTRODUCTION

Extensional denotational semantics of probabilistic pro-

grams have been around since the late 1970s [1], [2]. The idea

is to represent first-order programs by measure transformers.

For example, consider a program that takes as input a handle

to a random generator of real numbers and outputs a randomly

chosen real number: its denotation is a map that takes a

probability measure on R (representing the distribution of the

input) and returns a probability measure on R (representing

the distribution of the output). If non-terminating programs

are allowed, then instead, you get a map from sub-probability

measures to sub-probability measures: a total measure strictly

less than 1 denotes a non-zero probability of failing to produce

a number (e.g. through non-termination). Beyond first order,

“extensional” means that each type is interpreted as a set

(in the case of the real numbers, the set S(R) of sub-

probability distributions on R) with some additional structure,

and programs are interpreted as structure-preserving maps, in

such a way that the set of all structure-preserving maps can

itself be equipped with the same structure. What structure

should one use, though? This is a long-standing question:

interaction between the “set of all sub-probability mesures”

construction and the domain-theoretic tools traditionally used

to represent function types has been notoriously troublesome

[3]. As a result, for a while, more success was to be had from

“intensional” approaches, such as games [4] and the geometry

of interaction [5].

Some hints at how to answer this question can be found

in Kozen’s early extensional model [2]. This model can only

represent first-order programs, and only those that are “linear”,

in the sense that they sample their input exactly once. Measure

transformers that are linear and effective, in the sense that they

actually represent one of these linear programs, have a partic-

ular property: they commute with integrals. Equivalently, they

correspond to sub-probability kernels [6] (through the “bind”

operation of the monad S of sub-probability measures [7]).

Still equivalently, they are morphisms of algebras over this

monad. This implies that, as noted by Kozen back then (though

with different terminology), two linear effective functions that

coincide on all Dirac distributions (i.e. on all deterministic

inputs) are equal. This leaves out many maps; in particular,

the map that takes a sub-probability measure on R and returns

its continuous part is not linear effective.

If one extends Kozen’s model to allow programs to sample

their input any number of times, effective functions start to

look like power series. Indeed, in this modified model, it can

be checked that for all effective maps f : S(R) → S(R),
there exists a family (∂nf : S(Rn) → S(R))n∈N of linear

effective maps (so morphisms of S-algebras) such that for all

µ ∈ S(R), f(µ) =
∑

n∈N
∂nf(µ

⊗n) (where µ⊗n denotes the

product measure of n copies of µ). As a result, it is easy

to prove that two effective maps that coincide on all finitely-

supported measures are equal. A fortiori, the “continuous part”

map defined above, which coincides with the zero map on all

discrete measures, is not effective.

This suggests that, in order to get well-behaved extensional

denotational semantics, types in general should be interpreted

by S-algebras, linear programs by morphisms of S-algebras,

and general programs by “power series” in the sense described

above. Probabilistic coherence spaces [8] do precisely that.

Among their many pleasant properties, they form a model of

full propositional linear logic [9] in which each connective (or

at least a complete set thereof) has an intuitive probabilistic in-

terpretation. A considerable drawback is that they are designed

to only work with countable data types, and therefore discrete

probabilities. Indeed, the only reason why linear maps between

probabilistic coherence spaces commute with integrals (i.e. are

morphisms of S-algebras) is because in this context, integrals

are just countable sums.

Several constructions have been proposed to overcome this

limitation [10], [11], [12], [13]. However, they do so only

partially. Indeed, none of them fits the above picture of S-

algebras and power series, as can be seen by the fact that they

all include the “continuous part” map mentioned above. This

means that none of these models is compatible with integration

(only with countable sums, at most), even though integration

is a cornerstone of probability theory.

The contribution of this paper is to define such a model,

which we call convex quasi-Borel spaces. This brings us one

step closer to answering the long-standing question from the

first paragraph. In addition to compatibility with integration,

the construction we propose is a model of linear logic (with

the same intuitions behind the connectives as in probabilistic

coherence spaces), and all functions have least fixed points



(so the model interprets recursion). Our construction relies

on two innovations with respect to previous models: we

define integration axiomatically and simply ask that linear

maps commute with integrals; and we do away with topology

entirely – in particular we replace all limits and suprema with

countable sums (which are just a particular kind of integrals).

The idea behind the second point is that pointwise countable

sums interact well with power series, whereas pointwise limits

do not.

We begin this paper with a few reminders on quasi-Borel

spaces [14] (hereafter QBSs), which are a generalisation of the

traditional notion of measurable spaces. They form a category

that contains the category of measurable spaces and measur-

able maps as a subcategory (and the category of standard Borel

spaces as a full subcategory), supports a commutative “set

of all probability measures” strong monad, and is cartesian

closed. This means that, by themselves, QBSs can already be

seen as a model of the simply typed lambda calculus that

supports probabilistic constructions (however, this model pays

no attention whatsoever to computability: it contains not just

the “continuous part” map, but in fact any measurable map

from S(R) to S(R)). They can also be seen as an alternative

theory of integration and measurability that supports function

spaces, which is why our construction will be built upon them.

The remainder of the paper is mostly dedicated to the

construction of the model itself. This construction follows

the blueprint of linear logic [9]. First, we define convex

QBSs, and as a canonical example, we define for all QBSs

A the convex QBS A of random elements of A. Then we

define the multiplicative constructions, notably multilinear

maps, which represent probabilistic programs with multiple

arguments that use each argument exactly once. In particular,

we show that convex QBSs and linear maps form a closed

symmetric monoidal category. Next come the additive con-

structions (the cartesian product and the coproduct), and then

the exponential modalities. After that, we define analytic maps,

which represent probabilistic programs in general, and we

show that the category of convex QBSs and analytic maps is

equivalent to the Kleisli category of the exponential comonad

“!” – in particular, it is cartesian closed. Finally, we show that

all analytic maps from a convex QBS to itself have a least

fixed point, and that the operation that maps a map to its least

fixed point is analytic. After building the model, we give an

example of toy probabilistic language that can be interpreted

in it.

Note that we use the expression “probabilistic program”

in its narrow meaning of a program that can make random

choices (as well as manipulate other programs that make their

own random choices). The same expression is also used in

the broader sense of a program that describes and manipulates

statistical models [15], [16]. In that setting, compatibility with

integration is all the more relevant, so it would be worth

checking whether our approach can be generalised to it.

II. PRELIMINARIES ON QUASI-BOREL SPACES

Getting a construction that is compatible with integration

requires a theory of integration and measurability in the first

place. Instead of the traditional theory of σ-algebras and

measurable spaces, we use quasi-Borel spaces [14] (QBSs),

because they are known to form a cartesian closed category.

The only cost of replacing measurable spaces with QBSs

is that the “source of randomness” has to be a standard Borel

space [6]. This is a reasonable assumption as far as computer

science is concerned, since that includes the space {0, 1}N of

all infinite sequences of bits1.

In this section, we recall the definition of QBSs and define

the monad S of sub-probability measures.

Definition 1 ([14]). A quasi-Borel space is the data of a set

A and a set MA of maps from R to A such that

• for all α ∈ MA and all measurable maps f : R → R

(where R is equipped with the Borel σ-algebra ΣR), α ◦
f ∈MA,

• for all constant maps α : R→ A, α ∈MA,

• for all (αn)n∈N
∈ MN

A and all partitions (Un)n∈N
of R

into Borel sets, MA contains the case-split map that maps

r to αn(r) whenever r ∈ Un.

Let A and B be QBSs. A morphism of QBSs from A to B
is a map f : A→ B such that for all α ∈MA, f ◦ α ∈ MB.

QBSs and morphisms between them form a category, which

we denote by Qbs.

Since this category is cartesian [14, Proposition 16] (and

even cartesian closed), it induces a symmetric multicategory

[17, Definitions 2.1.1 and 2.2.21], which we also denote by

Qbs, with the set of n-ary maps Qbs(A1, . . . , An;B) defined

as Qbs(A1 × . . .×An, B).
For all QBSs A and all sets B ⊆ A, we define the subset

QBS structure on B by MB = {α ∈MA; ∀r ∈ R, α(r) ∈ B}.
Measurable spaces and measurable maps form a subcategory

of Qbs: for all measurable spaces (A,ΣA), we define a QBS

(A,MA) by letting MA be the set of all measurable maps from

(R,ΣR) to (A,ΣA). If (A,ΣA) and (B,ΣB) are measurable

spaces, every measurable map from (A,ΣA) to (B,ΣB) is

a morphism of QBSs from (A,MA) to (B,MB), though the

converse is not necessarily true.

Recall [6, Introduction] that a standard Borel space (or

simply Borel space) is a measurable space that is isomorphic

to a Borel subset of R. If (A,ΣA) and (B,ΣB) are standard

Borel spaces, then a map f : A→ B is measurable if and only

if it is a morphism of QBSs [14, Proposition 15]. From now on,

we will only consider QBSs and standard Borel spaces (seen

as a particular case of QBSs), and never deal with general

measurable spaces. As a result, we will refer to morphisms

of QBSs simply as measurable maps: this will help convey

the right intuitions, and it will never come in conflict with the

usual notion of measurability.

