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Abstract

We study diverse parametrized versions of the operad of associative algebra, where the
parameter are taken in an associative semigroup 2 (generalization of matching or family
associative algebras) or in its cartesian square (two-parameters associative algebras). We
give a description of the free algebras on these operads, study their formal series and prove
that they are Koszul when the set of parameters is finite. We also study operadic morphisms
between the operad of classical associative algebras and these objects, and links with other
types of algebras (diassociative, dendriform, post-Lie. . .).
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Introduction

Recently, numerous parametrization of well-known operads were introduced. Choosing a set of
parameters (), any product defining the considered operad is replaced by a bunch of products
indexed by €2 and various relations are defined on them, mimicking the relations defining the ini-
tial operads. One can for example require that any linear span of the parametrized products also
satisfy the relations of the initial operads: this is the matching parametrization. For example,
matching Rota-Baxter algebras, associative, dendriform, prelie algebras are introduced in |33} [12].
Another way is to use one or more semigroup structures on §2: this it the family parametriza-
tion. In this spirit, family Rota-Baxter algebras, dendriform, prelie algebras are introduced and
studied in [T, [34), 35, 24]. A way to obtain both these parametrizations for dendriform algebras is
introduced in [I4], with the help of a generalization of diassociative semigroups, called extended
diassociative semigroups (briefly, EDS). Finally, a two-parameters version is given for dendriform
algebras and prelie algebras is described in [17].

Our aim in this paper is the study of these parametrizations for the operad of associative
algebras, which surprisingly did not receive a lot of attention for now. We start with two-
parameters associative algebras [17]. If (2, —) is a semigroup, an Q-two-parameters associative
algebra is given products #, g, with «, 8 € ), satisfying the following axiom:

(T #a,8Y) *apy 2 = T a6y (Y %5, 2).

When (9, %) = (Z/27Z, x), the two-parameters 2-associative algebras were described in [4], as an
operad on bicolored trees. When (2 is finite, the associated operad AS% is finitely generated and
quadratic. We prove that it is Koszul (Proposition , and describe its Poincaré-Hilbert formal
series P(X): if |Q] = w > 1, then

C1—wX — /142wl —2w)X + w?X?
2w(w — 1)
=X +w’ X%+ 2w — 13 X3 + (5w? — 5w + 1wt X?
+ (2w — 1)(7w? = Tw 4+ D’ X? 4 (42w — 84w? + 56w? — 14w + 1)wS X6 + ...

P(X)

We deduce a formula for the dimension p,(w) of As3(n) with the help of Narayana numbers,
(Corollary , as well as properties of p,(w), seen as a polynomial in w (Corollary . We
also give a combinatorial description of Koszul dual of As?) in terms of words (Proposition

and a description of free As?)!—algebras.

In the second and third parts of this paper, we introduce and study {)-associative algebras.
Here, the set of parameters €) is given two operations — and . An (Q-associative algebra is
given bilinear products #,, with a € 2, with the following axioms:

T (Y#8 2) = (T *amp Y) *aop 2-

In order to have a suitable parametrised operad, we impose that free (2-associative algebras are
of the form

o0
Ta(V) = QKD gy,

n=1

Tensors of KQ®"—1) @ V® will be called A-typed words of length n and will be denoted
Q1...0, 101 ...U,. We impose that the products =, satisfy, among other conditions, that for
any vy,ve € V,

V1 *q V2 = QU1V2.



We prove in Theorem that this holds if, and only if, the triple (2, —, =) satisfies the following
axioms:

a—(B—7)=(a—pB) -7,
(a=(B—7) = (B=7) =(a—p) =7,
(a=(B—7)=(B=7) =a=p.

Such a triple (2, —,>) will be called an extended associative semigroup (briefly, EAS). For
example:

o If Q is a set, its trivial EAS structure is given, for any «, 8 € €2,
a—f=pfea=p

In this case, the Q-family algebras are the matching associative algebras [33]; the particular
case when Q contains two elements appears also in [29]. The underlying operads are also
used in [6].

e If (Q,—) is a semigroup, one can make it an EAS with, for any «, 8 € §,
ac>f=a.
In this case, the Q-family algebras are the family associative algebras of [34].

o If (Q, %) is a group, one can make it an EAS with, for any «, 8 € 2,
a— 3 =4, as=f=axpL

We give more examples of EAS, including a classification of EAS of cardinality two, in the second
section. We in fact generalize these results in a linear setting: we first observe that if (2, —,>)
is a set with two operations, we consider the map:

2 — o2
¢'{Mﬁ>—~<a~&a>m,

Then (2, —,>) is an EAS if, and only if:
(Id x ¢) o (¢p x Id) o (Id x ¢) = (¢ x Id) o (Id x 7) o (¢ x Id),

where 7 : 02 — Q2 is the usual flip:

) 02 5 02
T{(%@ — (B,q).

This can easily be generalized in the category of vector spaces: a linear extended associative

semigroup (briefly, FEAS) is a pair (A4, ®), where ® : AQ A — A® A is a linear map such that:
(@) o (@ ®1d) o [d®®) = (3 ®1d) o (Id®7) o (d ®Id),

where 7: AQ A — A ® A is the usual flip. In particular, if (Q, —, =) is an EAS, then its
algebra KQ is an /EAS. We then introduce the notion of ®-associative algebra (Definition
and we describe free ®-associative algebras T (V') in term of tensor algebras in Theorem In
particular, as a vector space,

[ee}
Tq;(V) — 6_) A@(n—l) ® Ven
n=1

3



We prove in Proposition that if V' is a ®-associative algebra, then V ® A is naturally an
associative algebra; if ® is invertible, we prove conversely that any convenient associative product
on V ® A gives rise to a ®-associative algebra structure on V. Following these results, we study
the algebra structure of To (V) ® A and, if ® is invertible, we prove that it is freely generated by

V ® A (Proposition .

The description of free ®-algebras induce a combinatorial description of the operad Asg of
d-associative algebras (Proposition . We prove that, when A is finite-dimensional, that the
operad Asg is Koszul, and that its Koszul dual is the operad of Asgx-algebras, generalizing
a well-known result for the operad As of "classical" associative algebras (Proposition and
Theorem . We study operad morphisms between the operad of associative algebras and
Asg, which is related to eigenvectors of ® (Proposition . We then give results on operadic
maps between the operads As and Asg, and between the operads As?) and Asg (Propositions
and . The paper ends with various links with other types of algebras, such that dias-
sociative, post-Lie, dendriform, tridendriform or duplicial algebras, and their Koszul duals.

Acknowledgements. The author acknowledges support from the grant ANR-20-CE40-0007
Combinatoire Algébrique, Résurgence, Probabilités Libres et Opérades.

Notations 0.1. Let K be a commutative field. Any vector space in this text will be taken over
K.

1 Two-parameters (2-associative algebras

Notations 1.1. In all this section, (€2, —) is an associative semigroup.

1.1 Definition

In the spirit of the notion of two-parameters dendriform or duplicial algebras of [I7], we now
introduce the notion of two-parameters associative algebras, which can be found in [1]:

Definition 1.1. A two-parameters Q-associative algebra is a family (V, (*q,8)a,peq), where V' is
a vector space and, for any (a, B) € Q2, %08 : V@V — V is a linear map such that:

V(X, 57 Y E Qv vmv Y,z € V7 ([E *Oé,,B y) *a"ﬂﬁ =2 *0175"’}’ (y *577 Z)

Remark 1.1. If |Q] = 1, Q-associative algebras are associative algebras.

Such a structure is related to (§2, —)-graded associative products on V ® K. For the sake
of simplicity, we shall denote the tensor product ¢ ® «, with z € V' and « € 2, by za.

