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‡Université de Montréal, Département de Sciences Économiques, C.P. 6128 succursale Centre-ville;
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Abstract

This paper considers a class of experimentation games with Lévy bandits encom-
passing those of Bolton and Harris (1999) and Keller, Rady and Cripps (2005).
Its main result is that efficient (perfect Bayesian) equilibria exist whenever play-
ers’ payoffs have a diffusion component. Hence, the trade-offs emphasized in
the literature do not rely on the intrinsic nature of bandit models but on the
commonly adopted solution concept (Markov perfect equilibrium). This is not
an artifact of continuous time: we prove that such equilibria arise as limits of
equilibria in the discrete-time game. Furthermore, it suffices to relax the solution
concept to strongly symmetric equilibrium.

Keywords: Two-Armed Bandit, Bayesian Learning, Strategic Experimenta-
tion, Strongly Symmetric Equilibrium.

JEL Classification Numbers: C73, D83.
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1 Introduction

Bandit models involve trade-offs. The exploration vs. exploitation dilemma of the clas-

sic multi-armed bandit problem coined by Thompson (1933) and Robbins (1952) has

been supplanted by free-riding vs. encouragement effects in a strategic context (Bolton

and Harris, 1999). These two effects might be essential to our economic intuition, but

the trade-off only arises because of the solution concept, as we show in this paper.

First, we provide some context. Typically, bandit games are modeled in continuous

time, with Markov (perfect) equilibrium (MPE) as the solution concept. This is a

sensible choice. Continuous time provides elegant characterizations and even closed-

form solutions. Markov equilibrium is the obvious counterpart to the criterion used in

operations research, enabling meaningful comparisons with the team solution. It is also

dictated by continuous time because standard game-theoretic notions raise conceptual

problems (Simon and Stinchcombe, 1989). However, there is a price to pay. Markov

equilibrium excludes rewards and punishments, the cornerstones of dynamic games.

What Markov taketh away, continuous time giveth: equilibria arise with no discrete-

time equivalent.1

We show that the main equilibrium prediction, namely inefficiently low experimen-

tation, (mostly) disappears once the model is cast in the framework traditionally used in

dynamic games. Relaxing Markov equilibrium and pruning out artifacts of continuous

time requires discretizing the game. We then let the time interval between successive

actions vanish to obtain a similarly clean characterization and a proper comparison

with the literature. Asymptotically, efficiency obtains, as long as payoffs involve an

informative diffusion (as opposed to a pure jump) component.

What efficient experimentation entails depends on the players’ patience. Hence, this

is not a folk theorem, which would not apply in any case: beliefs are not reversible.

For example, players would never be convinced that the risky arm is good if it is not.

In addition, efficiency does not always hold: with pure jumps, this depends on how

good news impacts the common belief.

Efficiency only obtains if a selfish, lone player would not experiment given any

resulting posterior belief, had he been on the brink of stopping as a selfless team player

given the prior belief. Intuitively, having all other players stop experimenting is the

worst punishment a deviating player can face.

This punishment is needed but not a given with pure jumps. Indeed, it fails with

1For instance, the “infinite switching equilibria” of Keller et al. (2005). This is because there is no

last time before a given date in continuous time.
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conclusive good news. However, when there is a diffusion component, the predominant

effect of “good news” on the belief is not a jump but a slight uptick because of the

Brownian term. Had the team player been on the brink of stopping, a slight uptick

would definitely push his selfish version into stopping territory, given his newly discov-

ered solitude. Hence, efficiency is obtained in the setting of Bolton and Harris (1999),

independent of the parameters.

We show that efficiency is attainable with strongly symmetric equilibria (SSEs),

that is, equilibria in which all players use the same continuation strategy for any

given history, independent of their identity (e.g., regardless of whether they had been

the sole deviator). Unlike in Markov equilibria, on-path play is of the cutoff type,

moreover, with players using the risky (safe) arm exclusively if, and only if, the belief

is above (below) a certain cutoff. There is no need to resort to more complicated perfect

Bayesian equilibria (PBEs). Of course, PBE need not involve symmetric payoffs, but

we show that in terms of total payoffs across players, there is no difference between

SSE and PBE: the worst and best total equilibrium payoffs coincide.2

A few caveats are in order.

First, showing that the free-rider and encouragement effects do not determine the

outcome of bandit games is akin to noting that efficiency is achievable in the repeated

prisoner’s dilemma even if defection is dominant in the stage game: it would not

occur to us to demonstrate how cooperation arises in the repeated version without first

remarking that free-riding is the problem we are addressing. In stochastic games such

as bandits, discerning the underlying incentives is difficult and subtle: solving for the

Markov equilibria is the advisable approach. Our point is that we must disentangle

these incentives from the possible equilibrium outcomes.

Second, we have emphasized the importance of studying the discrete-time game

to factor out equilibria that are continuous-time quirks. However, our results are

asymptotic to the extent that they only hold when the time interval between rounds is

small enough. There is no difference between an arbitrarily small uptick vs. a discrete

jump when the interval length is bounded away from zero. Our results rely heavily on

what is known about the continuous-time limits and hence on the analyses of Bolton

and Harris (1999) and Keller et al. (2005), among others. To the extent that some of

our proofs are involved, it is because they require careful comparison and convergence

arguments.

Third, because we rely on discrete time, we must settle on a particular discretiza-

2One appealing property of SSEs is that payoffs can be studied via a coupled pair of functional

equations that extends the functional equation characterizing MPE payoffs (see Proposition 11).
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tion. We consider our choice to be natural: players may revise their action choices at

equally spaced time opportunities, while payoffs and information accrue in continuous

time, independent of the duration of the intervals. That is, ours is the simplest version

of inertia strategies, as introduced by Bergin and MacLeod (1993). Other discretization

choices may lead to different predictions.

Fourth, our results do not cover all bandit games. Because we build on existing

results of the single-agent case, we cannot go beyond the framework used for them.

In particular, we must make restrictions similar to Cohen and Solan (2013) in their

analysis of the continuous-time bandit problem. In fact, our assumptions are stronger

than theirs.3 Our main restriction, just as theirs, is that bad-news jumps are not

permitted, which means that our framework does not subsume Keller and Rady (2015),

in particular.4

Our paper belongs to the growing literature on strategic bandits. We have already

discussed the standard references in that literature. There is no need to review the large

and growing literature on extensions, variations and applications. With few exceptions,

these papers model the game in continuous time and focus on MPEs unless actions on

at least one side are not observed (meaning that applying standard game-theoretic

solution concepts raises no difficulty).

Second, our paper contributes to the literature on SSE. We hope that it illustrates

how SSE can be usefully applied to games usually cast in continuous time, such as

bandit games. SSEs have been studied in repeated games since Abreu (1986). They

are known to be restrictive. First, they make no sense if the model itself fails to be

symmetric. However, as Abreu (1986) notes for repeated games, they are (i) easily

calculated, being completely characterized by two simultaneous scalar equations; (ii)

more general than static Nash, or even Nash reversion; and even (iii) without loss

in terms of total welfare, at least in some cases, as in ours. See also Abreu, Pearce

and Stacchetti (1986) for optimal SSEs within a standard oligopoly framework and

Abreu, Pearce and Stacchetti (1993) for a motivation of the solution concept based

on a notion of equal bargaining power. Cronshaw and Luenberger (1994) conduct a

more general analysis for repeated games with perfect monitoring, showing how the

set of SSE payoffs can be obtained by solving for the largest scalar solving a certain

equation. Hence, our paper shows that Properties (i)–(iii) extend to bandit games,

with “Markov perfect” replacing “Nash” in statement (ii) and “functional” replacing

3We do not a priori perceive a difficulty in adopting theirs, but we also do not perceive any benefits.
4The technical difficulty with bad-news jumps is that the value functions cannot be described

explicitly. They are rather defined recursively, with the functional form depending on the number of

bad news events triggering an end to all experimentation. Because of this complication, we leave the

analysis of this case to future work.
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“scalar” in (i): as mentioned above, a pair of functional equations replaces the usual

Hamilton-Jacobi-Bellman (HJB) (or Isaacs) equation from optimal control.

Section 2 introduces the model. Section 3 characterizes the efficient solution when

actions can be chosen in continuous time and shows that MPEs cannot achieve effi-

ciency. Section 4 presents the game in which actions can only be adjusted at regularly

spaced points in time, the discrete-time game or discrete game for short. Section 5

contains the main results regarding the set of equilibrium payoffs in the discrete game

as the time between consecutive choices tends to zero. Section 6 is devoted to the

construction of SSE in the discrete game. Section 7 studies functional equations that

characterize SSE payoffs in both the discrete game and the continuous-time limit. Sec-

tion 8 concludes the paper. Appendix A presents auxiliary results on the evolution of

beliefs and on various payoff functions. The proofs of all other results are relegated to

Appendix B.

2 The Model

Time t ∈ [0,∞) is continuous. There are N ≥ 2 players, each facing the same two-

armed bandit problem with one safe and one risky arm.

The safe arm generates a known constant payoff s > 0 per unit of time. The

distribution of the payoffs generated by the risky arm depends on the state of the

world, θ ∈ {0, 1}, which nature draws at the outset with P [θ = 1] = p. Players do

not observe θ, but they know p. They also understand that the evolution of the risky

payoffs depends on θ. Specifically, the payoff process Xn associated with player n’s

risky arm evolves according to

dXn
t = αθ dt+ σ dZn

t + h dNn
t ,

where Zn is a standard Wiener process, Nn is a Poisson process with intensity λθ,

and the scalar parameters α0, α1, σ, h, λ0, λ1 are known to all players. Conditional on

θ, the processes Z1, . . . , ZN , N1, . . . , NN are independent. As Zn and Nn − λθt are

martingales, the expected payoff increment from using the risky arm over an interval

of time [t, t + dt) is mθ dt with mθ = αθ + λθh.

Players share a common discount rate r > 0. We write kn,t = 0 if player n uses

the safe arm at time t and kn,t = 1 if the player uses the risky arm at time t.5 Given

5Bolton and Harris (1999), Keller et al. (2005) and Keller and Rady (2010) allow the players to

allocate one unit of a perfectly divisible resource freely across the two arms at each point in time, so
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actions (kn,t)t≥0 such that kn,t ∈ {0, 1} is measurable with respect to the information

available at time t, player n’s total expected discounted payoff, expressed in per-period

units, is

E

[∫ ∞

0

re−rt [(1− kn,t)s+ kn,tmθ] dt

]
,

where the expectation is over both the random variable θ and the stochastic process

(kn,t).
6

We make the following assumptions: (i) m0 < s < m1, so each player prefers the

risky arm to the safe arm in state θ = 1 and prefers the safe arm to the risky arm

in state θ = 0. (ii) σ > 0 and h > 0, so the Brownian payoff component is always

present and jumps of the Poisson component entail positive lump-sum payoffs;7 (iii)

λ1 ≥ λ0 ≥ 0, so jumps are at least as frequent in state θ = 1 as in state θ = 0.

Players begin with a common prior belief about θ, given by the probability p with

which nature draws state θ = 1. Thereafter, they learn about this state in a Bayesian

fashion by observing one another’s actions and payoffs; in particular, they hold common

posterior beliefs throughout time. A detailed description of the evolution of beliefs is

presented in Appendix A.1. When λ1 = λ0 (and hence α1 > α0), the arrival of a lump-

sum payoff contains no information about the state of the world, and our setup is

equivalent to that in Bolton and Harris (1999), with the learning being driven entirely

by the Brownian payoff component. When α1 = α0 (and hence λ1 > λ0), the Brownian

payoff component contains no information, and our setup is equivalent to that in Keller

et al. (2005) or Keller and Rady (2010), depending on whether λ0 = 0 or λ0 > 0, with

the learning being driven entirely by the arrival of lump-sum payoffs.8

the fraction allocated to the risky arm can be kn,t ∈ [0, 1]. As the efficient solution in continuous time

does not require such interior allocations, we do not consider them here.
6Note that we have not yet defined the set of strategies available to each player and hence are

silent at this point on how the players’ strategy profile actually induces a stochastic process of actions

(kn,t)t≥0 for each of them. We will close this gap in two different ways in Sections 3 and 4: by imposing

Markov perfection in the former and a discrete time grid of revision opportunities in the latter.
7This rules out “breakdowns” as in Keller and Rady (2015).
8Keller et al. (2005) and Keller and Rady (2010) consider compound Poisson processes where the

distribution of lump-sum payoffs (and their mean h) at the time of a Poisson jump is independent of,

and hence uninformative about, the state of the world. By contrast, Cohen and Solan (2013) allow for

Lévy processes where the size of lump-sum payoffs contains information about the state, but a lump

sum of any given size arrives weakly more frequently in state θ = 1.
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3 Efficiency and Markov Perfect Equilibria in Con-

tinuous Time

The authors cited in the previous paragraph assume that players use continuous-time

Markov strategies with the posterior belief as the state variable, so that kn,t is a time-

invariant deterministic function of the probability pt assigned to state θ = 1 at time

t.9 In this section, we show how some of their main insights generalize to the present

setting. First, we present the efficient benchmark. Second, we show that efficient

behavior cannot be sustained as an MPE.

Consider a planner who maximizes the average of the players’ expected payoffs in

continuous time by selecting an entire action profile (k1,t, . . . , kN,t) at each time t. The

corresponding average expected payoff increment is

[(
1− Kt

N

)
s+

Kt

N
mθ

]
dt with Kt =

N∑

n=1

kn,t.

A straightforward extension of the main results of Cohen and Solan (2013) shows that

the evolution of beliefs also depends on Kt only
10 and that the planner’s value function,

denoted by V ∗
N , has the following properties.

First, V ∗
N is the unique once-continuously differentiable solution of the HJB equation

v(p) = s+ max
K∈{0,1,...,N}

K

[
b(p, v)− c(p)

N

]

on the open unit interval subject to the boundary conditions v(0) = m0 and v(1) = m1.

Here,

b(p, v) =
ρ

2r
p2(1− p)2v′′(p)− λ1 − λ0

r
p(1− p) v′(p) +

λ(p)

r
[v(j(p))− v(p)]

can be interpreted as the expected informational benefit of using the risky arm when

continuation payoffs are given by a (sufficiently regular) function v.11 Its first term

reflects Brownian learning, with <

9In the presence of discrete payoff increments, one actually has to take the left limit pt− as the

state variable, owing to the informational constraint that the action chosen at time t cannot depend

on the arrival of a lump sum at t. In the following, we simply write pt with the understanding that

the left limit is meant whenever this distinction is relevant. Note that p0− = p0 by convention.
10Cf. Appendix A.1.
11Up to division by r, this is the infinitesimal generator of the process of posterior beliefs for K = 1,

applied to the function v; cf. Appendix A.1 for details.

7



ρ =
(α1 − α0)

2

σ2

representing the signal-to-noise ratio for the continuous payoff component. Its second

term captures the downward drift in the belief when no Poisson lump sum arrives. Its

third term expresses the discrete change in the overall payoff once such a lump sum

arrives, with the belief jumping up from p to

j(p) =
λ1p

λ(p)
;

this occurs at the expected rate

λ(p) = pλ1 + (1− p)λ0.

The function

c(p) = s−m(p)

captures the opportunity cost of playing the risky arm in terms of expected current

payoff forgone; here,

m(p) = pm1 + (1− p)m0

denotes the risky arm’s expected flow payoff given the belief p. Thus, the planner

weighs the shared opportunity cost of each experiment on the risky arm against the

learning benefit, which accrues fully to each agent because of the perfect informational

spillover.

Second, there exists a cutoff p∗N such that all agents using the safe arm (K = 0) is

optimal for the planner when p ≤ p∗N , and all agents using the risky arm (K = N) is

optimal when p > p∗N . This cutoff is given by

p∗N =
µN(s−m0)

(µN + 1)(m1 − s) + µN(s−m0)
,

where µN is the unique positive solution of the equation

ρ

2
µ(µ+ 1) + (λ1 − λ0)µ+ λ0

(
λ0

λ1

)µ

− λ0 −
r

N
= 0.

Both µN and p∗N increase in r/N . Thus, the interval of beliefs for which all agents

using the risky arm is efficient widens with the number of agents and their patience.
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Third, the value function satisfies V ∗
N(p) = s for p ≤ p∗N , and

V ∗
N(p) = m(p) +

c(p∗N)

u(p∗N ;µN)
u(p;µN) > s, (1)

for p > p∗N , where

u(p;µ) = (1− p)

(
1− p

p

)µ

is strictly decreasing and strictly convex for µ > 0. The function V ∗
N is strictly increas-

ing and strictly convex on [p∗N , 1].

By setting N = 1, one obtains the single-agent value function V ∗
1 and corresponding

cutoff p∗1 > p∗N .

Now consider N ≥ 2 players acting noncooperatively. Suppose that each of them

uses a Markov strategy with the common belief as the state variable. As in Bolton and

Harris (1999), Keller et al. (2005) and Keller and Rady (2010), the HJB equation for

player n when he or she faces opponents who use Markov strategies is given by

vn(p) = s +K¬n(p)b(p, vn) + max
kn∈{0,1}

kn [b(p, vn)− c(p)] ,

where K¬n(p) is the number of n’s opponents that use the risky arm. That is, when

playing a best response, each player weighs the opportunity cost of playing risky against

his or her own informational benefit only. Consequently, V ∗
N does not solve the above

HJB equation when player n’s opponents use the efficient strategy. Efficient behavior

therefore cannot be sustained in MPE.

4 The Discrete Game

Henceforth, we restrict players to changing their actions only at the times t = 0,∆, 2∆, . . .

for some fixed ∆ > 0. This yields a discrete-time game evolving in a continuous-time

framework; in particular, the payoff processes are observed continuously.12 Moreover,

12While arguably natural, our discretization remains nonetheless ad hoc, and other discretizations

might yield other results. Not only is it well known that the limits of the discrete-time models might

differ from the continuous-time solutions, but the particular discrete structure might also matter; see,

among others, Müller (2000), Fudenberg and Levine (2009), Hörner and Samuelson (2013), and Sadzik

and Stacchetti (2015). In Hörner and Samuelson (2013), for instance, there are multiple solutions to

the optimality equations, corresponding to different boundary conditions, and to select among them,

it is necessary to investigate in detail the discrete-time game (see their Lemma 3). However, the

role of the discretization goes well beyond selecting the “right” boundary condition; see Sadzik and

Stacchetti (2015).
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we allow for non-Markovian strategies.