1In fact, by standard results on Markov kernels, the probability measures
that can be represented in QBSs are exactly those that can be obtained by
pushing forward the usual “independent fair coins” measure on {0, 1}N .



For all standard Borel spaces (A,ΣA), we denote by G(A)
the set of all probability measures on A. We equip it with the

smallest σ-algebra ΣG(A) such that for all U ∈ ΣA, µ 7→ µ(U)
is measurable. Recall [18] that G(A) is itself a standard Borel

space, and that a measurable map from A to G(B) is the same

thing as a Markov kernel from A to B. This construction

has been successfully generalised to QBSs [14, Section V-

D]. We describe an analogous construction for sub-probability

measures, i.e. positive measures of total weight at most 1. With

the exceptions of Facts 6 and 8, all the results we give here

correspond to results that have already been established in the

case of probability measures, so we omit their proofs, which

are similar.

Definition 2. Let A be a QBS. The QBS of sub-probability

measures on A, denoted by S(A), is defined as the quotient

[14, Proposition 25]

S(A) = Qbs
(

R, A ∐ {∗}
)

×G(R)/ ∼,

where Qbs(B1, B2) denotes the QBS of measurable maps

from B1 to B2 [14, Proposition 18], ∐ denotes the coproduct

of QBSs [14, Proposition 17], {∗} denotes the one-element

QBS, and ∼ denotes the following equivalence relation:

For all (α, µ), (β, ν), we let (α, µ) ∼ (β, ν) if and only if

for all measurable maps f : A→ [0,+∞],
∫

r∈α−1(A)

f(α(r))µ(dr) =

∫

s∈β−1(A)

f(β(s)) ν(ds).

We denote by [α, µ] the equivalence class of (α, µ).

This approach of pushing forward by a partial map (or

equivalently, a map that can take the “undefined” value ∗)
in order to “shave” some of the original measure has already

been used to define an analogue of the monad S in the context

of ω-QBSs [11].

Definition 3. We make S : Qbs → Qbs into a functor

by letting S(f)
(

[α, µ]
)

= [f ◦ α, µ] for all f : A → B
measurable and all [α, µ] ∈ S(A).

For all QBSs A and B, it is clear that S defines a measurable

map from Qbs (A,B) to Qbs
(

S(A), S(B)
)

.

Definition 4 (Integration on QBSs). Let A be a QBS. For all

ρ = [α, µ] ∈ S(A) and all f ∈ Qbs
(

A, [0,+∞]
)

, we let

∫

x∈A

f(x) ρ(dx) =

∫

r∈α−1(A)

f(α(r))µ(dr) ∈ [0,+∞].

One can check that this defines a measurable map from

S(A)×Qbs
(

A, [0,+∞]
)

to [0,+∞].

Fact 5. For all standard Borel spaces (A,ΣA), the following

map defines a bijection between the QBS S(A,MA) and the

set of all sub-probability measures (in the traditional sense)

on the standard Borel space (A,ΣA):
{

S(A,MA) → ΣA → [0, 1]
ρ 7→ U 7→

∫

x∈A
1U (x) ρ(dx),

where 1U denotes the indicator function of U . In addition,

this bijection is natural in A, and integration as in Definition

4 corresponds to integration in the traditional sense through

this bijection.

If we unfold Definition 2, we find that MS(A) = {r 7→
[

s 7→ α(r, s), µr

]

; α ∈ Qbs
(

R× R, A ∐ {∗}
)

, (r 7→ µr) ∈
Qbs

(

R, G (R)
)

}. However, in order to define the monad

multiplication, we will need the following characterisation2.

Fact 6. For all QBSs A, MS(A) = {r 7→ [α, µr] ; α ∈
Qbs

(

R, A ∐ {∗}
)

, (r 7→ µr) ∈ Qbs
(

R, G(R)
)

}.

Proof. Let α ∈ Qbs
(

R× R, A ∐ {∗}
)

and (r 7→ µr) ∈
Qbs

(

R, G(R)
)

. The maps r 7→ µr and r 7→ δR(r) are

Markov kernels (where δR(r) denotes the Dirac measure

at r on R), so r 7→ δR(r) ⊗ µr is a Markov kernel [6,

Lemma 1.17, as a particular case of composition where the

second kernel ignores its second argument] and therefore a

measurable map from R to G(R×R). Let ϕ be an isomorphism

between the standard Borel spaces R × R and R. Then for

all r ∈ R,
[

s 7→ α(r, s), µr

]

=
[

α ◦ ϕ−1, ϕ♯

(

δR(r) ⊗ µr

)

]

,

where ϕ♯

(

δR(r) ⊗ µr

)

denotes the pushforward measure of

δR(r) ⊗ µr by ϕ.

In particular, for all ρ ∈ S(S(A)), there exists µ ∈
G(R), U ∈ ΣR, (r 7→ νr) ∈ Qbs

(

U,G (R)
)

and α ∈
Qbs

(

R, A ∐ {∗}
)

such that

ρ =

[

r 7→

(

[α, νr] if r ∈ U
∗ otherwise

)

, µ

]

.

Definition 7. We make S into a monad (S, δ,E) as follows3.

For all QBSs A and all x ∈ A, δA(x) = [r 7→ x, µ] ∈ S(A),
where µ is any probability measure on R. For all

ρ =

[

r 7→

(

[α, νr] if r ∈ U
∗ otherwise

)

, µ

]

∈ S(S(A)),

EA(ρ) =

[

α, V 7→

∫

r∈U

νr(V )µ(dr)

]

∈ S(A).

Alternatively, we write x for δA(x) and
∫

τ∈G(A)
τ ρ(dτ) for

EA(ρ).

This means that sub-probability distributions are stable

under sub-convex combinations in a very broad sense, and that

this “sub-convex combination” (or “expected value”) operation

is measurable. In addition, sub-probability distributions are

stable under countable sums as long as the sum of the total

weights is at most 1, and this “countable sum” operation is

also measurable on its domain:

Fact 8. Let A be a QBS. For all (ρn)n∈N ∈ S(A)N

such that
∑

n∈N

∫

x∈A
1 ρn(dx) ≤ 1, there exists a unique

2In fact, the original paper on QBSs goes the other way round. It defines
the monad P of probability measures similarly to Fact 6, and then it lays out
the arguments needed to prove a characterisation in the spirit of Definition 2
[14, proof of Lemma 27].

3δ stands for Dirac, and E stands for expected value.



(

∑

n∈N
ρn

)

∈ S(A) such that for all measurable maps

f : A→ [0,+∞],

∫

x∈A

f(x)





∑

n∈N

ρn



(dx) =
∑

n∈N

∫

x∈A

f(x) ρn(dx).

In addition, the map (ρn)n∈N 7→
∑

n∈N
ρn is measurable

(when its domain is equipped with the subset QBS structure).

Proof. Let (r 7→ ρn,r)n∈N ∈ MN

S(A) such that
∑

n∈N

∫

x∈A
1 ρn,r(dx) ≤ 1 for all r ∈ R. We must prove

that there exists a unique (r 7→ τr) ∈ MS(A) such that

for all f : A → [0,+∞] measurable and all r ∈ R,
∫

x∈A
f(x) τr(dx) =

∑

n∈N

∫

x∈A
f(x) ρn,r(dx).

For all n, let
(

r 7→
[

αn, µn,r

]

)

=
(

r 7→ ρn,r
)

, and let ϕn

be an isomorphism between the standard Borel spaces R and

(n, n+1]. For all n ∈ N and all r ∈ R, let νn,r be the measure

on R defined by νn,r (U) = µn,r

(

ϕ−1
n (U) ∩ α−1

n (A)
)

. For

all r ∈ R, let ν∗,r =
(

1−
∑

n∈N
µn,r

(

α−1
n (A)

)

)

δR(0). For

all r ∈ R, we let ν∞,r = ν∗,r +
∑

n∈N
νn,r:

(

r 7→ ν∞,r

)

is a

measurable map from R to G(R).

For all s ∈ R, we let β(s) = α ◦ ϕ−1
n (s) if s ∈ (n, n+ 1]

and β(s) = ∗ if s ≤ 0. Then τr =
[

β, ν∞,r

]

satisfies the

requirements.

Spaces of the form S(A) will serve as a model for convex

QBSs. As a result, these two properties (the existence of a

measurable “sub-convex combination” map and of a mea-

surable “countable sum” partial map) will become the main

axioms of convex QBSs.

III. CONVEX QUASI-BOREL SPACES

The only thing one can do with a probabilistic program (or

any program for that matter) is to place it in some context that

has an observable outcome (such as producing a real value),

and observe. What happens then constitutes the behaviour of

the program. If programs can test values for equality with any

constant, then it is sufficient to restrict the notion of observable

outcome to just termination (= success) or non-termination (=
failure).

The idea behind convex quasi-Borel spaces is to have a set

of random values (representing programs) and a set of linear

tests (representing contexts that use the program exactly once).