Proposition 1.2. Let V' be a vector space, endowed with bilinear products %45 for any (o, B) €
0%, We define a product = on V @ KQ by:

anZUEV, VOZ,IBEQ, xa*yﬁzl’*a,ﬂy(a_’ﬁ)
Then = is associative if, and only if, (V, (¥q 8)a,8eq) is a two-parameters Q-associative algebra.

Proof. For any x,y,z €V, any a, 3,7 €

(waxyB) * 2y = (T *a,8Y) *aspy 2( = B —7),
zax (YB* 27) = T % gy (Y #p4 2)(a = B — 7).

The result is then immediate. O



1.2 The operad of two-parameters (2-associative algebras

We refer to |23, 25] 26, 27, [32] for notations and usual results on operads.

Notations 1.2. We denote by AS?) the nonsymmetric operad of two-parameters (2-associative
algebras. It is generated by #,5 € As?)(2), with «, 8 € €, and the relations

VOZ, 67 YE Qv *a—B,y O1 *a,8 = *a,6—-y ©2 *3,y-

We assume in this section that €Q is finite, of cardinality denoted by w. Then the components
of Asé are finite-dimensional, and the following Proposition allows to inductively compute their
dimension:

Proposition 1.3. The operad As? is Koszul. For any n > 1, let us put p, = dimg(As?(n))
and

anX"e@ X11-

Then:

n—1

pn=w(w—1) Z DkPn—k + WPn—1, (1)
k=1

or equivalently, if |w| = 2

1—wX — /1 +2w(l —2w)X +w?X?
2w(w —1) ’

P(X) = 2)

Proof. we shall use the rewriting method of |2, 23]. We shall write elements of the free nonsym-
metric operad generated by AS?Z(Q) as planar trees which vertices are decorated by elements of
Q2. We will write indices on the vertices on the trees and put the corresponding decorations be-
tween parentheses, and we delete the symbols * in order to enlighten the notations. For example,
the operadic tree

will be shortly written }1<(((a, B), (7,9)). The rewriting rules are:

><(((a—>67) — ?/ B =7),(8,7))

for any «, 3,y € Q. There is only one family of critical monomials, namely the monomials

\3§1<((((Oé — 5) - 775)7 (a - 677)7 (avﬁ))a



where a, 3,7 € ). Koszularity of AS%Z comes from the confluence of the following diagram:

Ty
with:
3

N
|
\T/ 4

T = N (= ) = 1,8). (@ — B.7), (0, B)),
Ty = 5 (0 = By = 8). (0, 8), (1,))

T3 = %((Oz = (B8—17),0), (. 8= 7),(8,7)),
T, = Eéé((av (6 - '7) - 5)7 (B - 775)a (fYa 6))7

23

5= T ((a> (5_”7) _’5>7(577_’5)7(776))7

23

=T ((OJ,B_’ (7—’5»7(577_’5)7(775))'

Hence, the operad As?z is Koszul. Moreover, As%(n) has for basis the set of rooted planar binary
trees with n — 1 internal vertices decorated by 92, avoiding subtrees

>1(Y((Ov = 53,7), (a,8))

for any «, 8,y € Q. For any planar binary tree T, let us denote by pr the number of decorations
of the vertices of trees by elements of 02, avoiding these subtrees. If T' is a planar binary tree
different from the tree | (which is the unit of the operad As3), we denote by Tj the left subtree
born from the root of T', by T, the right subtree born from the root of T', and we write T' = T; v T;..
Then, looking at the possible decorations of the root:

w if T2 =|,

T = PT,PT,W X .
P pnp {w — 1 otherwise.

Hence, if n = 2, denoting by 7, the set of planar binary rooted trees with n — 1 internal vertices:

Pn = 2 br
TeTh
—1

WY prrww=1) 3 > D pnpn
k

TeTn-1 =2TeTy Tr€Tn—k
n—1
= W pp-1 +ww—1) Y prpok
=2
n—1
= w(w—=1) > prPnt +wpn1,
k=1



which gives . Summing over n, with p; = 1:
P(X) = w(w—1)P(X)* + wXP(X) + X. (3)

if w =1, we obtain that
P(X)=XP(X)+ X,

SO

X 0
P(X) = = X"
(X) 1+ X 7;1 ’

recovering the formal series of the nonsymmetric operad of associative algebras. If w > 2, solving
(3), with the initial condition P(0) = 0, we obtain (2). O

Ezxample 1.1. We obtain:

p2(w) = w?,

p3(w) = (2w — 1)w3,

pa(w) = (5w2 — bw + 1)w4,

ps(w) = (2w — 1)(7@)2 — Tw + 1)w5,

pe(w) = (42w — 84w + 56w? — 14w + 1)wS,

pr(w) = (2w — 1)(66w! — 132w + 84w? — 18w + 1)w”,
(w) = (
(w) = (

This gives:

lwin1]2] 3 | 4 5 6 7 |
1 1)1 1 1 1 1 1
2 |14 24 176 1440 12608 115584
3 1119 ] 135 2511 52245 1164213 27173475
4 ||1]16| 448 15616 609280 25464832 1114882048
5 || 1125| 1125 | 63125 3965625 266890625 18816328125
6 || 1]36]| 2376 | 195696 | 18048096 | 1783238976 184576081536
7 || 1|49 | 4459 | 506611 | 64454845 | 8785674373 | 1254546699679
8 || 1]64| 7680 | 1150976 | 193167360 | 34733293568 | 6542642380800
9 || 181112393 | 2368521 | 506935665 | 116245810017 | 27925350157593

Remark 1.2. 1. If w = 2, the sequence (p,)n>2 is referenced as |A156017 in the OEIS. This
is the sequence of dimensions of an operad given in [4], generated by four products <,
>, o and ©, with eight relations, see (21) in [4]. This is a special example of a type of
two-parameters -associative algebras, with Q = (Z/2Z, x) and:

*©0,0) = © *01) = *10) = *1n = ©

Moreover:

1—2X —4/1-6(2X) + (2X)2

4 )
so for any n = 2, p, = 2" lschr,, where schr,, is the n-th large Schréder number (sequence
A006318 in the OEIS)):

P(X)|w:2 =

| n [1[2[3]4[85[6 ] 7 | 8 ] 9 | 10 |
| schr,, [ 1]2]6]22]90]394 1806 | 8558 | 41586 | 206098 |
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Corollary 1.4. Letn > 1.

1. pp is a polynomial in Z{w], of degree 2n — 2. Its leading term is the n-th Catalan number
caty, (Sequence A000108 in the OFIS):

2. If n = 2, there exists a polynomial g, € Z[w], such that p, = w"q,. Moreover, q,(0) =

(—1)".
‘ 1
8. If n is odd and = 3, then p, <2> = 0.
Proof. 1. and 2. We proceed by induction on n. As p; = 1, this is obvious. Let us assume

the result at all ranks < n, with n > 2. The induction hypothesis gives that the following is a
polynomial in Z[w], of degree 2n — 2:

n—1
w(w - 1) Z PkPrn—k-
k=1
Its leading term is
n—1
Z caticat,,_p = caty,.
k=1

We also obtain that wp,—1 is a polynomial in Z[w], of degree 2n — 3. Summing in (1)), we obtain
the first point for p,. Still by :

n—2
Pn = W(W - 1) Z DPkPn—k + 2W(W - 1)pn—1 + WPp—1
k=2
n—2
=w(w-—1) Z PkPr—k + w(2w — 1)pp_1
k=2
n—2
=" N w = 1) ) Grtn—i + @™ (20 — 1)gn1
k=2
n—2
=w" | ww—-1) Z Qkdn—tk + (2w — 1)gn—1
k=2

J

qn

Moreover, ¢,(0) = 0 — g,—1(0) = (—1)™, which proves the second point.