The expected discounted payoff increment from using the safe arm for the length

of time ∆ is
∫ ∆

0
r e−r t s dt = (1 − δ)s with δ = e−r∆. Conditional on θ, the expected

discounted payoff increment from using the risky arm is
∫ ∆

0
r e−r tmθ dt = (1 − δ)mθ.

Given the probability p assigned to θ = 1, the expected discounted payoff increment

from the risky arm conditional on all available information is (1− δ)m(p).

A history of length t = ∆, 2∆, . . . is a sequence

ht =
((

kn,0, Ỹ
n
[0,∆)

)N
n=1

,
(
kn,∆, Ỹ

n
[∆,2∆)

)N
n=1

, . . . ,
(
kn,t−∆, Ỹ

n
[t−∆,t)

)N
n=1

)
,

where kn,ℓ∆ = 1 if player n uses the risky arm on the time interval [ℓ∆, (ℓ + 1)∆);

kn,ℓ∆ = 0 if player n uses the safe arm on this interval; Ỹ n
[ℓ∆,(ℓ+1)∆) is the observed sample

path Y n
[ℓ∆,(ℓ+1)∆) on the interval [ℓ∆, (ℓ + 1)∆) of the payoff process associated with

player n’s risky arm if kn,ℓ∆ = 1; and Ỹ n
[ℓ∆,(ℓ+1)∆) equals the empty set if kn,ℓ∆ = 0. We

write Ht for the set of all histories of length t, setH0 = {∅}, and letH =
⋃∞

t=0,∆,2∆,...Ht.

In addition, we assume that players have access to a public randomization device in

every period, namely, a draw from the uniform distribution on [0, 1], which is assumed

to be independent of θ and across periods. Following standard practice, we omit its

realizations from the description of histories.

A behavioral strategy σn for player n is a sequence (σn,t)t=0,∆,2∆,..., where σn,t is

a measurable map from Ht to the set of probability distributions on {0, 1}; a pure

strategy takes values in the set of degenerate distributions only.

Along with the prior probability p0 assigned to θ = 1, each profile of strategies

induces a distribution over H . Given his or her opponents’ strategies σ−n, player n

seeks to maximize

(1− δ)E σ−n,σn

[ ∞∑

ℓ=0

δℓ
{
[1− σn,ℓ∆(hℓ∆)]s+ σn,ℓ∆(hℓ∆)mθ

}]
.

By the law of iterated expectations, this equals

(1− δ)E σ−n,σn

[ ∞∑

ℓ=0

δℓ
{
[1− σn,ℓ∆(hℓ∆)]s+ σn,ℓ∆(hℓ∆)m(pℓ∆)]

}]
.

Nash equilibrium, PBE and MPE, with actions after history ht depending only on

the associated posterior belief pt, are defined in the usual way. Imposing the stan-

dard “no signaling what you don’t know” refinement, beliefs are pinned down after all
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histories, on and off path.13

An SSE is a PBE in which all players use the same strategy: σn(ht) = σn′(ht) for

all n, n′ and ht ∈ H . This implies symmetry of behavior after any history, not just on

the equilibrium path of play. By definition, any symmetric MPE is an SSE, and any

SSE is a PBE.

5 Main Results

Fix ∆ > 0. For p ∈ [0, 1], let W
∆

PBE(p) and W∆
PBE(p) denote the supremum and

infimum, respectively, of the set of average payoffs (per player) over all PBE, given

prior belief p. Let W
∆

SSE(p) and W∆
SSE(p) be the corresponding supremum and infimum

over all SSE. If such equilibria exist,

W
∆

PBE(p) ≥ W
∆

SSE(p) ≥ W∆
SSE(p) ≥ W∆

PBE(p). (2)

Given that we assume a public randomization device, these upper and lower bounds

define the corresponding equilibrium average payoff sets.

As any player can choose to ignore the information contained in the other play-

ers’ experimentation results, the value function W∆
1 of a single agent experimenting

in isolation constitutes a lower bound on a player’s payoff in any PBE. Lemma A.2

establishes that this lower bound converges to V ∗
1 as ∆ → 0. Hence, we obtain a lower

bound to the limits of all terms in (2), namely lim inf∆→0W
∆
PBE ≥ V ∗

1 .

An upper bound is also easily found. As any discrete-time strategy profile is feasible

for the continuous-time planner from the previous section, it holds that W
∆

PBE ≤ V ∗
N .

The main theorem provides an exact characterization of the limits of all four func-

tions. It requires introducing a new family of payoffs. Namely, we define the players’

common payoff in continuous time when they all use the risky arm if, and only if, the

belief exceeds a given threshold p̂. This function admits a closed form that generalizes

the first-best payoff V ∗
N (cf. (1)). It is equal to

VN,p̂(p) = m(p) +
c(p̂)

u(p̂;µN)
u(p;µN),

13While we could equivalently define this Bayesian game as a stochastic game with the common

posterior belief as a state variable, no characterization or folk theorem applies to our setup, as the

Markov chain (over consecutive states) does not satisfy the sufficient ergodicity assumptions; see Dutta

(1995) and Hörner, Sugaya, Takahashi and Vieille (2011).
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for p > p̂, and VN,p̂(p) = s otherwise.14

Theorem 1 (i) There exists p̂ ∈ [p∗N , p
∗
1] such that

lim
∆→0

W
∆

PBE = lim
∆→0

W
∆

SSE = VN,p̂,

and

lim
∆→0

W∆
PBE = lim

∆→0
W∆

SSE = V ∗
1 ,

uniformly on [0, 1].

(ii) If ρ > 0, then p̂ = p∗N (and hence VN,p̂ = V ∗
N).

(iii) If ρ = 0, then p̂ is the unique belief in [p∗N , p
∗
1] satisfying

Nλ(p̂) [VN,p̂(j(p̂))− s]− (N − 1)λ(p̂) [V ∗
1 (j(p̂))− s] = rc(p̂); (3)

moreover, p̂ = p∗N if, and only if, j(p∗N) ≤ p∗1, and p̂ = p∗1 if, and only if, λ0 = 0.

To understand this result, let us begin with SSEs and the characterization of the

cutoff p̂ in the last item, when learning is entirely driven by the jump process. The

players’ temptation to deviate to the safe arm is strongest when the belief is so low

that, absent good news, the belief drops into the region where safe prevails in any SSE,

whether a single player has deviated or not. The cost of such a deviation, captured

by the left-hand side of (3), thus arises only if good news arrives. Starting out from

p̂, in expectation, this happens at the rate Nλ(p̂) if no player deviates; a deviation

reduces this rate to (N − 1)λ(p̂). Without a deviation, a player’s continuation payoff

then amounts at most to the cooperative payoff given that the use of the risky arm is

disallowed below p̂; in the event of a deviation, it is at least the single-player payoff

(both evaluated at the revised belief j(p̂) and net of the value of the safe arm). The

right-hand side of (3) represents the benefit of a deviation, that is, the saved opportu-

nity cost of playing risky. The cutoff belief p̂ thus solves the familiar trade-off between

the benefit from deviating and the cost of the worst punishment that may follow the

deviation.

When λ0 = 0, the arrival of good news freezes the belief at 1, and the resulting

cooperative and single-player payoffs both equal λ1h. Starting out from p̂, therefore, a

player’s continuation payoffs coincide with those of a single agent in all circumstances,

14This function is continuous, strictly increasing and strictly convex on [p̂, 1], and continuously

differentiable except for a convex kink at p̂. For p̂ = p∗N , VN,p̂ coincides with the cooperative value

function V ∗
N . For p̂ > p∗N , we have VN,p̂ < V ∗

N on (p∗N , 1).

12



so that it is impossible to sustain experimentation below the single-agent cutoff. Hence,

p̂ = p∗1.

If the second term on the left-hand side of (3) were zero, that is, if j(p∗N ) ≤ p∗1, so

that a player left to his or her own devices would stop experimenting at the revised

belief after the arrival of good news, and hence obtain a zero payoff (net of the value

of the safe arm), the solution to this equation is the first-best cutoff p∗N . To see this,

note that the first term on the left-hand side can equivalently be interpreted as the

social value of experimentation by a single player. Indeed, a player contributes to the

arrival of news at rate λ(p̂), but all N players then reap the gain VN,p̂(j(p̂)) − s. The

right-hand side is the cost of such experimentation. Hence, p̂ = p∗N follows immediately

from the equation.

The same logic immediately implies that first-best efficiency obtains when ρ > 0.

Indeed, for small ∆, the leading term in the updating of beliefs is driven by the diffusion

component of observed payoffs. Since this term involves no jumps, it will definitely

keep the belief in a region where a player left to his or her own devices would stop

experimenting.15

First-best efficiency not only depends on the cutoff but also requires play to be

exclusively risky at all higher beliefs. Hence, the best equilibrium must involve a pure

strategy, at least asymptotically. This is not straightforward. Indeed, symmetric pure-

strategy PBE fail to exist with conclusive good news (ρ = λ0 = 0) in discrete time.

If all others play risky for certain, the posterior belief also declines for certain, unless

good news arrives. If players randomized, there would be the added opportunity to

punish if the posterior belief remained the same. When good news is conclusive, our

proof relies on the existence of two symmetric mixed-strategy equilibria for beliefs close

to the cutoff. It is then possible to choose continuation play as a function of history

to incentivize players to experiment at beliefs that are sufficiently many rounds away

from the cutoff (a negligible difference in beliefs once the time interval is small enough).

Matters are simpler when news is inconclusive or a diffusion term is present.

Turning to point (i) of the theorem, there is no difference between the set of SSE

and PBE payoffs, at least on average across players. This is shown in Sections 6.1–

6.2. Regarding the highest equilibrium payoff, this may seem plausible (though not

15A more technical intuition can be given in the spirit of smooth pasting in stopping problems for

diffusion processes; see Dixit and Pindyck (1994). If all SSE experimentation stopped at a belief

p̂ > p∗N , the limiting payoff function VN,p̂ would exhibit a convex kink at p̂. Given the diffusion

component of the posterior-belief process, this kink could be used to provide all players incentives to

use the risky arm at beliefs slightly below p̂. Indeed, the informational benefit of experimentation in

the presence of a kink is of lower order in ∆ than its opportunity cost and hence dominates for small

∆.
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obvious) because efficiency requires symmetric play. Regarding the lowest equilibrium

payoff, either playing safe forever is an equilibrium of the game given the current belief,

or best-responding to being minmaxed provides a higher payoff to the punished player

than also playing the minmaxing action (using the safe arm). In the latter case, one

can incentivize the punished player to play safe by promising that all players will revert

to risky (cooperative) play at a later time, thereby compensating the punished player

for the flow payoff deficit that playing safe involves in the meantime. This eventual

reversion also motivates the punishing players to play safe.

Figure 1 shows the cooperative continuous-time payoff V ∗
N as well as the supremum

VN,p̂ and infimum V ∗
1 of the limit average PBE payoffs for a parameter configuration

that implies p∗N < p̂ < p∗1.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1

1.1

1.2

1.3

1.4

1.5

p

w

Figure 1: Payoffs V ∗
N (solid), VN,p̂ (dashed) and V ∗

1 (dotted) for ρ = 0 and
(r, s, h, λ1, λ0, N) = (1, 1, 1.5, 1, 0.2, 5), implying (p∗N , p̂, p

∗
1) ≃ (.27, .40, .45).

We conclude this section with a few comparisons and comparative statics. They

pertain to the case of pure jump processes, since when there is a diffusion component,

Theorem 1(ii) implies that these are trivial corollaries of the first-best results given in

Section 3.

In terms of comparisons, we find that, even when the first-best is not achievable,

the best SSE performs strictly better than the symmetric MPE of Keller and Rady

(2010) along two dimensions: the MPE not only involves a higher cutoff (hence, a
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lower amount of experimentation) but also entails too low a speed of experimentation,

as it involves an interior level of experimentation for a range of beliefs.

Proposition 1 For ρ = 0 and λ0 > 0, the cutoff p̂ is strictly lower than the belief at

which all experimentation stops in the symmetric MPE of the continuous-time game.

Turning to comparative statics, when is the first-best achievable with jump pro-

cesses? The next proposition characterizes the area (in the (λ1, λ0)-plane) where

asymptotic efficiency obtains. As is intuitive, having more players, or more patience,

increases the scope for the first-best.

Proposition 2 Let ρ = 0. Then, j(p∗N) > p∗1 whenever λ0 ≤ λ1/N . On any ray in

R

2
+ emanating from the origin (0, 0) with a slope strictly between 1/N and 1, there is

a unique critical point (λ∗
1, λ

∗
0) at which j(p∗N) = p∗1; moreover, j(p∗N) > p∗1 at all points

of the ray that are closer to the origin than (λ∗
1, λ

∗
0), and j(p∗N) < p∗1 at all points that

are farther from the origin than (λ∗
1, λ

∗
0). These critical points form a continuous curve

that is bounded away from the origin and asymptotes to the ray of slope 1/N . The

curve shifts downward as r falls or N rises.

This result is illustrated in Figure 2. Furthermore, in the case of λ0 > 0, the more

players participate in the game, the more experimentation can be sustained. (Recall

that for λ0 = 0, the threshold belief p̂ is independent of N .) Hence, the comparative

statics of the best SSE with respect to the number of players mirrors that for symmetric

MPE (see Keller and Rady (2010)).

Proposition 3 For ρ = 0 and λ0 > 0, p̂ is decreasing in N .

It is instructive to consider what happens when the players become arbitrarily im-

patient or patient. If players are myopic, they do not react to future rewards and

punishments. It is therefore no surprise that the cooperative solution cannot be at-

tained in the limit. By contrast, if players are very patient, asymptotic efficiency is

achieved if the number of players is large.

Proposition 4 For ρ = 0 and λ0 > 0,

lim
r→∞

j(p∗N)

p∗1
=

λ1h

s
,

and

lim
r→0

j(p∗N)

p∗1
=

λ1

Nλ0
.
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j(p∗N ) < p∗1

j(p∗N ) > p∗1

Figure 2: Asymptotic efficiency is achieved for parameter combinations
(λ1, λ0) between the diagonal and the curve but not below the curve. The
dashed line is the ray of slope 1/N . Parameter values: r = 1, N = 5.

The next section is devoted to the construction of SSEs that underlies the proof of

Theorem 1. Missing details are provided in the appendix.

6 Construction of Equilibria

We first consider the case of a diffusion component (Section 6.1) and then turn to the

case of pure jump processes (Section 6.2).

We need the following notation. Let F∆
K (·|p) denote the cumulative distribution

function of the posterior belief p∆ when p0 = p and K players use the risky arm on the

time interval [0,∆). For any measurable function w on [0, 1] and p ∈ [0, 1], we write

E∆
Kw(p) =

∫ 1

0

w(p′)F∆
K (dp′|p),

whenever this integral exists. Thus, E∆
Kw(p) is the expectation of w(p∆) given the prior
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p and K experimenting players.

6.1 Learning with a Brownian Component (ρ > 0)

For a sufficiently small ∆ > 0, we specify an SSE that can be summarized by two func-

tions, κ and κ, which do not depend on ∆. The equilibrium strategy is characterized

by a two-state automaton. In the “good” state, play proceeds according to κ, and the

equilibrium payoff satisfies

w∆(p) = (1− δ)[(1− κ(p))s+ κ(p)m(p)] + δE∆
Nκ(p)w

∆(p), (4)

while in the “bad” state, play proceeds according to κ, and the payoff satisfies

w∆(p) = max
k

{
(1− δ)[(1− k)s+ km(p)] + δE∆

(N−1)κ(p)+kw
∆(p)

}
. (5)

That is, w∆ is the value from the best response to all other players following κ.

A unilateral deviation from κ in the good state is punished by a transition to the

bad state in the following period; otherwise, we remain in the good state. If there is a

unilateral deviation from κ in the bad state, we remain in the bad state. Otherwise, a

draw of the public randomization device determines whether the state next period is

good or bad; this probability is chosen such that the expected payoff is indeed given

by w∆ (see below).

With continuation payoffs given by w∆ and w∆, the common action κ ∈ {0, 1} is

incentive compatible at a belief p if, and only if,

(1− δ)[(1− κ)s+ κm(p)] + δE∆
Nκw

∆(p) (6)

≥ (1− δ)[κs+ (1− κ)m(p)] + δE∆
(N−1)κ+1−κw

∆(p).

Therefore, the functions κ and κ define an SSE if, and only if, (6) holds for κ = κ(p)

and κ = κ(p) at all p.

The probability η∆(p) of a transition from the bad to the good state in the absence

of a unilateral deviation from κ(p) is pinned down by the requirement that

w∆(p) = (1− δ)[(1− κ(p))s+ κ(p)m(p)] (7)

+ δ
{
η∆(p) E∆

Nκ(p)w
∆(p) + [1− η∆(p)] E∆

Nκ(p)w
∆(p)

}
.

17



If k = κ(p) is optimal in (5), we simply set η∆(p) = 0. Otherwise, (5) and (6) imply

δE∆
Nκ(p)w

∆(p) ≥ w∆(p)− (1− δ)[(1− κ(p))s+ κ(p)m(p)] > δE∆
Nκ(p)w

∆(p),

so (7) holds with

η∆(p) =
w∆(p)− (1− δ)[(1− κ(p))s+ κ(p)m(p)]− δE∆

Nκ(p)w
∆(p)

δE∆
Nκ(p)w

∆(p)− δE∆
Nκ(p)w

∆(p)
∈ (0, 1].

It remains to specify κ and κ. Let

pm =
s−m0

m1 −m0

.

