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The direct numerical simulation of a non-equilibrium turbulent heat transfer case is
performed in a channel flow, where non-equilibrium is induced by a step change in
surface temperature. The domain is thus made of two parts in the streamwise direction.
Upstream, the flow is turbulent, homogeneous in temperature and the channel walls are
adiabatic. The inflow conditions are extracted from a recycling plane located further
downstream so that a fully developed turbulent adiabatic flow reaches the second part.
In the domain located downstream, isothermal boundary conditions are prescribed at the
walls. The boundary layer, initially at equilibrium, is perturbed by the abrupt change of
boundary conditions and a non-equilibrium transient phase is observed until, further
downstream, the flow reaches a new equilibrium state presenting a fully developed
thermal boundary layer. The study focuses on the spatial transient phase, identifies
the main non-equilibrium effects and contrasts these results with usual assumptions of
equilibrium turbulent heat transfer. Mean and root-mean-square profiles of temperature
and velocity, as well as the respective energy and momentum balances, are presented
and discussed along with budgets of second-order moment balance equations for the
enthalpy variance and the wall-normal heat flux. For several quantities, an equilibrium
near-wall region is identified even near the leading edge while the boundary layer is still
developing. Finally, the evolution of the turbulent Prandtl number along the channel flow
is investigated and shows that it reaches equilibrium only further downstream.

1. Introduction

Turbulent heat transfer is encountered in numerous industrial applications and in most
cases the turbulent heat exchange takes place in non-equilibrium flows. It is the case, for
instance, of the surface air-oil heat exchangers implemented in modern aircraft engines
by-pass ducts, where an essentially temperature-homogeneous flow makes contact with
a heated surface and is therefore abruptly subjected to a temperature gradient.

Yet, it is the interest in the behaviour of the atmospheric boundary layer which drew
first attention to turbulent heat transfer in non-equilibrium flows, both theoretically and
experimentally (see Antonia et al. 1977). The case where non-equilibrium is induced
by a step change in surface temperature is the simplest example of non-equilibrium
turbulent heat transfer and literature is abundant on the matter. Spalding (1961) derived
a mathematically exact solution for a developing thermal boundary layer while assuming
the motion of the flow to be perfectly described by the law of the wall. Experimentally,
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Johnson & Whippany (1957) studied the development of a thermal boundary layer on a
smooth flat plate and presented mean temperature and velocity profiles while focusing
on fluctuating profiles in a later work (Johnson et al. 1959). Blom (1970) carried out
a similar study, comparing mean temperature profiles to the theoretical predictions of
Spalding (1961) and presenting the evolution of the turbulent Prandtl number. Similar
experimental works can be found in Fulachier (1972), Hoffmann & Perry (1979), Ng et al.
(1982), Taylor et al. (1990) and, more recently, Biles et al. (2019) while Antonia et al.
(1977) and Teitel & Antonia (1993) studied the case of a step change in wall heat flux
in a flat plate and turbulent channel flow configuration, respectively.

In spite of its Reynolds number limitation, direct numerical simulation (DNS) is
undoubtedly the most accurate tool available for the investigation of turbulent heat
transfer since all the turbulent scales are solved and no modelling is needed. The first DNS
addressing turbulent heat transfer is that of Kim & Moin (1989), where the transport
of three passive scalars at different molecular Prandtl numbers is considered in a fully
developed channel flow at a friction Reynolds number of Reτ = 180. Several works
followed, aiming at understanding the influence on the flow statistics of the Reynolds
number and molecular Prandtl number (e.g. Papavassiliou & Hanratty 1997; Kawamura
et al. 1999; Abe et al. 2001) as well as of the isothermal or iso-flux boundary conditions
(e.g. Kasagi et al. 1992; Kawamura et al. 2000). Li et al. (2009) and Wu & Moin (2010),
instead, are examples of DNS with passive scalar performed in a flat plate configuration.
Other authors focused on the coupling between turbulence and temperature gradient,
analysis which is possible only if temperature is not handled as a passive scalar. Most of
these DNS were performed in supersonic channel flows (see Coleman et al. 1995; Huang
et al. 1995; Morinishi et al. 2004; Tamano & Morinishi 2006) while only a few focused on
low speed flows with high temperature gradients (see Nicoud 1999; Toutant & Bataille
2013).

All the numerical works mentioned so far represent cases of equilibrium flows and are
undoubtedly the reference for understanding turbulent heat transfer in all its aspects
(flow statistics, turbulent Prandtl number, wall scaling and much more). Nevertheless,
questions arise concerning the validity of these findings in non-equilibrium configurations.
Once more, DNS can be a powerful tool for the analysis of such flows yet literature is
extremely less abundant on the matter. Seki & Kawamura (2005) performed the DNS
of a fully developed channel flow with temperature as a passive scalar where the wall
temperature is constant everywhere but in a small fraction of the bottom wall where
it evolves along the streamwise direction attaining a peak. The step change of wall
temperature significantly perturbs the mean and fluctuating temperature as well as
turbulent Prandtl number. Hattori et al. (2007), Hattori et al. (2012) and Hattori et al.
(2013) performed several DNS of non-equilibrium thermal boundary layers in the flat
plate configuration. Hattori et al. (2007) analysed the effects of buoyancy on mean and
fluctuating properties as well as on the turbulent budgets for a turbulent boundary
layer at equilibrium facing a step change in wall temperature; temperature is treated
as a passive scalar and buoyancy is thus introduced through a specific term added to
the momentum equation. In Hattori et al. (2012), non-equilibrium is induced through
the sudden vanishing of wall-heat flux and, in one of the two cases presented, with
the addition of a forward facing step; temperature is also in this case a passive scalar.
Similar analyses are carried out in Hattori et al. (2013), yet temperature, in this case, is
not handled as a passive scalar and comparisons with large-eddy simulations (LES) and
Reynolds-averaged Navier-Stokes equation simulations (RANS) are given.
LES is certainly another valid tool for studying non-equilibrium turbulent heat transfer
yet, despite the large turbulent scales being solved, a certain degree of modelling is
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needed for the smaller scales. Sanchez et al. (2014) and Bellec et al. (2017) performed
the LES of a temperature-homogeneous fully developed channel flow making contact
with anisothermal walls for Reτ = 180 and Reτ = 395, respectively. They showed the
evolution of the mean and fluctuating temperature profiles as well as the impact of the
step change in temperature on the mean and fluctuating velocity components.

The objective of this paper is to deepen the knowledge of turbulent non-equilibrium
heat transfer which, as the literature review shows, has been investigated in a limited
number of studies, especially in the case of flows with temperature-dependent properties.
The intention is not only to describe and characterise a non-equilibrium flow, but also
its gradual evolution towards a new equilibrium state.

To achieve the scope of the study, we perform the direct numerical simulation of
a channel flow where a turbulent, fully developed, temperature-homogeneous flow at
Reτ = 395 makes contact with an isothermal wall; the step change in surface temperature
leads to the development of a thermal layer, and, since temperature is not a passive
scalar, the velocity boundary layer is also perturbed; the length of the isothermal wall
allows the boundary layer to reach a new equilibrium state characterised by a fully
developed thermal boundary layer. The study aims at accurately describing the evolution
of the thermal layer with a particular focus on the non-equilibrium effects which can be
identified. The analysis allows for defining a near-wall region where several quantities are
equilibrated while understanding why others are not.