For each linear test η and each random value x, the structure

gives a probability of success ηx ∈ [0, 1].

Definition 9. A convex quasi-Borel space X is the data of

• two QBSs |X | (random values) and
∣

∣X⊥
∣

∣ (linear tests),

• a measurable map

·X :

{

∣

∣X⊥
∣

∣× |X | → [0, 1]
(η, x) 7→ ηx = η ·X x

,

such that

• for all x, y ∈ |X |, if ∀η ∈
∣

∣X⊥
∣

∣ , ηx = ηy, then x = y,

• there exists a (necessarily unique) measurable map EX :
S(|X |) → |X | such that for all µ ∈ S(|X |) and all

η ∈
∣

∣X⊥
∣

∣, η(EX(µ)) =
∫

x∈|X|
ηxµ(dx),

• there exists a (necessarily unique) measurable map










{

(xn)n∈N
∈ |X |N ;

∀η ∈
∣

∣X⊥
∣

∣ ,
∑

n∈N
ηxn ≤ 1

}

→ |X |

(xn)n∈N
7→

∑

n∈N
xn

such that for all (xn)n∈N
in its domain, η

(

∑

n∈N
xn

)

=
∑

n∈N
ηxn,

and such that, symmetrically,

• for all η, ξ ∈
∣

∣X⊥
∣

∣, if ∀x ∈ |X | , ηx = ξx, then η = ξ,

• there exists a (necessarily unique) measurable map EX⊥ :
S(
∣

∣X⊥
∣

∣)→
∣

∣X⊥
∣

∣ such that for all ρ ∈ S(
∣

∣X⊥
∣

∣) and all

x ∈ |X |,
(

EX⊥(ρ)
)

x =
∫

η∈|X⊥| ηx ρ(dη),

• there exists a (necessarily unique) measurable map










{

(ηn)n∈N
∈
∣

∣X⊥
∣

∣

N
;

∀x ∈ |X | ,
∑

n∈N
ηnx ≤ 1

}

→
∣

∣X⊥
∣

∣

(ηn)n∈N
7→

∑

n∈N
ηn

such that for all (ηn)n∈N
in its domain,

(

∑

n∈N
ηn

)

x =
∑

n∈N
ηnx.

In particular, if X is a convex QBS, then one can easily

check that
(

|X | ,EX

)

is an algebra over the monad S.

Remark 10. It would make sense to merge the two conditions

(existence and measurability of integrals of sub-probability

measures on one hand, and of countable sums on the other)

and ask directly for the existence and measurability of integrals

of s-finite measures [6]. The above definition even suggests

how, in this context, to represent s-finite measures as a QBS

(namely, as a quotient of S(A)N, with (µn)n∈N interpreted

as “
∑

n∈N
µn”). However, countable sums and sub-probability

measures, taken separately, are simpler and, importantly, more

widely known than s-finite measures: we made the choice of

sacrificing some concision to gain in technical simplicity.

Since the above definition is symmetric, each convex QBS

comes with a dual:

Definition 11. For all convex QBSs X , we define a convex

QBS X⊥ by letting

•
∣

∣X⊥⊥
∣

∣ = |X |,
• for all x ∈

∣

∣X⊥⊥
∣

∣ and all η ∈
∣

∣X⊥
∣

∣, x ·X⊥ η = η ·X x.

Notation 12 (Integration in convex QBSs). For all QBSs A,

all convex QBSs X , all measurable maps f : A → |X | and

all µ ∈ S(A), we write
∫

a∈A
f(a)µ(da) for E(S(f)(µ)).

Here are the main, basic examples of convex QBSs (in fact,

the first two can be seen as particular instances of the third).

Definition 13 (Multiplicative unit). We define a convex QBS

W (for weights) by:

• |W| =
∣

∣W⊥
∣

∣ = [0, 1],



• for all η ∈
∣

∣W⊥
∣

∣ and all x ∈ |W|, ηx is the product of

η and x as elements of R.

Definition 14 (Additive unit). We define a convex QBS 0 by:

• |0| =
∣

∣0
⊥
∣

∣ = {0},
• for all η ∈

∣

∣0
⊥
∣

∣ and all x ∈ |0|, ηx = 0.

Definition 15 (Data types). For all QBSs A, we define a

convex QBS A by:

• |A| = S(A),

•

∣

∣

∣A⊥
∣

∣

∣ = Qbs
(

A, [0, 1]
)

,

• for all η ∈
∣

∣

∣A⊥
∣

∣

∣ and all µ ∈ |A|, ηµ =
∫

x∈A
η(x)µ(dx).

Note that the existence and measurability of expected values

and countable sums on |A| are given by Definition 7 and Fact

8, and that expected values and countable sums on

∣

∣

∣
A⊥
∣

∣

∣
are

computed pointwise.

Whenever we have two expressions Θ1 and Θ2 that are not

necessarily defined (such as sums of elements of |X | for some

convex QBS X), we will write Θ1 = Θ2 for “Θ1 is defined

if and only if Θ2 is, and in that case they are equal”.

Notation 16. For all convex QBSs X , all x, y ∈ |X | and all

r ∈ [0,+∞), we write

• 0X for the unique element of |X | such that η0X = 0 for

all η ∈
∣

∣X⊥
∣

∣,

• x+y for the unique element of |X | such that η(x+y) =
ηx+ ηy for all η ∈

∣

∣X⊥
∣

∣, if it exists,

• rx for the unique element of |X | such that η(rx) = r ηx
for all η ∈

∣

∣X⊥
∣

∣, if it exists,

• x ≤ y if ηx ≤ ηy for all η ∈
∣

∣X⊥
∣

∣ (which defines a

partial order on |X |),
• ‖x‖ for sup

η∈|X⊥| ηx ∈ [0, 1].

Note that the map ‖−‖ : |X | → [0, 1] is not measurable in

general, which limits its usefulness.

Fact 17. The binary sum and scalar multiplication are mea-

surable on their domains of definition (which are subsets of

|X | × |X | and [0,+∞)× |X | respectively).

Proof. First, one can check that for all QBSs A, all µ ∈ S(A)
and all s ∈ [0, 1], there exists a unique sµ ∈ S(A) such

that for all f ∈ Qbs
(

A, [0,+∞]
)

,
∫

a∈A
f(a) (sµ)(da) =

s
∫

a∈A
f(a)µ(da). In addition, one can check that the op-

eration (s, µ) 7→ sµ is measurable.

We have x + y =
∑

n∈N
zn , where z0 = x, z1 = y, and

zn = 0X for n > 1, so the binary sum is measurable on its

domain.

We have rx =
∑

n∈N
EX

(

rnδ|X|(x)
)

, where rn is 0 if

r < n, r − n if n ≤ r ≤ n+ 1, and 1 if n+ 1 < r. The map

r 7→ (rn)n∈N
is measurable, as are δ|X| and EX , so scalar

multiplication is measurable on its domain.

From the above proof, one also deduces that rx is always

defined when r ≤ 1.

When X is a convex QBS, we will generally write x ∈ X
for x ∈ |X |.

IV. MULTILINEAR MAPS AND MULTIPLICATIVE

CONNECTIVES

In this section, we define multilinear maps between con-

vex QBSs, and we define a structure of convex QBS on

spaces of multilinear maps. This construction generates all the

multiplicative connectives. Intuitively, an n-linear map from

X1, . . . , Xn to Y represents a probabilistic program that takes

n arguments of types X1, . . . , Xn, uses (i.e. samples) each one

exactly once, and returns a result of type Y .

Given a convex QBS X , each linear test η ∈
∣

∣X⊥
∣

∣ can be

seen as a map from |X | to [0, 1] = |W|. Naturally, the set of

(1-)linear maps from X to W will be defined as the set of

all maps from |X | to |W| that come from some η ∈
∣

∣X⊥
∣

∣.

Multilinearity in general should be preserved by composition,

so its definition should at least ensure that

• if a map f : |X | → |Y | is linear, then for all η ∈
∣

∣Y ⊥
∣

∣,

there exists ξ ∈
∣

∣X⊥
∣

∣ such that ξx = ηf(x) for all x,

• if a map f : |Xn| × . . .× |Xn| → |Y | is n-linear, then it

is linear with respect to each argument.

It would be tempting to turn these two “if”s into “if and only

if”s and use that as the definition of multilinearity. However,

we must also add conditions of measurability:

Definition 18. Let n be a natural number and X1, . . . , Xn, Y
convex QBSs. An n-linear map from X1, . . . , Xn to Y is a

measurable map f : |X1| × . . . × |Xn| → |Y | such that for

all 1 ≤ k ≤ n, there exists a (necessarily unique) measurable

map

f⊥k : |X1|×. . .×|Xk−1|×
∣

∣

∣Y ⊥
∣

∣

∣×|Xk+1|×. . .×|Xn| →
∣

∣

∣X⊥
k

∣

∣

∣

such that for all x1 ∈ |X1| , . . . , xn ∈ |Xn| , η ∈
∣

∣Y ⊥
∣

∣,

η f(x1, . . . , xn) = f⊥k(x1, . . . , xk−1, η, xk+1, . . . , xn)xk.

