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We study diverse parametrized versions of the operad of associative algebra, where the parameter are taken in an associative semigroup Ω (generalization of matching or family associative algebras) or in its cartesian square (two-parameters associative algebras). We give a description of the free algebras on these operads, study their formal series and prove that they are Koszul when the set of parameters is nite. We also study operadic morphisms between the operad of classical associative algebras and these objects, and links with other types of algebras (diassociative, dendriform, post-Lie. . .).

Introduction

Recently, numerous parametrization of well-known operads were introduced. Choosing a set of parameters Ω, any product dening the considered operad is replaced by a bunch of products indexed by Ω and various relations are dened on them, mimicking the relations dening the initial operads. One can for example require that any linear span of the parametrized products also satisfy the relations of the initial operads: this is the matching parametrization. For example, matching Rota-Baxter algebras, associative, dendriform, prelie algebras are introduced in [START_REF] Zhang | Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras[END_REF][START_REF]Algebraic structures on typed decorated rooted trees, SIGMA, Symmetry Integrability[END_REF]. Another way is to use one or more semigroup structures on Ω: this it the family parametrization. In this spirit, family Rota-Baxter algebras, dendriform, prelie algebras are introduced and studied in [START_REF] Aguiar | Dendriform algebras relative to a semigroup[END_REF][START_REF] Zhang | Free Rota-Baxter family algebras and (tri)dendriform family algebras[END_REF][START_REF] Zhang | Free (tri)dendriform family algebras[END_REF][START_REF] Manchon | Free pre-Lie family algebras[END_REF]. A way to obtain both these parametrizations for dendriform algebras is introduced in [START_REF]Typed binary trees and generalized dendrifom algebras[END_REF], with the help of a generalization of diassociative semigroups, called extended diassociative semigroups (briey, EDS). Finally, a two-parameters version is given for dendriform algebras and prelie algebras is described in [START_REF] Foissy | Families of algebraic structures[END_REF].

Our aim in this paper is the study of these parametrizations for the operad of associative algebras, which surprisingly did not receive a lot of attention for now. We start with twoparameters associative algebras [START_REF] Foissy | Families of algebraic structures[END_REF]. If pΩ, Ñq is a semigroup, an Ω-two-parameters associative algebra is given products ¦ α,β , with α, β Ω, satisfying the following axiom: px ¦ α,β yq ¦ αÑβ,γ z x ¦ α,βÑγ py ¦ β,γ zq.

When pΩ, ¦q pZ{2Z, ¢q, the two-parameters Ω-associative algebras were described in [START_REF] Chapoton | A set-operad of formal fractions and dendriform-like sub-operads[END_REF], as an operad on bicolored trees. When Ω is nite, the associated operad As 2 Ω is nitely generated and quadratic. We prove that it is Koszul (Proposition 1.3), and describe its Poincaré-Hilbert formal series P pXq: if |Ω| ω ¡ 1, then

P pXq 1 ¡ ωX ¡ 1 2ωp1 ¡ 2ωqX ω 2 X 2
2ωpω ¡ 1q X ω 2 X 2 p2ω ¡ 1qω 3 X 3 p5ω 2 ¡ 5ω 1qω 4 X 4 p2ω ¡ 1qp7ω 2 ¡ 7ω 1qω 5 X 5 p42ω 4 ¡ 84ω 3 56ω 2 ¡ 14ω 1qω 6 X 6 . . . We deduce a formula for the dimension p n pωq of As 2 Ω pnq with the help of Narayana numbers, (Corollary 1.5), as well as properties of p n pωq, seen as a polynomial in ω (Corollary 1.4). We also give a combinatorial description of Koszul dual of As 2 Ω in terms of words (Proposition 1.7) and a description of free As 2 Ω ! -algebras.

In the second and third parts of this paper, we introduce and study Ω-associative algebras.

Here, the set of parameters Ω is given two operations Ñ and . An Ω-associative algebra is given bilinear products ¦ α , with α Ω, with the following axioms:

x ¦ α py ¦ β zq px ¦ αβ yq ¦ αÑβ z.

In order to have a suitable parametrised operad, we impose that free Ω-associative algebras are of the form

T A pV q V à n1 KΩ pn¡1q V n .
Tensors of KΩ pn¡1q V n will be called A-typed words of length n and will be denoted α 1 . . . α n¡1 v 1 . . . v n . We impose that the products ¦ α satisfy, among other conditions, that for any

v 1 , v 2 V , v 1 ¦ α v 2 αv 1 v 2 .
We prove in Theorem 3.5 that this holds if, and only if, the triple pΩ, Ñ, q satises the following axioms:

α Ñ pβ Ñ γq pα Ñ βq Ñ γ, pα pβ Ñ γqq Ñ pβ γq pα Ñ βq γ, pα pβ Ñ γqq pβ γq α β. Such a triple pΩ, Ñ, q will be called an extended associative semigroup (briey, EAS). For example:

If Ω is a set, its trivial EAS structure is given, for any α, β Ω, α Ñ β β α β.

In this case, the Ω-associative algebras are the matching associative algebras [START_REF] Zhang | Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras[END_REF]; the particular case when Ω contains two elements appears also in [START_REF] Pirashvili | Sets with two associative operations[END_REF]. The underlying operads are also used in [START_REF] Combe | Cli operads: a hierarchy of operads on words[END_REF].

If pΩ, Ñq is a semigroup, one can make it an EAS with, for any α, β Ω, α β α.

In this case, the Ω-associative algebras are the family associative algebras of [START_REF] Zhang | Free Rota-Baxter family algebras and (tri)dendriform family algebras[END_REF].

If pΩ, q is a group, one can make it an EAS with, for any α, β Ω, α Ñ β β, α β α β ¡1 .

We give more examples of EAS, including a classication of EAS of cardinality two, in the second section. We in fact generalize these results in a linear setting: we rst observe that if pΩ, Ñ, q is a set with two operations, we consider the map ϕ :

4 Ω 2 ÝÑ Ω 2 pα, βq ÝÑ pα Ñ β, α βq, Then pΩ, Ñ, q is an EAS if, and only if pId ¢ ϕq ¥ pϕ ¢ Idq ¥ pId ¢ ϕq pϕ ¢ Idq ¥ pId ¢ τ q ¥ pϕ ¢ Idq, where τ : Ω 2 ÝÑ Ω 2 is the usual ip:

τ : 4 Ω 2 ÝÑ Ω 2 pα, βq ÝÑ pβ, αq.
This can easily be generalized in the category of vector spaces: a linear extended associative semigroup (briey, ℓEAS) is a pair pA, Φq, where Φ : A A ÝÑ A A is a linear map such as pId Φq ¥ pΦ Idq ¥ pId Φq pΦ Idq ¥ pId τ q ¥ pΦ Idq, where τ : A A ÝÑ A A is the usual ip. In particular, if pΩ, Ñ, q is an EAS, then its algebra KΩ is an ℓEAS. We then introduce the notion of Φ-associative algebra (Denition 3.4)

and we describe free Φ-associative algebras T Φ pV q in term of tensor algebras in Theorem 3.5. In particular, as a vector space,

T Φ pV q V à n1 A pn¡1q V n .
We prove in Proposition 3.6 that if V is a Φ-associative algebra, then V A is naturally an associative algebra; if Φ is invertible, we prove conversely that any convenient associative product on V A gives rise to a Φ-associative algebra structure on V . Following these results, we study the algebra structure of T Φ pV q A and, if Φ is invertible, we prove that it is freely generated by V A (Proposition 3.7).

The description of free Φ-algebras induce a combinatorial description of the operad As Φ of Φ-associative algebras (Proposition 3.8). We prove that, when A is nite-dimensional, that the operad As Φ is Koszul, and that its Koszul dual is the operad of As Φ ¦-algebras, generalizing a well-known result for the operad As of "classical" associative algebras (Proposition 3.9 and Theorem 3.10). We study operad morphisms between the operad of associative algebras and As Φ , which is related to eigenvectors of Φ (Proposition 3.12). We then give results on operadic maps between the operads As and As Φ , and between the operads As 2 Ω and As Φ (Propositions 3.14 and 3.15). The paper ends with various links with other types of algebras, such that diassociative, post-Lie, dendriform, tridendriform or duplicial algebras, and their Koszul duals.
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1 Two-parameters Ω-associative algebras Notations 1.1. In all this section, pΩ, Ñq is an associative semigroup.

Denition

In the spirit of the notion of two-parameters dendriform or duplicial algebras of [START_REF] Foissy | Families of algebraic structures[END_REF], we now introduce the notion of two-parameters associative algebras, which can be found in [START_REF] Aguiar | Dendriform algebras relative to a semigroup[END_REF]: Denition 1.1. A two-parameters Ω-associative algebra is a family pV, p¦ α,β q α,βΩ q, where V is a vector space and, for any pα, βq Ω 2 , ¦ α,β : V V ÝÑ V is a linear map such that dα, β, γ Ω, dx, y, z V, px ¦ α,β yq ¦ αÑβ,γ z x ¦ α,βÑγ py ¦ β,γ zq.