The work is organised as follows. In section §2, the problem is described in detail; the
governing equations are presented as well as details about the study configuration are
given. In section §3, the numerical set-up is validated with respect to reference results
found in literature for equilibrium flows. In section §4, the results are presented: the
impact of the isothermal wall on the velocity field is shown and the mean momentum
equation is analysed in section §4.2; then, the evolution of the mean temperature profile
and of the energy budgets is described in §4.3; the same is done in §4.4 for the fluctuating
temperature and the wall-normal turbulent heat-flux along with the respective turbulent
budgets; finally, the evolution of the turbulent Prandtl number along the channel flow is
presented in section §4.5.

2. Problem description

In this section, details about governing equations and numerical scheme (§2.1), geom-
etry, mesh and boundary conditions (§2.2) as well as initialisation (§2.3) are given.

2.1. Governing equations and numerical scheme

The full compressible Navier-Stokes equations are solved in the fluid without any
turbulence model. The set of equations is the following:

∂ρ

∂t
+
∂ρui
∂xi

= 0 , (2.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

, (2.2)

∂ρh

∂t
+
∂ρujh

∂xj
=

Dp

Dt
−
∂qcdj
∂xj

+ τij
∂ui
∂xj

+ Sener , (2.3)

where ρ, ui, p, h are respectively the mass density, velocity components, static pressure
and enthalpy per mass unit of the fluid; the fluid is considered to be an ideal gas with
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Figure 1: Computational domain of the present study.

temperature-tabulated thermodynamic coefficients, with the following equation relating
pressure, density and temperature:

p = ρrT, (2.4)

where r = 288.18 J/(kg.K) is the mass-specific gas constant and T the fluid static
temperature; gravity is neglected and not included in momentum equation (2.2); the
viscous stress tensor τij is:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ

(
∂uk
∂xk

)
δij (2.5)

where µ is the dynamic viscosity, computed via the Sutherland law and thus temperature-
dependent:

µ = µref

(
T

Tref

) 3
2 Tref + Ssuth

T + Ssuth
, (2.6)

with µref = 1.716 × 10−5 Pa.s, Tref = 273.15 K and Ssuth = 110.6 K; the conductive
heat flux qcdi , following Fourier’s law, is:

qcdi = −λ ∂T
∂xi

, (2.7)

where λ is the fluid conductivity computed with the Prandtl number Pr = 0.71; finally,
Sener is a source term added to the energy equation (2.3) whose role will be clarified in
section §2.2.
The set of equations is solved by the parallel code AVBP (Schonfeld & Rudgyard 1999;
Moureau et al. 2005) using a time-explicit finite-element two-step Taylor-Galerkin scheme
(Colin & Rudgyard 2000) which provides third-order accuracy in space and time.

2.2. Geometry, mesh and boundary conditions

The geometry of the configuration studied is shown in figure 1. The computational
domain is a channel flow of size 22πδ × 2δ × πδ (where δ = 0.002 m) which is made of
two parts in the streamwise direction.

The upstream part has size 4πδ × 2δ × πδ, the upper and lower walls (with respect
to the Y direction) are adiabatic and a no-slip boundary condition is prescribed, while
periodic boundary conditions are applied in the spanwise direction Z. Differently from
what happens in bi-periodic channel flows, in this case the flow is driven by a streamwise
pressure gradient compensating the head losses generated along the whole domain shown
in figure 1. As a consequence, no source terms are needed in the momentum equation.
The mesh is made of 420, 179 and 200 points in the streamwise, wall-normal and spanwise
directions, respectively. In the Z direction the mesh is uniform; in the wall-normal
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Size nX × nY × nz ∆X+ ∆Y + ∆Z+ Reτ M Tb (K)

[4πδ, 2δ, πδ] 420× 179× 200 [1.0− 12.0] [0.75− 7.0] 6.2 395 0.16 304.5

Table 1: Size, mesh, resolution and regime conditions of upstream (adiabatic) sub-
domain: nX , nY and nZ are the number of points in the X, Y and Z direction, ∆X+,
∆Y + and ∆Z+ are the spatial resolutions in the three directions expressed in wall units,
Reτ is the friction Reynolds number, M the average Mach number and Tb the bulk
temperature.

direction the mesh size, expressed in wall units, varies from ∆Y + = 0.75 at the upper
and lower walls to ∆Y + = 7 at the centre of the channel; along the streamwise direction,
the mesh size varies from ∆X+ = 12 at the inlet to ∆X+ = 1 at the interface with the
downstream part of the channel flow.
The role of this part of the domain is to generate a temperature-homogeneous boundary
layer at equilibrium with the regime conditions specified in table 1. In order to do so
at a moderate cost, a recycling strategy is used: the three velocity components and the
temperature imposed at the domain inlet via the Navier-Stokes Characteristic Boundary
Condition (NSCBC) formalism (Poinsot & Veynante 2005; Moureau et al. 2005) are
extracted from a recycling plane situated downstream at a distance of 2πδ.
Despite the low Mach number (see table 1), compressibility effects, which are fully
considered in (2.1), (2.2) and (2.3), impact the recycling procedure. Similarly to a
subsonic Fanno flow (see Ockendon et al. 2001), if inlet conditions were recycled without
any sort of correction, the presence of wall friction would make the flow accelerate and
the temperature diminish until the sonic condition is attained.
It is thus necessary to normalise the values extracted at the recycling plane with respect
to a target average temperature 〈T 〉target and streamwise velocity 〈U〉target which allow
to obtain the regime specified in table 1. For every time iteration one has:

ui(x, y, z, t)|x=0 = ui(x, y, z, t)|x=2πδ

〈U〉target
〈U〉x=2πδ

, (2.8)

as well as,

T (x, y, z, t)|x=0 = T (x, y, z, t)|x=2πδ

〈T 〉target
〈T 〉x=2πδ

, (2.9)

where 〈U〉x=2πδ is the average streamwise velocity and 〈T 〉x=2πδ the average temperature
at the recycling plane at instant t. Given the low Mach number and the short distance
between the inlet and the recycling plane, the correction applied to the temperature and
the velocity components is minimal,

(
1− 〈U〉target / 〈U〉x=2πδ

)
∼ 10−7,

(
1− 〈T 〉target / 〈T 〉x=2πδ

)
∼ −10−7,

and yet necessary. Without, the bulk velocity drifts away and eventually diverges.