When n = 1, we say that f is linear, we write f⊥ for f⊥1,

and we write ηf for f⊥(η), so that the linearity condition

reads (ηf)x = η(f(x)).

If f is n-linear, then it is clear that f⊥k is n-linear for all

1 ≤ k ≤ n.

One can easily check that multilinear maps commute with

countable sums and expected values with respect to each

argument. In particular, all linear maps are morphisms of S-

algebras. We will see below (Fact 22) that in the case of data

types, this necessary condition is also sufficient.

Fact 19. Convex QBSs and multilinear maps between them

form a symmetric multicategory (with composition and symme-

tries as in the symmetric multicategory Set), which we denote

by QbsConv.

Proof. It is straightforward to check that composition pre-

serves multilinearity. Since composition and the symmetries

are inherited from the symmetric multicategory Set, they sat-

isfy the coherence axioms of symmetric multicategories.

In particular, convex QBSs and linear maps between them

form a category, which we also denote by QbsConv. Note

that −⊥ is a functor from QbsConvop to QbsConv.



Definition 20. We make − : Qbs → QbsConv
into a map of symmetric multicategories [17, Defini-

tions 2.1.9 and 2.2.21] by letting f(µ1, . . . , µn) =
∫

x1∈A1
. . .
∫

xn∈An
f(x1, . . . , xn)µn(dxn) . . . µ1(dx1) ∈ B

for all f ∈ Qbs(A1, . . . , An;B) and all µ1 ∈ A1, . . . , µn ∈
An.

In particular, − is a functor from the category Qbs to the

category QbsConv.

Definition 21. For all convex QBSs X1, . . . , Xn, Y , we make

the set QbsConv(X1, . . . , Xn;Y ) of all n-linear maps from

(X1, . . . , Xn) to Y into a QBS as follows: for all maps

(r 7→ fr) from R to QbsConv(X1, . . . , Xn;Y ), (r 7→ fr) ∈
MQbsConv(X1,...,Xn;Y ) if and only if

• (r 7→ fr) is a measurable as a map from R to Qbs(|X1|×
. . .× |Xn| , |Y |),

• for all k, (r 7→ f⊥k
r ) is measurable as a map from R

to Qbs(|X1| × . . . × |Xk−1| ×
∣

∣Y ⊥
∣

∣ × |Xk+1| × . . . ×
|Xn| ,

∣

∣X⊥
k

∣

∣).

Multilinear maps between data types correspond exactly to

sub-probability kernels:

Fact 22. For all QBSs A1, . . . , An, B, the maps

f 7→ (µ1, . . . , µn) 7→

∫∫

x1∈A1,...,xn∈An

f(x1, . . . , xn)µ1(dx1) . . . µn(dxn)

and g 7→ (x1, . . . , xn) 7→ g
(

x1, . . . , xn

)

define inverse natural isomorphisms between the QBSs

Qbs(A1, . . . , An;S(B)) and QbsConv
(

A1, . . . , An;B
)

.

In particular, a map f : |A| → |B| is linear if and only if it

is a morphism of S-algebras.

Now, we need to equip spaces of multilinear maps with a

structure of convex QBS. In other words, we need to define

linear tests on multilinear maps. Intuitively, to test a linear

map means to apply it to a randomly chosen input and then

test its output with a randomly chosen test:

Notation 23. Let X1, . . . , Xn, Y be convex QBSs. For all

θ = (µp)p∈N in S
(

|X1| × . . .× |Xn| ×
∣

∣Y ⊥
∣

∣

)N

and all f ∈

QbsConv(X1, . . . , Xn;Y ), we write Test(f, θ) for

∑

p∈N

∫

|X1|×...×|Xn|×|Y ⊥|
η f(x1, . . . , xn)µp(d(x1, . . . , xn, η)).

We denote by QbsConv⊥(X1, . . . , Xn;Y ) the quotient of

the QBS






θ ∈ S
(

|X1| × . . .× |Xn| ×
∣

∣Y ⊥
∣

∣

)N

;

∀f ∈ QbsConv(X1, . . . , Xn;Y ),Test(f, θ) ≤ 1







by the equivalence relation that identifies θ1 and θ2 if

and only if Test(f, θ1) = Test(f, θ2) for all f ∈
QbsConv(X1, . . . , Xn;Y ). We denote the equivalence class

of θ by [θ].

Definition 24. Let X1, . . . , Xn, Y be convex QBSs. We define

a convex QBS (X1, . . . , Xn) ⊸ Y by

•
∣

∣(X1, . . . , Xn) ⊸ Y
∣

∣ = QbsConv(X1, . . . , Xn;Y ),

•

∣

∣

∣

(

(X1, . . . , Xn)⊸Y
)⊥
∣

∣

∣ = QbsConv⊥(X1, . . . , Xn;Y ),

• [θ]f = Test(f, θ).

We make (−, . . . ,−) ⊸ − into a functor

from (QbsConvop)n × QbsConv to QbsConv by

letting
(

(α1, . . . , αn) ⊸ β
)

f = (x1, . . . , xn) 7→
β(f(α1(x1), . . . , αn(xn))).

For all convex QBSs X1, . . . , Xn, Y , all permutations σ
of [n] = {1, . . . , n} and all f : (Xσ(1), . . . , Xσ(n)) ⊸

Y , we denote by σ∗f the linear map (x1, . . . , xn) 7→
f(xσ(1), . . . , xσ(n)). This defines a natural isomorphism σ∗

between (Xσ(1), . . . , Xσ(n)) ⊸ Y and (X1, . . . , Xn) ⊸ Y .

We write σ∗ for (σ∗)
⊥

.

The convex QBS W is both neutral and dualising:

Fact 25. For all convex QBSs X1, . . . , Xn, Y , the map

f 7→ (x1, . . . , xn, r) 7→ r f(x1, . . . , xn)

defines a natural isomorphism between (X1, . . . , Xn) ⊸ Y
and (X1, . . . , Xn,W) ⊸ Y , and the map η 7→ y 7→ ηy defines

a natural isomorphism between Y ⊥ and Y ⊸ W.

The symmetric multicategory QbsConv is closed in the

following sense:

Proposition 26. For all convex QBSs X1, . . . , Xm,
Y1, . . . , Yn, Z , the maps

f 7→ (x1, . . . , xm)7→(y1, . . . , yn)7→f(x1, . . . , xm, y1, . . . , yn)

F 7→ (x1, . . . , xm, y1, . . . , yn) 7→ F (x1, . . . , xm)(y1, . . . , ym)

define inverse natural isomorphisms between (X1, . . . , Xm,
Y1, . . . , Yn) ⊸ Z and (X1, . . . , Xm) ⊸ (Y1, . . . , Yn) ⊸ Z .

Proof. For simplicity, we assume m = n = 1, and we drop

the corresponding indices. The general proof is similar.

First, we check that the first map, which we will de-

note by ϕ, is well-defined. Let f ∈ (X,Y ) ⊸ Z . For

all x ∈ X , ϕ(f)(x) is linear, with ϕ(f)(x)⊥ = (ζ 7→
f⊥2(x, ζ)). In addition, ϕ(f) is linear, with ϕ(f)⊥ = ([θ] 7→
(x 7→ Test(ϕ(f)(x), θ))) (identifying X⊥ with X ⊸ W):

indeed, for all (y, ζ) ∈ |Y | ×
∣

∣Z⊥
∣

∣ and all x ∈ |X |,

Test
(

ϕ(f)(x), (y, ζ)
)

= ζ f(x, y) = f⊥1(ζ, y)(x).

Now, we check that ϕ is linear. For all f ∈ (X,Y ) ⊸

Z , all x ∈ X and all [θ2] ∈ (Y ⊸ Z)⊥,

Test
(

ϕ(f), (x, [θ2])
)

= Test
(

f,
∫

(x, y, ζ) θ2(d(y, ζ))
)

, so

ϕ is linear, with ϕ⊥ = [θ1] 7→ f 7→ Test((x, [θ2]) 7→
Test((y, ζ) 7→ ζf(x, y), θ2), θ1).

The proof of linearity for the inverse map is similar.

We saw that whenever f is n-linear, f⊥k is also n-linear

for all k. In fact, there is a stronger result:



Fact 27. For all convex QBSs X1, . . . , Xn, Y and all

k ≤ n, the map f 7→ f⊥k defines a natural isomor-

phism between (X1, . . . , Xn) ⊸ Y and (X1, . . . , Xk−1, Y
⊥,

Xk+1, . . . , Xn) ⊸ X⊥
k .