As m(pm) = s, this is the belief at which a myopic agent is indifferent between the two

arms. It is straightforward to verify that p∗1 < pm. Fixing p ∈ (p∗N , p
∗
1) and p̄ ∈ (pm, 1),

we let κ(p) = 1p>p and κ(p) = 1p>p̄.
16 Note that punishment and reward strategies

coincide outside of (p, p̄).

Proposition 5 For ρ > 0, there are beliefs p♭ ∈ (p∗N , p
∗
1) and p♯ ∈ (pm, 1) such that

for all p ∈ (p∗N , p
♭) and p̄ ∈ (p♯, 1), there exists ∆̄ > 0 such that for all ∆ ∈ (0, ∆̄),

the two-state automaton with functions κ and κ defines an SSE of the experimentation

game with period length ∆.

The proof consists of verifying that, for a sufficiently small ∆, the actions κ(p) and

κ(p) satisfy the incentive-compatibility constraint (6) at all p. First, we find ε > 0

small enough that w∆ = s in a neighborhood of p+ε. The payoff functions w∆ and w∆

resulting from the two-state automaton are then bounded away from one another on

[p + ε, p̄] for small ∆. In this range, therefore, the difference in expected continuation

values across states does not vanish as ∆ tends to 0, whereas the difference in current

expected payoffs across actions is of order ∆, rendering deviations unattractive for

small enough ∆. On (p̄, 1] and [0, p], κ and κ both prescribe the myopically optimal

action. Given that continuation payoffs are weakly higher in the good state, it is easy to

show that there are no incentives to deviate on these intervals. For beliefs in (p, p+ ε),

κ again prescribes the myopically optimal action. The proof of incentive compatibility

of κ on this interval crucially relies on the fact that, for small ∆, w∆ is bounded below

by VN,p , which has a convex kink at p. This, together with the fact that, conditional on

no lump sum arriving, the log-likelihood ratio of posterior beliefs is Gaussian, allows us

16
1A denotes the indicator function of the event A.
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to demonstrate the existence of some constant C1 > 0 such that, for ∆ small enough,

E∆
Nw∆(p) ≥ s + C1∆

3

4 to the immediate right of p, whereas E∆
N−1w

∆(p) ≤ s + C0∆

with some constant C0 > 0. For small ∆, therefore, the linearly vanishing current-

payoff advantage of the safe over the risky arm is dominated by the incentives provided

through continuation payoffs.

The next result essentially follows from letting p → p∗N and p̄ → 1 in Proposition 5.

Proposition 6 For ρ > 0, lim∆→0W
∆

SSE = V ∗
N and lim∆→0W

∆
SSE = V ∗

1 , uniformly on

[0, 1].

6.2 Pure Poisson Learning (ρ = 0)

Let ρ = 0, and take p̂ as in part (iii) of Theorem 1.

Proposition 7 Let ρ = 0. For any ε > 0, there is a ∆ε > 0 such that for all

∆ ∈ (0,∆ε), the set of beliefs at which experimentation can be sustained in a PBE

of the discrete game with period length ∆ is contained in the interval (p̂ − ε, 1]. In

particular, lim sup∆→0W
∆

PBE(p) ≤ VN,p̂(p).

For a heuristic explanation of the logic behind this result, consider a sequence of

pure-strategy PBEs for vanishing ∆ such that the infimum of the set of beliefs at which

at least one player experiments converges to some limit p̃. Selecting a subsequence of

∆s and relabeling players, if necessary, we can assume without loss of generality that

players 1, . . . , L play risky immediately to the right of p̃, while players L + 1, . . . , N

play safe. In the limit, players’ individual continuation payoffs are bounded below by

the single-agent value function V ∗
1 and cannot sum to more than NVN,p̃, so the sum of

the continuation payoffs of players 1, . . . , L is bounded above by NVN,p̃ − (N − L)V ∗
1 .

Averaging these players’ incentive-compatibility constraints thus yields

Lλ(p̃)

[
NVN,p̃(j(p̃))− (N − L)V ∗

1 (j(p̃))

L
− s

]
− rc(p̃) ≥ (L− 1)λ(p̃) [V ∗

1 (j(p̃))− s] .

Simplifying the left-hand side, adding (N − L)λ(p̃) [V ∗
1 (j(p̃))− s] to both sides and

re-arranging, we obtain

Nλ(p̃) [VN,p̃(j(p̃))− s]− rc(p̃) ≥ (N − 1)λ(p̃) [V ∗
1 (j(p̃))− s] ,

which in turn implies p̃ ≥ p̂, as we show in Lemma A.9 in the appendix. The proof of

Proposition 7 makes this heuristic argument rigorous and extends it to mixed equilibria.
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For non-revealing jumps (λ0 > 0), the construction of SSEs that achieve the above

bounds in the limit relies on the same two-state automaton as in Proposition 5, the

only difference being that the threshold p is now restricted to exceed p̂.

Proposition 8 Let ρ = 0 and λ0 > 0. There are beliefs p♭ ∈ (p̂, p∗1) and p♯ ∈ (pm, 1)

such that for all p ∈ (p̂, p♭) and p̄ ∈ (p♯, 1), there exists ∆̄ > 0 such that for all

∆ ∈ (0, ∆̄), the two-state automaton with functions κ and κ defines an SSE of the

experimentation game with period length ∆.

The strategy for the proof of this proposition is the same as that of Proposition

5, except for the belief region to the immediate right of p, where incentives are now

provided through terms of first order in ∆, akin to those in equation (3).

In the case λ0 > 0, we are able to provide incentives in the potentially last round of

experimentation by threatening punishment conditional on there being a success (that

is, a successful experiment). This option is no longer available in the case of λ0 = 0.

Indeed, any success now takes us to a posterior of one, so that everyone plays risky

forever after. This means that, irrespective of whether a success occurs in that round,

continuation strategies are independent of past behavior, conditional on the players’

belief. This raises the possibility of unravelling. If incentives just above the candidate

threshold at which players give up on the risky arm cannot be provided, can this

threshold be lower than in the MPE?

To settle whether unravelling occurs requires us to study the discrete game in

considerable detail.17 We start by noting that for λ0 = 0, we can strengthen Proposition

7 as follows: there is no PBE with any experimentation at beliefs below the discrete-

time single-agent cutoff p∆1 = inf{p : W∆
1 (p) > s} (see Heidhues et al. (2015)).18 The

highest average payoff that can be hoped for, then, involves all players experimenting

above p∆1 .

Unlike in the case of λ0 > 0 (see Proposition 8), an explicit description of a two-

state automaton implementing SSEs whose payoffs converge to the obvious upper and

lower bounds appears elusive. This is partly because equilibrium strategies are, as it

17The study of symmetric MPEs is difficult in discrete time. Unlike in continuous time, in which the

explicit solution is known (see Keller et al. (2005)), they do not seem to admit an easy characterization.

For some open sets of beliefs, there are multiple symmetric MPEs in discrete time, regardless of how

small ∆ is. It is not known whether any or all of these converge (in some sense) to the symmetric

MPE in continuous time.
18In particular, this excludes the possibility that the asymmetric MPE of Keller et al. (2005) with

an infinite number of switches between the two arms below p∗1 can be approximated in the discrete

game.
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turns out, necessarily mixed for beliefs that are arbitrarily close to (but above) p∆1 .

The proof of the next proposition establishes that the length of the interval of beliefs

for which this is the case vanishes as ∆ → 0. In particular, for higher beliefs (except

for beliefs arbitrarily close to 1, when playing risky is strictly dominant), both pure

actions can be enforced in some equilibrium.

Proposition 9 Let ρ = 0 and λ0 = 0. For any beliefs p and p̄ such that p∗1 < p <

pm < p̄ < 1, there exists a ∆̄ > 0 such that for all ∆ ∈ (0, ∆̄), there exists

- an SSE in which, starting from a prior above p, all players use the risky arm on

the path of play as long as the belief remains above p and use the safe arm for

beliefs below p∗1; and

- an SSE in which, given a prior between p and p̄, the players’ payoff is no larger

than their best-reply payoff against opponents who use the risky arm if, and only

if, the belief lies in [p∗1, p] ∪ [p̄, 1].

While this is somewhat weaker than Proposition 8, its implications for limit payoffs

as ∆ → 0 are the same. Intuitively, given that the interval [p∗1, p] can be chosen

arbitrarily small (actually, of the order ∆, as the proof establishes), its impact on

equilibrium payoffs starting from priors above p is of order ∆. This suggests that for

the equilibria whose existence is stated in Proposition 9, the payoff converges to the

payoff from all players experimenting above p∗1 and to the best-reply payoff against

none of the opponents experimenting. Indeed, we have the following result, covering

both inconclusive and conclusive jumps.

Proposition 10 For ρ = 0, lim∆→0W
∆

SSE = VN,p̂ and lim∆→0W
∆
SSE = V ∗

1 , uniformly

on [0, 1].

7 Functional Equations for SSE Payoffs

While it is possible to derive explicit solutions to the equilibrium payoff sets of interest,

at least asymptotically, note that, already in the discrete game, a characterization in

terms of optimality equations can be obtained, which defines the correspondence of

SSE payoffs. As discussed in the introduction, these generalize the familiar equation

characterizing the value function of the symmetric MPE. Instead of a single (HJB)

equation, the characterization of SSE payoffs involves two coupled functional equations,

whose solution delivers the highest and lowest equilibrium payoff. Proposition 11 states
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this in the discrete game, while Proposition 12 gives the continuous-time limit. As these

propositions do not heavily rely on the specific structure of our game, we believe that

they might be useful for analyzing SSE payoffs for more general processes or other

stochastic games.

Fix ∆ > 0. For p ∈ [0, 1], let W
∆
(p) and W∆(p) denote the supremum and

infimum, respectively, of the set of payoffs over pure-strategy SSEs, given prior belief

p.19 If such an equilibrium exists, these extrema are achieved, and W
∆
(p) ≥ W∆(p).

For ρ > 0 or λ0 > 0, we have shown in Sections 6.1–6.2 that in the limit as ∆ → 0,

the best and worst average payoffs (per player) over all PBEs are achieved by SSE in

pure strategies. The following result characterizes W
∆
and W∆ via a pair of coupled

functional equations.

Proposition 11 Suppose that the discrete game with time increment ∆ > 0 admits a

pure-strategy SSE for any prior belief. Then, the pair of functions (w,w) = (W
∆
,W∆)

solves the functional equations

w(p) = max
κ∈K(p;w,w)

{
(1− δ)[(1− κ)s+ κm(p)] + δE∆

Nκw(p)
}
, (8)

w(p) = min
κ∈K(p;w,w)

max
k∈{0,1}

{
(1− δ)[(1− k)s + km(p)] + δE∆

(N−1)κ+kw(p)
}
, (9)

where K(p;w,w) ⊆ {0, 1} denotes the set of all κ such that

(1− δ)[(1− κ)s+ κm(p)] + δE∆
Nκw(p) (10)

≥ max
k∈{0,1}

{
(1− δ)[(1− k)s + km(p)] + δE∆

(N−1)κ+kw(p)
}
.

Moreover, W∆ ≤ w ≤ w ≤ W
∆
for any solution (w,w) of (8)–(10).

This result relies on arguments that are familiar from Cronshaw and Luenberger

(1994). We briefly sketch them here.

The above equations can be understood as follows. The ideal condition for a given

(symmetric) action profile to be incentive compatible is that if each player conforms to

it, the continuation payoff is the highest possible, while a deviation triggers the lowest

possible continuation payoff. These actions are precisely the elements of K(p;w,w), as

defined by equation (10). Given this set of actions, equation (9) provides the recursion

that characterizes the constrained minmax payoff under the assumption that if a player

19For the existence of various types of equilibria in discrete-time stochastic games, see Mertens,

Sorin and Zamir (2015), Chapter 7.
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were to deviate to his myopic best reply to the constrained minmax action profile,

the punishment would be restarted next period, resulting in a minimum continuation

payoff. Similarly, equation (8) yields the highest payoff under this constraint, but here,

playing the best action (within the set) is on the equilibrium path.

Note that in any SSE, given p, the action κ(p) must be an element ofK(p;W
∆
,W∆).

This is because the left-hand side of (10) with w = W
∆

is an upper bound on the

continuation payoff if no player deviates, and the right-hand side with w = W∆ a

lower bound on the continuation payoff after a unilateral deviation. Consider the

equilibrium that achieves W
∆
. Then,

W
∆
(p) ≤ max

κ∈K(p;W
∆
,W∆)

{
(1− δ)[(1− κ)s+ κm(p)] + δE∆

NκW
∆
(p)

}
,

as the action played must be in K(p;W
∆
,W∆), and the continuation payoff is at most

given by W
∆
. Similarly, W∆ must satisfy (9) with “≥” instead of “=.” Suppose now

that the “≤” were strict. Then, we can define a strategy profile given prior p that (i)

in period 0, plays the maximizer of the right-hand side, and (ii) from t = ∆ onward,

abides by the continuation strategy achieving W
∆
(p∆). Because the initial action is in

K(p;W
∆
,W∆), this constitutes an equilibrium, and it achieves a payoff strictly larger

than W
∆
(p), a contradiction. Hence, (8) must hold with equality for W

∆
. The same

reasoning applies to W∆ and (9).

Fix a pair (w,w) that satisfies (8)–(10). Note that this implies w ≤ w. Given such

a pair and any prior p, we specify two SSEs whose payoffs are w and w, respectively.

It then follows that W∆ ≤ w ≤ w ≤ W
∆
. Let κ and κ denote a selection of the

maximum and minimum of (8)–(9). The equilibrium strategies are described by a

two-state automaton, whose states are referred to as “good” or “bad.” The difference

between the two equilibria lies in the initial state: w is achieved when the initial state

is good, w is achieved when it is bad. In the good state, play proceeds according to κ;

in the bad state, it proceeds according to κ. Transitions are exactly as in the equilibria

described in Sections 6.1–6.2. This structure precludes profitable one-shot deviations

in either state, so that the automaton describes equilibrium strategies, and the desired

payoffs are obtained.

As ∆ tends to 0, equations (8)–(9) transform into differential-difference equations

involving terms that are familiar from the continuous-time analysis in Section 3. A

formal Taylor approximation shows that for any κ ∈ {0, 1}, K ∈ {0, 1, . . . , N} and a
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sufficiently regular function w on the unit interval,

(1− δ)[(1− κ)s+ κm(p)] + δE∆
Kw(p)

= w(p) + r
{
(1− κ)s+ κm(p) +K b(p, w)− w(p)

}
∆+ o(∆).

Applying this approximation to (8)–(9), cancelling the terms of order 0 in ∆, di-

viding through by ∆, letting ∆ → 0 and recalling the notation c(p) = s−m(p) for the

opportunity cost of playing risky, we obtain the coupled differential-difference equations

that appear in the following result.

Proposition 12 Let ρ > 0 or λ0 > 0. As ∆ → 0, the pair of functions (W
∆
,W∆)

converges uniformly (in p) to a pair of functions (w,w) solving

w(p) = s+ max
κ∈K(p)

κ [Nb(p, w)− c(p)] , (11)

w(p) = s+ min
κ∈K(p)

(N − 1)κ b(p, w) + max
k∈{0,1}

k [b(p, w)− c(p)] , (12)

where

K(p) =





{0} for p ≤ p̂,

{0, 1} for p̂ < p < 1,

{1} for p = 1,

(13)

and p̂ is as in parts (ii) and (iii) of Theorem 1.

This result is an immediate consequence of the previous results. It follows from

Sections 6.1–6.2 that, except when ρ = λ0 = 0, there exist pure-strategy SSEs and the

pair (W
∆
,W∆) converges uniformly to (VN,p̂, V

∗
1 ). It is straightforward to verify that

(w,w) = (VN,p̂, V
∗
1 ) solves (11)–(13). First, as V

∗
N satisfies20

V ∗
N(p) = s+ max

κ∈{0,1}
κ [Nb(p, V ∗

N )− c(p)] ,

with Nb(p, V ∗
N ) − c(p) > 0 to the right of p∗N , (11) is trivially solved by V ∗

N whenever

p̂ = p∗N . Second, for p̂ > p∗N , the function VN,p̂ satisfies

VN,p̂(p) = s+ 1p>p̂ [Nb(p, VN,p̂)− c(p)] ,

with Nb(p;VN,p̂) − c(p) > 0 on (p̂, 1). This implies that VN,p̂ solves (11) when p̂ >

p∗N . Third, V ∗
1 always solves (12). In fact, as b(p;V ∗

1 ) ≥ 0 everywhere, we have

20This equation follows from the HJB equation in Section 3: because the maximand is linear in K,

the continuous-time planner finds it optimal to set K = 0 or K = N at any given belief.
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minκ∈{0,1}(N − 1)κ b(p, V ∗
1 ) = 0, and (12) with this minimum set to zero is just the

HJB equation for V ∗
1 .

Note that the continuous-time functional equations (11)–(12) would be equally easy

to solve for any arbitrary p̂ in (13). However, only the solution with p̂ as in Theorem

1 captures the asymptotics of our discretization of the experimentation game.

8 Concluding Comments

We have shown that the inefficiencies arising in strategic bandit problems are driven by

the solution concept, MPE. Inefficiencies entirely disappear when news has a Brownian

component or good news events are not too informative. The best PBE can be achieved

with an SSE, specifying a simple rule of conduct (unlike in an MPE), namely on-path

play of the cutoff type.

Of course, we do not expect the finding that SSE and PBE payoffs coincide to gen-

eralize to all symmetric stochastic games. For instance, SSE can be restrictive when ac-

tions are imperfectly monitored, as shown by Fudenberg, Levine and Takahashi (2007).

Nonetheless, SSE is a class of equilibria that both allows for “stick-and-carrot” incen-

tives, as in standard discrete-time repeated (or stochastic) games, but is also amenable

to continuous-time optimal control techniques, as illustrated by Proposition 12 (for a

given transversality condition that must be derived from independent considerations,

such as a discretized version of the game).