The downstream part of the domain has size [18πδ, 2δ, πδ], the upper and lower walls
are isothermal, both at temperature Tw = 400 K, and a no-slip boundary condition
is prescribed, while, analogously to the upstream part, the domain is periodic in the
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spanwise direction. At the outlet, pressure is imposed via the NSCBC formalism and
thus a streamwise pressure gradient driving the flow generates between the inlet and the
exit of the domain.
The mesh has 1771, 179 and 200 points in the streamwise, wall-normal and spanwise
direction, respectively. The mesh has the same point distribution of the upstream sub-
domain along the Y and Z directions, while the mesh size varies from ∆X+ = 1 at
the adiabatic-isothermal interface to ∆X+ = 12 at the outlet where wall units are still
referred to the adiabatic conditions of the upstream sub-domain. This refinement along
the streamwise direction allows to well capture the very first development region of the
thermal boundary layer at the leading edge of the isothermal wall, where streamwise
gradients can be important.
The role of the downstream part is to allow the thermal boundary layer to be fully
developed and to attain a new equilibrium state before the exit. The fully developed
regime is characterized by a scaled mean temperature profile which is homogeneous in
the streamwise direction. The profile is scaled from the possibly varying bulk and wall
temperatures in a general case. Without any source term in the energy equation, the mean
temperature and its bulk value approach asymptotically the fixed wall temperature in
the present case. In order to appreciate more clearly the fully developed regime, a source
term is added to the energy equation (2.3) to yield a homogeneous mean temperature
that results from the balance between the prescribed source term and the wall heat fluxes
of the established flow qw

eq:

qw
eq ≈ −Senerδ . (2.10)

The source term Sener is constant in time while being homogeneous in each subdomain
in the following manner:

Sener(x) =





0 for x ∈ [0, 4πδ]

Sener
eq−isot

for x ∈ [4πδ, 22πδ],

(2.11)

where Sener
eq−isot

is the time-averaged energy source term at equilibrium of the config-
uration described in section §3.2.
Since temperature is not a passive scalar in (2.3), the temperature gradient between the
wall and the centre of the channel has an impact on the velocity boundary layer and on
the momentum balance. This effect can be quantified (see Nicoud 1999), by the heat flux
parameter Bq = qw/ (ρwcpwuτTw) where qw is the wall heat flux, ρw and cpw respectively
the mass density and the constant-pressure specific heat at the wall and uτ the friction
velocity defined as uτ =

√
τw/ρw where τw is the wall shear stress. Alternatively, one

can compute the value of the heat flux parameter at equilibrium Beqq as a function of the
source term added:

Beqq = − Senerδ

ρwcpwuτTw
(2.12)

Table 2 summarises the size and the mesh resolution while table 3 details the regime
conditions of the downstream part of the domain. Since the value of Beqq is of the

order of 10−2 and the temperature ratio
(
Tw/T c

)out
is close to one, the impact of the

temperature gradient on the momentum balance (see Wardana et al. 1994; Eames &
Hunt 1997) is expected to be negligible, at least at equilibrium, as shown in section §3.2.
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Size nX × nY × nz ∆X+ ∆Y + ∆Z+

[18πδ, 2δ, πδ] 1771× 179× 200 [1.0− 12.0] [0.75− 7.0] 6.2

Table 2: Size, mesh and spatial resolution of downstream (isothermal) sub-domain.

Tw (K) Beqq (Nu)out (Reτ )out
(
Tw
Tc

)out
Tw
T in

400 0.017 27.4 292 1.36 1.31

Table 3: Regime conditions of downstream (isothermal) sub-domain: (Nu)
out

=(
2δ qw

λw(Tw−Tc)

)out
is the Nusselt number, (Reτ )

out
the friction Reynolds number and

(
Tw/T c

)out
the temperature ratio between the wall and the centre of the channel, all

three evaluated at the outlet; Tw/T in is the temperature ratio between the wall and the
inlet.

2πδ

2δ

22πδ

2δ

2πδ

Figure 2: Schematic representation of the initial solution. The conservative fields (in this
case ρu) of a 2πδ× 2δ×πδ adiabatic channel flow at equilibrium is repeated periodically
in the streamwise direction eleven times.

2.3. Initialisation and computing time

In order to minimise the transient period necessary for the flow to reach the statistically
steady state, the initial conservative fields are extracted from a smaller bi-periodic
adiabatic channel flow at equilibrium, of which details are given in section §3.1. The
size of this channel flow being [2πδ, 2δ, πδ], the same solution is put in sequence eleven
times in the streamwise direction to cover the whole length of 22πδ, as shown in figure 2.
In this manner not only is the initial solution periodic along the Z axis but also between
the inlet and the recycling plane.

The velocity boundary layer is then already fully developed at the start of the
simulation but in order for the thermal boundary layer to develop and attain steady
state, the initial solution is integrated during a transient time τtrans = 18πδ/u, i.e., the
time the average flow needs to cross the whole downstream part of the domain. Once the
steady state is reached, flow statistics are collected over the duration 56δ/uτ , with uτ
the friction velocity computed at the outlet.
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Size nX × nY × nz ∆X+ ∆Y + ∆Z+

[2πδ, 2δ, πδ] 200× 179× 200 12.4 (8.88) [0.75− 7.0] ([0.54− 5]) 6.2 (4.44)

Table 4: Size, mesh and spatial resolution (in parentheses for the case with isothermal
walls) of the channel flow used for validation.

3. Equilibrium states and validation

This study is characterised by two distinct equilibrium states between which the
flow evolves along the streamwise direction. The former is an adiabatic, fully developed
turbulent flow in the upstream part of the domain; the latter is a fully developed turbulent
thermal boundary layer at the outlet.
So as to analyse these equilibrium states, two distinct simulations are performed in the
same regime conditions specified in tables 1 and 3 in a smaller bi-periodic channel flow
of which size and mesh information is summarised in table 4. The mesh distribution is
the same as in tables 1 and 2 in the wall-normal and spanwise direction while in the
X direction the point distribution is in this case uniform since there are no streamwise
singularities.

These computations are used to both validate the numerical set-up introduced in
section §2 and as reference solutions for the aforementioned equilibrium states in section
§4. Furthermore, as explained in section §2.3, the adiabatic bi-periodic channel flow is
also used for initialisation.
In the following sections details about these simulations as well as the main results

compared to literature are given. In the following, (·) and (̃·) denote Reynolds and Favre
averages while (·)′ and (·)′′ denote their respective fluctuating parts.

3.1. Adiabatic bi-periodic channel flow

The regime conditions of the flow are those specified in table 1. Since the channel flow
is periodic in the streamwise direction, differently from the configuration of figure 1, a
source term SMx is needed in the momentum equation in the streamwise direction in
order to attain (and maintain) the specified friction Reynolds number. An energy source
term Sener is also applied to the energy equation, in order to prevent the flow from
progressively heating up because of viscous effects and of the influence of SMx

.
The two source terms dynamically control the bulk Reynolds number Reb and the bulk
enthalpy hb of the channel flow acting like a PI controller as described in Zhang &
Vicquelin (2016). The new set of equations is then the following:

∂ρ

∂t
+
∂ρui
∂xi

= 0 , (3.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ SMx
δ1i , (3.2)

∂ρh

∂t
+
∂ρujh

∂xj
=

Dp

Dt
−
∂qcdj
∂xj

+ τij
∂ui
∂xj

+ uiSMx
δ1i + Sener , (3.3)

where, in this case, δi,j represents the Kronecker delta. For the two source terms one only
has to specify the target value for the bulk Reynolds number and bulk enthalpy as well
as the temporal constant of the PI controller, after which the two time-dependent source
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Reb hb (kJ) αδ/uτ SMx |t→∞ Sener|t→∞

7062 307 1/3 τw/δ −u τw
δ

Table 5: Reb and hb are the target values for the bulk Reynolds number and enthalpy;
α is the temporal constant of the PI controller expressed here in non-dimensional form
with respect to the channel flow characteristic time δ/uτ ; SMx |t→∞ and Sener|t→∞ are
the asymptotic values for the two source terms once the target values are reached.
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Figure 3: Mean profile of streamwise velocity (a): —— present results; # results from
Kawamura et al. (1999). Profiles of r.m.s. streamwise, wall-normal and spanwise velocity
respectively (b): ——, – · – · – and - - - - present results; 4, # and � results from
Kawamura et al. (1999).

terms adapt automatically until the targets are reached. All these values are summarised
in table 5.