Remark 1.1. If |Ω| 1, Ω-associative algebras are associative algebras. Such a structure is related to pΩ, Ñq-graded associative products on V KΩ. For the sake of simplicity, we shall denote the tensor product x α, with x V and α Ω, by xα. Proposition 1.2. Let V be a vector space, endowed with bilinear products ¦ α,β for any pα, βq Ω 2 . We dene a product ¦ on V KΩ by dx, y V, dα, β Ω, xα ¦ yβ x ¦ α,β ypα Ñ βq. Then ¦ is associative if, and only if, pV, p¦ α,β q α,βΩ q is a two-parameters Ω-associative algebra. Proof. For any x, y, z V , for any α, β, γ

Ω, pxα ¦ yβq ¦ zγ px ¦ α,β yq ¦ αÑβ,γ zpα Ñ β Ñ γq, xα ¦ pyβ ¦ zγq x ¦ α,βÑγ py ¦ β,γ zqpα Ñ β Ñ γq.
The result is then immediate.

1.2 The operad of two-parameters Ω-associative algebras

We refer to [START_REF] Loday | Algebraic operads, Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Markl | Handbook of algebra[END_REF][START_REF] Markl | Operads in algebra, topology and physics[END_REF][START_REF] Méndez | Set operads in combinatorics and computer science[END_REF][START_REF] Yau | Colored operads[END_REF] for notations and usual results on operads. 

dα, β, γ Ω, ¦ αÑβ,γ ¥ 1 ¦ α,β ¦ α,βÑγ ¥ 2 ¦ β,γ .
We assume in this section that Ω is nite, of cardinality denoted by ω. Then the components of As 2 Ω are nite-dimensional, and the following Proposition allows to inductively compute their dimension:

Proposition 1. Then

p n ωpω ¡ 1q n¡1 ķ1 p k p n¡k ωp n¡1 , (1) 
or equivalently, if |ω| ¥ 2,

P pXq 1 ¡ ωX ¡ 1 2ωp1 ¡ 2ωqX ω 2 X 2 2ωpω ¡ 1q . (2) 
Proof. we shall use the rewriting method of [START_REF] Bremner | Algebraic operads[END_REF][START_REF] Loday | Algebraic operads, Grundlehren der Mathematischen Wissenschaften[END_REF]. We shall write elements of the free nonsymmetric operad generated by As 2 Ω p2q as planar trees which vertices are decorated by elements of Ω 2 . We will write indices on the vertices on the trees and put the corresponding decorations between parentheses, and we delete the symbols ¦ in order to enlighten the notations. For example, the operadic tree

f f f f f f f f f u u u u u u u u u u ONML HIJK ¦ γ,δ i i i i i i i i i i ONML HIJK ¦ α,β
will be shortly written ppα Ñ β, γq, pα, βqq for any α, β, γ Ω. For any planar binary tree T , let us denote by p T the number of decorations of the vertices of trees by elements of Ω 2 , avoiding these subtrees. If T is a planar binary tree dierent from the tree | (which is the unit of the operad As 2 Ω ), we denote by T l the left subtree born from the root of T , by T r the right subtree born from the root of T , and we write T T l T r .

Then, looking at the possible decorations of the root, we obtain 

p T p T l p Tr ω ¢ 5 ω if T 2 |, ω ¡ 1 otherwise. Hence, if n ¥ 2,
if ω 1, we obtain that P pXq XP pXq X,

so P pXq X 1 ¡ X V ņ1 X n ,
recovering the formal series of the nonsymmetric operad of associative algebras. If ω ¥ 2, solving (3), with the initial condition P p0q 0, we obtain (2).

Example 1.1. 1. If ω 2, the sequence pp n q n¥2 is referenced as A156017 in the OEIS. This is the sequence of dimensions of an operad given in [START_REF] Chapoton | A set-operad of formal fractions and dendriform-like sub-operads[END_REF], generated by four products , ¡, ¥ and d, with eight relations, see [START_REF]Generalized bialgebras and triples of operads[END_REF] in [START_REF] Chapoton | A set-operad of formal fractions and dendriform-like sub-operads[END_REF]. This is a special example of a type of two-parameters Ω-associative algebras, with Ω pZ{2Z, ¢q and ¦ p0,0q ¥, ¦ p0,1q , ¦ p1,0q ¡, ¦ p1,1q d.

p
Moreover, 2. If n ¥ 2, there exists a polynomial q n Zrωs, such that p n ω n q n . Moreover, q n p0q p¡1q n .

P pXq |ω2 1 ¡ 2X ¡ 1 ¡ 6p2Xq p2Xq 2
3. If n is odd and ¥ 3, then p n ¢ 1 2 0.

Proof. 1. and 2. We proceed by induction on n. As p 1 1, this is obvious. Let us assume the result at all ranks n, with n ¥ 2. The induction hypothesis gives that the following is a polynomial in Zrωs, of degree 2n ¡ 2,

ωpω ¡ 1q n¡1 ķ1 p k p n¡k .
Its leading term is

n¡1 ķ1 cat k cat n¡k cat n .
We also obtain that ωp n¡1 is a polynomial in Zrωs, of degree 2n ¡ 3. Summing in (1), we obtain the rst point for p n . Still by (1),

p n ωpω ¡ 1q n¡2 ķ2 p k p n¡k 2ωpω ¡ 1qp n¡1 ωp n¡1 ωpω ¡ 1q n¡2 ķ2 p k p n¡k ωp2ω ¡ 1qp n¡1 ω n 1 pω ¡ 1q n¡2 ķ2 q k q n¡k ω n p2ω ¡ 1qq n¡1 ω n ¤ ¦ ¦ ¦ ¦ ¥ ωpω ¡ 1q n¡2 ķ2 q k q n¡k p2ω ¡ 1qq n¡1 looooooooooooooooooooooomooooooooooooooooooooooon qn .
Moreover, q n p0q 0 ¡ q n¡1 p0q p¡1q n , which proves the second point.

3.

For ω 1

2

, we obtain

P pXq |ω 1 2 X ¡ 2 4 X 2 X 2 V ķ2 p¡1q k p2k ¡ 2q! 2 4k¡1 k!pk ¡ 1q! X 2k . Corollary 1.5. For any n ¥ 2, p n ω n n ¡ 1 £ n¡1 ķ1 ¢ n ¡ 1 k ¢ n ¡ 1 k ¡ 1 ω n¡1¡k pω ¡ 1q k¡1 .
Proof. Let us consider the Narayana numbers [START_REF] Venkata | Sur les treillis formés par les partitions d'un entier et leurs applications à la théorie des probabilités[END_REF]:

dk, n ¥ 1, N pn, kq 1 n ¢ n k ¢ n k ¡ 1 ,
and their formal series

Npz, tq ķ ,n¥1 N pn, kqz n t k¡1 1 ¡ zpt 1q ¡ 1 ¡ 2zpt 1q z 2 pt ¡ 1q 2 2tz . Then P pXq X XN ¢ ω 2 X, ω ¡ 1 ω X ķ ,n¥1 N pn, kqω 2n X n 1 ¢ ω ¡ 1 ω k¡1 X V ņ2 £ n¡1 ķ1 N pn ¡ 1, kqω 2n¡2 ¢ ω ¡ 1 ω k¡1 X n X V ņ2 £ n¡1 ķ1 N pn ¡ 1, kqω 2n¡1¡k pω ¡ 1q k¡1 X n .
Remark 1.3. These numbers appear in [START_REF] Chen | Identities involving weighted Catalan, Schröder and Motzkin paths[END_REF], where they are interpreted in terms of Catalan paths. More precisely, with the notations of [5, Denition (1.13)], ppα, βq, pγ, δqq pα, βq ¥ 1 pγ, δq with α Ñ β $ γ,

p n 1 n ¡ 1 n¡1 ķ1 ¢ n ¡ 1 k ¢ n ¡ 1 k ¡ 1 pω 2 q n¡k pωpω ¡ 1qq k¡1 C pω 2 , ωpω¡1qq n¡1 .

Koszul dual of As

1 2 ppα, βq, pγ, δqq pα, βq ¥ 2 pγ, δq with β $ γ Ñ δ.
In other terms, a As 2 Ω ! -algebra is a family pV, p¦ α,β q α,βΩ q, where V is a vector space and, for any pα, βq

Ω 2 , ¦ α,β : V V ÝÑ V is a linear map such that dα, β, γ Ω, dx, y, z V, px ¦ α,β yq ¦ αÑβ,γ z x ¦ α,βÑγ py ¦ β,γ zq, dα, β, γ, δ Ω, dx, y, z V, px ¦ α,β yq ¦ γ,δ z 0 if α Ñ β $ γ, x ¦ α,β py ¦ γ,δ zq 0 if β $ γ Ñ δ. For any n ¥ 2, dim K pAs 2 Ω ! pnqq ω n .
Proof. The presentation of As 2 Ω ! comes from a direct computation. Let us denote by QpXq the Poincaré-Hilbert formal series of As 2 Ω ! . As As 2 Ω is Koszul, QpXq is the inverse for the composition of ¡Pp¡Xq. From (3):

X P pXq ¡ ωpω ¡ 1qP pXq 2 ωP pXq 1 ¡Pp¡Xq ωpω ¡ 1qp¡P p¡Xqq 2 1 ¡ ωp¡P p¡Xqq , so QpXq is given by QpXq ωpω ¡ 1qX 2 X 1 ¡ ωX X V ņ2 ω n X n .
Let us give a combinatorial presentation of As Then P pPpnqq n¥1 is given a structure of nonsymmetric operad with the following composition: for any α 1 , . . . , α n Ω, for any β i,j Ω,

α 1 . . . α n ¥ pβ 1,1 . . . β 1,k 1 , . . . , β n,1 . . . β n,kn q £ n ¹ i1 δ α i ,β i,1 Ñ...Ñβ i,k i β 1,1 . . . β 1,k 1 . . . β n,1 . . . β n,kn .
The unit is

I αΩ α.
We dene a suboperad P 0 isomorphic to As 2 Ω ! by

P 0 pnq 5 KI if n 1, Ppnq if n ¥ 2.
Proof. For any word w α 1 . . . α n in α, we put |w| α 1 Ñ . . . Ñ α n . The composition ¥ can be rewritten in the following way: for any words w, w 1 , . . . , w n with letters in Ω, w being of length n,

w ¥ pw 1 , . . . , w n q δ w,|w 1 |...|wn| w 1 . . . w n .
Let us prove the associativity: for any word w of length n, w i , Let us prove that I is a unit. Let w α 1 . . . α n be a word with letters in Ω.