The information/payoff processes we consider are a subset of those in Cohen and

Solan (2013), which allows lump-sum sizes to be informative (assuming that lump sums

of any size arrive more frequently in state θ = 1). For processes with a Brownian com-

ponent, our proof that risky play is incentive compatible immediately to the right of

the threshold p∗N only exploits the properties of the posterior belief process conditional

on no lump sum arriving. As these properties are the same whether lump sums are

informative or not, asymptotic efficiency when a Brownian component is present ob-

tains more generally. When learning is driven by lump-sum payoffs only, inspection

of equation (3) suggests that efficiency requires that a lump sum of any size arriving

at the initial belief p∗N lead to a posterior belief no higher than p∗1. Therefore, the

condition for asymptotic efficiency has a straightforward generalization.

As mentioned above, our model rules out lumpy bad news. Hence, it rules out

models in which Poisson events are “breakdowns,” as in the model of Keller and Rady

(2015), for instance. Bad news amounts to assuming that the safe flow payoff and the

25



average size of lump-sum payoffs are both negative with λ1h < s < λ0h ≤ 0. Now,

θ = 1 is the bad state of the world, and the efficient and single-player solution cutoffs

in continuous time satisfy p∗N > p∗1, with the stopping region lying to the right of the

cutoff in either case. The associated value functions V ∗
1 and V ∗

N solve the same HJB

equations as in Section 3. In this model, j(p∗N) > p∗N > p∗1, i.e., starting from p∗N , the

belief remains in the single-agent stopping region for small ∆, whether a breakdown

occurs or not. Hence, the harshest possible punishment, consisting of all other players

playing safe forever, can be meted out to any potential deviator, whether there is a

breakdown or not. Thus, we conjecture that asymptotic efficiency also obtains in this

framework.
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Appendix

A Auxiliary Results

A.1 Evolution of Beliefs

For the description of the evolution of beliefs, it is convenient to work with the log odds ratio

ℓt = ln
pt

1− pt
.

Suppose that starting from ℓ0 = ℓ, the players use the fixed action profile (k1, . . . , kN ) ∈
{0, 1}N . By Peskir and Shiryayev (2006, pp. 287–289 and 334–338), the log odds ratio at

time t > 0 is then

ℓt = ℓ+
∑

{n:kn=1}

{
α1 − α0

σ2
(Xn

t − α0t− hNn
t )−

[
(α1 − α0)

2

2σ2
+ λ1 − λ0

]
t+ ln

λ1
λ0
Nn

t

}
,

whereXn andNn are the payoff and Poisson processes, respectively, associated with player n’s

risky arm. The terms involving α1, α0 and σ capture learning from the continuous component,

Xn
t −hNn

t , of the payoff process, with higher realizations making the players more optimistic.

The terms involving λ1 and λ0 capture learning from lump-sum payoffs, with the players

becoming more pessimistic on average as long as no lump-sum arrives, and each arrival

increasing the log odds ratio by the fixed increment ln(λ1/λ0).
21

Under the probability measure Pθ associated with state θ ∈ {0, 1}, Xn
t −α0t−hNn

t is Gaus-

sian with mean (αθ−α0)t and variance σ2t, so that
∑

{n:kn=1}(α1−α0)σ
−2 (Xn

t − α0t− hNn
t )

is Gaussian with mean K(α1−α0)(αθ −α0)σ
−2t and variance Kρt, where K =

∑N
n=1 kn and

ρ = (α1−α0)
2σ−2. Conditional on the event that

∑
{n:kn=1}N

n
t = J , therefore, ℓt is normally

distributed with mean ℓ −K
(
λ1 − λ0 − ρ

2

)
t + J ln(λ1/λ0) and variance Kρt under P1, and

normally distributed with mean ℓ−K
(
λ1 − λ0 +

ρ
2

)
t+ J ln(λ1/λ0) and variance Kρt under

P0. Finally, the probability under measure Pθ that
∑

{n:kn=1}N
n
t = J equals (Kλθt)

J

J ! e−Kλθt

by the sum property of the Poisson distribution.

Taken together, these facts make it possible to explicitly compute the distribution of

pt =
eℓt

1 + eℓt

under the players’ measure Pp = pP1+(1−p)P0. As this explicit representation is not needed

in what follows, we omit it here.

Instead, we turn to the characterization of infinitesimal changes of pt, once more assuming

a fixed action profile with K players using the risky arm. Arguing as in Cohen and Solan

(2013, Section 3.3), one shows that, with respect to the players’ information filtration, the

21Here, λ1/λ0 is understood to be 1 when λ1 = λ0 = 0. When λ1 > λ0 = 0, we have ℓt = ∞ and

pt = 1 from the arrival time of the first lump-sum on.
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process of posterior beliefs is a Markov process whose infinitesimal generator LK acts as

follows on real-valued functions v of class C2 on the open unit interval:

LKv(p) = K

{
ρ

2
p2(1− p)2v′′(p)− (λ1 − λ0)p(1− p)v′(p) + λ(p) [v(j(p)) − v(p)]

}
.

In particular, instantaneous changes in beliefs exhibit linearity in K in the sense that LK =

KL1.

By the very nature of Bayesian updating, finally, the process of posterior beliefs is a

martingale with respect to the players’ information filtration.

A.2 Payoff Functions

Our first auxiliary result concerns the function u(·;µN ) defined in Section 3.

Lemma A.1 δE∆
Ku(·;µN )(p) = δ1−

K
N u(p;µN ) for all ∆ > 0, K ∈ {1, . . . , N} and p ∈ (0, 1].

Proof: We simplify notation by writing u for u(·;µN ). Consider the process (pt) of posterior

beliefs in continuous time when p0 = p > 0 and K players use the risky arm. By Dynkin’s

formula,

E

[
e−rK∆/Nu(p∆)

]
= u(p) + E

[∫ ∆

0
e−rKt/N

{
LKu(pt)−

rK

N
u(pt)

}
dt

]

= u(p) +K E

[∫ ∆

0
e−rKt/N

{
L1u(pt)−

r

N
u(pt)

}
dt

]

= u(p),

where the last equality follows from the fact that L1u = ru/N on (0, 1].22 Thus, δK/NE∆
Ku(p) =

u(p).

We further note that E∆
Km(p) = m(p) for all K by the martingale property of beliefs and

the linearity of m in p.

These properties are used repeatedly in what follows. Their first application is in the proof

of uniform convergence of the discrete-time single-agent value function to its continuous-time

counterpart.

Let (W, ‖ · ‖) be the Banach space of bounded real-valued functions on [0, 1] equipped

with the supremum norm. Given ∆ > 0, and any w ∈ W, define a function T∆
1 w ∈ W by

T∆
1 w(p) = max

{
(1− δ)m(p) + δE∆

1 w(p), (1− δ)s + δw(p)
}
.

22To verify this identity, note that

u′(p) = − µN + p

p(1− p)
u(p), u′′(p) =

µN (µN + 1)

p2(1− p)2
u(p), u(j(p)) =

λ0
λ(p)

(
λ0
λ1

)µN

u(p),

and use the equation defining µN .
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The operator T∆
1 satisfies Blackwell’s sufficient conditions for being a contraction mapping

with modulus δ on (W, ‖ · ‖): monotonicity (v ≤ w implies T∆
1 v ≤ T∆

1 w) and discounting

(T∆
1 (w + c) = T∆

1 w + δc for any real number c). By the contraction mapping theorem, T∆
1

has a unique fixed point in W; this is the value function W∆
1 of an agent experimenting in

isolation.

The corresponding continuous-time value function is V ∗
1 as introduced in Section 3. As

any discrete-time strategy is feasible in continuous time, we trivially have W∆
1 ≤ V ∗

1 .

Lemma A.2 W∆
1 → V ∗

1 uniformly as ∆ → 0.

Proof: A lower bound forW∆
1 is given by the payoff functionW∆

∗ of a single agent who uses

the cutoff p∗1 in discrete time; this function is the unique fixed point in W of the contraction

mapping T∆
∗ defined by

T∆
∗ w(p) =

{
(1− δ)m(p) + δE∆

1 w(p) if p > p∗1,

(1− δ)s + δw(p) if p ≤ p∗1.

Next, choose p̆ < p∗1, and define p♮ =
p̆+p∗

1

2 and the function v = m+ Cu(·;µ1) + 1[0,p♮](s −
m− Cu(·;µ1)), where the constant C is chosen so that s = m(p̆) + Cu(p̆;µ1).

Fix ε > 0. As v converges uniformly to V ∗
1 as p̆ → p∗1, we can choose p̆ such that

v ≥ V ∗
1 − ε. It suffices now to show that there is a ∆̄ > 0 such that T∆

∗ v ≥ v for ∆ < ∆̄. In

fact, the monotonicity of T∆
∗ then implies W∆

∗ ≥ v and hence V ∗
1 − ε ≤ v ≤W∆

∗ ≤W∆
1 ≤ V ∗

1

for all ∆ < ∆̄.

For p ≤ p∗1, we have T∆
∗ v(p) = (1 − δ)s + δv(p) ≥ v(p) for all ∆, because v ≤ s in this

range. For p > p∗1,

T∆
∗ v(p) = (1− δ)m(p) + δE∆

1 v(p)

= (1− δ)m(p) + δE∆
1

[
m+Cu+ 1[0,p♮](s−m− Cu)

]
(p)

= v(p) + δE∆
1

[
1[0,p♮](s−m− Cu)

]
(p),

where the last equation uses that E∆
1 m(p) = m(p) and δE∆

1 u(p) = u(p). In particular,

T∆
∗ v(1) = v(1).

The function s − m − Cu is negative on the interval (0, p̆) and positive on (p̆, p♯), for

some p♯ > p∗1. The expectation of s −m(p∆) − Cu(p∆) conditional on p0 = p and p∆ ≤ p♮

is continuous in (p,∆) ∈ [p∗1, 1) × (0,∞) and converges to s −m(p♮) − Cu(p♮) > 0 as p → 1

or ∆ → 0 because the conditional distribution of p∆ becomes a Dirac measure at p♮ in either

limit. This implies existence of ∆̄ > 0 such that this conditional expectation is positive for

all (p,∆) ∈ [p∗1, 1) × (0, ∆̄). For these (p,∆), we thus have

E∆
1

[
1[0,p♮](s−m− Cu)

]
(p) ≥ E∆

1

[
1[p♭,p♮](s −m−Cu)

]
(p) ≥ 0,

where p♭ = p̌+p♮

2 . As a consequence, T∆
∗ v ≥ v for all (p,∆) ∈ (p∗1, 1)× (0, ∆̄).
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Next, we turn to the payoff function associated with the good state of the automaton

defined in Section 6. By the same arguments as invoked immediately before Lemma A.2, w∆

is the unique fixed point in W of the operator T
∆

defined by

T
∆
w(p) =

{
(1− δ)m(p) + δE∆

Nw(p) if p > p,

(1− δ)s + δw(p) if p ≤ p.

Lemma A.3 Let p > p∗N . Then w∆ ≥ VN,p for ∆ sufficiently small.

Proof: Because of the monotonicity of the operator T
∆
, it suffices to show that T

∆
VN,p ≥

VN,p for sufficiently small ∆. Recall that for p > p, VN,p(p) = m(p) + Cu(p;µN ) where the

constant C > 0 is chosen to ensure continuity at p.

For p ≤ p, we use exactly the same argument as in the penultimate paragraph of the

proof of Lemma A.2; for p > p, the argument is the same as in the last paragraph of that

proof.

The next two results concern the payoff function associated with the bad state of the

automaton defined in Section 6. Fix a cutoff p̄ ∈ (pm, 1) and let K(p) = N − 1 when p > p̄,

and K(p) = 0 otherwise. Given ∆ > 0, and any bounded function w on [0, 1], define a

bounded function T∆w by

T∆w(p) = max
{
(1− δ)m(p) + δE∆

K(p)+1w(p), (1− δ)s + δE∆
K(p)w(p)

}
.

The operator T∆ again satisfies Blackwell’s sufficient conditions for being a contraction map-

ping with modulus δ on W. Its unique fixed point in this space is the payoff function w∆

(introduced in Section 6) from playing a best response against N − 1 opponents who all play

risky when p > p̄, and safe otherwise.

Lemma A.4 Let p ∈ (p∗N , p
∗
1). Then there exists p⋄ ∈ [pm, 1) such that for all p̄ ∈ (p⋄, 1),

the inequality w∆ ≤ VN,(p+p∗
1
)/2 holds for ∆ sufficiently small.

Proof: Let p̃ = (p + p∗1)/2. For p > p̃, we have VN,p̃(p) = m(p) + Cu(p;µN ) where the

constant C > 0 is chosen to ensure continuity at p̃. To simplify notation, we write ṽ instead

of VN,p̃ and u instead of u(·;µN ).

For x > 0, we define

p∗x =
µx(s −m0)

(µx + 1)(m1 − s) + µx(s−m0)
,

where µx is the unique positive root of

f(µ;x) =
ρ

2
µ(µ+ 1) + (λ1 − λ0)µ + λ0

(
λ0
λ1

)µ

− λ0 −
r

x
;

existence and uniqueness of this root follow from continuity and monotonicity of f(·;x) to-
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gether with the fact that f(0;x) < 0 while f(µ;x) → ∞ as µ → ∞.23 This extends our

previous definitions of µN and p∗N to non-integer numbers. It is immediate to verify now that
dµx

dx < 0 and hence dp∗x
dx < 0. Thus, there exists x̆ ∈ (1, N) such that p∗x̆ ∈ (p̃, p∗1).

Having chosen such an x̆, we fix a belief p̆ ∈ (p̃, p∗x̆) and, on the open unit interval, consider

the function v̆ that solves

L1v − r

x̆
(v −m) = 0

subject to the conditions v̆(p̆) = s and v̆′(p̆) = 0. This function has the form

v̆(p) = m(p) + ŭ(p),

with

ŭ(p) = A(1 − p)

(
1− p

p

)µ̆

+Bp

(
p

1− p

)µ̂

= Au(p; µ̆) +Bu(1− p; µ̂).

Here, µ̆ = µx̆ and µ̂ is the unique positive root of

g(µ;x) =
ρ

2
µ(µ+ 1)− (λ1 − λ0)µ + λ1

(
λ1
λ0

)µ

− λ1 −
r

x
;

existence and uniqueness of this root follow along the same lines as above.

The constants of integration A and B are pinned down by the conditions v̆(p̆) = s and

v̆′(p̆) = 0. One calculates that B > 0 if, and only if, p̆ < p∗x̆, which holds by construction,

and that A > 0 if, and only if,

p̆ <
(1 + µ̂)(s−m0)

µ̂(m1 − s) + (1 + µ̂)(s−m0)
.

The right-hand side of this inequality is decreasing in µ̂ and tends to pm as µ̂→ ∞. Therefore,

we can conclude that the inequality holds, and A > 0 as well. Moreover, A+B > 0 implies

that v̆ is strictly increasing and strictly convex on (p̆, 1); as B > 0, finally, v̆(p) → ∞ for

p→ 1.

So there exists a belief p♮ ∈ (p̆, 1) such that v̆(p♮) = ṽ(p♮) and v̆ > ṽ on (p♮, 1). We now

show that v̆ < ṽ in (p̆, p♮). Indeed, if this is not the case, then v̆ − ṽ assumes a non-negative

local maximum at some p♯ ∈ (p̆, p♮). This implies:

(i) v̆(p♯) ≥ ṽ(p♯), i.e.,

Au(p♯; µ̆) +Bu(1− p♯; µ̂) ≥ Cu(p♯;µN ); (A.1)

(ii) v̆′(p♯) = ṽ′(p♯), i.e.,

−(µ̆+ p♯)Au(p♯; µ̆) + (µ̂ + 1− p♯)Bu(1− p♯; µ̂) = −(µN + p♯)Cu(p♯;µN ); (A.2)

23Cf. Lemma 6 in Cohen & Solan (2013).
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and (iii) v̆′′(p♯) ≤ ṽ′′(p♯), i.e.,

µ̆(µ̆+ 1)Au(p♯; µ̆) + µ̂(1 + µ̂)Bu(1− p♯; µ̂) ≤ µN (µN + 1)Cu(p♯;µN ). (A.3)

Solving for Bu(1 − p♯; µ̂) in (A.2) and inserting the result into (A.1) and (A.3), we obtain,

respectively,
Cu(p♯;µN )

Au(p♯; µ̆)
≤ µ̆+ µ̂+ 1

µN + µ̂+ 1
,

and
Cu(p♯;µN )

Au(p♯; µ̆)
≥ µ̆(µ̆ + 1)(µ̂ + 1− p♯) + µ̂(µ̂+ 1)(µ̆ + p♯)

µN (µN + 1)(µ̂ + 1− p♯) + µ̂(µ̂ + 1)(µN + p♯)
.

This implies that

µ̆+ µ̂+ 1

µN + µ̂+ 1
≥ µ̆(µ̆ + 1)(µ̂ + 1− p♯) + µ̂(µ̂+ 1)(µ̆ + p♯)

µN (µN + 1)(µ̂ + 1− p♯) + µ̂(µ̂+ 1)(µN + p♯)
,

which one shows to be equivalent to µ̆ ≤ µN . But x̆ < N and dµx

dx < 0 imply µ̆ > µN . This

is the desired contradiction.

Now let p⋄ = max{pm, p♮}, fix p̄ ∈ (p⋄, 1) and define

v(p) =





ṽ(p) if p > p♮,

v̆(p) if p̆ ≤ p ≤ p♮,

s if p < p̆.

By construction, s ≤ v ≤ min{ṽ, v̆}. This immediately implies that (1 − δ)s + δv ≤ v. We

now show that T∆v ≤ v, and hence w∆ ≤ v, for ∆ sufficiently small.