For all convex QBSs X,Y , we let X ⊗ Y =
(

(X,Y ) ⊸ W
)⊥

. For all x ∈ X and y ∈ Y , we denote by

x ⊗ y the unique element of |X ⊗ Y | such that f(x ⊗ y) =
f(x, y) for all f ∈

∣

∣(X,Y ) ⊸ W
∣

∣ =
∣

∣(X ⊗ Y )⊥
∣

∣. It follows

from the above discussion that the map

f 7→ (w1, . . . , wn, x, y) 7→ f(w1, . . . , wn, x⊗ y)

defines a natural isomorphism between (W1, . . . ,Wn, X ⊗
Y ) ⊸ Z and (W1, . . . ,Wn, X, Y ) ⊸ Z , and therefore

that (QbsConv,W,⊗,⊸) is a closed symmetric monoidal

category. For all maps f : (X,Y ) ⊸ Z , we will denote by

x⊗ y 7→ f(x, y) the corresponding map in X ⊗ Y ⊸ Z .

As in probabilistic coherence spaces, the intuition behind

the tensor product ⊗ is that a random value of type X ⊗ Y
is a random pair of values of types X and Y , that is to say,

two random values of types X and Y that have to be sampled

jointly. This intuition is supported by how the tensor product

behaves on data types:

Fact 28. For all QBSs A and B, the map

ρ 7→

∫

(x,y)∈A×B

x⊗y ρ(d(x, y))

defines a natural isomorphism between A×B and A⊗B.

Proof. Consequence of Fact 22.

V. ADDITIVE CONNECTIVES

Definition 29. Let (Xi)i∈I be a countable family of convex

QBSs. We define a convex QBS
˘

i∈I Xi by

•

∣

∣

∣

˘

i∈I Xi

∣

∣

∣ =
∏

i∈I |Xi|,

•

∣

∣

∣

∣

(

˘

i∈I Xi

)⊥
∣

∣

∣

∣

= {(ηi)i∈I ∈
∏

i∈I

∣

∣X⊥
i

∣

∣ ; ∀(xi)i∈I ∈
∏

i∈I |Xi| ,
∑

i∈I ηi xi ≤ 1},
• (ηi)i∈I · (xi)i∈I =

∑

i∈I ηi xi.

In addition, we let
⊕

i∈I Xi =
(

˘

i∈I X
⊥
i

)⊥

.

For all j ∈ I , we let πj denote the projec-

tion from
∏

i∈I |Xi| to Xj , and Lj the map xj 7→
(

xj if i = j
0Xi

otherwise

)

i∈I

from Xj to
∏

i∈I |Xi|.

Fact 30. Let (Xi)i∈I be a countable family of convex QBSs:
(

˘

i∈I Xi, (πi)i∈I

)

is a cartesian product of the family

(Xi)i∈I , and
(

⊕

i∈I Xi, (Li)i∈I

)

is a coproduct of the family

(Xi)i∈I . In addition, 0 is both initial and terminal.

As in probabilistic coherence spaces, the intuition is that a

random value of type X & Y is in fact two random values

of types X and Y that can be sampled separately, while a

random value of type X ⊕ Y is one that, every time it is

sampled, yields either a value of type X or a value of type

Y . In the case of &, this is just an other way of saying we

have a cartesian product, while in the case of ⊕, the intuition

is supported by how it behaves on data types:

Fact 31. For all countable families (Ai)i∈I of QBSs, the map

[α, µ] 7→
∑

i∈I

∫

r∈α−1(Ai)

Li

(

α(r)
)

µ(dr)

defines a natural isomorphism between
∐

i∈I Ai and
⊕

i∈I Ai.

VI. SYMMETRIC MAPS AND TENSORS

In order to define the exponential modalities, we will need

to define the spaces of symmetric maps and symmetric tensors.

For all n ∈ N, we denote by Sym(n) the group of

permutations of [n] = {1, . . . , n}.

Definition 32. Let n be a natural number and X,Y convex

QBSs. We write (X)n ⊸ Y for (X, . . . , X) ⊸ Y , where X
appears n times.

• an n-linear map f : (X)n ⊸ Y is symmetric if σ∗f = f
for all σ ∈ Sym(n),

• a test η ∈
(

(X)n ⊸ Y
)⊥

is symmetric if σ∗η = η for

all σ ∈ Sym(n).

If two symmetric maps f1, f2 ∈ (X)n ⊸ Y are such that

ηf1 = ηf2 for all symmetric tests η, then f1 = f2. Indeed,

let η be any test in
(

(X)n ⊸ Y
)⊥

: then
∑

σ∈Sym(n)
1
n!σ∗η

is symmetric, so
(
∑

σ
1
n!σ∗η

)

f1 =
(
∑

σ
1
n!σ∗η

)

f2, which

means that η
(
∑

σ
1
n!σ

∗f1
)

= η
(
∑

σ
1
n!σ

∗f2
)

; since f1 and

f2 are symmetric, this implies ηf1 = ηf2. Conversely, any two

symmetric tests that coincide on symmetric maps are equal.

As a result, we can define convex QBSs of symmetric maps

and symmetric tensors:

Definition 33. Let n be a natural number and X,Y convex

QBSs. We define a convex QBS (X)ns ⊸ Y by

•
∣

∣(X)ns ⊸ Y
∣

∣ is the set of all symmetric maps in
∣

∣(X)n ⊸ Y
∣

∣,

•

∣

∣

∣

(

(X)ns ⊸ Y
)⊥
∣

∣

∣ is the set of all symmetric tests in
∣

∣

∣

(

(X)n ⊸ Y
)⊥
∣

∣

∣,

• η ·(X)ns ⊸Y f = η ·(X)n⊸Y f .

We let X⊗n =
(

(X)n ⊸ W
)⊥

and X⊗sn =
(

(X)ns ⊸ W
)⊥

.

For all n ∈ N, we define a linear map Sn : X⊗n
⊸ X⊗sn

by Sn =
∑

σ∈Sym(n)
1
n!σ∗. The restriction of Sn to X⊗sn is

the identity.

VII. THE EXPONENTIAL MODALITIES

So far, we have defined linear maps between QBSs. We

would like to define a more general notion of “computable”

maps (which we will call analytic maps, due to their similarity

with power series). Following the paradigm of linear logic

[19], the first step will be to define the exponential modality

“!” (“of course”). The other exponential modality, “?” (“why

not”), can be defined by duality.



A. Defining !X

In this subsection, we fix a convex QBS X . We will define

the convex QBS !X using a generic construction by Melliès,

Tabareau and Tasson [20]. Following their terminology, we

call a pointed object any pair (Y, u) with Y a convex QBS

and u : Y ⊸ W, and a pointed morphism from (Y, u) to

(Z, v) any linear map f : Y ⊸ Z such that u = v ◦ f . In

order to apply this construction, we only need to prove two

conditions. The first is that (X &W, (x, r) 7→ r, (x, r) 7→ x)
defines a free pointed object over X in the following sense:

Fact 34. For all pointed objects (Y, u) and all linear maps

f : Y ⊸ X , there exists a unique pointed morphism g form

(Y, u) to (X&W, (x, r) 7→ r) such that ((x, r) 7→ x)◦g = f .

Proof. Let g be any map from |Y | to |X &W|. Then g is a

pointed morphism satisfying this hypothesis if and only for all

y ∈ Y , g(y) = (f(y), u(y)).

For all m ∈ N, we denote by Jm+1,m the canonical

projection (X &W)
⊗sm+1

⊸ (X &W)
⊗sm, that is to say,

the restriction to (X &W)
⊗sm+1

of the unique linear map

(X &W)
⊗m+1

⊸ (X &W)
⊗m

that sends (x1, r1) ⊗ . . . ⊗
(xm+1, rm+1) to rm+1(x1, r1) ⊗ . . . ⊗ (xm, rm). For all

n ≥ m, we let Jn,m = Jm+1,m ◦ . . . ◦ Jn,n−1. The second

condition we need to prove is that the diagram

(X&W)
⊗s0 ← . . . (X&W)

⊗sm Jm+1,m
← (X&W)

⊗sm+1
. . .

has a limit and that this limit commutes with the tensor

product: !X will be defined as this limit. The remainder of

this section deals with the technical details of how to do this.

The obvious choice for the underlying QBS |!X | is the set

of all (an)n∈N ∈
∣

∣

∣

˘

n∈N
(X &W)

⊗sn
∣

∣

∣ such that Jn,m(an) =

am for all m ≤ n. In fact, it would be easy to define a structure

of convex QBS on top of this, to prove that it is a limit

of the above diagram, and to prove that this limit commutes

with tensor products if the maps Jn,m had sections. However,

they are not even necessarily surjective. Indeed, consider for

example the case where X = W ⊕W, m = 2 and n = 3.

Let f : (X &W)⊗2
⊸ W be defined by f((r0, r1, r∗) ⊗

(s0, s1, s∗)) = r0s1+r1s0. An elementary computation shows

that for all a ∈ (X &W)
⊗3

, f(J3,2(S(a))) ≤
2
3 , whereas

f
(

1
2 (0, 1, 0)⊗ (1, 0, 0) + 1

2 (1, 0, 0)⊗ (0, 1, 0)
)

= 1.