1 ¤ i ¤ n of respective lengths k i , w i,j with 1 ¤ i ¤ n and 1 ¤ j ¤ k i , all with letters in Ω, w ¥ pw 1 ¥ pw 1,1 , . . . , w 1,k 1 q, . . . , w n ¥ pw n,1 , . . . , w n,kn qq £ n ¹ i1 δ w i ,|w i,1 |...|w i,k i | δ w,||w
I ¥ α 1 . . . α n αΩ δ α,|α 1 ...αn α 1 . . . α n α 1 . . . α n , α 1 . . . α n ¥ pI, . . . , Iq β1 ,...,βnΩ n ¹ i1 δ α i ,β i β 1 . . . β n α 1 . . . α n .
So P is an operad. Obviously, P 0 is a suboperad. Moreover, for any word α 1 . . . α n of length ¥ 3, α 1 . . . α n pα 1 Ñ α 2 qα 3 . . . α n ¥ pα 1 α 2 , I, . . . , Iq. A direct induction then proves that P 0 is generated by Pp2q. Moreover, for any α, β, γ, δ Ω, pα Ñ βqγ ¥ pαβ,

Iq αpβ Ñ γq ¥ pI, βγq αβγ, γδ ¥ pαβ, Iq 0 if α Ñ β $ γ, αβ ¥ pI, γδq 0 if γ Ñ δ $ β.
Therefore, the relations dening As 2 Ω ! are satised in P 0 . Hence, there exists a surjective operad

morphism 5 As 2 Ω ! ÝÑ P 0 ¦ α,β ÝÑ αβ.
Comparing the formal series of As 2 Ω ! and P 0 , we deduce that this is an isomorphism. Corollary 1.8. Let V be a vector space. The free As 2 Ω ! -algebra generated by V is

T 2 Ω pV q V V à n2 pKΩ V q n .
The product ¦ α,β is given in the following way: for any u, v V , for any

α 1 u 1 , . . . , α k u k , β 1 v 1 , . . . , β l v l KΩ V , with k, l ¥ 1, u ¦ α,β v αuβv, α 1 u 1 . . . α k u k ¦ α,β v pδ α,α 1 Ñ...Ñα k q α 1 u 1 . . . α k u k βv, u ¦ α,β β 1 v 1 . . . β l v l pδ β,β 1 Ñ...Ñβ l q αuβ 1 v 1 . . . β l v l , α 1 u 1 . . . α k u k ¦ α,β β 1 v 1 . . . β l v l pδ α,α 1 Ñ...Ñα k δ β,β 1 Ñ...Ñβ l q α 1 u 1 . . . α k u k β 1 v 1 . . . β l v l .

Extended associative semigroups

We here give the denition and few examples of extended associative semigroups. More results can be found in [START_REF]On extended associative semigroups[END_REF].

Denition and examples

Denition 2.1. An associative extended semisgroup (briey, EAS) is a triple pΩ, Ñ, q, where Ω is a nonempty set and Ñ, : Ω 2 ÝÑ Ω are maps such that, for any α, β, γ Ω,

α Ñ pβ Ñ γq pα Ñ βq Ñ γ, (4) 
pα pβ Ñ γqq Ñ pβ γq pα Ñ βq γ,

pα pβ Ñ γqq pβ γq α β.

Example 2.1.

1. Let Ω be a set. We put dα, β Ω,

5 α Ñ β β, α β α.
Then pΩ, Ñ, q is an EAS, denoted by EASpΩq. 2. Let pΩ, q be an associative semigroup. We put dα, β Ω, α β α. Then pΩ, , q is an EAS, which we denote by EASpΩ, q. 3. Let pΩ, q be a group. We put, for any α, β Ω, α Ñ β β, α β α β ¡1 . Then pΩ, Ñ, q is an EAS, denoted by EAS I pΩ, q. Denition 2.2. Let pΩ, Ñ, q be an EAS. We shall say that it is nondegenerate if the following map is bijective:

ϕ : 4 Ω 2 ÝÑ Ω 2 pα, βq ÝÑ pα Ñ β, α βq. Example 2.2.
1. Let Ω be a set. In EASpΩq, for any α, β Ω, ϕpα, βq pβ, αq, so EASpΩq is nondegenerate, and ϕ ¡1 ϕ.

2. Let pΩ, q be a group. Then EASpΩ, q is nondegenerate. indeed, for any α, β Ω, ϕpα, βq pα β, αq, so ϕ is a bijection, of inverse given by ϕ ¡1 pα, βq pβ, β ¡1 αq.

3. Let pΩ, q be an associative semigroup with the right inverse condition. Then EAS I pΩ, q is nondegenerate. Indeed, for any α, β Ω, ϕpα, βq pβ, α βq, so ϕ is a bijection, of inverse given by ϕ ¡1 pα, βq pβ α, αq.

EAS of cardinality two

Here is a classication of EAS of cardinality two. The underlying set is Ω ta, bu and the products will be given by two matrices

¢ a Ñ a a Ñ b b Ñ a b Ñ b , ¢ a a a b b a b b .
We shall use the two maps

π a : 4 Ω ÝÑ Ω α ÝÑ a, π b : 4 Ω ÝÑ Ω α ÝÑ b.
We respect the indexation of EDS of [START_REF]Typed binary trees and generalized dendrifom algebras[END_REF].

Case Ñ Description A1 ¢ a a a a ¢ a a a a EASpΩ, Ñ, π a q A2 ¢ a a a a ¢ a a b b EASpΩ, Ñq C1 ¢ a a a b ¢ a a a a EASpΩ, Ñ, π 0 q C3 ¢ a a a b ¢ a a b b EASpZ{2Z, ¢q C5 ¢ a a a b ¢ b b b b EASpZ{2Z, π 1 q C6 ¢ a a a b ¢ a a b a E1 I ¡ E2 I ¢ a a b b ¢ a a a a EASpΩ, Ñ, π a q E3 I ¢ a a b b ¢ a a b b EASpΩ, Ñq F1 ¢ a b a b ¢ a a a a EASpΩ, Ñ, π a q F3 ¢ a b a b ¢ a a b b EASpΩq F4 ¢ a b a b ¢ a b b a EAS I pZ{2Z, q H1 ¢ a b b a ¢ a a a a EASpZ{2Z, , π 0 q H2 ¢ a b b a ¢ a a b b
EASpZ{2Z, q

The nondegenerate EAS are F 3 , F 4 and H 2 .

3 Generalized associative algebras 3.1 Discrete and linear versions Denition 3.1. Let pΩ, Ñ, q be a set with two binary operations. Let pV, p¦ α q αΩ q be a family such that V is a vector space and, for any α Ω, ¦ α : V V ÝÑ V is a linear map. We shall

say that it is an Ω-associative algebra if dx, y, z V, dα, β Ω, x ¦ α py ¦ β zq px ¦ αβ yq ¦ αÑβ z. ( 7 
) Example 3.1. 1. If Ω is a set, for EASpΩq, (7) becomes dx, y, z V, dα, β Ω, x ¦ α py ¦ β zq px ¦ α yq ¦ β z.
As a consequence, any linear span of ¦ α is associative. We recover the notion of matching associative algebra [START_REF] Zhang | Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras[END_REF].

2. If pΩ, q is a semigroup, for EASpΩ, q, (7) becomes dx, y, z V, dα, β Ω, x ¦ α py ¦ β zq px ¦ α yq ¦ αβ z. These are pΩ, q-family associative algebras. Remark 3.1. This does not include the multiassociative and the dual multiassociative algebras introduced by Giraudo in [START_REF] Giraudo | Pluriassociative algebras II: The polydendriform operad and related operads[END_REF]. We shall see that the dimension of the n-th components of the operad of Ω-associative algebras is |Ω| n¡1 for any n ¥ 2, whereas it is constant for dual multiassociative algebras and described by Narayana numbers for dual multiassociative algebras.

In order to linearize these axioms, let us rst consider the following lemma, proved in [START_REF]Generalized prelie and permutative algebras[END_REF]: Lemma 3.2. Let pΩ, Ñ, q be a set with two binary operations. We consider the maps

ϕ : 4 Ω 2 ÝÑ Ω 2 pα, βq ÝÑ pα Ñ β, α βq, τ : 4 Ω 2 ÝÑ Ω 2 pα, βq ÝÑ pβ, αq.
Then pΩ, Ñ, q is an EAS if, and only if pId ¢ ϕq ¥ pϕ ¢ Idq ¥ pId ¢ ϕq pϕ ¢ Idq ¥ pId ¢ τ q ¥ pϕ ¢ Idq. [START_REF] Curry | The Magnus expansion and post-Lie algebras[END_REF] This naturally leads to the following denition: Denition 3.3. Let A be a vector space and let Φ : A A ÝÑ A A be a linear map. We shall say that pA, Φq is a linear extended associative semigroup (briey, ℓEAS) if pId Φq ¥ pΦ Idq ¥ pId Φq pΦ Idq ¥ pId τ q ¥ pΦ Idq, [START_REF] Dotsenko | Functorial PBW theorems for post-Lie algebras[END_REF] where τ : A A ÝÑ A A is the usual ip:

τ : 4 A A ÝÑ A A a b ÝÑ b a.
We shall say that pA, Φq is nondegenerate if Φ is invertible.