Figure 3 shows the mean streamwise velocity profile u+ and the three root-mean-
square (r.m.s.) velocity profiles adimensionalised with respect to the friction velocity
uτ =

√
τw/νw (where τw is the wall shear stress and νw is the kinematic viscosity at the

wall) as a function of the wall distance expressed in wall units y+ = yuτ/νw. Results are
compared to those of Kawamura et al. (1999) and a very good agreement is obtained for
all the profiles.

3.2. Bi-periodic channel flow with isothermal walls

The regime conditions are those specified in table 3 while geometry and mesh are the
same described in section §3.1. Also in this case, two source terms are added to the
Navier-Stokes equations in order to attain the regime specified. Target bulk values as
well as the asymptotic behaviour of the source terms are summarised in table 6, where
Sener|t→∞ is the energy source term of (2.11) prescribed to the downstream part of the
domain of figure 1.

Figure 4 shows the mean streamwise velocity and the three r.m.s. velocity profiles
compared to those of Kawamura et al. (1999) obtained for an incompressible flow and
the temperature treated as a passive scalar. In this case, two different wall scalings are
used. The first, denoted as (·)+, is the classic wall scaling adopted in section §3.1; the
second, denoted as (·)∗ is the semi-local scaling (see Huang et al. 1995; Patel et al. 2015)
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Reb hb (kJ) αδ/uτ SMx |t→∞ Sener|t→∞

7062 307 1/3 τw/δ
qw
δ
− u τw

δ

Table 6: Target values for bulk Reynolds number and enthalpy; temporal constant of
the PI controller; asymptotic values for the two source terms once the target values are
reached, where qw is the time-averaged wall heat flux.
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Figure 4: Mean profile of streamwise velocity (a): —— present results in classic (gray)
and semi-local (black) scaling; # results from Kawamura et al. (1999).
Profiles of r.m.s. streamwise, wall-normal and spanwise velocity respectively (b): ——,
– · – · – and - - - - present results in classic (gray) and semi-local (black) scaling; 4, #
and � results from Kawamura et al. (1999).

using local fluid properties ρ, ν and cp, where cp is the thermal capacity at constant

pressure, for the definition of the friction velocity uτ =
√
τw/ρ, friction temperature

Tτ = qw/ (ρcpuτ ) and viscous scale yν = ν/uτ . Figures 4a and 4b show how semi-local
scaling allows to take into account fluid property variations in the wall-normal direction
and make velocity profiles collapse to those with constant properties of Kawamura et al.
(1999). Similar results are shown for mean and r.m.s. temperature profiles in figure

5, where T
+/∗
rms = Trms/Tτ and T

+/∗
=
(
Tw − T

)
/Tτ , and the friction temperature

Tτ = qw/ (ρwcpwuτ ) is used for the classic wall-scaled temperatures. Fluid mean property
variations seem to be the only remarkable impact of the heated wall on the flow, as
suggested by Morkovin (1962) and seen in several studies concerning compressible flows
(e.g. Huang & Coleman 1994; Huang et al. 1995; Nicoud 1999). This is supported by
results shown in figure 6, where the mean wall-normal velocity, normalised with respect to
the mean streamwise velocity and the friction velocity is plotted. Indeed, if the continuity
equation (2.1) and the absence of streamwise gradients guarantee that the Favre-averaged
normal velocity ṽ is zero, mean density variations do generate ejection events in the
boundary layer. Nevertheless the mean normal velocity is at most of the order of 1% and
1h with respect to the friction velocity and the mean streamwise velocity, respectively.
Figure 7 shows the total shear stress as well as the total heat flux

qtot = −λ∂T
∂y

+ ρṽ′′h′′ −
∫ y

0

τ : ∇v dy .
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Figure 5: Profiles of mean (a) and r.m.s. (b) temperature: —— present results in classic
(gray) and semi-local (black) scaling; # results from Kawamura et al. (1999).
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Figure 6: Wall-normal velocity normalised with respect to the friction velocity v∗ (black
line) and mean streamwise velocity v/u (gray line).

Notice that the viscous heating contribution is not strictly zero even if small due to the
low Mach number of the simulated flow.
Finally, figure 8 shows turbulent budgets for h̃′′2 and wall-normal heat flux −ρṽ′′h′′
(normalised with respect to qw

2/µw and qw.τw/µw respectively) compared to those of
Kawamura et al. (1999). A good agreement is obtained although not as precise as in
previous figures. The slight differences can be attributed to small compressibility effects in
the present case and variable properties effects that the semi-local scaling most likely does
not correct in these budgets. Finally, remaining numerical errors in both computations
is another possible source of disagreement.

4. Results

Results for the configuration described in §2 are now presented. In the following, as

in section §3, (·) and (̃·) denote Reynolds and Favre averages while (·)′ and (·)′′ denote
their respective fluctuating parts. Spatially, quantities are only averaged along the Z
axis, which is the only homogeneous direction for this configuration.
Apex (·)+ denotes classic wall scaling while (·)∗ denotes semi-local scaling. Given the
streamwise evolution of the boundary layer, unless specified, scaling of quantities (dimen-
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Figure 7: Profiles of shear stress scaled by the wall shear stress (a): —— total shear stress

τ tot ; - - - - viscous term τ12 = µ∂u∂y ; – · – · – turbulent term −ρũ′′v′′.
Heat fluxes scaled by the wall heat flux (b): —— total heat flux qtot; - - - - conductive term
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Figure 8: Budgets of enthalpy variance (a) and wall-normal turbulent heat flux (b),
present results (black) and Kawamura et al. (1999) (gray): —— production ; – · – ·
– molecular dissipation; - - - - molecular diffusion; · · · · · · turbulent diffusion; – · · –
enthalpy-pressure-gradient correlation.

sionless numbers included) has to be intended locally with respect to the X coordinate,
for instance:

T
+

(y)|x=ξ =
Tw − T (y)|x=ξ

Tτ |x=ξ
.

The origin of the axes is placed at the interface between the adiabatic and the isothermal
wall so that the adimensionalised X coordinate x/δ is defined in the range [−4π, 18π]
between the inlet and the outlet.
The subscripts (·)w and (·)c indicate that the given property is evaluated at the wall and
at the centre of channel, respectively, and also in this case, unless differently specified, it
has to be intended locally with respect to the X coordinate.

The section is organised as follows. In section §4.1, the computation is first validated
with respect to the equilibrium states described in section §3; then, in section §4.2 the
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impact of the heated wall on the velocity boundary layer is analysed and the evolution
of the different contributions to the momentum balance is shown; in section §4.3, the
evolution of the mean temperature is shown, the averaged energy equation is introduced
and the evolution of the different contributions to the total heat flux is detailed; in section
§4.4, the same is done for the enthalpy variance and for the wall-normal turbulent heat
flux; finally, in section §4.5 the evolution of the turbulent Prandtl number along the
channel flow is investigated.

4.1. Equilibrium states and validation

First of all, it is necessary to verify that the configuration described in §2 allows to meet
the scope of the study, that is analysing the evolution of a fully developed, adiabatic,
temperature-homogeneous boundary layer at equilibrium towards a new equilibrium state
characterised by a fully developed thermal boundary layer. In order to do so, two aspects
have to be verified: first, that the boundary layer at x/δ ≈ 0 is at equilibrium and matches
with results presented in §3.1; second, that the boundary layer at the outlet is again at
equilibrium and matches with results shown in §3.2.