So instead, we will prove that Jn,m has a section up to a

factor that depends only on m. Namely, for all m ∈ N, we will

define a real number ρm ≥ 1, and for all m,n ∈ N, we will

define a linear map Km,n : (X &W)
⊗sm

⊸ (X &W)
⊗sn

such that:

• Km,n = 1
ρm
Jm,n if m ≥ n,

• Jn,m ◦ Km,n = 1
ρm

id(X&W)⊗sm if m ≤ n.

An element of X⊗n can be seen as a (non-commutative)

homogeneous polynomial of degree n. Likewise, an element of

(X &W)
⊗n

can be seen as a (non-necessarily homogeneous)

polynomial of degree at most n. For example, (x, 1)⊗(y, 1) =
(x, 0)⊗ (y, 0)+(x, 0)⊗ (0, 1)+(0, 1)⊗ (y, 0)+(0, 1)⊗ (0, 1)

represents the polynomial “x⊗ y+ x+ y+1” (which we put

between quotes because this is not a well-defined notation).

Homogeneous polynomials can be extracted from elements

of (X &W)
⊗sm as follows: for all m,n ∈ N, we denote by

Mn,m the canonical projection (X &W)
⊗sn

⊸ X⊗sm, that

is to say, the restriction to (X &W)
⊗sn of the unique linear

map (X &W)⊗n
⊸ X⊗m that maps (x1, r1)⊗ . . .⊗ (xn, rn)

to rm+1 . . . rn x1 ⊗ . . .⊗ xm if m ≤ n, and to 0 if m > n.

For all m,n ∈ N, we denote by Inj(m,n) the set of all

injections from [m] to [n]. We want to define for all m ≤ n
a section of Jn,m up to a factor that depends only on m. To

that end, we will first define for all m ≤ n a section ofMn,m

up to a factor that depends only on m:

Lemma 35. For all m, p > 0, there exists a unique linear

map from X⊗m to (X &W)
⊗smp

that maps x1 ⊗ . . . ⊗ xm

to

∑

j∈Inj(m,mp)

1

mm

mp
⊗

k=1

( (

xj−1(k), 0
)

if k ∈ im (j)

(0, 1) if k /∈ im (j)

)

.

Proof. For all η ∈

∣

∣

∣

∣

(

(X &W)
⊗smp

)⊥
∣

∣

∣

∣

and all x1, . . . , xm ∈

X ,

1≥ η
(

(x1, 1)
⊗p ⊗ . . .⊗ (xm, 1)⊗p

)

≥Avgj∈Inj(m,mp) p
mη
⊗mp

k=1

((

xj−1(k), 0
)

k ∈ im (j)

(0, 1) k /∈ im (j)

)

(where Avg stands for average). Indeed, out of the 2mp terms

obtained by developing the product (x1, 1)
⊗p⊗. . .⊗(xm, 1)⊗p

(where (y, r) is to be read as (y, 0) + (0, r)), pm are of the

form: one factor (xi, 0) for each i ∈ [m], and all the other

factors equal to (0, 1) (and η takes the same value on all such

terms, because it is symmetric, so only their number matters).

Since there are
(mp)!

(mp−m)! injections from [m] to [mp], and since

pm (mp−m)!
(mp)! ≥

1
mm , we get

1 ≥
∑

j∈Inj(m,mp)

1

mm
η

mp
⊗

k=1

((

xj−1(k), 0
)

if k ∈ im (j)

(0, 1) if k /∈ im (j)

)

.

We denote by Nm,mp the restriction of this map to X⊗sm:

one can check that Mmp,m ◦ Nm,mp = m!
mm idX⊗sm . For

all m > 0 and all n ∈ N, we define Nm,n : X⊗sm
⊸

(X &W)⊗sn by Nm,n = Jmp,n ◦Nm,mp, where p is smallest

positive integer such that mp ≥ n (which makes sense

because Jmp,n is the identity when n = mp). Finally we

define N0,n : X⊗s0
⊸ (X &W)

⊗sn for all n ∈ N by

N0,n(r) = r
⊗n

k=1(0, 1). One can check that for all m,n ∈ N,

Mn,m ◦ Nm,n =

{

m!
mm idX⊗sm if n ≥ m

0 if n < m

(with the convention that 00 = 1). Intuitively, Nm,n takes

a homogeneous polynomial of degree m and, if possible,

represents it as an element of (X &W)
⊗sn, up to a factor

m!
mm .



For all m ∈ N, we let ρm = mm(m+1)
m! . For all m,n ∈ N,

we define Km,n : (X &W)⊗sm
⊸ (X &W)⊗sn by

Km,n =

m
∑

k=0

1

(m+ 1)

kk m!

k!mm
Nk,n ◦Mm,k

(which is well-defined because kk

k! ≤
mm

m! for all k ≤ m). In

other words, for all k, Km,n extracts from its argument the

homogeneous part of degree k, turns that part into an element

of (X &W)
⊗sn up to a factor 1

ρm
, and then sums all the

results. Thus, for all m,n ∈ N, we do have:

• Km,n = 1
ρm
Jm,n if m ≥ n,

• Jn,m ◦ Km,n = 1
ρm

id(X&W)⊗sm if m ≤ n.

All this means that the following definition makes sense:

Definition 36. We define a convex QBS !X as follows

• |!X | =

{

(an)n∈N ∈
∏

n∈N
(X &W)⊗sn;

∀m ≤ n, am = Jn,m(an)

}

•
∣

∣(!X)⊥
∣

∣ is the set of all families of maps (fn)n∈N ∈
∏

n∈N
Qbs

(

∣

∣(X &W)⊗n
∣

∣ , [0,+∞)
)

such that

– for all n, fn
ρn

is in (X & W)⊗n
⊸ W and is

symmetric,

– for all m ≤ n, fm = ρm fn ◦ Km,n,

– for all (an)n∈N ∈ |!X |, supn∈N fn(an) ≤ 1,

with the subset QBS structure,

• (fn)n∈N ·!X (an)n∈N = supn∈N
fn(an).

As stated in the introduction, to make this definition usable,

we need to reformulate it in terms of countable sums. To

this end, for all n, k ∈ N, we define a linear map Dn,k :

(X & W)⊗sn
⊸ (X & W)⊗sn by Dn,k = kk

k! Nk,n ◦ Mn,k.

This map extracts the homogeneous part of degree k without

changing the type of its argument. In particular, id(X&W)⊗sn =
∑n

k=0Dn,k.

Fact 37. For all families of maps (fn)n∈N ∈
∏

n∈N
Qbs

(

∣

∣(X &W)⊗n
∣

∣ , [0,+∞)
)

, (fn)n∈N ∈
∣

∣(!X)⊥
∣

∣ if

and only if

• for all n, fn
ρn

is in (X &W)⊗n
⊸ W and is symmetric,

• for all n, fn+1 = fn ◦ Jn+1,n + fn+1 ◦ Dn+1,n+1,

• for all (an)n∈N ∈ |!X |,
∑

n∈N
fn ◦ Dn,n (an) ≤ 1.

In addition, for all (an)n∈N ∈ |!X |, (fn)n∈N ·!X (an)n∈N =
∑

n∈N
fn ◦ Dn,n (an).

For all n ∈ N, we denote by πn the canonical projection

!X ⊸ (X &W)⊗sn. These projections also have sections up

to a factor 1
ρn

:

Notation 38. Let n ∈ N. For all an ∈ (X & W)⊗sn, we

let θn(an) =
(

Kn,man
)

m∈N
. This defines a linear map θn :

(X & W)⊗sn
⊸ !X that satisfies the equation πn ◦ θn =

1
ρn

id(X&W)⊗sn .

With that, it is clear that !X is the limit of the diagram

(X&W)
⊗s0 ← . . . (X&W)

⊗sm Jm+1,m
← (X&W)

⊗sm+1
. . .

and that this limit commutes with the tensor product, namely:

Theorem 39. Let Z,Y be convex QBSs, and let (ϕn)n∈N
∈

∏

n∈N

(

Z ⊸ Y ⊗ (X &W)
⊗sn
)

be such that for all m ≤ n,
(

idY ⊗Jn,m
)

◦ ϕn = ϕm. Then the map

ϕ∞ :











|Z| → |Y ⊗ !X |
z 7→ supn∈N ρn (idY ⊗θn) ◦ ϕn(z)

=
∑

n∈N
ρn
(

idY ⊗(θn ◦ Dn,n)
)

◦ ϕn(z)

• is well-defined,

• is a linear map from Z to Y ⊗ !X ,

• is the only map from |Z| to |Y ⊗ !X | such that for all

n ∈ N, (idY ⊗πn) ◦ ϕ∞ = ϕn.

As in probabilistic coherence spaces, a random value of

!X represents a generator of random values of X whose

distribution is itself random.

B. The free commutative comonoid structure on !X

Because of Fact 34 and Theorem 39, we know that for all X ,

!X can be equipped with a structure of commutative comonoid

freely generated by X [20, definition in the introduction]. In

this subsection, we simply spell out this structure and a few

constructions that come from it. This will come in handy when

defining and proving statements about analytic maps.

First, note that Theorem 39 turns “!” into a functor

from QbsConv to QbsConv, with (!f)(an)n∈N = ((f ⊗
idW)⊗sn(an))n∈N for all f : X ⊸ Y and all (an)n∈N ∈ !X .