1
3. For w = 2 we obtain:

o0
S — 2k—2) ok

Corollary 1.5. For anyn = 2,

S (E D)),

8
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Proof. Let us consider the Narayana numbers [31]:

1
Vk,n =1, N(n,k)=<z><knl>,
n —_—

and their formal series

L—z(t+1) —+/1—=22(t +1) + 22(t — 1)2

N(z,t) = >, N(n,k)z"tF! = o

kn=1

Then:

1
P(X) =X + XN (&X, “’)
w

N
=X+ Z N(n, k)w? X1 <ww>

kn=1
0 n—1 w—1 k—1
=X + (2 N(n —1, kw2 <> ) X"
n=2 \k=1 w
00 n—1
=X+ )] (2 N(n—1,k)w? 1 F(w— 1)’“1> X", O
n=2 \k=1

Remark 1.3. These numbers appear in [5], where they are interpreted in terms of Catalan paths.
More precisely, with the notations of [5, Definition (1.13)]:

n—1
1 n—1\(n—=1\ o, & k=l _ (W w(w-1))
o=t 2 (M) (D)) et - )t = e

k=1

1.3 Koszul dual of As},
In all this paragraph, (2, —) is a finite semigroup.

Proposition 1.6. Koszul dual As?z! of the operad As?z is the quotient of As?z by the trees

XY((a,ﬁ), (7,9)) = (a, 8) o1 (7,0) with o —  # 6,

%((a,ﬁ), (7,0)) = (o, B) 02 (7,0) with 5 # v — 6.

In other terms, a As%l—algebm is a family (V, (*a,8)a,8e0), where V is a vector space and, for
any (o, ) € D2, #45: V@V —> V is a linear map such that:

Va, 8,7 €, Va,y,2z €V, (-T *a,B y) *a—pBy # = T *a oy (y *By Z),
Voz,@%ée(l, Va,y,z €V, (x*a,ﬂy)*w,5220ifa—>ﬁ7’57,
Trap (Yrys2) =0if B#7—0

For anyn > 2, dimK(AS?z!(")) = w".

Proof. The presentation of As?)! comes from a direct computation. Let us denote by Q(X) the
Poincaré-Hilbert formal series of As?)!. As As?z is Koszul, Q(X) is the inverse for the composition

of —P(—X). From (3):

x o P —wlw— DP(X)? _ —P(—X) +w(w—1)(-P(-X))?
wP(X) + 1 1 —w(—P(-X)) ’




so Q(X) is given by:

|
Let us give a combinatorial presentation of AS?)':

Proposition 1.7. For anyn > 1, let us put P(n) = (KQ)®". Elements of P(n) are linear spans
of words vy ...cuy in Q. Then P = (P(n))p>1 is given a structure of nonsymmetric operad with
the following composition: for any aq,...,an € Q, for any B;; € Q,

n
a1 @0 (BriBigs - Bt Bukn) = (H 5ai,ﬁmﬁ5i,ki> Briee B BB

i=1

The unit is:

IzZa.

We define a suboperad Pqy isomorphic to As?)! by:

_JKIifn=1,
Po(n) = {P(n) ifn>=2

Proof. For any word w = « ... ay, in «, we put |w| = a3 — ... — «a,. The composition o can be
rewritten in the following way: for any words w, w1, ..., w, with letters in €2, w being of length
n?

w O ('U}l, e ,wn) = 6w,\w1|...|wn\w1 oo Who

Let us prove the associativity' for any word w of length n, w;, 1 < ¢ < n of respective lengths

ki, wij with 1 <7< nand 1< j <k, all with letters in {:
wo (w1 0 (Wi, s Wik ) s Wn O (Wniy..., Wnk,))
n
H(Sw“lwul Jwi |5w“w11\ S gy ]| [wn 1| g || | WL e Wnokn
=1

(6w1 Wny| w1, 1] W, kn|5’w [wi].. \wn|) w11 - Wk,
= (wo (wi,...,wp)) o (Wi1,..., Wk,

Let us prove that I is a unit. Let w = ay ... a, be a word with letters in ).

loay...an = Zéamlmanal...an=oz1...ozn,

a€el)

ar...como (L., )= > []bausBr-. Bn

By, Bn€Q 1=1

=qQ1...0Qp.

So P is an operad. Obviously, Pg is a suboperad. Moreover, for any word «; ..., of length
=3
a...ap = (g = ag)ag...apo (e, I,...,1).

A direct induction then proves that Py is generated by P(2). Moreover, for any «, 3,7, d €
(@ = B)yo(ab,I) = a(f =)o, By) = apy,

6o (aB,I) =0if o — B # 7,
apo(I,v0)=0if v — 0 # S.

10



|
Therefore, the relations defining As?)' are satisfied in Pg. Hence, there exists a surjective operad
morphism:

!
Asy — Py
*a,3 T Oéﬁ.

Comparing the formal series of As?)! and P, we deduce that this is an isomorphism. O

Corollary 1.8. Let V' be a vector space. The free Asé!—algebm generated by V 1s:
e}
T5(V)=Ve@PEKLR V),
n=2

The product 4 is given in the following way: for any u,v € V, for any oqyuy,...,apuy,
Blvl, .. .,,3[1)[ € KQ@V, with k‘,l = 1,
U a0 = qufv,
QU ... U %0, 3V = (Oa,a1—...—ay ) Q1UL - . . kUL B,
Ua,p 5101 ... Brog = (08,8, ... p,) quBrvr ... By,
ajuy ... OpUE *o,8 ,311)1 . ﬁﬂ)l = (5047041—’---—’0%55,51H-~~H51) aiuq ... Ozkukﬁlvl . 5[’0[.

2 Extended associative semigroups

We here give the definition and few examples of extended associative semigroups. More results
can be found in [16].

2.1 Definition and examples

Definition 2.1. An associative extended semisgroup (briefly, EAS) is a triple (Q, —, =), where
Q is a nonempty set and —,>: Q? — Q are maps such that, for any o, B,y € Q:

a—(B—=7)=(a—p8)—n, (4)
(a=(B—=7) = (Bey) =(a—B) =7, (5)
(a=(B—7)=(B=9)=a=p. (6)

Example 2.1. 1. Let 2 be a set. We put:

Va, B € Q, {a_’ﬁzﬁ’

a=>pf=.qa.
Then (2, —,>) is an EAS, denoted by EAS(Q).
2. Let (€, %) be an associative semigroup. We put:
Ya, 5 €, asf=a.
Then (2, *,>) is an EAS, which we denote by EAS(, *).
3. Let (€2, %) be a group. We put, for any «, § €
a—f=p asf=axf

Then (92, —, =) is an EAS, denoted by EAS'(Q, ).

11



Definition 2.2. Let (2, —, =) be an EAS. We shall say that it is nondegenerate if the following
map 1s bijective:

0 — 02
¢ {(a,ﬁ) s (@ BasB).

Ezample 2.2. 1. Let Q be a set. In EAS(Q), for any a, 8 € Q, ¢(«, 5) = (5, ), so EAS(Q)

is nondegenerate, and ¢~ = ¢.

2. Let (92,*) be a group. Then EAS(,*) is nondegenerate. indeed, for any a, € £,
é(a, B) = (ax B,a), so ¢ is a bijection, of inverse given by ¢~ (a, 3) = (3,5 * ).