Figure 9 shows the mean streamwise velocity and the three r.m.s. velocity profiles
at x/δ = −0.1π and x/δ = 287

16 π, i.e., slightly upstream of the interface between the
adiabatic and the isothermal walls and very close to the outlet, compared to results
shown in sections §3.1 and §3.2 for the two equilibrium states. At x/δ ≈ 0, excellent
agreement on the mean streamwise velocity is obtained with respect to reference results
of §3.1. Thus, the flow reaching the downstream part of the domain is a fully developed,
turbulent, temperature-homogeneous boundary layer as desired. On the other hand, even
though good agreement is obtained for the wall-normal and spanwise r.m.s. velocities, a
disparity of around 10% is observed for the streamwise r.m.s. velocity in the log layer.
At x/δ ≈ 18π, very good agreement is obtained on both mean streamwise velocity and
r.m.s. velocities with respect to results shown in §3.2 for the fully developed thermal
boundary layer. The aforementioned disparity seems thus to be due to the ongoing
perturbation of the recycling described in §2.2, whose effect disappears at a certain
distance from it.

Figure 10 shows the mean and r.m.s. temperature profiles at x/δ ≈ 18π. Very good
agreement is obtained with reference results of §3.2 on the mean temperature while a
slight disparity is observed on the r.m.s profile. Thus, if on the one hand the average
thermal boundary layer seems to be fully developed at the outlet, on the other hand a
longer isothermal wall would have been necessary to observe the same level of convergence
for temperature fluctuations.

Figure 11 shows the evolution of the Nusselt number Nu and of the heat flux parameter
Bq along the channel flow compared to their respective values at equilibrium computed
for the configuration described in §3.2 and summarised in table 3. As expected, Nu and
Bq are both very important at the leading edge but converge towards equilibrium before
the exit of the domain.

These results confirm that the given configuration and the numerical set-up allow to
meet the aim of the study.

4.2. Velocity profiles and momentum balance

As mentioned in §2.1, temperature is not a passive scalar in (2.1), (2.2) and (2.3) and
the impact of the temperature gradient on the velocity fields and momentum balance is
here evaluated.
On the one hand, the heat flux parameter at equilibrium Beqq is small and so is the
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Figure 9: Mean profile of streamwise velocity (a)-(c): —— present results at x/δ ≈ 0
(resp. x/δ ≈ 18π); # reference results from §3.1 (resp. §3.2).
Profiles of r.m.s. streamwise, wall-normal and spanwise velocity respectively (b)-(d): —
—, – · – · – and - - - - present results at x/δ ≈ 0 (resp. x/δ ≈ 18π); 4, # and � reference
results from §3.1 (resp. §3.2).

temperature ratio between the wall and the centre of the channel. As it is showed a
priori in §3 and a posteriori in §4.1, the impact is limited to a small ejection event and a
variation of the mean and r.m.s. velocity profiles which collapse on the standard profiles
once the semi-local scaling is used.
On the other hand, as it is shown in figure 11, there is a portion of the channel flow
near the leading edge where the heat flux parameter is elevated and the impact on the
boundary layer is expected to be more important. Furthermore, since the flow is subsonic,
any perturbation given by the isothermal wall is also expected to slightly modify the
upstream conditions.

Figure 12a shows the mean streamwise velocity for x/δ ranging between [−0.06, 0.18]
compared to the canonical profiles seen in section §3. Even if semi-local scaling is used,
none of the profiles agrees with the equilibrium ones, showing that at these close distances
from the leading edge the perturbation cannot be ascribed to the only variation of mean
fluid properties. This is particularly true for the profile at x/δ = 0.015, for which the
velocity boundary layer seems to be at equilibrium only for y∗ . 2, i.e., in the viscous
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Figure 10: Profiles of mean (a) and r.m.s. (b) temperature: —— present results at x/δ ≈
18π in classic (gray) and semi-local (black) scaling; � (resp. #) reference results from
§3.2 in classic (resp. semi-local) scaling.

0π 4π 8π 12π 16π
x/δ

50

100

150

200

250

300

350

400

N
u

(a)

0π 1π 2π 3π 4π
x/δ

0.05

0.10

0.15

0.20

B
q

(b)

Figure 11: Nusselt number Nu (a) and heat flux parameter Bq (b) as a function of x/δ:
—— present results; – · – · – equilibrium values computed for the configuration of section
§3.2.

sub-layer. The discrepancy of the profile at x/δ = −0.06 with respect to the equilibrium
profile of §3.1, instead, shows how the perturbation propagates upstream.
The same impact on the streamwise velocity was observed by Sanchez et al. (2014)
with a lower Reynolds number and a higher temperature ratio. They showed how it is
possible to make the different velocity profiles collapse once the Van Driest transformation

u+V D =
∫ u+

0

√
ρ/ρw du+ is adopted. They argued that the perturbation observed on the

streamwise velocity is due to the increase of the wall-normal velocity induced by the
temperature gradient and that the Van Driest transformation can take this effect into
account as it is mathematically analogous, as shown by Nicoud & Bradshaw (2000), to
the transformation for incompressible turbulent wall flows with uniform injection (see
Simpson 1970).
If this curious mathematical analogy, as underlined by the same Nicoud & Bradshaw
(2000), is unlikely to have any physical meaning, it is true that the Van Driest trans-
formation, including the influence of the heat flux parameter (see Nicoud & Bradshaw
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Figure 12: Mean streamwise velocity profile for different x/δ in semi-local (a) and Van
Driest (b) scaling: —— present results at x/δ = −0.06, 0.015, 0.09, 0.18 (from lightest
to darkest respectively); · · · · · · equilibrium profile of section §3.1; – · – · – equilibrium
profile of section §3.2.

2000), takes into account fluid property variations differently from semi-local scaling.
Figure 12b shows the Van Driest-transformed streamwise velocity profiles at the same
crosswise sections of figure 12a. Good agreement is obtained between the different profiles
until the end of the buffer layer (i.e., y+ ≈ 20) and the profiles downstream of the leading
edge better collapse on each other as well as on the equilibrium profile of section §3.2.
On the other hand, none of the profiles collapses on the equilibrium adiabatic profile of
section §3.1. Furthermore, the Van Driest transformation has obviously no effect on the
profile at x/δ = −0.06, where the wall is adiabatic and fluid properties are thus constant
along the normal direction.
At this stage, we cannot exclude that the wall-normal velocity is responsible for the
perturbation of the mean streamwise velocity. It is certainly true that the wall-normal
velocity considerably increases near the leading edge, as it can be seen in figures 13a and
13b. The peak of Y velocity can attain 10% of the local friction velocity and 1% of the
local mean streamwise velocity. Yet, one can also observe that the wall-normal velocity is
relatively important at x/δ = −0.06 and, above all, always greater than zero. If the wall-
normal velocity were the only responsible for the deviation of the streamwise velocity
profile, the impact would be expected to be similar to the one observed downstream
of the leading edge, where the normal velocity is also always positive and of the same
order of magnitude. Instead, as it can be seen in figure 12a, it is not the case, since the
streamwise velocity at x/δ = −0.06 and, for example, x/δ = 0.18 are respectively above
and below the canonical log law.
Hence, we propose a different interpretation, i.e., that the destabilisation of the boundary
layer is due to to the abrupt variation of the wall shear stress. Figure 14a shows
the evolution of the skin friction coefficient Cf = τw/

(
1
2ρbu

2
b

)
where ρb and ub are

respectively the bulk density and the bulk velocity.
At x/δ = 0+ the skin friction coefficient is at its maximum, which can be explained by
the abrupt increase of the fluid dynamic viscosity at the leading edge of the isothermal
wall. Then, the following relaxation and adaptation of the velocity gradient at the wall
to the increased viscosity leads to a quickly decreasing Cf until it attains a plateau.
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Figure 13: Wall-normal velocity profile for different x/δ in semi-local scaling (a) and non-
dimensionalised with respect to the mean streamwise velocity(b): —— present results at
x/δ = 0.015 − 0.18 − 0.73 (from lightest to darkest respectively); – · – · – equilibrium
profile of section §3.2.
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Figure 14: Skin friction coefficient Cf (a) and non-dimensionalised wall pressure gradient
(b) along the channel flow.