The following notation will be useful to define linear maps

from spaces of the form !X :

Notation 40. Let X,Y be convex QBSs, n ∈ N and f :
(X &W)n ⊸ Y . We denote by




m
⊗

k=1

(xm,k, rm,k)





m∈N

7→ f
(

(xn,1, rn,1), . . . , (xn,n, rn,n)
)

the linear map f ◦ πn ∈ !X ⊸ Y .

Definition 41. For all convex QBSs X , using the above

notation, we define a linear map weakX : !X ⊸ W as




m
⊗

k=1

(xm,k, rm,k)





m∈N

7→ 1,

a linear map contX : !X ⊸ !X ⊗ !X as
(
⊗m

k=1(xm,k, rm,k)
)

m∈N

7→ supp,q∈N







(

ρpθp
⊗p

k=1

(

xp+q,k, rp+q,k

)

)

⊗
(

ρqθq
⊗p+q

k=p+1

(

xp+q,k, rp+q,k

)

)







=
∑

p,q∈N







(

ρpθpDp,p

⊗p
k=1

(

xp+q,k, rp+q,k

)

)

⊗
(

ρqθqDq,q

⊗p+q
k=p+1

(

xp+q,k, rp+q,k

)

)







(where composition and application are noted multiplica-

tively), and a linear map derX : !X ⊸ X as




m
⊗

k=1

(

xm,k, rm,k

)





m∈N

7→ x1,1.



As a consequence of Theorem 39, we get:

Proposition 42. For all convex QBSs X , (!X,weakX , contX)
is a commutative comonoid freely generated by (X, derX).

This is known [21] to imply the following results:

• Let digX : !X ⊸ !!X be the unique morphism

of comonoids such that der!X ◦ digX = id!X . Then

(!, der, dig) is a comonad. We denote by ≪ its Kleisli

composition, i.e. for all f ∈ !X ⊸ Y and all g ∈ !Y ⊸

Z , g ≪ f = g ◦ !f ◦ digX .

• Let storeX1,...,Xn
: !X1⊗. . .⊗!Xn ⊸ !(X1 & . . .&Xn)

be the unique morphism of comonoids such that

derX1&...&Xn
◦ storeX1,...,Xn

= a1 ⊗ . . . ⊗ an 7→
(derX1(a1), . . . , derXn

(an)). Then storeX1,...,Xn
is an

isomorphism.

• The Kleisli category of the comonad ! is cartesian closed.

For all convex QBSs X and all n ∈ N, we denote by

contX,n the canonical linear map from !X to (!X)
⊗sn. In

particular, contX,2 = contX , contX,1 = id!X , and contX,0 =
weakX . For all n ∈ N and all m1, . . . ,mn ∈ N, one can check

that

• (πm1 ⊗ . . .⊗ πmn
) ◦ contX,n = πm1+...+mn

,

•
(

contX,m1 ⊗ . . .⊗ contX,mn

)

◦ contX,n =
contX,m1+...+mn

(which is just an other way of

saying that !X is a comonoid).

VIII. ANALYTIC MAPS

In coherence spaces [19], seen as a model of computation,

computable functions are represented by stable maps. Each

coherence space X comes with a universal stable map from

X to !X , in the sense that a map from X to Y is stable if and

only if it can be obtained by composing this universal map

with a (necessarily unique) linear map from !X to Y . We use

this idea to define analytic maps between convex QBSs, and

we prove that convex QBSs and analytic maps form a cartesian

closed category.

Definition 43. Let X be a convex QBS. We define a measur-

able map ∇X : |X | → |!X | by ∇X(x) =
(

(x, 1)⊗n
)

n∈N
.

This map is injective (because derX ◦∇X = idX ), and

monotone. A useful remark is that its image is exactly the

set of “co-idempotent” elements of the comonoid !X (minus

0!X):

Fact 44. Let X be a convex QBS. For all a ∈ !X , contX(a) =
a⊗ a if and only if a = 0 or a = ∇X(derX(a)).

Proof. One can check from the definition of cont that

cont(0) = 0 ⊗ 0 and that cont(∇(x)) = ∇(x) ⊗ ∇(x) for

all x ∈ X .

Assume cont(a) = a ⊗ a. Then π0(a) = (π0 ⊗ π0)(a) =
π0(a)

2, therefore π0(a) = 0 or π0(a) = 1. In addition, for

all n, πn+1(a) = (π1 ⊗ πn) ◦ cont(a) = (π1 ⊗ πn)(a ⊗ a).
One can check that π1(a) = (der(a), π0(a)), so by induction,

for all n > 0, πn(a) = π1(a)
⊗n = (der(a), π0(a))

⊗n. If

π0(a) = 1, that means a = ∇(der(a)). If π0(a) = 0, that

means π1(a) = J2,1(π2(a)) = J2,1((der(a), 0)⊗2) = 0, so

a = 0.

The map ∇X duplicates its input, including side-effects (i.e.

probabilistic choices and non-termination), and as such it is not

linear (unless X is 0). However, as one would expect, in the

case of data types, values (not side effects) can be duplicated

linearly. Namely, for all QBSs A, there exists a unique linear

map copyA : A ⊸ !A such that for all x ∈ A, copyA(x) =
∇A(x) (defined by copyA(µ) =

∫

x∈A
∇A(x)µ(dx)).

Definition 45. Let X,Y be convex QBSs. An analytic map

from X to Y is a (necessarily measurable and monotone) map

f : |X | → |Y | such that there exists a linear map f! : !X ⊸ Y
such that f = f! ◦ ∇X .

The map ∇X is analytic by definition, and it is universal in

the following sense:

Theorem 46. Let X,Y be convex QBSs and f an analytic map

from X to Y . There exists a unique linear map f! : !X ⊸ Y
such that f = f! ◦ ∇X .

Proof. It is sufficient to prove that for all α = (αn)n∈N, β =
(βn)n∈N ∈ (!X)⊥ , if α∇(x) = β∇(x) for all x ∈ X , then

α = β. For all x, by Fact 37, α∇(x) =
∑

n∈N
αn◦Dn,n◦πn◦

∇(x) =
∑

n∈N
αn

(

(x, 0)⊗n
)

, and similarly for β. In addition,

also by Fact 37, in order to prove that α = β, it is sufficient to

prove that for all n ∈ N, αn◦Dn,n = βn◦Dn,n. Therefore, it is

sufficient to prove that for all n ∈ N and all x1, . . . , xn ∈ X ,

αn((x1, 0)⊗ . . .⊗ (xn, 0)) = βn((x1, 0)⊗ . . .⊗ (xn, 0)). For

all r1, . . . , rn ≥ 0 such that r1+. . .+rn ≤ 1, α∇(r1x1+. . .+
rnxn) is the sum of an n-variate power series in r1, . . . , rn
in which the coefficient of the monomial r1 . . . rn is equal to

n!αn((x1, 0)⊗ . . .⊗ (xn, 0)). The same can be said about β,

and two n-variate power series that coincide on a subset of Rn

with non-empty interior have the same coefficients, therefore

αn((x1, 0)⊗ . . .⊗ (xn, 0)) = βn((x1, 0)⊗ . . .⊗ (xn, 0)).

This allows us to define a structure of convex QBS on the

set of analytic maps from X to Y , by simply transporting the

structure of !X ⊸ Y .

Definition 47. Let X,Y be convex QBSs. We define a convex

QBS X ⇒ Y as follows:

• the underlying set of the QBS |X ⇒ Y | is the set of all

analytic maps from X to Y ,

• M|X⇒Y | = {r 7→ fr ◦ ∇X ; (r 7→ fr) ∈M|!X⊸Y |},
•
∣

∣(X ⇒ Y )⊥
∣

∣ =
∣

∣(!X ⊸ Y )⊥
∣

∣,

• η ·X⇒Y f = η ·!X⊸Y f!,

Since derX ◦∇X = idX , for all f : X ⊸ Y , f is analytic

and f! = f ◦ derX .

As a consequence of Fact 44, it is easy to prove that

digX ◦∇X = ∇!X ◦ ∇X , and that for all f : X ⇒ Y ,

!f! ◦ ∇!X = ∇Y ◦ f!. As a result:



Proposition 48. Let X,Y, Z be convex QBSs. For all analytic

maps f : X ⇒ Y and g : Y ⇒ Z , g ◦ f is analytic, and

(g ◦ f)! = (g! ≪ f!).

This means that convex QBSs and analytic maps form a

category that is equivalent to the Kleisli category of “!”. In

particular, it is cartesian closed, with & as a cartesian product

and ⇒ as an internal hom functor.

There is one last point to check in order to ensure that

analytic functions are well-behaved:

Proposition 49. Let X,Y be convex QBSs. The map ! :
|X ⊸ Y | → |!X ⊸ !Y | is analytic.