First, let p ∈ (p̄, 1]. We have

(1− δ)m(p) + δE∆
N v(p) ≤ (1− δ)m(p) + δE∆

N

[
m+ Cu+ 1(0,p̆)(s−m− Cu)

]
(p)

= m(p) + Cu(p) + δE∆
N

[
1(0,p̆)(s−m− Cu)

]
(p)

≤ m(p) + Cu(p)

= v(p),

for ∆ small enough that E∆
N

[
1(0,p̆)(s−m− Cu)

]
(p̄) ≤ 0; that this inequality holds for small

∆ follows from the fact that s < m+ Cu on (p̃, p̆). By the same token,

(1− δ)s + δE∆
N−1v(p) ≤ (1− δ)s + δE∆

N−1(m+ Cu)(p) + δE∆
N−1

[
1(0,p̆)(s −m−Cu)

]
(p)

= (1− δ)s + δm(p) + δ
1

N Cu(p) + δE∆
N−1

[
1(0,p̆)(s−m− Cu)

]
(p)

≤ m(p) + Cu(p)

= v(p),

for ∆ small enough that E∆
N−1

[
1(0,p̆)(s −m− Cu)

]
(p̄) ≤ 0, as Cu(p) > 0 and s < m(p) for
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p > pm.

Second, let p ∈ (p♮, p̄]. Now, we have

(1− δ)m(p) + δE∆
1 v(p) ≤ m(p) + δ1−

1

NCu(p) + δE∆
1

[
1(0,p̆)(s−m− Cu)

]
(p)

≤ m(p) + Cu(p)

= v(p),

for ∆ small enough that E∆
1

[
1(0,p̆)(s−m− Cu)

]
(p♮) ≤ 0.

Third, let p ∈ [p̆, p♮]. In this case,

(1− δ)m(p) + δE∆
1 v(p) ≤ (1− δ)m(p) + δE∆

1 v̆(p)

= m(p) + δE∆
1 ŭ(p)

= m(p) + ŭ(p) + E

[∫ ∆

0
e−rt

{
L1ŭ(pt)− rŭ(pt)

}
dt

∣∣∣∣ p0 = p

]

≤ m(p) + ŭ(p) + E

[∫ ∆

0
e−rt

{
L1ŭ(pt)−

r

x̆
ŭ(pt)

}
dt

∣∣∣∣ p0 = p

]

= m(p) + ŭ(p)

= v(p),

where the second equality follows from Dynkin’s formula, the second inequality holds because

ŭ(pt) > 0 and x̆ > 1, and the third equality is a consequence of the identity L1ŭ− rŭ/x̆ = 0.

Finally, let p ∈ [0, p̆). By monotonicity of m and v (and the previous step), we see that

(1− δ)m(p) + δE∆
1 v(p) ≤ (1− δ)m(p̆) + δE∆

1 v(p̆) ≤ v(p̆) = s = v(p).

Lemma A.5 There exist p̌ ∈ (pm, 1) and p‡ ∈ (p∗N , p
∗
1) such that w∆(p) = s for all p̄ ∈ (p̌, 1),

p ≤ p‡ and ∆ > 0. For any ε > 0, moreover, there exists p̌ε ∈ (p̌, 1) such that w∆ ≤ V ∗
1 + ε

for all ∆ > 0.

Proof: Consider any p̄ ∈ (pm, 1) and an initial belief p < p̄. We obtain an upper bound on

w∆(p) by considering a modified problem in which (i) the player can choose a best response

in continuous time and (ii) the game is stopped with continuation payoff m1 as soon as the

belief p̄ is reached. This problem can be solved in the standard way, yielding an optimal

cutoff p‡. By construction, w∆ = s on [0, p‡]. As we take p̄ close to 1, p‡ approaches p∗1 from

the left and thus gets to lie strictly in between p∗N and p∗1. This proves the first statement.

The second follows from the fact that the value function of the modified problem converges

uniformly to V ∗
1 as p̄→ 1.

In the case of pure Poisson learning (ρ = 0), we need a sharper characterization of the

payoff function w∆ as ∆ becomes small. To this end, we define V1,p̄ as the continuous-time

counterpart to w∆. The methods employed in Keller and Rady (2010) can be used to establish

that V1,p̄ has the following properties for ρ = 0. First, there is a cutoff p† < pm such that

V1,p̄ = s on [0, p†], and V1,p̄ > s everywhere else. Second, V1,p̄ is continuously differentiable
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everywhere except at p̄. Third, V1,p̄ solves the Bellman equation

v(p) = max
{
m(p) + [K(p) + 1]b(p, v), s+K(p)b(p, v)

}
,

where

b(p, v) =
λ(p)

r
[v(j(p)) − v(p)]− λ1 − λ0

r
p(1− p) v′(p),

and v′(p) is taken to mean the left-hand derivative of v. Fourth, b(p, V1,p̄) ≥ 0 for all p. Fifth,

because of smooth pasting at p†, the term m(p) + b(p, V1,p̄) − s is continuous in p except at

p̄; it has a single zero at p†, being positive to the right of it and negative to the left. Finally,

we note that V1,p̄ = V ∗
1 and p† = p∗1 for p̄ = 1.

Lemma A.6 Let ρ = 0. Then V1,p̄ → V ∗
1 uniformly as p̄→ 1. The convergence is monotone

in the sense that p̄′ > p̄ implies V1,p̄′ < V1,p̄ on {p : s < V1,p̄(p) < λ1h}.

As the closed-form solutions for the functions in question make it straightforward to

establish this result, we omit the proof.

A key ingredient in the analysis of the pure Poisson case is uniform convergence of w∆

to V1,p̄ as ∆ → 0, which we establish by means of the following result.24

Lemma A.7 Let {T∆}∆>0 be a family of contraction mappings on the Banach space (W; ‖·‖)
with moduli {β∆}∆>0 and associated fixed points {w∆}∆>0. Suppose that there is a constant

ν > 0 such that 1 − β∆ = ν∆ + o(∆) as ∆ → 0. Then, a sufficient condition for w∆ to

converge in (W; ‖ · ‖) to the limit v as ∆ → 0 is that ‖T∆v − v‖ = o(∆).

Proof: As

‖w∆ − v‖ = ‖T∆w∆ − v‖ ≤ ‖T∆w∆ − T∆v‖+ ‖T∆v − v‖ ≤ β∆‖w∆ − v‖+ ‖T∆v − v‖,

the stated conditions on β∆ and ‖T∆v − v‖ imply

‖w∆ − v‖ ≤ ‖T∆v − v‖
1− β∆

=
∆f(∆)

ν∆+∆g(∆)
=

f(∆)

ν + g(∆)
,

with lim∆→0 f(∆) = lim∆→0 g(∆) = 0.

In our application of this lemma, W is again the Banach space of bounded real-valued

functions on the unit interval, equipped with the supremum norm. The operator in question

is T∆ as defined above; the corresponding moduli are β∆ = δ = e−r∆, so that ν = r.

Lemma A.8 Let ρ = 0. Then w∆ → V1,p̄ uniformly as ∆ → 0.

24To the best of our knowledge, the earliest appearance of this result in the economics literature is

in Biais et al. (2007). A related approach is taken in Sadzik and Stacchetti (2015).
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Proof: To simplify notation, we write v instead of V1,p̄. For K ∈ {0, 1, . . . , N}, a straight-

forward Taylor expansion of E∆
Kv with respect to ∆ yields

lim
∆→0

1

∆

∥∥δ E∆
Kv − v − r[Kb(·, v) − v]∆

∥∥ = 0. (A.4)

For p > p̄, we have K(p) = N − 1, and (A.4) implies

(1− δ)m(p) + δE∆
N v(p) = v(p) + r [m(p) +Nb(p, v)− v(p)]∆ + o(∆),

(1− δ)s + δE∆
N−1v(p) = v(p) + r [s+ (N − 1)b(p, v) − v(p)]∆ + o(∆).

As m(p) > s on [p̄, 1] and b(p, v) ≥ 0, there exists ξ > 0 such that

m(p) +Nb(p, v)− [s+ (N − 1)b(p, v)] > ξ,

on (p̄, 1]. Thus, T∆v(p) = (1 − δ)m(p) + δE∆
N v(p) for ∆ sufficiently small, and the fact that

v(p) = m(p) +Nb(p, v) now implies T∆v(p) = v(p) + o(∆) on (p̄, 1].

On [0, p̄], we have K(p) = 0, and (A.4) implies

∥∥(1− δ)m+ δE∆
1 v − v − r[m+ b(·, v) − v)∆

∥∥ = ∆ψR(∆), (A.5)
∥∥(1− δ)s + δE∆

0 v − v − r[s− v]∆
∥∥ = ∆ψS(∆), (A.6)

for some functions ψR, ψS : (0,∞) → [0,∞) that satisfy ψR(∆) → 0 and ψS(∆) → 0 as

∆ → 0.

First, let p ∈ (p†, p̄]. We note that T∆v(p) ≥ (1 − δ)m(p) + δE∆
1 v(p) ≥ v(p) −∆ψR(∆)

in this range, where the first inequality follows from the definition of T∆, and the second

inequality is implied by (A.5) and v(p) = m(p) + b(p, v) for p ∈ (p†, p̄]. If the maximum in

the definition of T∆v(p) is achieved by the risky action, the first in the previous chain of

inequalities holds as an equality, and (A.5) immediately implies that T∆v(p) = v(p) + o(∆).

If the maximum in the definition of T∆v(p) is achieved by the safe action, however, we have

T∆v(p) = (1 − δ)s + δE∆
0 v(p) ≤ v(p) + r[s − v(p)]∆ + ∆ψS(∆) ≤ v(p) + ∆ψS(∆), where

the second inequality follows from v > s on (p†, p̄]. Thus v(p) − ∆ψR(∆) ≤ T∆v(p) ≤
v(p) + ∆ψS(∆), and we can conclude that T∆v(p) = v(p) + o(∆) in this case as well.

Now, let p ≤ p†. We note that T∆v(p) ≥ (1 − δ)s + δE∆
0 v(p) ≥ v(p) − ∆ψS(∆) in this

range, where the first inequality follows from the definition of T∆, and the second inequality

is implied by (A.6) and v(p) = s for p ≤ p†. If the maximum in the definition of T∆v(p) is

achieved by the safe action, the first in the previous chain of inequalities holds as an equality,

and (A.6) immediately implies that T∆v(p) = v(p)+ o(∆). If the maximum in the definition

of T∆v(p) is achieved by the risky action, however, we have T∆v(p) = (1−δ)m(p)+δE∆
1 v(p) ≤

v(p) + r[m(p) + b(p, v) − v(p)]∆ + ∆ψR(∆) ≤ v(p) + ∆ψR(∆), where the second inequality

follows from v = s ≥ m(p) + b(p, v) on [0, p†]. Thus v(p) − ∆ψS(∆) ≤ T∆v(p) ≤ v(p) +

∆ψR(∆), and we can again conclude that T∆v(p) = v(p) + o(∆) in this case as well.
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Our last two auxiliary results pertain to the case of pure Poisson learning.

Lemma A.9 Let ρ = 0. There is a belief p̂ ∈ [p∗N , p
∗
1] such that

λ(p)
[
NVN,p(j(p))− (N − 1)V ∗

1 (j(p))− s
]
− rc(p)

is negative if 0 < p < p̂, zero if p = p̂, and positive if p̂ < p < 1. Moreover, p̂ = p∗N if, and

only if, j(p∗N ) ≤ p∗1, and p̂ = p∗1 if, and only if, λ0 = 0.

Proof: We start by noting that given the functions V ∗
1 and V ∗

N , the cutoffs p∗1 and p∗N are

uniquely determined by

λ(p∗1)[V
∗
1 (j(p

∗
1))− s] = rc(p∗1), (A.7)

and

λ(p∗N )[NV ∗
N (j(p∗N ))−Ns] = rc(p∗N ), (A.8)

respectively.

Consider the differentiable function f on (0, 1) given by

f(p) = λ(p)[NVN,p(j(p))− (N − 1)V ∗
1 (j(p))− s]− rc(p).

For λ0 = 0, we have j(p) = 1 and VN,p(j(p)) = V ∗
1 (j(p)) = m1 for all p, so f(p) =

λ(p)[V ∗
1 (j(p))− s]− rc(p), which is zero at p = p∗1 by (A.7), positive for p > p∗1, and negative

for p < p∗1.

Assume λ0 > 0. For 0 < p < p ≤ 1, we have VN,p(p) = m(p) + c(p)u(p;µN )/u(p;µN ).

Moreover, we have V ∗
1 (p) = s when p ≤ p∗1, and V

∗
1 (p) = m(p) + Cu(p;µ1) with a constant

C > 0 otherwise. Using the fact that

u(j(p);µ) =
λ0
λ(p)

(
λ0
λ1

)µ

u(p;µ),

we see that the term λ(p)NVN,p(j(p)) is actually linear in p. When j(p) ≤ p∗1, the term

−λ(p)(N − 1)V ∗
1 (j(p)) is also linear in p; when j(p) > p∗1, the nonlinear part of this term

simplifies to −(N−1)Cλµ1+1
0 u(p;µ1)/λ

µ1

1 . This shows that f is concave, and strictly concave

on the interval of all p for which j(p) > p∗1. As limp→1 f(p) > 0, this in turn implies that f

has at most one root in the open unit interval; if so, f assumes negative values to the left of

the root, and positive values to the right.

As VN,p∗
1
(j(p∗1)) > V ∗

1 (j(p
∗
1)), moreover, we have f(p∗1) > λ(p∗1)[V

∗
1 (j(p

∗
1))−s]−rc(p∗1) = 0

by (A.7). Any root of f must thus lie in [0, p∗1). If j(p∗N ) ≤ p∗1, then V ∗
1 (j(p

∗
N )) = s and

f(p∗N ) = λ(p∗N )[NV ∗
N (j(p∗N ))−Ns]−rc(p∗N ) = 0 by (A.8). If j(p∗N ) > p∗1, then V

∗
1 (j(p

∗
N )) > s

and f(p∗N) < 0, so f has a root in (p∗N , p
∗
1).

The following result is used in the proof of Proposition 2.

Lemma A.10 Let ρ = 0. Then µ1(µ1 + 1) > NµN (µN + 1).
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Proof: We change variables to β = λ0/λ1 and x = r/λ1, so that µN and µ1 are implicitly

defined as the positive solutions of the equations

x

N
+ β − (1− β)µN = βµN+1,

x+ β − (1 − β)µ1 = βµ1+1.

Fixing β ∈ [0, 1) and considering µN and µ1 as functions of x ∈ (0,∞), we obtain

µ′N =
N−1

1− β + βµN+1 ln β
=

N−1

1− β +
[
x
N + β − (1− β)µN

]
ln β

,

µ′1 =
1

1− β + βµ1+1 ln β
=

1

1− β + [x+ β − (1− β)µ1] ln β
.

(All denominators are positive because 1− β + βµ+1 ln β ≥ 1− β + β ln β > 0 for all µ ≥ 0.)

Let d = µ1(µ1 + 1) − NµN (µN + 1). As limx→0 µN = limx→0 µ1 = 0, we see that

limx→0 d = 0 as well. It is thus enough to show that d′ > 0 at any x > 0. This is the case if,

and only if, (2µ1 + 1)µ′1 > N(2µN + 1)µ′N , that is,

(2µ1+1)
{
1− β +

[
x
N + β − (1− β)µN

]
ln β

}
> (2µN+1) {1− β + [x+ β − (1− β)µ1] ln β} .

This inequality reduces to

(µ1 − µN )
{
2(1− β) +

[
2x
N + 1 + β

]
ln β

}
> (2µN + 1)

[
x− x

N

]
ln β.

It is straightforward to show that µ1 > µN + 1
1−β

[
x− x

N

]
. So d′ > 0 if

2(1− β) +
[
2x
N + 1 + β

]
lnβ > (2µN + 1)(1 − β) ln β,

which simplifies to 1−β+
[
x
N + β − (1− β)µN

]
ln β > 0 – an inequality that we have already

established.

B Proofs

B.1 Main Results (Theorem 1 and Propositions 1–4)

Proof of Theorem 1: For ρ > 0, this result is an immediate consequence of inequalities

(2), the fact that lim inf∆→0W
∆
PBE ≥ V ∗

1 and W
∆
PBE ≤ V ∗

N , and Proposition 6. For ρ = 0,

the result follows from inequalities (2), the fact lim inf∆→0W
∆
PBE ≥ V ∗

1 , and Propositions 7

and 10.

Proof of Proposition 1: Keller and Rady (2010) establish that in the unique symmet-

ric MPE of the continuous-time game, all experimentation stops at the belief p̃N implicitly

defined by rc(p̃N ) = λ(p̃N )[ũ(j(p̃N )) − s], where ũ is the players’ common equilibrium pay-
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off function. The results of Keller and Rady (2010) further imply that VN,p̃N (j(p̃N )) >

ũ(j(p̃N )) > V ∗
1 (j(p̃N )), so that NVN,p̃N (j(p̃N )) − (N − 1)V ∗

1 (j(p̃N )) > ũ(j(p̃N )), and hence

p̂ < p̃N by Lemma A.9.

Proof of Proposition 2: There is nothing to show for λ0 = 0. Using the same change of

variables as in the previous proof, we fix β ∈ (0, 1), therefore, and define

q = β · 1 + µ−1
N

1 + µ−1
1

,

so that j(p∗N ) ≤ p∗1 if, and only if, q ≥ 1. As limx→∞ µN = limx→∞ µ1 = ∞, we have

limx→∞ q = β < 1. As limx→0 µN = limx→0 µ1 = 0, moreover,

lim
x→0

q = β lim
x→0

µ1
µN

= β lim
x→0

µ′1
µ′N

= βN

by l’Hôpital’s rule. Finally, q′ is easily seen to have the same sign as

−µ1(µ1 + 1)(1 − β + βµ1+1 lnβ) +NµN (µN + 1)(1− β + βµN+1 lnβ).

As βµ1+1 ln β > βµN+1 ln β, Lemma A.10 implies that q decreases strictly in x. This in turn

implies that q < 1 at all x ∈ (0,∞) when βN ≤ 1, which proves the first part of the corollary.

Otherwise, there exists a unique x∗ ∈ (0,∞) at which q = 1. The second part of the corollary

thus holds with (λ∗1, λ
∗
0) = (r/x∗, βr/x∗).