At x/δ = 0−, instead, the skin friction coefficient is at its minimum. This effect is
due to the fact that the flow, being subsonic, perceives the upcoming isothermal wall
and adapts by decreasing the gradient of the streamwise velocity at the wall while the
dynamic viscosity is constant since the wall is adiabatic.
This perturbation, limited to a very small portion of the channel flow between x/δ ∈
[− 1

2π,
1
2π], results in a local perturbation of the wall streamwise pressure gradient, as

it can be seen in figure 14b non-dimensionalised with respect to the ratio τw/δ. While
∂p
∂x |w/ τwδ ≈ −1 far from the leading edge, a positive (and thus adverse) and strongly
negative (and thus favourable) pressure gradient is observed at x/δ = 0− and x/δ = 0+,
respectively.
In order to take the effect of the streamwise pressure gradient into account, we introduce,
following Simpson (1983), the velocity scale up defined as:

up =

∣∣∣∣
µ

ρ2
∂p

∂x

∣∣∣
w

∣∣∣∣
1
3

(4.1)
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which, combined with the classic friction velocity uτ = |τw/ρ|
1
2 , gives as proposed by

Manhart et al. (2008):

uτp =
√
u2τ + u2p . (4.2)

We propose here a slight modification of this definition, which allows do distinguish
between positive and negative pressure gradients:

uτp =

√
u2τ + sign

(
∂p

∂x

∣∣∣
w

)
u2p . (4.3)

In this manner, the decrease of uτ in case of adverse pressure gradient and its increase
in case of favourable pressure gradient are compensated by up, correcting the upward
and downward deviation of the streamwise velocity profile respectively upstream and
downstream of the leading edge observed in figure 12a. Figure 15 shows the evolution of
the scale velocity ratio αp = u2τ/u

2
τp, as defined by Manhart et al. (2008), in proximity of

the leading edge. It can be seen that αp varies between approximately 0.95 and 1.2, values
close to unity which nevertheless indicate that the pressure gradient is not negligible.
We can thus introduce the following wall scaling:

y∗τp =
yuτp
ν

u∗τp =
u

uτp
,

(4.4)

where, analogously to semi-local scaling, fluid properties depend on the wall-normal
direction in order to take the effect of the temperature gradient into account.
Figure 16a shows the same velocity profiles of figures 12a and 12b in the newly introduced
wall scaling while figure 16b shows the r.m.s. velocity profiles. Very good agreement is
obtained between the different profiles in every zone of the boundary layer, with the only
exception of the r.m.s. streamwise velocity, for which the deviation in the log layer from
the equilibrium profile of section §3.2 has to be ascribed in any case to what is explained
in section §4.1 and shown in figure 9.

In order to well understand the impact of the isothermal wall on the velocity fields
near the leading edge, the evolution of the different terms of the momentum balance has
to be analysed. For every crosswise section, integrating along the wall-normal direction
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Figure 16: Mean streamwise velocity profile for different x/δ in the newly introduced
wall scaling (see (4.4)) (a): —— present results at x/δ = −0.06, 0.015, 0.09, 0.18
(from lightest to darkest respectively); · · · · · · equilibrium profile of section §3.1; – · –
· – equilibrium profile of section §3.2.
Profiles of r.m.s. streamwise, wall-normal and spanwise velocity respectively for different
x/δ in the newly introduced wall scaling (see (4.4)) (b): ——, – · – · – and - - - - present
results at (from light gray to black) x/δ = −0.06, 0.015, 0.09, 0.18 and equilibrium (see
§3.2).

the local momentum balance gives:

τw(x) = −
∫ y

0

(
ρũ
∂ũ

∂x

)
dy

︸ ︷︷ ︸
Ix

−
∫ y

0

(
ρṽ
∂ũ

∂y

)
dy

︸ ︷︷ ︸
Iy

−
∫ y

0

(
∂p

∂x

)
dy

︸ ︷︷ ︸
II

+

+

∫ y

0

(
∂τxx
∂x

)
dy

︸ ︷︷ ︸
IIIx

+ τxy(y)︸ ︷︷ ︸
IIIy

+

−
∫ y

0

(
∂

∂x

(
ρũ′′u′′

))
dy

︸ ︷︷ ︸
IVx

− ρũ′′v′′(y)︸ ︷︷ ︸
IVy

, (4.5)

where on the right-hand side of the equation there are two mean convective terms (Ix
and Iy), the pressure gradient (II), two viscous terms (IIIx and IIIy) and two terms
associated with turbulent transport (IVx and IVy). The fully developed regime yields
the familiar flux balance:

τw + y
dp

dx
= τxy(y)− ρũ′′v′′(y) or τw

(
1− y

δ

)
= τxy(y)− ρũ′′v′′(y). (4.6)

Figure 17 shows the different terms non-dimensionalised with respect to the average local
wall shear stress τw as a function of y/δ for different values of x/δ.
Figure 17a is relative to x/δ = −0.06. At this close distance from the leading edge,
the terms of (4.5) are strongly perturbed. The pressure gradient flux does not follow a
straight line, showing that ∂p/∂x is not uniform along the wall-normal direction and that
the pressure field is bidimensional; it is also evident how the streamwise pressure gradient
is positive (and thus adverse) but only in a very limited portion of the boundary layer,
until y/δ ≈ 0.05. Both mean convective terms are important; the positive slope of the
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Figure 17: Momentum flux balance at x/δ = −0.06 (a), 0.18 (b), and 5π (c): ——
pressure gradient; - - - - streamwise (gray) and wall-normal (black) viscous terms; · · · · · ·
streamwise (gray) and wall-normal (black) mean convective terms; – · – · – streamwise
(gray) and wall-normal (black) turbulent terms.

streamwise convective term near the wall indicates that ∂ũ/∂x is negative, resulting in
the aforementioned decrease of the wall shear stress; the negative slope of the wall-normal
convective term shows how ṽ is everywhere greater than or equal to zero. The remaining
terms, like the wall-normal viscous term and the wall-normal turbulent flux, seem not to
be significantly modified, indicating that the perturbation of the pressure gradient is fully
compensated by the two convective terms. This seems to confirm the hypothesis that the
non-equilibrium contributions to the momentum balance tend to self-compensate (see
Larsson et al. 2016); yet, as the pressure gradient needs to be nevertheless taken into
account for correcting the velocity profiles, it is evident how these non-equilibrium terms
can affect independently the flow’s mean quantities, and, therefore, need to be considered
regardless of whether they balance each other or not.
Figure 17b is relative to x/δ = 0.18. The pressure gradient flux still does not follow a
straight line and the pressure field is thus bidimensional; the positive slope of the pressure
gradient term indicates that ∂p/∂x is now negative for every y/δ. Both mean convective
terms are still important; near the wall, like at x/δ = −0.06, ∂ũ/∂x < 0, indicating that
the wall shear stress is decreasing.
Figure 17c, finally, is relative to x/δ = 5π, i.e., relatively far from the leading edge,
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where the skin friction coefficient, the wall streamwise pressure gradient and the heat
flux parameter have all stabilised. As can be seen, the canonical momentum fluxes are
retrieved, with, in particular, a linear pressure term evolving from zero to unity, which
is associated with the homogeneous pressure gradient.