3. Let (€, *) be an associative semigroup with the right inverse condition. Then EAS'(, x)
is nondegenerate. Indeed, for any «, 8 € Q, ¢(a, B) = (B, = ), so ¢ is a bijection, of
inverse given by ¢~!(a, 8) = (B * a, ).

2.2 EAS of cardinality two

Here is a classification of EAS of cardinality two. The underlying set is Q = {a,b} and the
products will be given by two matrices

a—a a—b a>a artb
b—a b—b)’ b=>a b=b)’
We shall use the two maps:

{Q—>Q {Q—>Q
Ta - Ty -

a — a,

We respect the indexation of EDS of [14].
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’ Case ‘ — ‘ > ‘ Description ‘
Al (Z Z (Z Z) EAS(Q,—,7,)
s [ (22 (5 ) [asa
C1 <Z Z <Z Z) EAS(Q, —, )
C3 <Z Z (Z Z) EAS(Z/2Z, %)
C5 <Z ‘; (lb’ lb’> EAS(Z/27, 77)
oo (23050

E1' - E2 <g ‘ <3 g) EAS(Q, —, 7,)
E3' (g “ (g g) EAS(Q, —)

F1 (Z Z <Z Z) EAS(Q, —, )
F3 (Z Z <‘b” Z) EAS(Q)

F4 (Z Z (Z 2) EAS/(Z/27, +)
H1 <Z Z <Z Z) EAS(Z/2Z, +, )
H2 (Z b (Z Z) EAS(Z/2Z, +)

The nondegenerate EAS are Fj, Fy and Ho.

3 Generalized associative algebras

3.1 Discrete and linear versions

Definition 3.1. Let (2, —, =) be a set with two binary operations. Let (V, (#4)acq) be a family
such that V is a vector space and, for any a € Q, %o : VQV — V is a linear map. We shall
say that it is an Q-associative algebra if:

Vr,y,z€V, Va, 8 € Q,

T (Y *52) = (T *a=p Y) *amp 2

Ezample 3.1. 1. If Q is a set, for EAS(Q), becomes:

Vr,y,z€ V, Va, 5 € Q,

As a consequence, any linear span of =, is associative. We recover the notion of matching

associative algebra [33].

Tra (Y#pz) = (Tray)*p 2.

2. If (€, %) is a semigroup, for EAS(Q, %), becomes:

Vr,y,z€V, Va, 8 € Q,

These are (£, x)-family associative algebras.

T o (Y*32) = (T *a Y) *axp 2-




Remark 3.1. This does not include the multiassociative and the dual multiassociative algebras
introduced by Giraudo in [I8]. We shall see that the dimension of the n-th components of
the operad of Q-associative algebras is [Q|"~! for any n > 2, whereas it is constant for dual
multiassociative algebras and described by Narayana numbers for dual multiassociative algebras.

In order to linearize these axioms, let us first consider the following lemma, proved in [15]:

Lemma 3.2. Let (2, —,>) be a set with two binary operations. We consider the maps

_ 02— 02 . 02— 02
4| 09 = (ampiaes) " ad) = ()
Then (2, —, =) is an FAS if, and only if:
(Id x ¢p) o (¢p x Id) o (Id x ¢) = (¢ x Id) o (Id x 7) o (¢ x Id). (8)

This naturally leads to the following definition:

Definition 3.3. Let A be a vector space and let @ : AQ A — AR A be a linear map. We shall
say that (A, ®) is a linear extended associative semigroup (briefly, LEAS) if:

(Id®®) o (PRId) o (Id®P) = (P®Id) o (Id®T) o (P ®Id), 9)
where 7: AQ A — A® A is the usual flip:

[ ARA — ARA
T a®b — bRa.

We shall say that (A, ®) is nondegenerate if ® is invertible.

Ezample 3.2. 1. Let (2, —,>) be an EAS and let A = KQ be its algebra, that is to say the
vector space generated by ). We define:

(I)'{KQ@KQ — KQ®KQ
' a®pf — (a—pf)®(@=p),

where o, 5 € €. Lemmaimplies that (K, ®) is an /EAS, which we call the linearization
of (Q, —,>).

2. Here are examples of fEAS of dimension 2, which are not linearization of an EAS. In these
examples, A is a two-dimensional space with basis (z,y), and the maps ® are given by
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their matrices in the basis (r ® 2,2 @y, y =,y ® y).
0010 00 00 1 0 00 10 00
00 00 00 A0 00 00 0010
0000} 0 00 0}’ 000 0} 000 0}
00 00 00 00 0000 0 000
1 000 1 000 1 000 1 000
0 00O 00 00 0000 0010
010 0) 001 0} 00 0 0} 0 01 0}
00 00 00 00 0010 00 00
1 0 00 1 0 00 1 0 00 10 0 O
0000 0000 0010 00 0 O
0100} 01 1 0} 0 01 0} 01 0 0}
0010 0000 0010 01 -1 0
1 000 1 000 1100 1 000
00 00 00 00 00 00 0000
0000} 010 0} 000 0} 010 0}
00 01 0 0 01 0 011 0 011
10 1 0
00 -1 0
01 -1 0)
00 2 1

where A is a scalar. More details on these examples car be found in [16].

Notations 3.1. Let (A, ®) be a pair, such that A is a vector space and ®: AQ A — A® A is a
linear map. We use the Sweedler notation:

P(a®b) =Za/—>b'®a”>b".

Note that the operations — and = may not exist, nor the coproducts a’ ® a” or ¥’ ® b”. With
this notation, @ can be rewritten as:

ZZZG/ N (b/ N C/)/ ® (a// = (b/ N C/)//)/ N (b” >C//)/ ® (a// = (b, N c/))// = (b// >C”)” @)
_ EZ(G/ N b/)/ N Cl® (a/ N b/)// >c”®a” l>b”.
Definition 3.4. Let V' be a vector space and = a linear map:

A — hom(V®V,V)
% 0 — .{V®V — v

TRY — T*qy.
We shall say that (V, ) is a ®-associative algebra if:
Va,y,z€V, Va,be A, T g (Y *p 2) = Z(x kb Y) Fal b 2 (10)
We shall say that (V, =) is an opposite ®-associative algebra if:
Vz,y,z€V, Va,be A, 2 T gy (Y *armpr 2) = (X % Y) %4 2. (11)

Remark 3.2. 1. We define #? by z 0" y = y #, . Then (V, %) is a ®-associative algebra if,
and only if, (V| *°P) is an opposite ®-associative algebra.

2. If @ is invertible, opposite ®-associative algebras and ®~!-associative algebras are the same.
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Remark 3.3. If (2, —,>) is an EAS and if (K, ®) is its linearization, then the categories of -
associative algebras and of ®-associative algebras are isomorphic: if (V] (x4 )aecq) is an Q-algebra,
then we obtain a ®-associative algebra with the map:

*{ KQ — hom(V®V,V)

aef) —> *oye

In this way, Q2-associative algebras can be seen as particular examples of ®-associative algebras.

3.2 Free objects

Notations 3.2. Let V be a vector space. We put:
Q0
- QA g Ve

Ifay,...,an_1 € A, 21,...,2, € V, we shall denote their tensor product in A®((n—1) & y®n by
a1 ...0p_1%1 - .. Ty. Such a tensor will be called an A-typed word of length n. We shall use the
following map:

. TAV)Q ARV — Ty((V)
N ar...an_121... 2, QaR®Rx —> a1...0p_1T1...Tp AT = aA] ...0Ap_10T] ... TpT.