Example 3.2.

1. Let pΩ, Ñ, q be an EAS and let A KΩ be its algebra, that is to say the vector space generated by Ω. We dene Φ :

4 KΩ KΩ ÝÑ KΩ KΩ α β ÝÑ pα Ñ βq pα βq,
where α, β Ω. Lemma 3.2 implies that pKΩ, Φq is an ℓEAS, which we call the linearization of pΩ, Ñ, q.

2.

Here are examples of ℓEAS of dimension 2, which are not linearization of an EAS. In these examples, A is a two-dimensional space with basis px, yq, and the maps Φ are given by their matrices in the basis px x, x y, y x, y yq.

¤ ¦ ¦ ¥ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 , ¤ ¦ ¦ ¥ 0 0 0 0 0 0 λ 0 0 0 0 0 0 0 0 0 , ¤ ¦ ¦ ¥
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

, ¤ ¦ ¦ ¥ 1 0 0 0 1 0 0 0 0 0 0 0 , ¤ ¦ ¦ ¥
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

, ¤ ¦ ¦ ¥
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

, ¤ ¦ ¦ ¥
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

, ¤ ¦ ¦ ¥ 1 0 0 0 1 0 0 1 0 0 0 0 , ¤ ¦ ¦ ¥
1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

, ¤ ¦ ¦ ¥
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

, ¤ ¦ ¦ ¥ 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 , ¤ ¦ ¦ ¥ 1 0 0 0 0 0 0 0 0 0 ¡1 0 , ¤ ¦ ¦ ¥ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 , ¤ ¦ ¦ ¥ 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 , ¤ ¦ ¦ ¥ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 , ¤ ¦ ¦ ¥ 1 0 0 0 0 0 0 0 0 0 1 1 , ¤ ¦ ¦ ¥ 1 0 1 0 0 0 ¡1 0 0 1 ¡1 0 0 0 2 1
, where λ is a scalar. More details on these examples car be found in [START_REF]On extended associative semigroups[END_REF].

Notations 3.1. Let pA, Φq be a pair, such that A is a vector space and Φ : A A ÝÑ A A is a linear map. We use the Sweedler notation:

Φpa bq ¸aI Ñ b I a P b P . Note that the operations Ñ and may not exist, nor the coproducts a I a P or b I b P . With this notation, (9) can be rewritten as ¸¸¸a I Ñ pb I Ñ c I q I pa P pb I Ñ c I q P q I Ñ pb P c P q I pa P pb I Ñ c I qq P pb P c P q P (9') ¸¸pa I Ñ b I q I Ñ c I pa I Ñ b I q P c P a P b P . Denition 3.4. Let V be a vector space and ¦ a linear map: ¦ :

6 8 7 A ÝÑ hompV V, V q a ÝÑ ¦ a : 4 V V ÝÑ v x y ÝÑ x ¦ a y. We shall say that pV, ¦q is a Φ-associative algebra if dx, y, z V, da, b A, x ¦ a py ¦ b zq ¸px ¦ a P b P yq ¦ a I Ñb I z. (10) 
We shall say that pV, ¦q is an opposite Φ-associative algebra if dx, y, z V, da, b A, ¸x ¦ a I Ñb I py ¦ a P b P zq px ¦ b yq ¦ a z.

Remark 3.2.

1. We dene ¦ op by x ¦ op a y y ¦ a x. Then pV, ¦q is a Φ-associative algebra if, and only if, pV, ¦ op q is an opposite Φ-associative algebra.

2. If Φ is invertible, opposite Φ-associative algebras and Φ ¡1 -associative algebras are the same. Remark 3.3. If pΩ, Ñ, q is an EAS and if pKΩ, Φq is its linearization, then the categories of Ωassociative algebras and of Φ-associative algebras are isomorphic: if pV, p¦ α q αΩ q is an Ω-algebra, then we obtain a Φ-associative algebra with the map ¦ :

4 KΩ ÝÑ hompV V, V q α Ω ÝÑ ¦ α .
In this way, Ω-associative algebras can be seen as particular examples of Φ-associative algebras.

Free objects

Notations 3.2. Let V be a vector space. We put

T A pV q V à n1 A pn¡1q V n .
If a 1 , . . . , a n¡1 A, x 1 , . . . , x n V , we shall denote their tensor product in A pn¡1q V n by a 1 . . . a n¡1 x 1 . . . x n . Such a tensor will be called an A-typed word of length n. We shall use the map ¤ :

4

T A pV q A V ÝÑ T A pV q a 1 . . . a n¡1 x 1 . . . x n a x ÝÑ a 1 . . . a n¡1 x 1 . . . x n ¤ ax aa 1 . . . a n¡1 ax 1 . . . x n x. Theorem 3.5. For any vector space V , we dene bilinear products ¦ a on T A pV q in the following way, by induction on the length of A-typed words:

w ¦ a z w ¤ az, u ¦ a pv ¤ bzq ¸pu ¦ a P b P vq ¤ pa I Ñ b I qz,
where u, v, w T A pV q, z V and a, b A. The following conditions are equivalent: 1. pA, Φq is an ℓEAS. 2. For any vector space V , pT A pV q, ¦q is a Φ-associative algebra.

3. There exists a nonzero vector space V such that pT A pV q, ¦q is a Φ-associative algebra. Moreover, if these conditions hold, then pT A pV q, ¦q is the free Φassociative algebra generated by V .

Proof. Obviously, 2. ùñ 3.

3. ùñ 1. Let x, y, z, t be four nonzero elements of any nonzero vector space V . For any a, b, c A,

x ¦ a py ¦ b cztq ¸¸¸p a P pb I Ñ c I qq P pb P c P q P pa P pb I Ñ c I q P q I Ñ pb P c P q I a I Ñ pb I Ñ c I q I xyzt, ¸px ¦ a I b I yq ¦ a P Ñb P czt ¸¸pa P b P qppa I Ñ b I q P c P qppa I Ñ b I q I Ñ c I qxyzt. This immediately gives (9).

1. ùñ 2. Let us prove that for any A-typed words u, v, w, for any a, b A, u ¦ a pv ¦ b wq ¸pu ¦ a I b I vq ¦ a P Ñb P w.

We proceed by induction on the length n of w. If n 1, we put w z V . u ¦ a pv ¦ b wq u ¦ a pv ¤ bzq ¸pu ¦ a I b I vq ¤ pa P Ñ b P qz ¸pu ¦ a I b I vq ¦ a P Ñb P z. Let us assume the result at rank n ¡ 1. We put w w I ¤ cz. u ¦ a pv ¦ b wq ¸u ¦ a ppv ¦ b I c I w I q ¤ pb P Ñ c P qzq ¸¸u ¦ a P pb I Ñc I q P pv ¦ b P c P w I q ¤ a I Ñ pb I Ñ c I q P z ¸¸¸p u ¦ pa P pb I Ñc I q P q P pb P c P q P vq ¦ pa P pb I Ñc I q P q I Ñpb P c P q I w I ¤ a I Ñ pb I Ñ c I q I z ¸¸pu ¦ a P b P vq ¦ pa I Ñb I q P c P w I ¤ pa I Ñ b I q I Ñ c I z ¸pu ¦ a P b P vq ¦ a I Ñb I pw I ¤ czq ¸pu ¦ a P b P vq ¦ a I Ñb I w.

We use the induction hypothesis for the third equality and ( 9) for the fourth one.

Freeness. Let us assume that conditions 1 and 2 hold. Let W be an A-associative algebra, and θ : V ÝÑ W be any linear map. Let us prove that it can be uniquely extended as a Φassociative algebra morphism Θ from T A pV q to W . Existence of Θ. We inductively dene Θpwq for any A-typed word w by induction on its length n. If n 1, then w V and we put Θpwq θpwq. Otherwise, let us write w w I ¤ az.

We put

Θpwq Θpw I q ¦ a θpzq. Let u, v be two A-typed words, and let us prove that for any a A, Θpu ¦ a vq Θpuq ¦ a Θpvq. We proceed by induction on the length n of v. If n 1, then by denition of Θ, this is true. Otherwise, let us put v v I ¤ bz. Then Θpu ¦ a vq ¸Θppu ¦ a P b P v I q ¤ pa I Ñ b I qzq ¸Θpu ¦ a P b P v I q ¦ a I Ñb I θpzq ¸pΘpuq ¦ a P b P Θpv I qq ¦ a I Ñb I θpzq Θpuq ¦ a pΘpv I q ¦ b θpzqq Θpuq ¦ a Θpvq.

So Θ is a Φ-associative algebra morphism.

Uniqueness of Θ. If Θ I is another morphism extending θ, for any A-typed word u, for any a A, for any z V , Θ I pu ¤ azq Θ I pu ¦ a zq Θ I puq ¦ a θpzq. An easy induction on the length proves that for any A-typed word u, Θ I puq Θpuq.

Links with associative algebras

Proposition 3.6. Let pA, Φq such that A is a vector space and Φ : A A ÝÑ A A is a linear map. We assume that V is a vector space and ¦ : A ÝÑ hompV V, V q is a linear map. We dene a product on V A by dx, y V, da, b A, xa yb ¸x ¦ a P b P ya I Ñ b I . Then 1. If pA, Φq is an ℓEAS and pV, ¦q is a Φ-associative algebra, then pV A, q is an associative algebra.