It is straightforward to see that x varies continuously with β and that limβ→1/N x
∗ = 0.

So it remains to show that x∗ remains bounded as β → 1. Rewriting the defining equation

for x∗ as

1 +
1

(1− β)µ1(x∗(β), β)
=

1

(1− β)µN (x∗(β), β)
,

we see that (1 − β)µN (x∗(β), β) must stay bounded as β → 1. By the defining equation for

µN , x∗(β) must then also stay bounded.

Proof of Proposition 3: For the case that p̂ = p∗N , this is shown in Keller and Rady

(2010). Thus, in what follows we assume that p̂ > p∗N .

Recall the defining equation for p̂ from Lemma A.9,

λ(p̂)NVN,p̂(j(p̂))− λ(p̂)s− rc(p̂) = (N − 1)λ(p̂)V ∗
1 (j(p̂)).

We make use of the closed-form expression for VN,p̂ to rewrite its left-hand side as

Nλ(p̂)λ(j(p̂))h+Nc(p̂)[λ0 − µN (λ1 − λ0)]− λ(p̂)s.

Similarly, by noting that p̂ > p∗N implies j(p̂) > j(p∗N ) > p∗1, we can make use of the closed-
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form expression for V ∗
1 to rewrite the right-hand side as

(N − 1)λ(p̂)λ(j(p̂))h+ (N − 1)c(p∗1)
u(p̂;µ1)

u(p∗1;µ1)
[r + λ0 − µ1(λ1 − λ0)].

Combining, we have

λ(p̂)λ(j(p̂))h+Nc(p̂)[λ0 − µN (λ1 − λ0)]− λ(p̂)s

(N − 1)[r + λ0 − µ1(λ1 − λ0)]c(p∗1)
=

u(p̂;µ1)

u(p∗1;µ1)
.

It is convenient to change variables to

β =
λ0
λ1

and y =
λ1
λ0

λ1h− s

s− λ0h

p̂

1− p̂
.

The implicit definitions of µ1 and µN imply

N =
β1+µ1 − β + µ1(1− β)

β1+µN − β + µN (1− β)
,

allowing us to rewrite the defining equation for p̂ as the equation F (y, µN ) = 0 with

F (y, µ) = 1− y + [β(1 + µ)y − µ]
1− β

β

β1+µ1 − β + µ1(1− β)

(µ1 − µ)(1− β) + β1+µ1 − β1+µ

− µµ1

1

(1 + µ1)1+µ1
y−µ1 .

As y is a strictly increasing function of p̂, we know from Lemma A.9 that F (·, µN ) admits a

unique root, and that it is strictly increasing in a neighborhood of this root.

A straightforward computation shows that

∂F (y, µN )

∂µ
=

1− β

β

β1+µ1 − β + µ1(1− β)

((µ1 − µN )(1 − β) + β1+µ1 − β1+µN )2
ζ(y, µN ),

with

ζ(y, µ) = β(1−β)(1+µ1)y− (1− β)µ1 +(1−βy)(β1+µ − β1+µ1)+β1+µ (β(1+µ)y−µ) ln β.

As p∗N < p̂ < p∗1, we have
µN

1 + µN
< βy <

µ1
1 + µ1

,

which implies

ζ(y, µ1) = (β(1 + µ1)y − µ1) (1− β + β1+µ1 ln β) < 0,

and
∂ζ(y, µ)

∂µ
= β1+µ[β(1 + µ)y − µ](ln β)2 > 0,

for all µ ∈ [µN , µ1]. This establishes ζ(y, µN ) < 0.
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By the implicit function theorem, therefore, y is increasing in µN . Recalling from Keller

and Rady (2010) that µN is decreasing in N , we have thus shown that y (and hence p̂) are

decreasing in N .

Proof of Proposition 4: Simple algebra yields

j(p∗N )

p∗1
=
λ1
λ0

µN
µ1

(µ1 + 1)(λ1h− s) + µ1(s− λ0h)

(µN + 1)(λ1h− s) + (λ1/λ0)µN (s− λ0h)
.

From the implicit definitions of µ1 and µN , we obtain limr→0 µ1 = limr→0 µN = 0 (so that

the third fraction in the previous expression converges to 1) and

lim
r→0

∂µ1
∂r

=

[
λ1 − λ0 + λ0 ln

λ0
λ1

]−1

= N lim
r→0

∂µN
∂r

,

implying

lim
r→0

µN
µ1

=
1

N
,

by l’Hôpital’s rule.

Furthermore, we note that we may write equivalently

j(p∗N )

p∗1
=
λ1
λ0

(1 + 1
µ1
)(λ1h− s) + (s− λ0h)

(1 + 1
µN

)(λ1h− s) + (λ1/λ0)(s − λ0h)
.

As limr→∞ µ1 = limr→∞ µN = ∞, we can immediately conclude that this ratio converges to

the stated limit for r → ∞.

B.2 Learning with a Brownian Component (Propositions 5–6)

The proof of Proposition 5 rests on a sequence of lemmas that prove incentive compatibility

of the proposed strategies on various subintervals of [0, 1]. When no assumption on the

signal-to-noise ratio ρ is stated, the respective result holds irrespectively of whether ρ > 0 or

ρ = 0.

In view of Lemmas A.4 and A.5, we take p and p̄ such that

p∗N < p < p‡ < p∗1 < pm < max{p⋄, p̌} < p̄ < 1. (B.9)

The first two lemmas deal with the safe action (κ = 0) on the interval [0, p̄].

Lemma B.1 For all p ≤ p‡,

(1− δ)s + δw∆(p) ≥ (1− δ)m(p) + δE∆
1 w

∆(p).

Proof: As w∆(p) ≥ s = w∆(p) for p ≤ p‡, we have (1 − δ)s + δw∆(p) ≥ s whereas

s ≥ (1− δ)m(p) + δE∆
1 w

∆(p) by the functional equation for w∆.
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Lemma B.2 There exists ∆(p‡,p̄] > 0 such that

(1− δ)s + δw∆(p) ≥ (1− δ)m(p) + δE∆
1 w

∆(p),

for all p ∈ (p‡, p̄] and ∆ < ∆(p‡,p̄].

Proof: By Lemmas A.3 and A.4, there exist ν > 0 and ∆0 > 0 such that w∆(p)−w∆(p) ≥ ν

for all p ∈ [p‡, p̄] and ∆ < ∆0. Further, there is a ∆1 ∈ (0,∆0] such that |E∆
1 w

∆(p)−w∆(p)| ≤
ν
2 for all p ∈ [p‡, p̄] and ∆ < ∆1. For these p and ∆, we thus have

(1− δ)s + δw∆(p)−
[
(1− δ)m(p) + δE∆

1 w
∆(p)

]
≥ (1− δ)[s −m(p)] + δ

ν

2
.

Finally, there is a ∆(p‡,p̄] ∈ (0,∆1] such that the right-hand side of this inequality is positive

for all p ∈ (p‡, p̄] and ∆ < ∆̄.

We establish incentive compatibility of the risky action (κ = 1) to the immediate right of

p by means of the following result.

Lemma B.3 Let X be a Gaussian random variable with mean m and variance V .

1. For all η > 0,

P[X −m > η] <
V

η2
.

2. There exists V ∈ (0, 1) such that for all V < V ,

P

[
V

3

4 ≤ X −m ≤ V
1

4

]
≥ 1

2
− V

1

4 .

Proof: The first statement is a trivial consequence of Chebysheff’s inequality. The proof of

the second relies on the following inequality (13.48) of Johnson et al. (1994) for the standard

normal cumulative distribution function:

1

2

[
1 + (1− e−x2/2)

1

2

]
≤ Φ(x) ≤ 1

2

[
1 + (1− e−x2

)
1

2

]
.

Letting ΦV denote the cdf of the Gaussian distribution with variance V (and mean 0), and

using the above upper and lower bounds, we have

1
2 +ΦV (V

3

4 )−ΦV (V
1

4 )
4
√
V

≤ 1−
√

1− e
− 1

2
√

V +
√

1− e−
√
V

2 4
√
V

.

Writing x =
√
V and using the fact that 1−√

1− y ≤ √
y for 0 ≤ y ≤ 1, moreover, we have

1−
√

1− e−
1

2x +
√
1− e−x

2
√
x

≤ 1

2

√
e−

1

2x

x
+

1

2

√
1− e−x

x
→ 1

2
,
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as x→ 0. Thus,
1
2 +ΦV (V

3

4 )−ΦV (V
1

4 )
4
√
V

≤ 1,

for sufficiently small V , which is the second statement of the lemma.

We apply this lemma to the log odds ratio ℓ associated with the current belief p. For

later use, we note that dp/dℓ = p (1− p).

Lemma B.4 Let ρ > 0. There exist ε ∈ (0, p‡ − p) and ∆(p,p+ε] > 0 such that

(1− δ)m(p) + δE∆
Nw

∆(p) ≥ (1− δ)s + δE∆
N−1w

∆(p),

for all p ∈ (p, p + ε] and ∆ < ∆(p,p+ε].

Proof: Consider a belief p0 = p and the corresponding log odds ratio ℓ. Let K players

use the risky arm on the time interval [0,∆) and consider the resulting belief p
(K)
∆ and the

associated log odds ratio ℓ
(K)
∆ .

Let Pθ denote the probability measure associated with state θ ∈ {0, 1}. Expected contin-

uation payoffs are computed by means of the measure Pp = pP1 + (1− p)P0.

Let J∆
0 denote the event that no lump-sum arrives by time ∆. The probability of J∆

0

under the measure Pθ is e−λθ∆. Note that

e−λθ∆Pθ[A | J∆
0 ] ≤ Pθ[A] ≤ e−λθ∆Pθ[A | J∆

0 ] + 1− e−λθ∆,

for any event A.

As we have seen in Appendix A.1, conditional on J∆
0 , the random variable ℓ

(K)
∆ is normally

distributed with mean ℓ − K
(
λ1 − λ0 − ρ

2

)
∆ and variance Kρ∆ under P1, and normally

distributed with mean ℓ−K
(
λ1 − λ0 +

ρ
2

)
∆ and variance Kρ∆ under P0.

Now choose ε > 0 such that p + ε < p‡. Write ℓ, ℓε, ℓ
‡ and ℓ̄ for the log odds ratios

associated with p, p+ ε, p‡ and p̄, respectively. Choose ∆0 > 0 such that

ν0 = min
(∆,ℓ)∈[0,∆0]×[ℓ,ℓε]

[
ℓ‡ − ℓ+ (N − 1)

(
λ1 − λ0 −

ρ

2

)
∆
]2
> 0.
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For all p ∈ (p, p + ε] and ∆ ∈ (0,∆0), the first part of Lemma B.3 now implies

Pp

[
p
(N−1)
∆ > p‡

]
= Pp

[
ℓ
(N−1)
∆ > ℓ‡

]

≤ p
{
e−λ1∆P1

[
ℓ
(N−1)
∆ > ℓ‡

∣∣∣J∆
0

]
+ 1− e−λ1∆

}

+ (1− p)
{
e−λ0∆P0

[
ℓ
(N−1)
∆ > ℓ‡

∣∣∣ J∆
0

]
+ 1− e−λ0∆

}

≤ p

{
e−λ1∆(N − 1)ρ∆

ν0
+ 1− e−λ1∆

}

+ (1− p)

{
e−λ0∆(N − 1)ρ∆

ν0
+ 1− e−λ0∆

}

≤ (N − 1)ρ∆

ν0
+ 1− e−λ1∆

≤
{
(N − 1)ρ

ν0
+ λ1

}
∆.

As w∆ ≤ s+ (m1 − s)1(p‡,1], moreover,

E∆
N−1w

∆(p) ≤ s+ (m1 − s)Pp

[
p
(N−1)
∆ > p‡

]
.

So there exists C0 > 0 such that E∆
N−1w

∆(p) ≤ s+C0∆ for all p ∈ (p, p+ ε] and ∆ ∈ (0,∆0).

Next, define ν1 = minp≤p≤p̄ p (1− p) and note that for p ≤ p ≤ p̄ (and thus for ℓ ≤ ℓ ≤ ℓ̄),

VN,p(p) ≥ s+max
{
0, V ′

N,p(p+)(p − p)
}
≥ s+max

{
0, V ′

N,p(p+)ν1(ℓ− ℓ)
}
.

By the second part of Lemma B.3, there exists ∆1 > 0 such that Nρ∆1 < 1 and

P1

[
(Nρ∆)

3

4 ≤ ℓ
(N)
∆ − ℓ+N

(
λ1 − λ0 −

ρ

2

)
∆ ≤ (Nρ∆)

1

4

∣∣∣J∆
0

]
≥ 1

2
− (Nρ∆)

1

4 ,

for arbitrary ℓ and all ∆ ∈ (0,∆1). In particular,

Pp

[
(Nρ∆)

3

4 ≤ ℓ
(N)
∆ − ℓ+N

(
λ1 − λ0 −

ρ

2

)
∆ ≤ (Nρ∆)

1

4

]

≥ pP1

[
(Nρ∆)

3

4 ≤ ℓ
(N)
∆ − ℓ+N

(
λ1 − λ0 −

ρ

2

)
∆ ≤ (Nρ∆)

1

4

]

≥ pe−λ1∆P1

[
(Nρ∆)

3

4 ≤ ℓ
(N)
∆ − ℓ+N

(
λ1 − λ0 −

ρ

2

)
∆ ≤ (Nρ∆)

1

4

∣∣∣ J∆
0

]

≥ pe−λ1∆

(
1

2
− (Nρ∆)

1

4

)
,

for these ∆. Taking ∆1 smaller if necessary, we can also ensure that

ℓ < ℓ−N
(
λ1 − λ0 −

ρ

2

)
∆+ (Nρ∆)

3

4 < ℓ−N
(
λ1 − λ0 −

ρ

2

)
∆+ (Nρ∆)

1

4 < ℓ̄,

for all ℓ ∈ (ℓ, ℓε] and all ∆ ∈ (0,∆1).

By Lemma A.3, there exists ∆2 ∈ (0,∆1) such that w∆ ≥ VN,p for ∆ ∈ (0,∆2). For such
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∆ and p ∈ (p, p+ ε], we now have

E∆
Nw

∆(p) ≥ s+ pe−λ1∆

(
1

2
− (Nρ∆)

1

4

)
V ′
N,p(p+) ν1

[
ℓ−N

(
λ1 − λ0 −

ρ

2

)
∆+ (Nρ∆)

3

4 − ℓ
]

≥ s+ p(1− λ1∆)

(
1

2
− (Nρ∆)

1

4

)
V ′
N,p(p+) ν1

[
−N

(
λ1 − λ0 −

ρ

2

)
∆+ (Nρ∆)

3

4

]
.

This implies the existence of ∆3 ∈ (0,∆2) and C1 > 0 such that

E∆
Nw

∆(p) ≥ s+ C1∆
3

4 ,

for all p ∈ (p, p + ε] and ∆ ∈ (0,∆3).

For p ∈ (p, p + ε] and ∆ ∈ (0,min{∆0,∆3}), finally,

(1− δ)m(p) + δE∆
Nw

∆(p)−
[
(1− δ)s + δE∆

N−1w
∆(p)

]

≥ (1− δ)[m(p)− s] + δ
{
C1∆

3

4 − C0∆
}

= C1∆
3

4 −
{
r[s−m(p)] +C0

}
∆+ o(∆).

As the term in ∆
3

4 dominates as ∆ becomes small, there exists ∆(p,p+ε] ∈ (0,min{∆0,∆3})
such that this expression is positive for all p ∈ (p, p+ ε] and ∆ < ∆(p,p+ε].

Lemma B.5 For all ε ∈ (0, p‡ − p), there exists ∆(p+ε,p̄] > 0 such that

(1− δ)m(p) + δE∆
Nw

∆(p) ≥ (1− δ)s + δE∆
N−1w

∆(p),

for all p ∈ (p + ε, p̄] and ∆ < ∆(p+ε,p̄].

Proof: First, by Lemma A.3, there exists ∆0 > 0 such that w∆ ≥ VN,p on the unit

interval. Second, by Lemma A.4, there exist ν > 0, η > 0 and ∆1 ∈ (0,∆0) such that

VN,p(p) − w∆(p) ≥ ν for all p ∈ [p + ε
2 , p̄ + η] and ∆ < ∆1. For these p and ∆, and by

convexity of VN,p, we then have

E∆
Nw

∆(p)− E∆
N−1w

∆(p) ≥ E∆
NVN,p(p)− E∆

N−1w
∆(p)

≥ E∆
N−1VN,p(p)− E∆

N−1w
∆(p)

≥ χ∆(p)ν + [1− χ∆(p)](s −m1),

where χ∆(p) denotes the probability that the belief pt+∆ lies in [p+ ε
2 , p̄+η] given that pt = p

and N − 1 players use the risky arm for a length of time ∆. Next, there exists ∆2 ∈ (0,∆1)

such that

χ∆(p) ≥
ν
2 +m1 − s

ν +m1 − s
,

for all p ∈ (p + ε, p̄] and ∆ < ∆2. For these p and ∆, we thus have

(1− δ)m(p) + δE∆
Nw

∆(p)−
[
(1− δ)s + δE∆

N−1w
∆(p)

]
≥ (1− δ)[m(p)− s] + δ

ν

2
.
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Finally, there is a ∆(p+ε,p̄] ∈ (0,∆2) such that the right-hand side of this inequality is positive

for all p ∈ (p + ε, p̄] and ∆ < ∆(p+ε,p̄].

Lemma B.6 There exists ∆(p̄,1] > 0 such that

(1− δ)m(p) + δE∆
Nw

∆(p) ≥ (1− δ)s + δE∆
N−1w

∆(p),

for all p > p̄ and ∆ < ∆(p̄,1].

Proof: By Lemmas A.3 and A.4, there exists ∆(p̄,1] > 0 such that w∆ ≥ w∆ for all

∆ < ∆(p̄,1]. For such ∆ and all p > p̄, we thus have

(1− δ)m(p) + δE∆
Nw

∆(p) = w∆(p) ≥ w∆(p) ≥ (1− δ)s + δE∆
N−1w

∆(p),

with the last inequality following from the functional equation for w∆.