Proof. For all n ∈ N, we define ϕn : ((X ⊸ Y ) &
W)⊗n

⊸ (X &W)⊗n
⊸ (Y &W)⊗n by ϕn((f1, r1)⊗ . . .⊗

(fn, rn))((x1, s1)⊗ . . .⊗ (xn, sn)) = (f1(x1), r1s1) ⊗ . . . ⊗
(fn(xn), rnsn).

Then for all f : X ⊸ Y and all (an)n∈N ∈ !X ,

(!f)((an)n∈N) = ((f & idW)⊗n(an))n∈N =
(ϕn((f, 1)

⊗n)(an))n∈N = (ϕn(πn(∇(f)))(an))n∈N.

Finally, the connection with power series is given by the

following result:

Fact 50. Let X,Y be convex QBSs. For all f : X ⇒ Y , there

exists a unique family
(

∂nf
ρn

: (X)ns ⊸ Y
)

n∈N

such that for

all x ∈ X , f(x) =
∑

n∈N
ρn

∂nf
ρn

(x, . . . , x).

Proof. One can check that both points hold if and only if
∂nf
ρn

= ρn f! ◦ θn ◦ Nn,n ◦ Sn for all n.

Corollary 51. Let A be a QBS and Y a convex QBS. For

all f, g : A ⇒ Y , if f and g coincide on finitely-supported

measures, then f = g.

Proof. Similar to Theorem 46.

As in probabilistic coherence spaces, there are non-effective

analytic maps: take for example X = W ⊕W, Y = W, and

f = (p0, p1) 7→ 4p0p1. Let g : (X &W)
2
⊸ W be defined

by g((p0, p1, p∗), (q0, q1, q∗)) = p0q1 + q0p1. One can check

that for all n ≥ 1,
∥

∥g ◦ J2n,2
∥

∥ ≤ n
2n−1 , so ‖g ◦ π2‖ ≤

1
2 (with

π2 : !X ⊸ (X &W)
⊗s2). As a result, f = 2g ◦ π2 ◦ ∇X ∈

X ⇒ Y , yet it is clear that f is not effective as a map from

S({0, 1}) to S({0}).

IX. LEAST FIXED POINTS

We prove that all analytic maps from a convex QBS to

itself have a least fixed point, so this denotational model can

interpret recursive programs.

Theorem 52. Let X be a convex QBS. For all analytic maps

f ∈ X ⇒ X ,

• f has a least fixed point fix(f) ∈ X ,

• fix(f) = supn∈N f
n(0).

Moreover, the map f 7→ fix(f) is analytic (that is to say, it is

in (X ⇒ X)⇒ X).

Proof. To get lighter notations, we will omit the “◦” when

composing linear maps (as is traditional in linear algebra).

The idea behind the proof is to express supn∈N f
n(0) as a

countable sum. First, we define a linear map

ϕ :







!X ⊸ !X

(an)n∈N
7→

(

∑k≤n
k>0 Dn,kan

)

n∈N

,

so that for all a ∈ !X , a = ϕ(a) + π0(a)∇(0). To make the

following reasoning clearer, we will write a− π0(a)∇(0) for

ϕ(a).

For all g ∈ X ⇒ X , since π0

(

!g! dig
(

∇(0)
)

)

=

π0

(

∇(g(0))
)

= 1, we write !g! dig
(

∇(0)
)

− ∇(0) for

ϕ
(

!g! dig
(

∇(0)
)

)

.

For all n > 0, we define an analytic map βn : (X ⇒ X)⇒
X as

g 7→ der (!g! dig)
n−1

(

!g! dig
(

∇(0)
)

−∇(0)
)

,

so that for all n ∈ N and all g ∈ X ⇒ X , gn(0) =
∑n

k=1 βk(g).
For all η ∈ X⊥ and all n ∈ N,

∑n
k=1 ηβk (f) = ηfn(0) ≤

1, so
∑

k≥1 βk(f) ∈ X is well-defined: we denote it by fix(f).

One can check that for all (xn)n∈N ∈ XN and all ξ ∈

(!X)⊥, ξ∇
(

∑

n∈N
xn

)

= supn∈N ξ∇
(

∑

k≤n xk

)

. There-

fore, for all η ∈ X⊥,

ηf(fix(f)) = (ηf!)
(

∇
(

fix(f)
)

)

= (ηf!)

(

∇
(

∑

n≥1 βn(f)
)

)

= supn∈N (ηf!)

(

∇
(

∑k≤n
k≥1 βk(f)

)

)

= supn∈N
(ηf!)

(

∇
(

fn(0)
)

)

= supn∈N ηfn+1(0) =
∑

n≥1 ηβn(f)

= η
(

fix(f)
)

,

so f
(

fix(f)
)

= fix(f). Moreover, fix ∈ (X ⇒ X) ⇒ X ,

with fix! =
∑

n≥1 βn!.

X. A TOY PROBABILISTIC LANGUAGE

As an example, we briefly describe a language for which

the category of convex QBSs and analytic maps provides

an extensional denotational semantics. It can be described as

call-by-name PCF with a type for real numbers, primitives

for randomly generated reals, a construction to force call-by-

value evaluation on data types, and a conditional branching

instruction. The types of this language are defined by:

A,B := R | A×B | A+B | A→ B.

We call types written without “→” data types. Terms are

defined by:

t, u, v := x | λx. t | tu | fix x. t | (t, u) | Lt | Ru
| match t with (x, y) 7→ u
| match t with Lx 7→ u ;Ry 7→ v
| f(t1, . . . , tn) (f ∈ Qbs(Rn, S(R)))
| if t then u else v
| eval t as x in u,



where eval is used on data types to force evaluation, and if
tests whether a real number is non-zero. The only typing rule

that requires attention is that of eval. The rule is: for all data

types D,
Γ ⊢ t : D Γ, x : D ⊢ u : A

Γ ⊢eval t as x in u : A
.

To each type A, we associate a convex QBS JAK, following

Girard’s call-by-name translation [9]:

JRK = R JA×BK = JAK & JBK
JA→ BK = JAK⇒ JBK JA+BK = !JAK⊕ !JBK.

We interpret each valid typing judgement x1 : A1, . . . , xn :
An ⊢ t : B by an analytic map JtK : JA1K & . . . &
JAnK ⇒ JBK. As with types, we follow Girard’s translation,

and the only construction that requires attention is eval.
Intuitively, the program “eval t as x in u” samples t
exactly once and then copies the resulting data as many

times as needed by u. In order to interpret it, we define

for all data types D a linear map copyDataD : JDK ⊸

!JDK that represents this copying operation. Namely, we let

copyDataR = copyR : R ⊸ !R; copyDataD1+D2
◦Lj =

!Lj ◦ digJDjK ◦ copyDataDj
◦ derJDjK for j ∈ {1, 2}; and

copyDataD1×D2
= storeJD1K,JD2K ◦((a, b) 7→ a ⊗ b) ◦

(copyDataD1
&copyDataD2

). Then we let

Jeval t as x in uK = JuK! ◦ copyDataD ◦ JtK

(assuming for simplicity that u has no free variable but x –

the general expression is similar but more cumbersome).

Since this is a call-by-name calculus, each member of a pair

is sampled independently. If we want a pair whose members

are correlated, we need to wrap it inside a constructor. For

example, the program “eval uniform(0, 1) as x in L(x, x)”
always produces pairs with identical members: its denotation is

L1(
∫ 1

0 ∇(x, x)λ(dx)), where λ denotes the uniform measure.

We could just as well have chosen to interpret a call-

by-value calculus, using Girard’s call-by-value translation. In

fact, the whole discussion so far suggests that probabilistic

languages might benefit from linear typing, which makes it

possible to mix features from both styles: this is what convex

QBSs would be best-suited to interpret.

XI. CONCLUSION

We described a model of probabilistic programming (in the

narrow sense) that is not limited to discrete probabilities, is

compatible with integration, interprets all the connectives of

linear logic, and in which all functions have a least fixed point.

A clear direction for future research is to investigate convex

QBSs themselves. For example, if we equip the language from

Section X with an operational semantics, do we have full

abstraction? Do initial algebras exist for functors written in

terms of all or some of the connectives of linear logic? (In

other words, do we have inductive types?) What about final

co-algebras? In addition, it would be interesting to know how

this model relates with probabilistic coherence spaces: do they

coincide on countable types? One should also investigate how

to get rid of non-effective maps between data types, perhaps

by looking for a different (non-free) exponential modality. An

other direction would be to extend convex QBSs to a model of

probabilistic programming in the broad sense [15], [16], that

is to say, one capable of describing statistical models rather

than just programs that make random choices. Staton’s work

[15] suggests that the first step would be to require stability

under integration for all s-finite measures (i.e. drop the bound

on the result) and move the (non-measurable) norm to the

structure – going from convex to “linear” QBSs, so to speak.

On a different line, replacing [0, 1]-valued linear tests with

tests valued in the unit disc of C might be a starting point for

a model of quantum computation (though this would require

leaving the comfort of absolute convergence). Similarly, using

tests whose values are intervals included in [0, 1], in the spirit

of differential program semantics [22], could yield higher-

order versions of such concepts as local differential privacy

[23], [24].
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