Theorem 3.5. For any vector space V', we define bilinear products x4 on Ta(V') in the following
way, by induction on the length of A-typed words:

WHg 2 =W az, U #q (v-bz) = Z(u kgnp ) - (@ — )z,
where u,v,w € Ta(V), 2z€V and a,b € A. The following conditions are equivalent:
1. (A, ®) is an (LEAS.
2. For any vector space V., (T4(V), *) is a ®-associative algebra.
3. There exists a nonzero vector space V- such that (Ta(V'), *) is a ®-associative algebra.

Moreover, if these conditions hold, then (Ta(V), ) is the free ®—associative algebra generated by
V.

Proof. Obviously, 2. = 3.

3. = 1. Let z,y,z,t be four nonzero elements of any nonzero vector space V. For any
a,b,ce A:

(y *p c2t) ZZZ (=0 —)' =0"=")
( (b/ N ) ) N (b// >c//)/
a — (b — ) xyzt,

Z(m *grmp Y) *qr sy C2E = ZZ(@” =b")((a — ) =")((a' - V) — )xyzt.
This immediately gives @
1. = 2. Let us prove that for any A-typed words u, v, w, for any a,b € A,
Ukq (VW) = D (U kgt V) Fqrpr W.
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We proceed by induction on the length n of w. If n =1, we put w =z¢€ V.

g (VEpw) =u, (v-bz) = E(U kgmpy v) - (@ — V)2 = Z(u iy V) gy 2.
Let us assume the result at rank n — 1. We put w = w’ - cz.
g (V#pw) = Zu kg (Ve ') - (0" — )2)
= ZZU # oy (Ve w') -’ — (0 — )"z
- ZZZ U (@i ! ) (b V) * (@b ! )Y (B w'-a’ — (b
= ZZ U ko V) # (g yrmer W (a7 =) — ¢z

_Zu* b”v aﬁb/(w-cz)

/ /

— )z

= Z U * o/ bl 1}) *ql sy W.
We use the induction hypothesis for the third equality and @ for the fourth one.
Freeness. Let us assume that conditions 1 and 2 hold. Let W be an A-associative algebra,

and 0 : V — W be any linear map. Let us prove that it can be uniquely extended as a ®-
associative algebra morphism © from T4 (V') to W.

Ezistence of ©. We inductively define ©(w) for any A-typed word w by induction on its
length n. If n = 1, then w € V and we put O(w) = O(w). Otherwise, let us write w = w’ - az.
We put:

O(w) = O(w') *4 0(2).

Let u,v be two A-typed words, and let us prove that for any a € A, O(u 4, v) = O(u) *, O(v).
We proceed by induction on the length n of v. If n = 1, then by definition of ©, this is true.
Otherwise, let us put v = v’ - bz. Then:

O(u #qv) = Z O((u *grmpr V') - (a’ — b')2)
= 2 O (u #qrepr V') #arty 0(2)
= Z =t O(V)) *ar—py 0(2)
— 0(u) *, <@< ')y 0(2))
= O(u) 4 O(v).

So O is a ®-associative algebra morphism.

Uniqueness of ©. If © is another morphism extending 6, for any A-typed word u, for any
a€ A, for any ze V:
O'(u-az) =0 (ux,2) = O'(u) x4 0(2).

An easy induction on the length proves that for any A- typed word u, ©'(u) = ©(u). O

3.3 Links with associative algebras

Proposition 3.6. Let (A, ®) such that A is a vector space and ® : AQ A — A® A is a linear
map. We assume that V' is a vector space and * : A — hom(V ® V, V) is a linear map. We
define a product on AQV by:

Vr,yeV, Ya,be A, xa*yb = Za: sqnyr ya' — b,

Then:
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1. If (A, @) is an LEAS and (V, %) is a ®-associative algebra, then (AQV, x) is an associative
algebra.

2. If (A, ®) is a nondegenerate {EAS and (AQV, *) is an associative algebra, then (V,#) is a
®-associative algebra.

3. Let V' be a nonzero vector space. If (AQTA(V),*) is an associative algebra, then (A, ®) is
an fEAS.

Proof. Let a,b,ce Aand z,y,ze V. In AQV:

ra * yb * ZC 2213 *q b'~>c (y Ry ! Z)CL/ — (b/ — C/)/7 (12)
(xa * yb) x zc = ZZ T Ek gy YY) AR Ad = b)Y - .
1. We put
. " / NI 1 "o
x = ZZC‘_’ -V ®d =0l -V = =(@®Id)o(Id®P)(a@bXc).

By @D:
(Id®®)(z) = (P®Ida) o (Ida®7) 0 (P®Id4)(a® bR )
_ ZZ(G/ N b/)/ N Cl® (a/ N b/)” >c"®a" l>b”.

As V is ®-associative, we obtain that * is associative.

2. By composition, the following map is bijective:

Ve ., py®3

W_(Q)@IdA)O(IdAX(p):{ a®b®c — d >V > Rd =l >RV ="

Let a@b®ce A% and a1 ® by @c1 = V" Ha®b®c). For any z,y, 2 € A:
zay * (yby * ze1) = (z #p (Y *c 2)) a,
(xay x yby) * ze1 = Z (x #prmer Y) e 2) a.

The associativity of x induces the axiom of ®-associative algebra for V.

3. Let z,y,z € V, nonzero (not necessarily distinct). From the associativity of x, we imme-
diately deduce from that:

ZZZG’/ N (b/ N C/)/ ® (a// = (b/ N C/)//)/ N (b// >C//)/ ® (CL” = (b’ N C/)//)// . (b” >C)”
:ZZ(U/—>b/),—>C,®(a,—>b,)”|>C”®(I”|>b”. ]
So (A, ®) is an /EAS.

Remark 3.4. As a corollary, if (Q, —, =) is an EAS, then Q-associative algebras are 2-parameters
associative algebras with %4 g = #40g. This will be formalized in Proposition [3.14 by an operad
morphism.

Proposition 3.7. Let (A, ®) be an LEAS and let V' be a nonzero vector space.
1. The following conditions are equivalent:
(a) The associative algebra TA(V)® A is generated by V ® A.

(b) @ is surjective.
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2. The following conditions are equivalent:

(a) The subalgebra TAo(V) ® A generated by V ® A is free.
(b) ® is injective.

Proof. We denote by W the subalgebra of T4 (V) ® A generated by V ® A. Note that it is graded
by the length of words.

1. (a) = (b). Let a®b e A®2. Let us choose a nonzero element z of V. Then zzab € A.
Because of the graduation, we can write this element under the form:

n n
zrzab = Z Tiai * Yib; = Z inyi(ag’ = b)) (a; — by).
i=1 i=1

Applying an element f of V* such that f(z) = 1, we obtain

® <Z f@a) f(yi)ai ®bi> =a®b,
=1

so ® is surjective.

1. (b)) = (a). Let 1 ...xpay .. .ay, be a word of length n, and let us prove that it belongs to
W by induction on n. This is obvious if n = 1. Otherwise, there exists z = Y.b,,_1 ® b, € A®?,
such that

® (Z bp—1® bn) = an ® ap_1.
By the induction hypothesis, z1...xy_1a1...ap_2b,_1 € W, so:
2331 . Lp_10aq ... an_gbn_l * wnbn = ZZ r1...Tpaq ... an_2<b;/l_1 => b;ll)(b;l_l - b/n)
=T1...Tp01...0y € W.

2. (a) = (b). Because of the graduation, W is freely generated by V ® A. Let z be a
nonzero element of V. If > a, ® b, # 0, by freeness, > xa, * b, # 0 and:

Ea:an * xby, = EZ:CQU(CLZ =bo)(al, — b)) # 0,
So ® (>la, ®by,) #0.