Proof of Proposition 5: Given p and p̄ as in (B.9), choose ε > 0 and ∆(p,p+ε] as in

Lemma B.4, and ∆(p‡,p̄], ∆(p+ε,p̄] and ∆(p̄,1] as in Lemmas B.2, B.5 and B.6. The two-state

automaton is an SSE for all

∆ < min
{
∆(p‡,p̄],∆(p,p+ε],∆(p+ε,p̄],∆(p̄,1]

}
.

So the statement of the proposition holds with p♭ = p‡ and p♯ = max{p̌, p⋄}.

Proof of Proposition 6: Let ε > 0 be given. First, the explicit representation for

VN,p in Section 5 and Lemma A.5 allow us to choose p ∈ (p∗N , p
♭) and p̄ ∈ (p♯, 1) such that

VN,p > V ∗
N −ε and w∆ < V ∗

1 +ε for all ∆ > 0. Second, Lemmas A.2 and A.3 and Proposition

5 imply the existence of a ∆† > 0 such that for all ∆ ∈ (0,∆†): W∆
1 > V ∗

1 −ε, w∆ ≥ VN,p, and

w∆ and w∆ are SSE payoff functions of the game with period length ∆. Third, W
∆
PBE ≤ V ∗

N

for all ∆ > 0 because any discrete-time strategy profile is feasible for a planner who maximizes

the players’ average payoff in continuous time.

For ∆ ∈ (0,∆†), we thus have

V ∗
N − ε < VN,p ≤ w∆ ≤W

∆
SSE ≤W

∆
PBE ≤ V ∗

N ,

and

V ∗
1 − ε < W∆

1 ≤W∆
PBE ≤W∆

SSE ≤ w∆ < V ∗
1 + ε,

so that ‖W∆
PBE − V ∗

N‖, ‖W∆
SSE − V ∗

N‖, ‖W∆
PBE − V ∗

1 ‖ and ‖W∆
SSE − V ∗

1 ‖ are all smaller than

ε, which was to be shown.

B.3 Pure Poisson Learning (Propositions 7–10)

Proof of Proposition 7: For any given ∆ > 0, let p̃∆ be the infimum of the set of

beliefs at which there is some PBE that gives a payoff wn(p) > s to at least one player. Let
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p̃ = lim inf∆→0 p̃
∆.

For any fixed ε > 0 and ∆ > 0, consider the problem of maximizing the players’ average

payoff subject to no use of the risky arm at beliefs p ≤ p̃− ε. Denote the corresponding value

function by W̃∆,ε. By the definition of p̃, there exists a ∆̃ε > 0 such that for ∆ ∈ (0, ∆̃ε),

the function W̃∆,ε provides an upper bound on the players’ average payoff in any PBE, and

so W
∆
PBE ≤ W̃∆,ε. The value function of the continuous-time version of this maximization

problem is VN,pε with pε = max{p̃ − ε, p∗N}. As the discrete-time solution is also feasible in

continuous time, we have W̃∆,ε ≤ VN,pε , and hence W
∆
PBE ≤ VN,pε for ∆ < ∆̃ε.

Consider a sequence of such ∆’s converging to 0 such that the corresponding beliefs p̃∆

converge to p̃. For each ∆ in this sequence, select a belief p∆ > p̃∆ with the following two

properties: (i) starting from p∆, a single failed experiment takes us below p̃∆; (ii) given the

initial belief p∆, there exists a PBE for reaction lag ∆ in which at least one player plays risky

with positive probability in the first round. Select such an equilibrium for each ∆ in the

sequence and let L∆ be the number of players in this equilibrium who, at the initial belief

p∆, play risky with positive probability. Let L be an accumulation point of the sequence of

L∆’s. After selecting a subsequence of ∆’s, we can assume without loss of generality that

player n = 1, . . . , L plays risky with probability π∆n > 0 at p∆, while player n = L+1, . . . , N

plays safe; we can further assume that (π∆n )Ln=1 converges to a limit (πn)
L
n=1 in [0, 1]L.

For player n = 1, . . . , L to play optimally at p∆, it must be the case that

(1− δ)
[
π∆n λ(p

∆)h+ (1− π∆n )s
]
+ δ



Pr∆(∅)w∆

n,∅ +
L∑

K=1

∑

|I|=K

Pr∆(I)
∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J





≥ (1− δ)s + δ



Pr∆−n(∅)w∆

n,∅ +
L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J



 ,

where we write Pr∆(I) for the probability that the set of players experimenting is I ⊆
{1, . . . , L}, Pr∆−n(I) for the probability that among the L − 1 players in {1, · · · , L} \ {n}
the set of players experimenting is I, and w∆

n,I,J for the conditional expectation of player

n’s continuation payoff given that exactly the players in I were experimenting and had J

successes (w∆
n,∅ is player n’s continuation payoff if no one was experimenting). As Pr∆(∅) =

(1 − π∆n )Pr∆−n(∅) ≤ Pr∆−n(∅), the inequality continues to hold when we replace w∆
n,∅ by its

lower bound s. After subtracting (1− δ)s from both sides, we then have

(1− δ)π∆n
[
λ(p∆)h− s

]
+ δ



Pr∆(∅)s +

L∑

K=1

∑

|I|=K

Pr∆(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J





≥ δ



Pr∆−n(∅)s +

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J



 .
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Summing up these inequalities over n = 1, . . . , L and writing π̄∆ = 1
L

∑L
n=1 π

∆
n yields

(1− δ)Lπ̄∆
[
λ(p∆)h− s

]
+ δ



Pr∆(∅)Ls +

L∑

K=1

∑

|I|=K

Pr∆(I)

∞∑

J=0

Λ∆
J,K(p∆)

L∑

n=1

w∆
n,I,J





≥ δ





L∑

n=1

Pr∆−n(∅)s +
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J



 .

By construction, w∆
n,I,0 = s whenever I 6= ∅. For |I| = K > 0 and J > 0, moreover, we have

w∆
n,I,J ≥W∆

1 (B∆
J,K(p∆)) for all players n = 1, . . . , N , and hence

L∑

n=1

w∆
n,I,J ≤ NW

∆
PBE(B

∆
J,K(p∆))− (N − L)W∆

1 (B∆
J,K(p∆))

≤ NVN,pε(B
∆
J,K(p∆))− (N − L)W∆

1 (B∆
J,K(p∆)).

So, for the preceding inequality to hold, it is necessary that

(1− δ)Lπ̄∆
[
λ(p∆)h− s

]
+ δ



Pr∆(∅)Ls +

L∑

K=1

∑

|I|=K

Pr∆(I)Λ∆
0,K(p∆)Ls

+

L∑

K=1

∑

|I|=K

Pr∆(I)

∞∑

J=1

Λ∆
J,K(p∆)

[
NVN,pε(B

∆
J,K(p∆))− (N − L)W∆

1 (B∆
J,K(p∆))

]




≥ δ





L∑

n=1

Pr∆−n(∅)s +
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)Λ

∆
0,K(p∆)s

+
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=1

Λ∆
J,K(p∆)W∆

1 (B∆
J,K(p∆))



 .

As

Pr∆(∅) +
L∑

K=1

∑

|I|=K

Pr∆(I) = 1 and
L∑

K=1

∑

|I|=K

Pr∆(I)K = Lπ̄∆,

we have the first-order expansions

Pr∆(∅) +
L∑

K=1

∑

|I|=K

Pr∆(I)Λ∆
0,K(p∆)

= Pr∆(∅) +
L∑

K=1

∑

|I|=K

Pr∆(I)
(
1−Kλ(p∆)∆

)
+ o(∆)

= 1− Lπ̄∆λ(p∆)∆ + o(∆),
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and

L∑

K=1

∑

|I|=K

Pr∆(I)Λ∆
1,K(p∆) =

L∑

K=1

∑

|I|=K

Pr∆(I)Kλ(p∆)∆ + o(∆) = Lπ̄∆λ(p∆)∆ + o(∆),

so, by uniform convergence W∆
1 → V ∗

1 (Lemma A.2), the left-hand side of the last inequality

expands as

Ls+ L

{
rπ̄ [λ(p̃)h− s]− rs+ π̄λ(p̃) [NVN,pε(j(p̃))− (N−L)V ∗

1 (j(p̃))− Ls]

}
∆+ o(∆),

with π̄ = lim∆→0 π̄
∆. In the same way, the identities

Pr∆−n(∅) +
L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I) = 1 and

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)K = Lπ̄∆ − π∆n

imply

L∑

n=1

Pr∆−n(∅) +
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)Λ

∆
0,K(p∆) = L− L(L− 1)π̄∆λ(p∆)∆ + o(∆),

and
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)Λ

∆
1,K(p∆) = L(L− 1)π̄∆λ(p∆)∆ + o(∆),

and so the right-hand side of the inequality expands as

Ls+ L
{
− rs+ (L− 1)π̄λ(p̃) [V ∗

1 (j(p̃))− s]
}
∆+ o(∆).

Comparing terms of order ∆, dividing by L and letting ε→ 0, we obtain

π̄
{
λ(p̃)

[
NVN,p̆(j(p̃))− (N−1)V ∗

1 (j(p̃))− s
]
− rc(p̃)

}
≥ 0.

By Lemma A.9, this means p̃ ≥ p̂ whenever π̄ > 0.

For the case that π̄ = 0, we write the optimality condition for player n ∈ {1, . . . , L} as

(1− δ)λ(p∆)h+ δ





L−1∑

K=0

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=0

Λ∆
J,K+1(p

∆)w∆
n,I∪̇{n},J





≥ (1− δ)s + δ



Pr∆−n(∅)w∆

n,∅ +
L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J



 .

As above, w∆
n,∅ ≥ s, and w∆

n,I,0 = s whenever I 6= ∅. For |I| = K > 0 and J > 0, more-

over, we have w∆
n,I,J ≥ W∆

1 (B∆
J,K(p∆)), w∆

n,I∪̇{n},J ≥ W∆
1 (B∆

J,K+1(p
∆)) and w∆

n,I∪̇{n},J ≤
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NVN,pε(B
∆
J,K+1(p

∆))− (N − 1)W∆
1 (B∆

J,K+1(p
∆)). So, for the optimality condition to hold, it

is necessary that

(1− δ)λ(p∆)h+ δ





L−1∑

K=0

∑

|I|=K,n 6∈I
Pr∆−n(I)Λ

∆
0,K+1(p

∆)s

+
L−1∑

K=0

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=1

Λ∆
J,K+1(p

∆)
[
NVN,pε(B

∆
J,K+1(p

∆))− (N−1)W∆
1 (B∆

J,K+1(p
∆))

]




≥ (1− δ)s + δ



Pr∆−n(∅)s +

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)Λ

∆
0,K(p∆)s

+

L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)

∞∑

J=1

Λ∆
J,K(p∆)W∆

1 (B∆
J,K(p∆))



 .

Now,
L−1∑

K=1

∑

|I|=K,n 6∈I
Pr∆−n(I)K = Lπ̄∆ − π∆n → 0,

as ∆ vanishes. Therefore, the left-hand side of the above inequality expands as

s+

{
r [λ(p̃)h− s] + λ(p̃) [NVN,pε(j(p̃))− (N−1)V ∗

1 (j(p̃))− s]

}
∆+ o(∆),

and the right-hand side as s + o(∆). Comparing terms of order ∆, letting ε → 0 and using

Lemma A.9 once more, we again obtain p̃ ≥ p̂.

The statement about the range of experimentation now follows immediately from the fact

that for ∆ < ∆̃ε, we haveW
∆
PBE ≤ VN,pε , and henceW

∆
PBE = VN,pε = s on [0, p̃−ε] ⊇ [0, p̂−ε].

The statement about the supremum of equilibrium payoffs follows from the inequality

W
∆
PBE ≤ VN,pε for ∆ < ∆̃ε, convergence VN,pε → VN,p̃ as ε → 0, and the inequality VN,p̃ ≤

VN,p̂.

We now turn to the proof of Proposition 8. The only difference to the case with a

Brownian component is the proof of incentive compatibility to the immediate right of p.

In view of Lemmas A.9, A.4 and A.5, we consider p and p̄ such that

p̂ < p < p‡ < p∗1 < pm < max{p⋄, p̌} < p̄ < 1. (B.10)

Lemma B.7 Let ρ = 0 and λ0 > 0. There exists p♯ ∈ (max{p⋄, p̌}, 1) such that for all

p̄ ∈ (p♯, 1), there exist ε ∈ (0, p‡ − p) and ∆(p,p+ε] > 0 such that

(1− δ)m(p) + δE∆
Nw

∆(p) ≥ (1− δ)s + δE∆
N−1w

∆(p),

for all p ∈ (p, p + ε] and ∆ < ∆(p,p+ε].
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Proof: By Lemma A.3, there exists ∆0 > 0 such that w∆ ≥ VN,p for ∆ ∈ (0,∆0).

By Lemma A.9,

λ(p)[NVN,p(j(p)) − (N − 1)V ∗
1 (j(p)) − s]− rc(p) > 0

on [p, 1]. As VN,p(j(p)) ≤ VN,p(j(p)) for p ≥ p, this implies

λ(p)[NVN,p(j(p)) − (N − 1)V ∗
1 (j(p)) − s]− rc(p) > 0

on [p, 1]. By Lemma A.6, there exists a belief p♯ > max{p⋄, p̌} such that for all p̄ > p♯,

λ(p)[NVN,p(j(p)) − (N − 1)V1,p̄(j(p)) − s]− rc(p) > 0

on [p, 1]. Fix a p̄ ∈ (p♯, 1), define

ν = min
p∈[p,1]

{
λ(p)[NVN,p(j(p)) − (N − 1)V1,p̄(j(p)) − s]− rc(p)

}
> 0,

and choose ε > 0 such that p+ ε < p‡ and

(Nλ(p + ε) + r)
[
VN,p(p+ ε)− s

]
< ν/3.

In the remainder of the proof, we write pKJ for the posterior belief starting from p when

K players use the risky arm and J lump-sums arrive within the length of time ∆.

For p ∈ (p, p + ε] and ∆ ∈ (0,∆0),

(1− δ)m(p) + δE∆
Nw

∆(p)

≥ (1− δ)m(p) + δE∆
N VN,p(p)

= r∆m(p) + (1− r∆)
{
Nλ(p)∆VN,p(p

N
1 ) + (1−Nλ(p)∆)VN,p(p

N
0 )

}
+O(∆2)

= VN,p(p
N
0 ) +

{
rm(p) +Nλ(p)VN,p(p

N
1 )− (Nλ(p) + r)VN,p(p

N
0 )

}
∆+O(∆2),

while

(1− δ)s + δE∆
N−1w

∆(p)

= r∆ s+ (1− r∆)
{
(N − 1)λ(p)∆w∆(pN−1

1 ) + [1− (N − 1)λ(p)∆]w∆(pN−1
0 )

}
+O(∆2)

= w∆(pN−1
0 ) +

{
rs+ (N − 1)λ(p)w∆(pN−1

1 )− [(N − 1)λ(p) + r]w∆(pN−1
0 )

}
∆+O(∆2).

As VN,p(p
N
0 ) ≥ s = w∆(pN−1

0 ), the difference (1−δ)m(p)+δE∆
Nw

∆(p)−
[
(1− δ)s + δE∆

N−1w
∆(p)

]

is no smaller than ∆ times

λ(p)
[
NVN,p(p

N
1 )− (N − 1)w∆(pN−1

1 )− s
]
− rc(p)− (Nλ(p) + r)

[
VN,p(p

N
0 )− s

]
,
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plus terms of order ∆2 and higher.

Let ξ = ν
6(N−1)λ1

. By Lemma A.8 as well as Lipschitz continuity of VN,p and V1,p̄,

there exists ∆1 ∈ (0,∆0) such that ‖w∆ − V1,p̄‖, maxp≤p≤p‡ |VN,p(p
N
1 ) − VN,p(j(p))| and

maxp≤p≤p‡ |V1,p̄(pN−1
1 ) − V1,p̄(j(p))| are all smaller than ξ when ∆ < ∆1. For such ∆ and

p ∈ (p, p‡], we thus have VN,p(p
N
1 ) > VN,p(j(p)) − ξ and w∆(pN−1

1 ) < V1,p̄(j(p)) + 2ξ, so that

the expression displayed above is larger than ν − 2(N − 1)λ(p)ξ − ν/3 > ν/3. This implies

existence of a ∆(p,p+ε] ∈ (0,∆1) as in the statement of the lemma.

Proof of Proposition 8: Given p as in (B.10), take p♯ as in Lemma B.7 and fix p̄ > p♯.

Choose ε > 0 and ∆(p,p+ε] as in Lemma B.7, and ∆(p‡,p̄], ∆(p+ε,p̄] and ∆(p̄,1] as in Lemmas

B.2, B.5 and B.6. The two-state automaton is an SSE for all

∆ < min
{
∆(p‡,p̄],∆(p,p+ε],∆(p+ε,p̄],∆(p̄,1]

}
.

So the statement of the proposition holds with p♭ = p‡ and the chosen p♯.

For the proof of Proposition 9, we modify notation slightly, writing Λ for the probability

that, conditional on θ = 1, a player has at least one success on his own risky arm in any given

round, and g for the corresponding expected payoff per unit of time.25

Consider an SSE played at a given prior p, with associated payoff W . If K ≥ 1 players

unsuccessfully choose the risky arm, the belief jumps down to a posterior denoted pK . Note

that an SSE allows the continuation play to depend on the identity of these players. Taking

the expectation over all possible combinations of K players who experiment, however, we

can associate with each posterior pK , K ≥ 1, an expected continuation payoff WK . If

K = 0, so that no player experiments, the belief does not evolve, but there is no reason

that the continuation strategies (and so the payoff) should remain the same. We denote

the corresponding payoff by W0. In addition, we write π ∈ [0, 1] for the probability with

which each player experiments at p, and qK for the probability that at least one player has a

success, given p, when K of them experiment. The players’ common payoff must then satisfy

the following optimality equation:

W = max

{
(1− δ)p0g + δ

N−1∑

K=0

(
N − 1

K

)
πK(1− π)N−1−K [qK+1g + (1− qK+1)WK+1)] ,

(1− δ)s + δ

N−1∑

K=1

(
N − 1

K

)
πK(1− π)N−1−K(qKg + (1− qK)WK) + δ(1 − π)N−1W0)

}
.