In conclusion, the impact of the sudden isothermal wall condition on the velocity field
can be summarised as follows. The abrupt variation (and, in this case, increase) of wall
temperature at the leading edge leads to a variation of the dynamic viscosity and of
the mass density. As a consequence, the wall shear stress is perturbed (see Fig. 14a)
and so is the velocity field: near the wall ∂u/∂y decreases to adapt to the new dynamic
viscosity and the wall-normal velocity increases by mass conservation; the same impact is
slightly propagated upstream, since the flow is subsonic. As a result, the pressure field is
perturbed in the very proximity of the wall, with an adverse streamwise pressure gradient
developing upstream of the leading edge (see Fig. 14b).
In order to correct the effect of the pressure gradient, the scaling velocity and viscous
length are modified as shown in Eq. (4.4), which allows to make the mean streamwise and
r.m.s. streamwise, wall-normal and spanwise velocity profiles to collapse on the classic
equilibrium ones.
Further away from the leading edge, where the skin friction coefficient, the wall stream-
wise pressure gradient and the heat flux parameter have all stabilised, the classic mo-
mentum fluxes are retrieved, uτp ≈ uτ and the only effect on the velocity boundary layer
induced by the temperature gradient is given by the variation of mean fluid properties
which can be taken into account through semi-local scaling.

4.3. Mean temperature profiles and energy balance

Since the temperature profile of the flow making contact with the isothermal wall is
uniform, it is undoubtedly on the temperature that the impact of the heated wall is
more important. The goal of this section is to describe the development of the thermal
boundary layer from the leading edge to the outlet and to identify, thanks to the evolution
of the terms composing the energy balance, the different non-equilibrium regions of the
flow.

The progressive development of the thermal boundary layer along the channel flow
in the present case is shown in figure 18, where several mean temperature profiles are
plotted at different x/δ and compared to the equilibrium profile of section §3.2.
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For every x/δ, three distinct parts of the developing thermal boundary layer can be
identified. The first is the near wall region where, for y∗ ∈ [0, h∗eq] where h∗eq depends
on and increases with x/δ, the thermal boundary layer is fully developed and the mean
temperature profile agrees with the one at equilibrium; the second, for y∗ ∈ [h∗n−eq, δ

∗]
where h∗n−eq also depends and increases with x/δ, is a region that is still not affected by
the isothermal wall and the temperature profile is flat; the third, for y∗ ∈ [h∗eq, h

∗
n−eq],

is instead the actual non equilibrium developing portion of the thermal boundary layer,
where the mean temperature profile is neither flat nor agreeing with the equilibrium one.
As x/δ increases, both h∗eq and h∗n−eq tend towards the mid-height of the channel δ∗ and
the non equilibrium region disappears.

The existence of an equilibrium layer in the development of the thermal boundary
layer has been shown experimentally, for example by Blom (1970) (who called this zone
adapted region) or Teitel & Antonia (1993) for a step change in temperature and wall
heat flux, respectively. The objective is to analyse the evolution of the equilibrium layer
(delimited by h∗eq) and of the non-equilibrium region (delimited by h∗n−eq) yet, to do so,
it is necessary to quantitatively define the notions of equilibrium and non-equilibrium.
We propose to do so through the analysis of the different terms of the energy balance.
The integration along the wall-normal direction of the local averaged energy equation
gives a local heat budget for every crosswise section:

qw(x) =

∫ y

0

(
ρũ
∂h̃

∂x

)
dy

︸ ︷︷ ︸
Ix

+

∫ y

0

(
ρṽ
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∂y

)
dy

︸ ︷︷ ︸
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+

∫ y

0

(
∂qcdx
∂x

)
dy

︸ ︷︷ ︸
IIx

+ qcdy︸︷︷︸
IIy

+

+

∫ y

0

(
∂

∂x

(
ρũ′′h′′

))
dy

︸ ︷︷ ︸
IIIx

+ ρṽ′′h′′︸ ︷︷ ︸
IIIy

−
∫ y

0

(
Dp

Dt
+ τ : ∇v

)
dy

︸ ︷︷ ︸
IV

− ySener︸ ︷︷ ︸
V

, (4.7)

where on the right-hand side of the equation there are two mean convective terms (Ix and
Iy), two mean conductive terms (IIx and IIy), two terms associated with turbulent heat
transport (IIIx and IIIy), one flux combining compressibility effects, i.e., the pressure
material derivative and the viscous dissipation (IV ) and the source term contribution
(V ). The fully developed regime for low Mach-number flows yields the familiar heat flux
balance:

qw + ySener = qcdy + ρṽ′′h′′ or qw

(
1− y

δ

)
= qcdy + ρṽ′′h′′. (4.8)

Figure 19 shows the evolution of the different fluxes, non-dimensionalised with respect
to the average wall heat flux qw(x), as a function of y/δ for different crosswise sections.
The first remark which can be made is that certain contributions, such as the streamwise
conductive flux and the compressibility effects, are negligible for every x/δ. Consequently,
they will not be discussed here.
Figure 19a is relative to x/δ = 0.73. At this short distance from the leading edge, many
contributions, which do not appear in bi-periodical channel flows at equilibrium, are
important. It is the case, for example, of the wall-normal convective flux since at this
crosswise section, as it is shown in figure 13, the peak of the mean wall-normal velocity
is considerably higher compared to equilibrium. It is also the case of the streamwise

turbulent flux, indicating that the correlation ũ′′h′′ is evolving and increasing (in module)
close to the leading edge. Yet, the preponderant contribution is that of the streamwise
convective flux. Close to the wall its slope is positive, indicating that the streamwise
enthalpy gradient is positive; thus, the thermal boundary layer is developing and, as it
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Figure 19: Energy flux balance at x/δ = 0.73 (a), 2π (b), 5.7π (c) and 16.5π (d): ——
source term; - - - - streamwise (gray) and wall-normal (black) conductive fluxes; · · · · · ·
streamwise (gray) and wall-normal (black) convective fluxes; – · – · – streamwise (gray)
and wall-normal (black) turbulent fluxes; – · · – compressibility effects.