2. (b) = (a). We shall use the following map:

O o ARA — AR®A
’ a®b — >Yd'=V"®d V.
As ® is injective, ®’ is injective. Let x1,...,x, € V and let aq,...,a, € A. An easy induction

on n proves that:

T1A1 * ... * Ty

— 212, (1057 @) o (15" V@@ @lds) 0.0 (¥ @105 ) (w1 @ ®an).
As a consequence, the following algebra map is injective:

{ TVRA) — Ty(V)®A

r1al ... Tnpnap —> 101 *...*x TpQy.
So the image of this morphism, which is W, is freely generated by V ® A. O

Remark 3.5. Consequently, for any vector space V', (T'4(V), *) is freely generated by V ® A if,
and only if, (A4, ®) is nondegenerate.
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3.4 Operadic aspects and Koszul duality
In this section, (A, ®) is an /EAS.

Notations 3.3. We denote the nonsymmetric operad of ®-associative algebras by Asg, and the
nonsymmetric operad of opposite ®-associative algebras by Asjy. In other words, As, is the
nonsymetric operad generated by A = Asy(2), with the relations

aOQbZZa,Hblola,IDb”,
whereas Asiﬁ is the nonsymetric operad generated by A = ASQS(Q), with the relations
ao1 b= Za' — bV ogd =b".

We denote by SymAsg, respectively by SymAsy, the operad of ®-associative algebras, respec-
tively of opposite ®-associative algebras.

Remark 3.6. 1. SymAs,, respectively SymAsg, is the symmetrisation of the nonsymmetric
operad Asg, respectively Asj.

2. If @ is nondegenerate, then Asy, = Asg-1.
3. SymAsg and SymAs}, are isomorphic operads, through the morphism

{SymASq> — SymAsj}

aeA —s q%® =q(12),

From the description of free ®-associative algebras, we obtain a combinatorial description of
AScpt

Proposition 3.8. For any n > 1, Asg(n) is the vector space A®(M=1)  For any aj...ay €
Ak = Asg(k 4+ 1), for any by...by € A® = Asg(l + 1), for any i€ [k + 1]:

ak...aloibl...bl

bl...blak...al ZfZZ 1,
=L ap...q;(®RIA®"2D) o . o (Id®@ P @ IA®3) o (1d%¢2) @ &) (a_1b; ... b1)ai—s . .. a1
ifi = 2.

Example 3.3. Let us consider linearizations of EAS.
1. For EAS(A, %), this simplifies as:
1.0 1. Br=a1...;—1(i—1*B1) ... (i1 * By ... ag.
2. For EAS(Q), this simplifies as:

al...akoiﬂl...ﬂl:al...ai_lﬁl...ﬁlai...ak.

This operad is used in [6]. When  has two elements, this gives the operad of duplexes of
vertices of cubes defined in |29, Section 6.3].

3. If (A, %) is a group, we obtain for EAS'(A, x):
al...akoiﬁl...,ﬁl =1 ...04-9 (ai_l*Bl_l*...*B;l)ﬁl...ﬁlai...ak.

Proposition 3.9. Let us assume that A is finite-dimensional.
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1. Koszul dual of the nonsymmetric operad Asg is isomorphic to Asps.
2. Koszul dual of the nonsymmetric operad Asy is isomorphic to Asgx.
3. Koszul dual of the operad SymAsg is isomorphic to SymAsgs.

Proof. 1. We identify Asg(2)* = A and A*. This identification induces a pairing between
the free nonsymmetric operad F 4 generated by A and the free nonsymmetric operad F 4=
generated by A*. In particular, if a,be A, f,ge A*,

<f ©19,a01 b> = f(a)g(b)a <f ©29,a 02 b> = _f(a)g(b)>
(fo1g,a02b) =0, {f oag,a01by=0.

We denote by I the space of relations of Asg(3): this is the subspace of F4 generated by
the elements
Za/ —boad" =V —aoyb,

with a,b € A. Note that AS!<I> is the quotient of F 4+ by the operadic ideal generated by
I, We also denote by I’ the space of relations of Asgs«(3): this is the subspace of F 4«
generated by the elements

N g o f =g"—forg,
with f,g€ A*. Let a,be A and f,ge€ A*.
<Zf’—>g'02f”>g”—folg,2a'—>b'ola”>b”—a02b>

= -2 (f®9)(a®Dd) — (f®g)(P(a®D))
=0,

so I' € I+. Moreover:
dim(F 4(3)) = 2dim(A)?, dim(I) = dim(I') = dim(A)?,
so dim(I+) = 2dim(A4)? — dim(A)? = dim(A)? = dim(I’) and finally I+ = I’
2. By duality.

3. By symmetrisation, (SymAsg) = SymAsj, which is isomorphic to SymAsgx, see Re-
mark 0O

Example 3.4. Let € be a finite EAS. Koszul dual of the operad Asa of Q-associative algebra is
generated by the products x4, with a € €2, and the relations

Va, € (Q, Z *or 0 (I, xpr) | = *a(*p, I).
p(a,f")=(a.B)

Theorem 3.10. If A is finite-dimensional, the nonsymmetric operads Asg and As}y as well as
the operad SymAsg are Koszul.

Proof. We shall use the rewriting method of [2, 23]. We shall write elements of the free nonsym-
metric operad generated by As4(2) as planar trees which vertices are decorated by elements of
A. The rewriting rules are:

%(a’ b) N Z }1<((a// N b”,a” >b”)

21



for any a,b € A. There is only one family of critical monomials, which are the trees

\%(a, b, c)

with a, b, c € A. Koszularity of As4 comes from the confluence of the following diagram:

’al (13)

Tg/ \T3
|
\T/ |

with:

o
Tl = T (CL, ba C)a
Ty = ZW(G/ R b/,a” >b”,c),

15 = Z iﬁé(a, vV — b =",
T = EZ >12:?(a’ - —>d),d" =l )b ="
T5=> )] \3§1<(((a’ V) >, (d V)= d =)
NI X&(a’ (o Y (@ (o )Y o (Y (@ = (Y)Y,
The equality between the two expressions of T is equivalent to @ ]

Here is another application of Diagram :

Proposition 3.11. Let P be a nonsymmetric set operad such that for any n = 1, the following
map is a linear isomorphism:

wef, SO — PO
"I p®...®Qpn—1 —> pro1(p2o1(-..01 (Pn—201Pp-1)-...)).

Then there exists an (EAS (A, ®) such that P is isomorphic to Asg.

Proof. We put A = P(2) as a vector space. As t3 is bijective, for any a®b e A® A, there exists
a unique P(a®b) =>d' >V ®ad" =b" € A® A such that

a o9 b= Z(a/ N b/) o1 (a” >b”),
or, equivalently:

%(a, b)=>" EQ(@' >V, d" =b").
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For any a,b,c € A, let us compute a o9 (b oy ¢) into two different ways. This element is the tree
Ty of , and, following the two paths of this diagram, we obtain that in P(3):

ZZ(G/ N b/)/ N CI o1 ((a/ N b/)// >C” o1 (a// >b//))

_ ZZZGI N (b, N c/)/ o1 (a// = (b/ N c/)//)/ N (b// >c//)/ o ((a// = (b/ N C/)//)// = (b” DCN)’/)).
As 14 is an isomorphism, we obtain the axioms of /EAS for (A, ®). Hence, we obtain an operad
isomorphism from Asg to P, sending *, to a for any a € A. O
3.5 Associative products

We now look for operad morphisms from the operad of associative algebras to the operad
SymAsg, where (A, ®) is an /EAS, or equivalently to products m € SymAsg(2) which are
associative, that is to say such that m oy m = m os m.