The first term corresponds to the payoff from playing risky, the second from playing safe.

As it turns out, it is more convenient to work with odds ratios

ω =
p

1− p
and ωK =

pK
1− pK

,

25I.e., Λ = 1− e−λ1∆ and g = m1.
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which we refer to as “belief” as well. Note that

pK =
p (1− ω)K

p (1− ω)K + 1− p

implies that ωK = (1− Λ)Kω. Note also that

1− qK = p (1− Λ)K + 1− p = (1− p)(1 + ωK), qK = p− (1− p)ωK = (1− p)(ω − ωK).

We define

m =
s

g − s
, υ =

W − s

(1− p)(g − s)
, υK =

WK − s

(1− pK)(g − s)
.

Note that υ ≥ 0 in any equilibrium, as s is a lower bound on the value. Simple computations

now give

υ = max

{
ω − (1− δ)m + δ

N−1∑

K=0

(
N − 1

K

)
πK(1− π)N−1−K(υK+1 − ωK+1) ,

δω + δ

N−1∑

K=0

(
N − 1

K

)
πK(1− π)N−1−K(υK − ωK)

}
.

It is also useful to introduce w = υ − ω and wK = υK − ωK . We then obtain

w = max

{
−(1− δ)m+ δ

N−1∑

K=0

(
N − 1

K

)
πK(1− π)N−1−KwK+1 ,

−(1− δ)ω + δ
N−1∑

K=0

(
N − 1

K

)
πK(1− π)N−1−KwK

}
. (B.11)

We define

ω∗ =
m

1 + δ
1−δΛ

.

This is the odds ratio corresponding to the single-agent cutoff p∆1 , i.e., ω
∗ = p∆1 /(1 − p∆1 ).

Note that p∆1 > p∗1 for ∆ > 0.

As stated in Section 6.2, no PBE involves experimentation below p∆1 or, in terms of odds

ratios, ω∗. For all beliefs ω < ω∗, therefore, any equilibrium has w = −ω, or υ = 0, for each

player.

Proof of Proposition 9: Following terminology from repeated games, we say that we

can enforce action π ∈ {0, 1} at belief ω if we can construct an SSE for the prior belief ω in

which players prefer to choose π in the first round rather than deviate unilaterally.

Our first step is to derive sufficient conditions for enforcement of π ∈ {0, 1}. The condi-

tions to enforce these actions are intertwined, and must be derived simultaneously.

Enforcing π = 0 at ω. To enforce π = 0 at ω, it suffices that one round of using the safe

arm followed by the best equilibrium payoff at ω exceeds the payoff from one round of using
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the risky arm followed by the resulting continuation payoff at belief ω1 (as only the deviating

player will have experimented). See below for the precise condition.

Enforcing π = 1 at ω. If a player deviates to π = 0, we jump to wN−1 rather than wN in

case all experiments fail. Assume that at ωN−1 we can enforce π = 0. As explained above,

this implies that at ωN−1, a player’s continuation payoff can be pushed down to what he

would get by unilaterally deviating to experimentation, which is at most −(1 − δ)m + δwN

where wN is the highest possible continuation payoff at belief ωN . To enforce π = 1 at ω, it

then suffices that

w = −(1− δ)m+ δwN ≥ −(1− δ)ω + δ(−(1 − δ)m+ δwN ),

with the same continuation payoff wN on the left-hand side of the inequality. The inequality

simplifies to

δwN ≥ (1− δ)m− ω;

by the formula for w, this is equivalent to w ≥ −ω, i.e., υ ≥ 0. Given that

υ = ω − (1− δ)m+ δ(υN − ωN) = (1− δ(1 − Λ)N )ω − (1− δ)m+ δυN ,

to show that υ ≥ 0, it thus suffices that

ω ≥ m

1 + δ
1−δ (1− (1− Λ)N )

= ω̃,

and that υN ≥ 0, which is necessarily the case if υN is an equilibrium payoff. Note that

(1 − Λ)N ω̃ ≤ ω∗, so that ωN ≥ ω∗ implies ω ≥ ω̃. In summary, to enforce π = 1 at ω, it

suffices that ωN ≥ ω∗ and π = 0 be enforceable at ωN−1.

Enforcing π = 0 at ω (continued). Suppose we can enforce it at ω1, ω2, . . . , ωN−1, and

that ωN ≥ ω∗. Note that π = 1 is then enforceable at ω from our previous argument, given

our hypothesis that π = 0 is enforceable at ωN−1. It then suffices that

−(1− δ)ω + δ(−(1 − δ)m+ δwN ) ≥ −(1− δN )m+ δNwN ,

where again it suffices that this holds for the highest value of wN . To understand this

expression, consider a player who deviates by experimenting. Then the following period the

belief is down one step, and if π = 0 is enforceable at ω1, it means that his continuation

payoff there can be chosen to be no larger than what he can secure at that point by deviating

and experimenting again, etc. The right-hand side is then obtained as the payoff from N

consecutive unilateral deviations to experimentation (in fact, we have picked an upper bound,

as the continuation payoff after this string of deviations need not be the maximum wN ). The

left-hand side is the payoff from playing safe one period before setting π = 1 and getting the

maximum payoff wN , a continuation strategy that is sequentially rational given that π = 1

is enforceable at ω by our hypothesis that π = 0 is enforceable at ωN−1.
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Plugging in the definition of υN , this inequality simplifies to

(δ2 − δN )υN ≥ (δ2 − δN )(ωN −m) + (1− δ)(ω −m),

which is always satisfied for beliefs ω ≤ m, i.e., below the myopic cutoff ωm (which coincides

with the normalized payoff m).

To summarize, if π = 0 can be enforced at the N − 1 consecutive beliefs ω1, . . . , ωN−1,

with ωN ≥ ω∗ and ω ≤ ωm, then both π = 0 and π = 1 can be enforced at ω. By induction,

this implies that if we can find an interval of beliefs [ωN , ω) with ωN ≥ ω∗ for which π = 0

can be enforced, then π = 0, 1 can be enforced at all beliefs ω′ ∈ (ω, ωm).

Our second step is to establish that such an interval of beliefs exists. This second step

involves itself three steps. First, we derive some “simple” equilibrium, which is a symmetric

Markov equilibrium. Second, we show that we can enforce π = 1 on sufficiently (finitely)

many consecutive values of beliefs building on this equilibrium; third, we show that this can

be used to enforce π = 0 as well.

It will be useful to distinguish beliefs according to whether they belong to the interval

[ω∗, (1+λ1∆)ω∗), [(1+λ1∆)ω∗, (1+2λ1∆)ω∗), . . . For τ ∈ IN , let Iτ+1 = [(1+ τλ1∆)ω∗, (1+

(τ+1)λ1∆)ω∗). For fixed ∆, every ω ≥ ω∗ can be uniquely mapped into a pair (x, τ) ∈ [0, 1)×
IN such that ω = (1+λ1(x+τ)∆)ω∗, and we alternatively denote beliefs by such a pair. Note

also that, for small enough ∆ > 0, one unsuccessful experiment takes a belief that belongs to

the interval Iτ+1 to (within O(∆2) of) the interval Iτ . (Recall that Λ = λ1∆+O(∆2).)

Let us start with deriving a symmetric Markov equilibrium. Hence, because it is Marko-

vian, υ0 = υ in our notation, that is, the continuation payoff when nobody experiments is

equal to the payoff itself.

Rewriting the equations, using the risky arm gives the payoff26

υ = ω − (1− δ)m − δ(1 − Λ)(1 − πΛ)N−1ω + δ

N−1∑

K=0

(
N − 1

K

)
πK(1− π)N−1−KυK+1,

while using the safe arm yields

υ = δ(1 − (1− πΛ)N−1)ω + δ(1 − π)N−1υ + δ
N−1∑

K=1

(
N − 1

K

)
πK(1− π)N−1−KυK .

In the Markov equilibrium we derive, players are indifferent between both actions, and so

their payoffs are the same. Given any belief ω or corresponding pair (τ, x), we conjecture an

equilibrium in which π = a(τ, x)∆2 +O(∆3), υ = b(τ, x)∆2 +O(∆3), for some functions a, b

of the pair (τ, x) only. Using the fact that Λ = λ1∆+O(∆2), 1− δ = r∆+O(∆2), we replace

26To pull out the terms involving the belief ω from the sum appearing in the definition of υ, use

the fact that
∑N−1

K=0

(
N−1

K

)
πK(1 − π)N−1−K(1− Λ)K = (1− πΛ)N/(1− πΛ).
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this in the two payoff expressions, and take Taylor expansions to get, respectively,

0 =

(
rb(τ, x) +

λ1m

λ1 + r
(N − 1)a(τ, x)

)
∆3 +O(∆4),

and

0 = [b(τ, x)− rmλ1(τ + x)]∆2 +O(∆3).

We then solve for a(τ, x), b(τ, x), to get

π− =
r(λ1 + r)(x+ τ)

N − 1
∆2 +O(∆3),

with corresponding value

υ− = λ1mr(x+ τ)∆2 +O(∆3).

This being an induction on K, it must be verified that the expansion indeed holds at the

lowest interval, I1, and this verification is immediate.27

We now turn to the second step and argue that we can find N − 1 consecutive beliefs

at which π = 1 can be enforced. We then verify that incentives can be provided to do so,

assuming that υ− are the continuation values used by the players whether a player deviates

or not from π = 1. Assume that N − 1 players choose π = 1. Consider the remaining one.

His incentive constraint to choose π = 1 is

−(1− δ)m+ δυN − δ(1 − Λ)Nω ≥ −(1− δ)ω − δ(1 − Λ)N−1ω + δυN−1, (B.12)

where υN , υN−1 are given by υ− at ωN , ωN−1. The interpretation of both sides is as before,

the payoff from abiding with the candidate equilibrium action vs. the payoff from deviating.

Fixing ω and the corresponding pair (τ, x), and assuming that τ ≥ N − 1,28 we insert our

formula for υ−, as well as Λ = λ1∆+O(∆), 1− δ = r∆+O(∆). This gives

τ ≥ (N − 1)

(
2 +

λ1
λ1 + r

)
− x.

Hence, given any integer N ′ ∈ IN , N ′ > 3(N − 1), there exists ∆̄ > 0 such that for every ∆ ∈
(0, ∆̄), π = 1 is an equilibrium action at all beliefs ω = ω∗(1+ τ∆), for τ = 3(N − 1), . . . , N ′

(we pick the factor 3 because λ1/(λ1 + r) < 1).

Fix N − 1 consecutive beliefs such that they all belong to intervals Iτ with τ ≥ 3(N − 1)

(say, τ ≤ 4N), and fix ∆ for which the previous result holds, i.e., π = 1 can be enforced at

all these beliefs. We now turn to the third step, showing how π = 0 can be enforced as well

27Note that this solution is actually continuous at the interval endpoints. It is not the only solution

to these equations; as mentioned in the text, there are intervals of beliefs for which multiple symmetric

Markov equilibria exist in discrete time. It is easy to construct such equilibria in which π = 1 and the

initial belief is in (a subinterval of) I1.
28Considering τ < N − 1 would lead to υN = 0, so that the explicit formula for υ− would not apply

at ωN . Computations are then easier, and the result would hold as well.
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for these beliefs.

Suppose that players choose π = 0. As a continuation payoff, we can use the payoff from

playing π = 1 in the following round, as we have seen that this action can be enforced at

such a belief. This gives

δω + δ(−(1 − δ)m− δ(1 − Λ)N l + δυ−(ωN )).

(Note that the discounted continuation payoff is the left-hand side of (B.12).) By deviating

from π = 0, a player gets at most

ω + (−(1− δ)m− δ(1 − Λ)ω + δυ−(ω1)) .

Again inserting our formula for υ−, this reduces to

mr(N − 1)λ1
λ1 + r

∆ ≥ 0.

Hence we can also enforce π = 0 at all these beliefs. We can thus apply our induction

argument: there exists ∆̄ > 0 such that, for all ∆ ∈ (0, ∆̄), both π = 0, 1 can be enforced at

all beliefs ω ∈ (ω∗(1 + 4N∆), ωm).

Note that we have not established that, for such a belief ω, π = 1 is enforced with a

continuation in which π = 1 is being played in the next round (at belief ωN > ω∗(1+4N∆)).

However, if π = 1 can be enforced at belief ω, it can be enforced when the continuation payoff

at ωN is highest possible; in turn, this means that, as π = 1 can be enforced at ωN , this

continuation payoff is at least as large as the payoff from playing π = 1 at ωN as well. By

induction, this implies that the highest equilibrium payoff at ω is at least as large as the one

obtained by playing π = 1 at all intermediate beliefs in (ω∗(1 + 4N∆), ω) (followed by, say,

the worst equilibrium payoff once beliefs below this range are reached).

Similarly, we have not argued that, at belief ω, π = 0 is enforced by a continuation

equilibrium in which, if a player deviates and experiments unilaterally, his continuation payoff

at ω1 is what he gets if he keeps on experimenting alone. However, because π = 0 can be

enforced at ω1, the lowest equilibrium payoff that can be used after a unilateral deviation

at ω must be at least as low as what the player can get at ω1 from deviating unilaterally

to risky again. By induction, this implies that the lowest equilibrium payoff at belief ω is

at least as low as the one obtained if a player experiments alone for all beliefs in the range

(ω∗(1 + 4N∆), ω) (followed by, say, the highest equilibrium payoff once beliefs below this

interval are reached).

Note that, as ∆ → 0, these bounds converge (uniformly in ∆) to the cooperative solu-

tion (restricted to no experimentation at and below ω = ω∗) and the single-agent payoff,

respectively, which was to be shown. (This is immediate given that these values correspond

to precisely the cooperative payoff (with N or 1 player) for a cutoff that is within a distance

of order ∆ of the cutoff ω∗, with a continuation payoff at that cutoff which is itself within ∆
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times a constant of the safe payoff.)

This also immediately implies (as for the case λ0 > 0) that for fixed ω > ωm, both

π = 0, 1 can be enforced at all beliefs in [ωm, ω] for all ∆ < ∆̄, for some ∆̄ > 0: the gain

from a deviation is of order ∆, yet the difference in continuation payoffs (selecting as a

continuation payoff a value close to the maximum if no player unilaterally defects, and close

to the minimum if one does) is bounded away from 0, even as ∆ → 0.29 Hence, all conclusions

extend: fix ω ∈ (ω∗,∞); for every ε > 0, there exists ∆̄ > 0 such that for all ∆ < ∆̄, the

best SSE payoff starting at belief ω is at least as much as the payoff from all players choosing

π = 1 at all beliefs in (ω∗ + ε, ω) (using s as a lower bound on the continuation once the

belief ω∗ + ε is reached); and the worst SSE payoff starting at belief ω is no more than the

payoff from a player whose opponents choose π = 1 if, and only if, ω ∈ (ω∗, ω∗ + ε), and 0

otherwise.

The first part of the proposition follows immediately, picking arbitrary p ∈ (p∗1, p
m) and

p̄ ∈ (pm, 1). The second part follows from the fact that (i) p∗1 < p∆1 , as noted, and (ii) for

any p ∈ [p∆1 , p], player i’s payoff in any equilibrium is weakly lower than his best-reply payoff

against κ(p) = 1 for all p ∈ [p∗1, p], as easily follows from (B.11), the optimality equation for

w.30

Proof of Proposition 10: For λ0 > 0, the proof is the same as that of Proposition 6,

except for the fact that it deals with VN,p̂ rather than V ∗
N and relies on Propositions 7–8

rather than Proposition 5.

For λ0 = 0, the proof of Proposition 9 establishes that there exists a natural number M

such that, given p as stated, we can take ∆̄ to be (p − p∗1)/M . Equivalently, p∗1 +M∆̄ = p.

Hence, Proposition 9 can be restated as saying that, for some ∆̄ > 0, and all ∆ ∈ (0, ∆̄),

there exists p∆ ∈ (p∗1, p
∗
1 +M∆) such that the two conclusions of the proposition hold with

p = p∆. Fixing the prior, let w∆, w∆ denote the payoffs in the first and second SSE from

the proposition, respectively.31 Given that p → p∗1 and w∆(p) → s,w∆(p) → s for all

p ∈ (p∗1, p∆) as ∆ → 0, it follows that we can pick ∆† ∈ (0, ∆̄) such that for all ∆ ∈ (0,∆†),

W
∆
PBE ≤ VN,p̂ + ε, w∆ ≥ VN,p − ε, ‖W∆

1 − V ∗
1 ‖ < ε and ‖w∆ − V1,p̄‖ < ε

2 . The obvious

inequalities follow as in the proof of Proposition 6 with the subtraction of an additional ε

from the left-hand side of the first one; and the conclusion follows as before, using 2ε as an

upper bound.

29This follows by contradiction. Suppose that for some ∆ ∈ (0, ∆̄), there is ω̂ ∈ [ωm, ω] for which

either π = 0 or 1 cannot be enforced. Consider the infimum over such beliefs. Continuation payoffs

can then be picked as desired, which is a contradiction as it shows that at this presumed infimum

belief π = 0, 1 can in fact be enforced.
30Consider the possibly random sequence of beliefs visited in an equilibrium. At each belief, a flow

loss of either −(1−δ)m or −(1−δ)ω is incurred. Note that the first loss is independent of the number

of other players’ experimenting, while the second is necessarily lower when at each round all other

players experiment.
31Hence, to be precise, these payoffs are only defined on those beliefs that can be reached given the

prior and the equilibrium strategies.
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