2. If pA, Φq is a nondegenerate ℓEAS and pV A, q is an associative algebra, then pV, ¦q is a Φ-associative algebra.

3. Let V be a nonzero vector space. If pV T A pV q, q is an associative algebra, then pA, Φq is an ℓEAS.

Proof. Let a, b, c A and x, y, z V . In V A, xa pyb zcq ¸¸x ¦ a P pb I Ñc I q P py ¦ b P c P zqa I Ñ pb I Ñ c I q I , (

pxa ybq zc ¸¸px ¦ a P b P yq ¦ pa I Ñb I q P c P zpa I Ñ b I q I Ñ c I .

1. We put X ¸¸a I Ñ pb I Ñ c I q I a P pb I Ñ c I q P b P c P pΦ Idq ¥ pId Φqpa b cq.

By ( 9), pId ΦqpXq pΦ Id A q ¥ pId A τ q ¥ pΦ Id A qpa b cq ¸¸pa I Ñ b I q I Ñ c I pa I Ñ b I q P c P a P b P .

As V is Φ-associative, we obtain that is associative.

2. By composition, the following map is bijective:

Ψ pΦ Id A q ¥ pId A ¢ Φq : 4 V 3 ÝÑ V 3 a b c
ÝÑ a I Ñ pb I Ñ c I q I a P pb I Ñ c I q P b P c P . Let a b c A 3 and a 1 b 1 c 1 Ψ ¡1 pa b cq. For any x, y, z A, xa 1 pyb 1 zc 1 q px ¦ b py ¦ c zqq a, pxa 1 yb 1 q zc 1 ¸ppx ¦ b P c P yq ¦ b I Ñc I zq a.

The associativity of induces the axiom of Φ-associative algebra for V .

3. Let x, y, z V , nonzero (not necessarily distinct). From the associativity of , we immediately deduce from ( 12) that ¸¸¸a I Ñ pb I Ñ c I q I pa P pb I Ñ c I q P q I Ñ pb P c P q I pa P pb I Ñ c I q P q P pb P cq P ¸¸pa I Ñ b I q I Ñ c I pa I Ñ b I q P c P a P b P . So pA, Φq is an ℓEAS. Remark 3.4. As a corollary, if pΩ, Ñ, q is an EAS, then Ω-associative algebras are 2-parameters associative algebras with ¦ α,β ¦ αβ . This will be formalized in Proposition 3.14 by an operad morphism.

Proposition 3.7. Let pA, Φq be an ℓEAS and let V be a nonzero vector space.

1. The following conditions are equivalent:

(a) The associative algebra T A pV q A is generated by V A.

(b) Φ is surjective.

The following conditions are equivalent:

(a) The subalgebra T A pV q A generated by V A is free.

(b) Φ is injective.

Proof. We denote by W the subalgebra of T A pV qA generated by V A. Note that it is graded by the length of words.

1. paq ùñ pbq. Let a b A 2 . Let us choose a nonzero element x of V . Then xxab A.

Because of the graduation, we can write this element under the form

xxab n i1 x i a i y i b i n i1 ¸xi y i pa P i b P i qpa I i Ñ b I i q.
Applying an element f of V ¦ such that f pxq 1, we obtain

Φ £ n i1 f px i qfpy i qa i b i a b, so Φ is surjective.
1. pbq ùñ paq. Let x 1 . . . x n a 1 . . . a n be a word of length n, and let us prove that it belongs to W by induction on n. This is obvious if n 1. Otherwise, there exists

x °bn¡1 b n A 2 , such that Φ ¡ ¸bn¡1 b n © a n a n¡1 .
By the induction hypothesis,

x 1 . . . x n¡1 a 1 . . . a n¡2 b n¡1 W , so ¸x1 . . . x n¡1 a 1 . . . a n¡2 b n¡1 x n b n ¸¸x 1 . . . x n a 1 . . . a n¡2 pb P n¡1 b P n qpb I n¡1 Ñ b I n q x 1 . . . x n a 1 . . . a n W.
2. paq ùñ pbq. Because of the graduation, W is freely generated by V A. Let x be a nonzero element of V . If °an b n $ 0, by freeness, °xa n xb n $ 0 and ¸xa n xb n ¸¸xxpa P n b P n qpa I n Ñ b I n q $ 0, So Φ p °an b n q $ 0.

2. pbq ùñ paq. We shall use the map

Φ I τ ¥ Φ : 4 A A ÝÑ A A a b ÝÑ °aP b P a I Ñ b I . As Φ is injective, Φ I is injective. Let x 1 , . . . ,
x n V and let a 1 , . . . , a n A. An easy induction on n proves that

x 1 a 1 . . . x n a n x 1 . . . x n ¡ Id pn¡2q A Φ I © ¥ ¡ Id pn¡3q A Φ I Id A © ¥ . . . ¥ ¡ Φ I Id pn¡2q A © pa 1 . . . a n q.
As a consequence, the following algebra map is injective:

4 T pV Aq ÝÑ T A pV q A x 1 a 1 . . . x n a n ÝÑ x 1 a 1 . . . x n a n .
So the image of this morphism, which is W , is freely generated by V A. Remark 3.5. Consequently, for any vector space V , pT A pV q, q is freely generated by V A if, and only if, pA, Φq is nondegenerate.

Operadic aspects and Koszul duality

In this section, pA, Φq is an ℓEAS. b l . . . b 1 a k . . . a 1 if i 1, a k . . . a i pΦ Id pl¡2q q ¥ . . . ¥ pId Φ Id pl¡3q q ¥ pId pl¡2q Φqpa i¡1 b l . . . b 1 qa i¡2 . . . a

1 if i ¥ 2.
Example 3.3. Let us consider linearizations of EAS.

1. For EASpA, q, this simplies as

α 1 . . . α k ¥ i β 1 . . . β l α 1 . . . α i¡1 pα i¡1 β 1 q . . . pα i¡1 β l qα i . . . α k .
2. For EASpΩq, this simplies as

α 1 . . . α k ¥ i β 1 . . . β l α 1 . . . α i¡1 β 1 . . . β l α i . . . α k .
This operad is used in [START_REF] Combe | Cli operads: a hierarchy of operads on words[END_REF]. When Ω has two elements, this gives the operad of duplexes of vertices of cubes dened in [29, Section 6.3].

3. If pA, q is a group, we obtain, for EAS I pA, q, that α

1 . . . α k ¥ i β 1 . . . β l α 1 . . . α i¡2 α i¡1 β ¡1 l . . . β ¡1 1 ¨β1 . . . β l α i . . . α k .
Proposition 3.9. Let us assume that A is nite-dimensional.

1. Koszul dual of the nonsymmetric operad As Φ is isomorphic to As I Φ ¦.

Koszul dual of the nonsymmetric operad As I

Φ is isomorphic to As Φ ¦.

Koszul dual of the operad SymAs

Φ is isomorphic to SymAs Φ ¦.
Proof.

1. We identify As Φ p2q ¦ A and A ¦ . This identication induces a pairing between the free nonsymmetric operad F A generated by A and the free nonsymmetric operad

F A ¦ generated by A ¦ . In particular, if a, b A, f, g A ¦ , xf ¥ 1 g, a ¥ 1 by f paqgpbq, xf ¥ 2 g, a ¥ 2 by ¡fpaqgpbq, xf ¥ 1 g, a ¥ 2 by 0, xf ¥ 2 g, a ¥ 1 by 0.
We denote by I the space of relations of As Φ p3q: this is the subspace of F A generated by the elements

¸aI Ñ b I ¥ 1 a P b P ¡ a ¥ 2 b,
with a, b A. Note that As ! Φ is the quotient of F A ¦ by the operadic ideal generated by I u . We also denote by I I the space of relations of As Φ ¦p3q: this is the subspace of F A ¦ generated by the elements ¸f I Ñ g I ¥ 2 f P g P ¡ f ¥ 1 g, with f, g A ¦ . Let a, b A and f, g A ¦ .

x ¸f I Ñ g I ¥ 2 f P g P ¡ f ¥ 1 g, ¸aI Ñ b I ¥ 1 a P b P ¡ a ¥ 2 by ¡Φ ¦ pf gqpa bq ¡ pf gqpΦpa bqq 0, so I I I u . Moreover, dimpF A p3qq 2 dimpAq 2 , dimpIq dimpI I q dimpAq 2 , so dimpI u q 2 dimpAq 2 ¡ dimpAq 2 dimpAq 2 dimpI I q and nally I u I I .

By duality.

3. By symmetrisation, pSymAs Φ q ! SymAs I Φ ¦, which is isomorphic to SymAs Φ ¦, see Re- mark 3.6. Proof. We shall use the rewriting method of [START_REF] Bremner | Algebraic operads[END_REF][START_REF] Loday | Algebraic operads, Grundlehren der Mathematischen Wissenschaften[END_REF]. We shall write elements of the free nonsymmetric operad generated by As A p2q as planar trees which vertices are decorated by elements of A. The rewriting rules are 1 2 pa, bq ÝÑ ¸1 2 pa P Ñ b P , a P b P q for any a, b A. There is only one family of critical monomials, which are the trees 

T 2 H H H H H H H H H H H H H H H T 3 T 4 }} } } } } } T 5 (13) 
with

T 1 1 2 3 pa, b, cq, T 2 ¸1 2 3 pa I Ñ b I , a P b P , cq, T 3 ¸12 3 pa, b I Ñ c I , b P c P q,
T 4 ¸¸1 2 3 pa I Ñ pb I Ñ c I q I , a P pb I Ñ c I q P , b P c P q T 5 ¸¸1 2 3 ppa I Ñ b I q I Ñ c I , pa I Ñ b I q P c P , a P b P q ¸¸¸1 2 3 pa I Ñ pb I Ñ c I q I , pa P pb I Ñ c I q P q I Ñ pb P c P q I , pa P pb I Ñ c I q P q P pb P c P q P q.