Proposition 3.12. Let (A,®) be an (EAS. The associative products in SymAsg(2) are the
elements of the form

— — 40P
m = %, or m ==,

where a € A is such that ®(a® a) = a® a. The products m € SymAsg(2) such that mosm =0
are the elements of the form

where a € A is such that ®(a ® a) = 0.

Proof. Let m = #, + %" € SymAsg(2). Let V = Tx(Vect(z,y, z)) be the free P-associative
algebra generated by three elements z,y,z. In V:

mo(Id®m)(z®y® z) = m(z® (ayz + bzy))

=70®(a®a)ryz + abyzx + 7o P(a ® b)xzy + bbzyzx,
mo(m®Id)(z®y® z) = m((axy + byzr) ® 2)

= aazxyz + bayrz + To ®(b®a)zaxy + 7o P(b® b)zxy.

1. If m is associative, identifying the terms in yzx, we find a ® b = 0, so a = 0 or b = 0.
Identifying the terms in zyz, we find that 70 ®(a x a) = a®a. Similarly, the identification
of the terms in zyz gives that ®(b®b) = b® b. Conversely, if ®(a) = a ® a, then

aoja=aa, aoga=P(a®a) = aa,

S0 #, is associative, and its opposite *¥ is associative too.

2. If mogm = 0, identifying the term in zyx, we find that b = 0. Identifying the term in zyz,
we find that 7o ®(a x a) = 0. Conversely, if ®(a ®a) = 0, then

aosa=P(a®a)=0. O

Remark 3.7. If (A, ®) is the linearization of an EAS (2, —, =), we obtain that:

e The associative elements m € SymAsg(2) are the elements of the form

m = Z Aa*a or m = Z Aa#2P,
a€ef a€ef
such that
Y(a, B) € Q2 Aads = D M. (14)
(7,8)e02,
#(7,0)=(a,8)
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e The elements m € SymAsg(2) such that m og m = 0 are the elements of the form

such that
V(a, B) € Q2 oA =0 (15)

Ezample 3.5. Working with EAS(Q2), then ¢(«, 8) = (8, «) and Condition is empty: any
linear combination of *, is associative, as well as their opposite.

Example 3.6. Let us give the associative products for EAS of cardinality two. We only mention
the spans of #,, their opposite should be added. Here, A, 1 are scalars.

’ Cases ‘ Associative products ‘ mogm =10 ‘
Al A% A(q — *p)
A2 Aikg A(q — *p)
C1 Ag 0
C3 Ak, g, 0
C5 sy 0
Ceé6 A# 0

El — E2 Ay A(#q — #p)
E3’ kg A#p A(sq — *p)
F1 Asg Mg — #p)
F3 A g 4 sy 0
F4 A(#q + %p), Axg 0
H1 Ag 0
H2 A(q + *p), Axq 0

Corollary 3.13. Let (2, %) be a group. The nonzero associative products in SymASgas(Q.«) O
in SymASsgag/ (. are the elements of one of the form

)\Z*a or AZ*ZP,

aceH aeH

where X\ is a nonzero scalar and H is a subgroup of .

Proof. Case of EAS(€2, x). Then becomes:
¥(a, B) € Q2 Aaxpra = Aag.

Let H = {a € Q, Ay # 0}. We assume that H is nonempty. If « € H, for any 8 € H, Mg = As.
In particular:

o If e H, then ax e H.
o If 3 =eq, then \y, = A\, #0: eq € H.
e IfB=0a*"1 Ay =)Aot #0: a* 1€ H.

Therefore, H is a subgroup of Q. Let a, 3 € I, then o = ax3~! € H. From , we deduce that
AaxB = Aa = Ag. Let A be the common value of A, for any o € H; the result is the immediate.

Case of EAS'(Q, *). Then becomes:
Y(a, B) € Q2 Aasgr—1Aa = AaAg.
The proof is similar to the case of EAS(£2, *). O
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3.6 Operadic morphisms between As} and Asg,

Proposition 3.14. Let (2, —, =) and let (A, ®) be its linearization, that is to say A = KQ and:

5. [A®A — A®A
|l a®f — a—-BRar=g,

where a, B € 2. The following defines an operad morphism:

@Q:{ Asy — Asg

*a,B > *of.

Proof. Let us consider an Q-associative algebra (A, (¥4)acq). For any (a,) € 02, we put
*q,8 = *q=g. Lhen, for any z,y,z € A:

T *o,f—ry (y *By 2 z)=1x *a(—7) (y *B—ry z)

= (2 *(a(8-7))=(8-7) Y) *(as(B—))—(8-7) ?
= (x *(a—B)>y Y) *a-f 2
= (

x*aﬁﬁvy) *o,8 2.

Hence, (A, (*a,8)a,8,cq) is a 2-parameter Q-associative algebra, which implies the existence of
the operadic morphism Og. ]

Proposition 3.15. Let (2, —) be an associative semigroup with the right inverse condition. We
consider the EAS Q' = EAS(Q, —») x EAS'(Q, —) and denote by (A', ®') its linearization. The

following defines a surjective operad morphism:

@, { AS% i ASq)/
P Fas T Hap):

Proof. The EAS structure of €' is given by:

V(e B,7,0) € Q*, (@, ) = (7,6) = (@ —,6),
(a’ﬁ) '>(’Y76) = (Oé,ﬁ '>5)

Let (A, (#(a,8))(a,8)c02) be an Q-associative algebra. For any (a,f) € ', we put #q,5 = *qp-
Then, for any z,y, z € A, using the right inverse property for the second equality:

(T *a,8Y) *aopy 2 = (x *(a,8) Y y) * (amBy) Z
= (@ *(a(—)en) ¥) *(a—pi) #
= (& *(a,pom)=(8:m) Y¥) *(a,pom)— () 2
T *(a,8-) (Y *(8.7) 2)
T %08y (Y %8~ 2)-
Hence, (A, (*a,8)a,peq) is a 2-parameter -associative algebra. This implies the existence of the
morphism ©f,. O

Remark 3.8. Except if w = || = 1, this morphism is not bijective: the dimension of As?/(3) is

(2w — 1)w?3, whereas the dimension of Asg/(3) is w?.
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4 Links with other operads

4.1 Post-Lie and ComTriAs algebras

Let us consider post-Lie algebras [30], see also [8, [19, @, [7, 13| 11, 10] for applications and
developments. Recall that a post-Lie algebra is a family (A4, *, {, }) where A is a vector space and
# and x are bilinear products on A such that (A4, {,}) is a Lie algebra and, for any z,y,z € A:

xx{y,z}=(rry)sz—xx(yxz)— (r*2)xy+x=(zxy),
{x,y}*z:{x*z,y}+{x,,y*z}.

Let us start with the Koszul dual of the operad of post-Lie algebras, namely the operad of
ComTriAs algebras [36]:

Definition 4.1. A ComTriAs algebra is a family (A, -, *), where A is a vector space and - and
* are bilinear products on A such that for any x,y,z € A:

Toy=y-z,
(x-y)-z=2-(y-2),
(Txy)xz=a*(y*2),
(zxy)*z=ax(y 2),
(-y)*z=a(y*z).

Note that the products - and * are respectively denoted by L and - in [30].

Apart from the first one, these axioms are the ones of a particular example of generalized
associative algebra:

Proposition 4.2. Let Q be the EAS C3 (that is to say the EAS associated to the semigroup
(Z)2Z, x). Then any ComTriAs algebra (A,-,*) is an Q-associative algebra, with x5 = * and

Consequently, we obtain an operad morphism from the operad of 2-associative algebra to
the operad of ComTriAs algebras. Using Koszul duality:

Corollary 4.3. Let (V,®) be the LEAS dual to C3: V is two-dimensional, with basis (ey,ea),
and the basis of ® is the basis (e; ® e1,e1 @ ea,ea ®e1,e2 ® e2) is

SO ==
o = O O
SO O O
_ o O O

Then any opposite ®-associative algebra is a post-Lie algebra, with for any x,y € A:
{ryf=rmy—yxna, TEY =T Y.