The equality between the two expressions of T 5 is equivalent to [START_REF] Dotsenko | Functorial PBW theorems for post-Lie algebras[END_REF].

Here is another application of Diagram (13):

Proposition 3.11. Let P be a nonsymmetric set operad such that for any n ¥ 1, the following map is a linear isomorphism:

ι n : 4 Pp2q pn¡1q ÝÑ Ppnq p 1 . . . p n¡1 ÝÑ p 1 ¥ 1 pp 2 ¥ 1 p. . . ¥ 1 pp n¡2 ¥ 1 p n¡1 q . . .qq.
Then there exists an ℓEAS pA, Φq such that P is isomorphic to As Φ . Proof. We put A Pp2q as a vector space. As ι 3 is bijective, for any a b A A, there exists a unique Φpa bq °aI Ñ b I a P b P A A such that a ¥ 2 b ¸pa I Ñ b I q ¥ 1 pa P b P q, or, equivalently, 1 2 pa, bq ¸1 2 pa I Ñ b I , a P b P q.

For any a, b, c A, let us compute a ¥ 2 pb ¥ 2 cq into two dierent ways. This element is the tree T 1 of (13), and, following the two paths of this diagram, we obtain that, in Pp3q, ¸¸pa I Ñ b I q I Ñ c I ¥ 1 ppa I Ñ b I q P c P ¥ 1 pa P b P qq ¸¸¸a I Ñ pb I Ñ c I q I ¥ 1 pa P pb I Ñ c I q P q I Ñ pb P c P q I ¥ ppa P pb I Ñ c I q P q P pb P c P q P qq.

As ι 4 is an isomorphism, we obtain the axioms of ℓEAS for pA, Φq. Hence, we obtain an operad isomorphism from As Φ to P, sending ¦ a to a for any a A.

Associative products

We now look for operad morphisms from the operad of associative algebras to the operad SymAs Φ , where pA, Φq is an ℓEAS, or equivalently to products m SymAs Φ p2q which are associative, that is to say such that m ¥ 1 m m ¥ 2 m. Proposition 3.12. Let pA, Φq be an ℓEAS. 1. If m is associative, identifying the terms in yzx, we nd a b 0, so a 0 or b 0.

Identifying the terms in xyz, we nd that τ ¥Φpa¢aq a a. Similarly, the identication of the terms in zyx gives that Φpb bq b b. Conversely, if Φpaq a a, then a ¥ 1 a aa, a ¥ 2 a Φpa aq aa, so ¦ a is associative, and its opposite ¦ op a is associative too.

2. If m ¥ 2 m 0, identifying the term in zyx, we nd that b 0. Identifying the term in xyz, we nd that τ ¥ Φpa ¢ aq 0. Conversely, if Φpa aq 0, then a ¥ 2 a Φpa aq 0. Remark 3.7. If pA, Φq is the linearization of an EAS pΩ, Ñ, q, we obtain that:

The associative elements m SymAs Φ p2q are the elements of the form

m αΩ λ α ¦ α or m αΩ λ α ¦ op α , such that dpα, βq Ω 2 , λ α λ β pγ,δqΩ 2 , ϕpγ,δqpα,βq λ γ λ δ . (14) 
The elements m SymAs Φ p2q such that m ¥ 2 m 0 are the elements of the form

m αΩ λ α ¦ α , such that dpα, βq Ω 2 , pγ,δqΩ 2 , ϕpγ,δqpα,βq λ γ λ δ 0. (15) 
Example 3.5. Working with EASpΩq, then ϕpα, βq pβ, αq and Condition ( 14) is empty: any linear combination of ¦ α is associative, as well as their opposite.

Example 3.6. Let us give the associative products for EAS of cardinality two. We only mention the spans of ¦ α , their opposite should be added. Here, λ, µ are scalars.

Cases

Associative products m ¥ 2 m 0

A1 λ¦ a λp¦ a ¡ ¦ b q A2 λ¦ a λp¦ a ¡ ¦ b q C1 λ¦ a 0 C3 λ¦ a , λ¦ b 0 C5 λ¦ b 0 C6 λ¦ a 0 E1 I ¡ E2 I λ¦ a λp¦ a ¡ ¦ b q E3 I λ ¦ a λ¦ b λp¦ a ¡ ¦ b q F1 λ¦ a λp¦ a ¡ ¦ b q F3 λ ¦ a µ¦ b 0 F4 λp¦ a ¦ b q, λ¦ a 0 H1
λ¦ a 0 H2 λp¦ a ¦ b q, λ¦ a 0 Corollary 3.13. Let pΩ, q be a group. The nonzero associative products in SymAs EASpΩ,q or in SymAs EAS I pΩ,q are the elements of one of the form

λ αH ¦ α or λ αH ¦ op α ,
where λ is a nonzero scalar and H is a subgroup of Ω.

Proof. Case of EASpΩ, q. Then ( 14) becomes dpα, βq Ω 2 , λ αβ λ α λ α λ β . Let H tα Ω, λ α $ 0u. We assume that H is nonempty. If α H, for any β H, λ αβ λ β .

In particular:

If β H, then α β H. If β e Ω , then λ α λ e Ω $ 0: e Ω H. If β α ¡1 , λ e Ω λ α ¡1 $ 0: α ¡1 H.
Therefore, H is a subgroup of Ω. Let α, β I, then α I α β ¡1 H. From ( 14), we deduce that λ α I β λ α λ β . Let λ be the common value of λ α for any α H; the result is the immediate.

Case of EAS I pΩ, q. Then (14) becomes dpα, βq Ω 2 , λ αβ ¡1λ α λ α λ β . The proof is similar to the case of EASpΩ, q.

3.6 Operadic morphisms between As 2 Ω and As Ω Proposition 3.14. Let pΩ, Ñ, q and let pA, Φq be its linearization, that is to say A KΩ and Φ :

4 A A ÝÑ A A α β ÝÑ α Ñ β α β,
where α, β Ω. The following denes an operad morphism:

Θ Ω : 4 As 2 Ω ÝÑ As Φ ¦ α,β ÝÑ ¦ αβ .
Proof. Let us consider an Ω-associative algebra pA, p¦ α q αΩ q. For any pα, βq Ω 2 , we put ¦ α,β ¦ αβ . Then, for any x, y, z A, x ¦ α,βÑγ py ¦ β,γ zq x ¦ αpβÑγq py ¦ βÑγ zq px ¦ pαpβÑγqqpβÑγq yq ¦ pαpβÑγqqÑpβÑγq z px ¦ pαÑβqγ yq ¦ αβ z px ¦ αÑβ,γ yq ¦ α,β z.

Hence, pA, p¦ α,β q α,β,Ω q is a 2-parameter Ω-associative algebra, which implies the existence of the operadic morphism Θ Ω .

Proposition 3.15. Let pΩ, Ñq be an associative semigroup with the right inverse condition. We consider the EAS Ω I EASpΩ, Ñq ¢ EAS I pΩ, Ñq and denote by pA I , Φ I q its linearization. The following denes a surjective operad morphism:

Θ I Ω : 4 As 2 Ω ÝÑ As Φ I ¦ α,β ÝÑ ¦ pα,βq .
Proof. The EAS structure of Ω I is given by dpα, β, γ, δq Ω 4 , pα, βq Ñ pγ, δq pα Ñ γ, δq, pα, βq pγ, δq pα, β δq.

Let pA, p¦ pα,βq q pα,βqΩ 2 q be an Ω I -associative algebra. For any pα, βq Ω I , we put ¦ α,β ¦ α,β . Then, for any x, y, z A, using the right inverse property for the second equality, px ¦ Let us consider post-Lie algebras [START_REF] Vallette | Homology of generalized partition posets[END_REF], see also [START_REF] Curry | What is a post-Lie algebra and why is it useful in geometric integration, Numerical mathematics and advanced applications[END_REF][START_REF] Curry | The Magnus expansion and post-Lie algebras[END_REF][START_REF] Dotsenko | Functorial PBW theorems for post-Lie algebras[END_REF][START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF][START_REF] Ebrahimi-Fard | Post-Lie algebras and factorization theorems[END_REF][START_REF] Foissy | Extension of the product of a post-Lie algebra and application to the SISO feedback transformation group[END_REF][START_REF] Gubarev | Poincaré-Birkho-Witt theorem for pre-Lie and post-Lie algebras[END_REF] for applications and developments. Recall that a post-Lie algebra is a family pA, ¦, t, uq where A is a vector space and ¦ and are bilinear products on A such that pA, t, uq is a Lie algebra and, for any x, y, z A, x ¦ ty, zu px ¦ yq ¦ z ¡ x ¦ py ¦ zq ¡ px ¦ zq ¦ y x ¦ pz ¦ yq, tx, yu ¦ z tx ¦ z, yu tx, y ¦ zu.

Let us start with the Koszul dual of the operad of post-Lie algebras, namely the operad of ComTriAs algebras [START_REF] Zinbiel | Encyclopedia of types of algebras[END_REF]: Denition 4.1. A ComTriAs algebra is a family pA, ¤, q, where A is a vector space and ¤ and are bilinear products on A such that for any x, y, z A,

x ¤ y y ¤ x, px ¤ yq ¤ z x ¤ py ¤ zq, px yq z x py zq, px yq z x py ¤ zq, px ¤ yq z xpy zq.

Note that the products ¤ and are respectively denoted by u and 7 in [START_REF] Zinbiel | Encyclopedia of types of algebras[END_REF].

Apart from the rst one, these axioms are the ones of a particular example of generalized associative algebra: Proposition 4.2. Let Ω be the EAS C3 (that is to say the EAS associated to the semigroup pZ{2Z, ¢q. Then any ComTriAs algebra pA, ¤, ¦q is an Ω-associative algebra, with ¦ 0 and ¦ 1 ¤.

Consequently, we obtain an operad morphism from the operad of Ω-associative algebra to the operad of ComTriAs algebras. Using Koszul duality: Corollary 4.3. Let pV, Φq be the ℓEAS dual to C3: V is two-dimensional, with basis pe 1 , e 2 q, and the basis of Φ is the basis pe 1 e 1 , e 1 e 2 , e 2 e 1 , e 2 e 2 q is ¤ ¦ ¦ ¥ 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 . Then any opposite Φ-associative algebra is a post-Lie algebra, with, for any x, y A, tx, yu x ¦ 2 y ¡ y ¦ 2 x, x ¦ y x ¦ 1 y.

We conjecture that the associated operad morphism from the operad of post-Lie algebras into the operad of opposite Φ-associative algebra is injective. 

Proof.

1. This is a reformulation of axioms ( 16), ( 18), ( 19) and ( 20), and of axioms ( 17), ( 18), ( 19) and [START_REF] Loday | Dialgebras, Dialgebras and related operads[END_REF].

2. This is a reformulation of axioms ( 16), ( 17), ( 18) and ( 19), and of axioms ( 16), ( 17), [START_REF] Giraudo | Pluriassociative algebras II: The polydendriform operad and related operads[END_REF] and [START_REF] Loday | Dialgebras, Dialgebras and related operads[END_REF].

Using Koszul duality, we obtain dendriform algebras: recall that a dendriform algebra is a family pA, , ¡q where A is a vector space and and ¡ are bilinear products on A such that for any x, y, z A, px yq z x py z y ¡ zq, px ¡ yq z x ¡ py zq, x ¡ py ¡ zq px y x ¡ yq ¡ z. Corollary 4.6. 1. Let pV, Φq be one of the two following 2-dimensional ℓ-EAS, where the matrix of Φ is expressed in the basis pe 1 e 1 , e 1 e 2 , e 2 e 1 , e 2 e 2 q:

¤ ¦ ¦ ¥ 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 , ¤ ¦ ¦ ¥ 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 .
Then any Φ-associative algebra is a dendriform algebra, with ¦ 1 and ¡ ¦ 2 . 2. Let pV, Φq is one of the two following 2-dimensional ℓ-EAS, where the matrix of Φ is expressed in the basis pe 1 e 1 , e 1 e 2 , e 2 e 1 , e 2 e 2 q: ¤ ¦ ¦ ¥ 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

, ¤ ¦ ¦ ¥
1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 .

Then any opposite Φ-associative algebra is a dendriform algebra, with ¦ 1 and ¡ ¦ 2 .

Triassociative and tridendriform algebras

Denition 4.7. [START_REF] Loday | Trialgebras and families of polytopes, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory[END_REF] A triassociative algebra is a family pA, 7, 6, uq where A is a vector space and 7, 6 and u are bilinear products on A such that for any x, y, z A, px 7 yq 7 z x 7 py 7 zq,

px 7 yq 7 z x 7 py 6 zq,

px 7 yq 7 z x 7 py u zq,

px 6 yq 7 z x 6 py 7 zq,

px u yq 7 z x u py 7 zq,

px 7 yq u z x u py 6 zq,

px 6 yq u z x 6 py u zq,

px 7 yq 6 z x 6 py 6 zq,

px u yq 6 z x 6 py 6 zq, 1. This is a reformulation of axioms((21) or [START_REF] Loday | Trialgebras and families of polytopes, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory[END_REF] or [START_REF] Loday | Algebraic operads, Grundlehren der Mathematischen Wissenschaften[END_REF]) and (24) [START_REF] Vallette | Homology of generalized partition posets[END_REF].

2. This is a reformulation of axioms (21) [START_REF] Méndez | Set operads in combinatorics and computer science[END_REF], and ((28) or ( 29) or ( 30)).

Using Koszul duality, we obtain tridendriform algebras [START_REF] Loday | Dialgebras, Dialgebras and related operads[END_REF][START_REF] Chapoton | Algèbres de Hopf des permutahèdres, associahèdres et hypercubes[END_REF][START_REF] Novelli | Construction de trigèbres dendriformes[END_REF], that is to say families pA, , ¡, ¤q where A is a vector space and , ¡ and ¤ are bilinear products on A such that for any x, y, z A, px yq z x py z y ¡ z y ¤ zq, px ¡ yq z x ¡ py zq, x ¡ py ¡ zq px y x ¡ y x ¤ yq ¡ z, px ¡ yq ¤ z x ¡ py ¤ zq, px yq ¤ z x ¤ py ¡ zq, px ¤ yq z x ¤ py zq, px ¤ yq ¤ z x ¤ py ¤ zq.

Corollary 4.9. Let pV, Φq is one of the three following 3-dimensional ℓ-EAS, where the matrix of Φ is expressed in the basis pe 1 e 1 , e 1 e 2 , e 1 e 3 , e 2 e 1 , e 2 e 2 , e 2 e 3 , e 3 e 1 , e 3 e 2 , e 3 e 3 q:

¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

, ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

, ¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 .

Then any Φ-associative algebra is a tridendriform algebra, with ¦ 1 , ¡ ¦ 2 and u ¦ 3 . Any opposite Φ-associative algebra is a tridendriform algebra, with ¦ 2 , ¡ ¦ 1 and u ¦ 3 .

Dual duplicial and duplicial algebras

Denition 4.10. [START_REF] Zinbiel | Encyclopedia of types of algebras[END_REF] A dual duplicial algebra is a family pA, , ¡q where A is a vector space and and ¡ are bilinear products on A such that for any x, y, z A, px yq z x py zq,

px xq ¡ z 0,

px ¡ yq z x ¡ py zq, (33)

0 x py ¡ zq, (34) 
px ¡ yq ¡ z x ¡ py ¡ zq. Then any dual duplicial algebra pA, , ¡q is an opposite Φ-associative algebra, with ¦ 1 and ¦ 2 ¡, and aΦ-associative algebra, with ¦ 1 ¡ and ¦ 2 .

Proof. This is a reformulation of axioms (31) [START_REF] Zhang | Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras[END_REF] and [START_REF] Zhang | Free (tri)dendriform family algebras[END_REF], and of axioms ( 31) and (33) [START_REF] Zhang | Free (tri)dendriform family algebras[END_REF].

Using Koszul duality, we recover duplicial algebra [START_REF]Generalized bialgebras and triples of operads[END_REF], that is to say families pA, , ¡q where A is a vector space and and ¡ are bilinear products on A such that for any x, y, z A, px yq z x py zq, px ¡ yq z x ¡ py zq, x ¡ py ¡ zq px ¡ yq ¡ z. Corollary 4.12. Let pV, Φqbe the following 2-dimensional ℓ-EAS, where the matrix of Φ is expressed in the basis pe 1 e 1 , e 1 e 2 , e 2 e 1 , e 2 e 2 q: ¤ ¦ ¦ ¥ 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 . Then any Φ-associative algebra is a duplicial algebra, with ¦ 1 and ¦ 2 ¡, and any opposite Φ-associative algebra is a duplicial algebra, with ¦ 1 ¡ and ¦ 2 .

Notations 3 . 3 . 1 .

 331 We denote the nonsymmetric operad of Φ-associative algebras by As Φ , and the nonsymmetric operad of opposite Φ-associative algebras by As I Φ . In other words, As ϕ is the nonsymetric operad generated by A As ϕ p2q, with the relations a ¥ 2 b ¸aI Ñ b I ¥ 1 a P b P , whereas As I ϕ is the nonsymetric operad generated by A As I ϕ p2q, with the relations a ¥ 1 b ¸aI Ñ b I ¥ 2 a P b P . We denote by SymAs Φ , respectively by SymAs I Φ , the operad of Φ-associative algebras, respectively of opposite Φ-associative algebras. Remark 3.6. SymAs ϕ , respectively SymAs I Φ , is the symmetrisation of the nonsymmetric operad As Φ , respectively As I ϕ . 2. If Φ is nondegenerate, then As I Φ As Φ ¡1.

3 .

 3 SymAs Φ and SymAs I Φ are isomorphic operads, through the morphism 4 SymAs Φ ÝÑ SymAs I Φ a A ÝÑ a op a p12q .From the description of free Φ-associative algebras, we obtain a combinatorial description of As Φ : Proposition 3.8. For any n ¥ 1, As Φ pnq is the vector space A pn¡1q . For any a k . . . a 1 A k As Φ pk 1q, for any b l . . . b 1 A l As Φ pl 1q, for any i rk 1s, a k . . . a 1 ¥ i b l . . . b 1

Example 3 . 4 .