We conjecture that the associated operad morphism from the operad of post-Lie algebras
into the operad of opposite ®-associative algebra is injective.

26



4.2 Diassociative and dendriform algebras

Definition 4.4. [20] A diassociative algebra is a family (A, -, ) where A is a vector space and
— and  are bilinear products on A such that for any x,y,z € A:

(xHy) dz=2-4(y-=2), (16)
(xHy)dz=24(y+ 2), (17)
(xry)dz=x+ (y-2), (18)
(xH4y)Fz=zF (y+ 2), (19)
(Y Fz=zF+ (y+ 2). (20)

Proposition 4.5. Let (A,,+) be a diassociative algebra.
1. (A, H, ) is an opposite Q-associative algebra, with the EAS laws:
EEIE BRI EIR
|||+ Ao |||
e o o

These EAS are isomorphic to C3 and C6.

2. (A,H,F) is an Q-associative algebra, with the EAS laws:

=== =l le] [=l4]F]
HMEIE =[] or [A]H]H
HEIE HEE FlETF

These EAS are isomorphic to C6 and C3.

Proof. 1. This is a reformulation of axioms , , and , and of axioms , ,
and @),

2. This is a reformulation of axioms . and (|19), and of axioms , . .
and .

Using Koszul duality, we obtain dendriform algebras: recall that a dendriform algebra is a
family (A, <,>) where A is a vector space and < and > are bilinear products on A such that
for any x,y,z € A:

(r<y)<z=z<(y<z+y>2),
(r>y)<z=x> (y<2),
>(y>z2)=(x<y+x>y) >z

Corollary 4.6. 1. Let (V,®) be one of the two following 2-dimensional (-EAS, where the
matriz of ® is expressed in the basis (e1 ® e1,e1 ® e2,ea ®e1,e2 ® e2):

1000 0000
0 00O 1 000
01 0 0} 0100
0 011 0 011

Then any P-associative algebra is a dendriform algebra, with <= %1 and >= 9.

2. Let (V,®) is one of the two following 2-dimensional (-EAS, where the matriz of ® is
expressed in the basis (e1 ® e1,e1 ® e2,e2 ® e1,e2 @ €3):

1 000 1 000
1000 1 000
01 0 0} 0100
0 010 00 01

Then any opposite ®-associative algebra is a dendriform algebra, with <= %1 and >= *o.
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4.3 'Triassociative and tridendriform algebras

Definition 4.7. [22] A triassociative algebra is a family (A, H,+, L) where A is a vector space
and -, -+ and L are bilinear products on A such that for any x,y,z € A:

(zHy) H4z=2-4(yH2), (21)
Ay 4z=2+4(YkF 2), (22)
(x—y)dz=24(yL2), (23)
(zry)dz=xzF (y—=2), (24)
(xly)dz=al1l (y=2), (25)
(xHy) Lz=xl(yt 2), (26)
(@hy)Llz=zt (yLlz), (27)
Ay z=zt (y+ 2), (28)
(lybz=zk(y2), (29)
(x-yY)Fz=2F (yF 2). (30)
Proposition 4.8. Let (A,H,, L) be a triassociative algebra.
1. (A, 4,1, 1) is an opposite Q-associative algebra, with the EAS laws:
o lA[FlL] [=[A[e[L] [=ld]-[L] [=[A[F] L]
NEIEE S =141, [HETATA],, (2L =]
DR DR R R
L|L]|+]L L1 ]L R i1 ]L
2. (A,H,+, 1) is an Q-associative algebra, with the EAS laws:
=[] (==Ll [=e]A[ L] (=[] L]
HIEER FlETELE] R TE] [T F T
NEIEIE NEEE NEEE NEEE
L|L]4]L L4/ L]L Li4/L|L L4/ L]L
Proof. 1. This is a reformulation of axioms((21]) or (22) or (23)) and - (30).
2. This is a reformulation of axioms — (27), and ((28) or or (30)). O

Using Koszul duality, we obtain tridendriform algebras [20, [3 28], that is to say families
(A, <,>,-) where A is a vector space and <, > and - are bilinear products on A such that for
any z,y,z € A:

(r<y)<z=zx<y<z4+y>z+y-z),
(x>y)<z=x> (y<2),
r>y>z)=(@x<yt+zx>y+zx-y) >z,
(z>y)-z=2>(y 2),
(<y)-z=z-(y>2),
(@-y)<z=wz-(y=<2),
(-y)-z==z-(y-2).
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Corollary 4.9. Let (V,®) is one of the three following 3-dimensional (-EAS, where the matrix
of @ is expressed in the basis (e1®e1, e1 ez, e1®es, ea®er, ea®er, ea®es, e3®er, e3Rer, es®es):

100 00O0O0O0O 01 000O0O0OO0O 001 0O00O0O0O
000O0O0O0OT1O0®O 000 0O0OO0O1O0FO0 000 O0O0OO0OT1@ 0
000O01O0O0O0OOP 000 01O0O0O0O 00 0O01O0O0O0
000O0O1O0O0GO0OGO 000O01O0O0O0FO 000O01O0O0O0
000O01TO0O0O0O0Yf 000O01O0O0O0O0}f 000 01O0O0O0
000O0O0O0OO0OT1TF® O 000 0O0OO0O0OT1FPO 000 O0O0OO0OGO0T1
000O0O0O1QO0TO0®O 000 0O0O1O0O0FO 000 0O0OT1TO0PO0
000O0O0OO0OO0OTO 01 000 0O0O0O0OTO01 000 O0O0OO0TO0OO© O

Then any P-associative algebra is a tridendriform algebra, with <= %1, >= %9 and L= %3. Any
opposite ®-associative algebra is a tridendriform algebra, with <= %9, >= %1 and L= =3.
4.4 Dual duplicial and duplicial algebras

Definition 4.10. [36/ A dual duplicial algebra is a family (A, <, >) where A is a vector space
and < and > are bilinear products on A such that for any x,y,z € A:

(r<y)<z=x<(y<2), (31)
(x <x)>2=0, (32)
(z>y)<z=x> (y<2), (33)

0=z<(y>2), (34)
(z>y)>z=a> (y > 2). (35)

Proposition 4.11. Let (V,®)be the following 2-dimensional £-EAS, where the matriz of ® is
expressed in the basis (e1 ® e1,e1 ® ez, €2 ® e1,e2 @ €2):

10 0

o O o O

0
0
1

o O O

0
1
0

Then any dual duplicial algebra (A, <,>) is an opposite ®-associative algebra, with %1 =< and
xo =>_ and a®-associative algebra, with *1 => and %9 =<.

Proof. This is a reformulation of axioms - and (35)), and of axioms and -
(35)- O

Using Koszul duality, we recover duplicial algebra [21], that is to say families (A, <, >) where
A is a vector space and < and > are bilinear products on A such that for any x,y, z € A:
(r<y)<z=x<(y<2),
(r>y)<z=x> (y<2),
x> (y>z)=(r>y) >z

Corollary 4.12. Let (V,®)be the following 2-dimensional ¢-EAS, where the matriz of ® is
expressed in the basis (e1 ® e1,e1 ® eg, €2 ® €1, e2 @ €2):
1 0 00
0010
0000
00 01

Then any ®-associative algebra is a duplicial algebra, with 1 =< and %o =>, and any opposite
®-associative algebra is a duplicial algebra, with *1 => and %9 =<.
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