 34 Let Ω be a nite EAS. Koszul dual of the operad As A of Ω-associative algebra is generated by the products α , with α Ω, and the relations dα, β Ω, I qΩ 2 , ϕpα I ,β I qpα,βqα I ¥ pI, β Iq α p β , Iq.Theorem 3.10. If A is nite-dimensional, the nonsymmetric operads As Φ and As I Φ as well as the operad SymAs Φ are Koszul.

1 2 3

 12 pa, b, cq with a, b, c A. Koszularity of As A comes from the conuence of the following diagram:

11 .

 11 Let pV, Φqbe the following 2-dimensional ℓ-EAS, where the matrix of Φ is expressed in the basis pe 1 e 1 , e 1 e 2 , e 2 e 1 , e 2 e 2 q:

  Notations 1.2. We denote by As 2 Ω the nonsymmetric operad of two-parameters Ω-associative algebras. It is generated by ¦ α,β As 2 Ω p2q, with α, β Ω, and the relations

  3. The operad As 2 Ω is Koszul. For any n ¥ 1, let us put p n dim K pAs 2 Ω pnqq

	and	P pXq	V

ņ1

p n X n QrrXss.

  γq Ñ δq, pβ Ñ γ, δq, pβ, γqq, T 5 1 2 3 ppα, pβ Ñ γq Ñ δq, pβ, γ Ñ δq, pγ, δqq, 1 2 3 ppα, β Ñ pγ Ñ δqq, pβ, γ Ñ δq, pγ, δqq.

	where α, β, γ Ω. Koszularity of As 2 Ω comes from the conuence of the following diagram:
					}} } } } } }	T 1	e e e e e e e
					T 2 H H H H H H H H H H H H H H H	}} } } } } }	T 3 T 4
					T 5
	with			
		T 1 1 2 3	pppα Ñ βq Ñ γ, δq, pα Ñ β, γq, pα, βqq,
		T 2 1 2	3 ppα Ñ β, γ Ñ δq, pα, βq, pγ, δqq,
		T 3 1 2	3 ppα Ñ pβ Ñ γq, δq, pα, β Ñ γq, pβ, γqq,
	T 4 1 2 3 ppα, pβ Ñ Hence, the operad As 2 Ω is Koszul. Moreover, As 2 Ω pnq has for basis the set of rooted planar binary trees with n ¡ 1 internal vertices decorated by Ω 2 , avoiding subtrees
					2	1
		2	1	ppα, βq, pγ, δqq. The rewriting rules are
	2	1	ppα Ñ β, γq, pα, βqq ÝÑ 1 2 ppα, β Ñ γq, pβ, γqq
	for any α, β, γ Ω. There is only one family of critical monomials, namely the monomials
			3	2	1	pppα Ñ βq Ñ γ, δq, pα Ñ β, γq, pα, βqq,

  denoting by T n the set of planar binary rooted trees with n ¡1 internal vertices, Summing over n, with p 1 1, we obtain P pXq ωpω ¡ 1qP pXq 2 ωXP pXq X.

	which gives (1).				
	p n	Ţ Tn	p T	
		ω 2	Ţ T n¡1	p T ωpω ¡ 1q	n¡1 ķ2 Ţ l T k ŢrTn¡k	p T l p Tr
		ω 2 p n¡1 ωpω ¡ 1q	n¡1 ķ2	p k p n¡k
		ωpω ¡ 1q	n¡1 ķ1	p k p n¡k ωp n¡1 ,

  2 pωq ω 2 , p 3 pωq p2ω ¡ 1qω 3 , p 4 pωq p5ω 2 ¡ 5ω 1qω 4 , p 5 pωq p2ω ¡ 1qp7ω 2 ¡ 7ω 1qω 5 , p 6 pωq p42ω 4 ¡ 84ω 3 56ω 2 ¡ 14ω 1qω 6 , p 7 pωq p2ω ¡ 1qp66ω 4 ¡ 132ω 3 84ω 2 ¡ 18ω 1qω 7 , p 8 pωq p429ω 6 ¡ 1287ω 5 1485ω 4 ¡ 825ω 3 225ω 2 ¡ 27ω 1qω 8 , p 9 pωq p2ω ¡ 1qp715ω 6 ¡ 2145ω 5 2431ω 4 ¡ 1287ω 3 319ω 2 ¡ 33ω 1qω 9 .

	This gives						
	ωzn 1 2	3	4	5	6	7
	1	1 1	1	1	1	1	1
	2	1 4	24	176	1440	12608	115584
	3	1 9	135	2511	52245	1164213	27173475
	4	1 16 448	15616	609280	25464832	1114882048
	5	1 25 1125	63125	3965625	266890625	18816328125
	6	1 36 2376 195696 18048096	1783238976	184576081536
	7	1 49 4459 506611 64454845	8785674373	1254546699679
	8	1 64 7680 1150976 193167360 34733293568 6542642380800
	9	1 81 12393 2368521 506935665 116245810017 27925350157593
	Remark 1.2.						

  Corollary 1.4. Let n ¥ 1. 1. p n is a polynomial in Zrωs, of degree 2n ¡ 2. Its leading coecient is the n-th Catalan number cat n (Sequence A000108 in the OEIS):

		n	1 2 3 4 5 6	7	8	9	10
		cat n 1 1 2 5 14 42 132 429 1430 4862
					4		,
	so for any n ¥ 2, p n 2 n¡1 schr n , where schr n is the n-th large Schröder number (sequence
	A006318 in the OEIS):					
	n	1 2 3 4 5	6	7	8	9	10
	schr n 1 2 6 22 90 394 1806 8558 41586 206098

  Proposition 1.7. For any n ¥ 1, let us put Ppnq pKΩq n . Elements of Ppnq are linear spans of words α 1 . . . α n in Ω.

	2 Ω	! :

  The associative products in SymAs Φ p2q are the elements of the form where a A is such that Φpa aq a a. The products m SymAs Φ p2q such that m ¥ 2 m 0 are the elements of the form m ¦ a , where a A is such that Φpa aq 0. Proof. Let m ¦ a ¦ op b SymAs Φ p2q. Let V T A pVectpx, y, zqq be the free Φ-associative algebra generated by three elements x, y, z. In V , m ¥ pId mqpx y zq mpx payz bzyqq τ ¥ Φpa aqxyz abyzx τ ¥ Φpa bqxzy bbzyx, m ¥ pm Idqpx y zq mppaxy byxq zq aaxyz bayxz τ ¥ Φpb aqzxy τ ¥ Φpb bqzxy.

	m ¦ a	or	m ¦ op a ,

  α,β yq ¦ αÑβ,γ z px ¦ pα,βq yq ¦ pαÑβ,γq z px ¦ pα,pβÑγqγq yq ¦ pαÑβ,γq z px ¦ pα,βÑγqpβ,γq yq ¦ pα,βÑγqÑpβ,γq z x ¦ pα,βÑγq py ¦ pβ,γq zq x ¦ α,βÑγ py ¦ β,γ zq. As 2 Ω p3q is p2ω ¡ 1qω 3 , whereas the dimension of As Φ Ip3q is ω 4 .

	4	Links with other operads
	4.1 Post-Lie and ComTriAs algebras
	Hence, pA, p¦ α,β q α,βΩ q is a 2-parameter Ω-associative algebra. This implies the existence of the morphism Θ I

Ω .

Remark 3.8. Except if ω |Ω| 1, this morphism is not bijective: the dimension of

  4.2 Diassociative and dendriform algebrasDenition 4.4.[START_REF] Loday | Dialgebras, Dialgebras and related operads[END_REF] A diassociative algebra is a family pA, 7, 6q where A is a vector space and 7 and 6 are bilinear products on A such that for any x, y, z A, px 7 yq 7 z x 7 py 7 zq,These EAS are isomorphic to C6 and C3.

				(16)
	px 7 yq 7 z x 7 py 6 zq, px 6 yq 7 z x 6 py 7 zq, px 7 yq 6 z x 6 py 6 zq, px 6 yq 6 z x 6 py 6 zq.		(17) (18) (19) (20)
	Proposition 4.5. Let pA, 7, 6q be a diassociative algebra.		
	1. pA, 7, 6q is an opposite Ω-associative algebra, with the EAS laws
	Ñ 7 6 7 7 6 6 6 6	7 6 7 7 7 6 6 6	or	7 6 7 6 7 6 6 6
	These EAS are isomorphic to C3 and C6.			
	2. pA, 7, 6q is an Ω-associative algebra, with the EAS laws		
	Ñ 7 6 7 7 7 6 7 6	7 6 7 7 7 6 6 7	or	7 6 7 7 7 6 6 6

  ) px 6 yq 6 z x 6 py 6 zq.Proposition 4.8. Let pA, 7, 6, uq be a triassociative algebra.1. pA, 7, 6, uq is an opposite Ω-associative algebra, with the EAS laws

						(30)
	Ñ 7 6 u 7 7 6 u 6 6 6 6 u u 6 u	7 6 u 7 7 7 7 6 6 6 6 u 6 u u	or	7 6 u 7 6 7 7 6 6 6 6 u 6 u u	or	7 6 u 7 u 7 7 6 6 6 6 u 6 u u
	2. pA, 7, 6, uq is an Ω-associative algebra, with the EAS laws		
	Ñ 6 7 u 6 6 7 u 7 7 7 7 u u 7 u	6 7 u 6 6 6 6 7 7 7 7 u 7 u u	or	6 7 u 6 7 6 6 7 7 7 7 u 7 u u	or	6 7 u 6 u 6 6 7 7 7 7 u 7 u u
	Proof.