can be seen in figure 19a, the wall-normal conductive and turbulent fluxes are active.
Farther away from the wall, the slope of the streamwise convective flux is negative and
linear, showing that here ∂h̃/∂x is negative; since all the other contributions are constant,
it is evident that the only active phenomenon taking place is the uniform cooling caused
by the source term. It is thus a portion of the boundary layer which still has not perceived
the presence of the heated wall.
Figure 19b is relative to x/δ = 2π, where many of the observations made for x/δ = 0.73
remain valid. The streamwise turbulent flux and the wall-normal convective flux are still
not negligible even if substantially less important. The preponderant contribution is again
that of the streamwise convective flux: as long as its slope is positive, the wall-normal
conductive and turbulent fluxes are active whereas farther from the wall it is the source
term imposing its negative and constant slope.
At x/δ = 5.7π, shown in figure 19c, the streamwise turbulent flux and the wall-normal
convective flux are by now negligible. The streamwise convective term, despite being
still relatively important, is no more the preponderant contribution with respect to the
wall-normal turbulent heat flux which has considerably grown (compare figures 19b and
19c). The fact that the wall-normal turbulent flux is different from zero everywhere but
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at y/δ = 1 suggests that at this crosswise section the impact of the heated wall has by
now reached the centre of the channel.
At x/δ = 16.5π (see Fig. 19d), the classic equilibrium fluxes are retrieved. Despite this,
it can be seen that near the centre of the channel the streamwise convective flux is
negative and decreasing: this indicates that the temperature at y/δ = 1 is still decreasing
under the action of the source term and shows how even at the exit of the channel flow
the thermal boundary layer is not perfectly developed given the limited extent of the
simulated channel flow.

The evolution of the different contributions to the energy balance shows that the fluxes
can be divided into two categories. The former is that of the equilibrium terms, which
tend to become more and more important with x/δ until stabilisation. The contributions
that belong to this category and which are encountered in bi-periodical channel flows are
the wall-normal conductive flux and the wall-normal turbulent flux. The latter is that of
the non-equilibrium terms which, even if potentially preponderant near the leading edge,
tend to become negligible and disappear with x/δ. The contributions belonging to this
category are the streamwise and wall-normal convective terms as well as the streamwise
turbulent flux.
Now, neglecting the streamwise conductive flux as well as the compressibility effects and
defining the average total heat flux qtot as:

qtot = qw(x) + ySener , (4.9)

the sum of the equilibrium terms qeq as:

qeq = qcdy + ρṽ′′h′′ , (4.10)

and the sum of the non-equilibrium terms qn−eq as:

qn−eq =

∫ y

0

(
ρũ
∂h̃

∂x

)
dy +

∫ y

0

(
ρṽ
∂h̃

∂y

)
dy +

∫ y

0

(
∂

∂x

(
ρũ′′h′′

))
dy , (4.11)

Equation (4.7) can be rearranged in the following form:

qtot = qeq + qn−eq . (4.12)

For every x/δ and y/δ, it is thus possible to define the ratio:

Rn−eqtot =
|qn−eq|

|qeq|+ |qn−eq| , (4.13)

quantifying the importance of the non-equilibrium terms in the energy balance.
Figure 20 shows the evolution of Rn−eqtot along the wall-normal direction for different

x/δ. The ratio Rn−eqtot allows to define a quantitative criterion for distinguishing the
three aforementioned regions of the developing thermal boundary layer. Indeed, as it can
be seen in figure 20, for every x/δ there is a near-wall portion of the boundary layer
where the equilibrium fluxes are predominant with respect to the non-equilibrium ones;
consequently Rn−eqtot ≈ 0 and the energy equation can be simply approximated as

qw + ySener ≈ qcdy + ρṽ′′h′′ .

The equilibrium region of the boundary layer, delimited by h∗eq(x), can thus be defined as

the region laying beneath an isoline of Rn−eqtot in the x−y plane, for example Rn−eqtot = 0.1.
For every x/δ there is also a portion of the boundary layer adjacent to the centre of the
channel where the non-equilibrium terms are predominant; consequently Rn−eqtot ≈ 1, the
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Figure 20: Evolution of Rn−eqtot with respect to y/δ for x/δ = 0.18, 1.5π, 2.5π and 16.5π
(from light gray to black).
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Figure 21: Evolution of h∗eq, h
∗
n−eq and δ∗99% along the channel flow: · · · · · · h∗eq; – · – · –

h∗n−eq; —— δ∗99% .

only active physical phenomenon is the cooling caused by the source term and the mean
temperature profile is flat along the wall-normal direction. This region of the boundary
layer, delimited by h∗n−eq(x), can thus be defined as the region laying above an isoline of

Rn−eqtot , for example Rn−eqtot = 0.9.
Finally, for every x/δ and for y∗ ∈ [h∗eq, h

∗
n−eq], the equilibrium and non-equilibrium fluxes

are of the same order of magnitude and the thermal boundary layer is in development.
Figure 21 shows the evolution of h∗eq (defined as the isoline Rn−eqeq = 0.1) and h∗n−eq

(defined as the isoline Rn−eqeq = 0.9) compared to the wall-scaled thermal boundary layer

thickness δ∗99% := h∗ :
∣∣Tw − T (h∗)

∣∣ /
∣∣Tw − T c(x)

∣∣ = 0.99 .
The region of the thermal boundary layer laying above h∗n−eq tends to quickly disappear
as h∗n−eq approaches δ∗ = Reτ∗ ∼ 400 before x/δ = 4π. Downstream of this crosswise
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Figure 22: Evolution of Rn−eqtot as a function of x/δ for several wall distances: —— Rn−eqtot

for y∗ = 5, 12.5, 30 and 40 (from light gray to black respectively); – · – · – isoline
Rn−eqtot = 0.1 .

section, the effect of the heated wall has reached the centre of the channel and, as shown
in figure 18, the mean temperature profile is nowhere flat any more. As one could expect,
h∗n−eq > δ∗99% everywhere. The fast decay of the region beyond h∗n−eq indicates a rapid
wall-normal expansion of the equilibrium terms and might be due to the fact that since
the velocity boundary layer is fully developed, the transport of the heated pockets of the
flow towards the centre of the channel can efficiently be carried out by turbulence.
On the other hand, the increase rate of h∗eq as a function of x/δ is slower. Curiously, an
abrupt change in h∗eq takes place at x/δ ≈ 10π where the profile intercepts the boundary
layer thickness δ∗99%. Beyond, h∗eq attains a peak at y∗ ≈ 350 before slowly decreasing,
instead of reaching the centre of the channel. This is a portion of the boundary layer
where the temperature is essentially homogeneous in the wall-normal direction, and still
ruled by the cooling effect of the source term inducing a negative streamwise convective
flux, which is not yet counterbalanced by the heating effect of the isothermal wall (see
Fig. 19d). Hence, figure 21 shows that the structure of the thermal boundary layer is
fully equilibrated for x/δ ' 10π, while the core flow in the channel is still subdued to
some variation.

Finally, figure 22 shows the evolution of Rn−eqtot as a function of x/δ for several wall
distances. The intersection of every iso-y∗ with the isoline Rn−eqtot = 0.1 can be seen as
the non-equilibrium distance associated to that wall distance, i.e., the distance from the
leading edge which is necessary for the thermal boundary layer to be at equilibrium
between the wall and the specified y∗.

4.4. Root-mean-square temperature and wall-normal turbulent heat flux: profiles and
respective budgets

Figure 23 shows the evolution of the temperature fluctuations (in semi-local scaling)
and of the wall-normal turbulent heat flux (scaled with respect to the local wall heat
flux) for different crosswise sections compared to the equilibrium profiles of section §3.2.

The evolution of the wall-normal turbulent heat flux in Fig. 23b is somewhat similar to
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Figure 23: Profiles of r.m.s temperature (a) and wall-normal turbulent heat flux (b) for
different x/δ: —— present results at x/δ = 0.015 - 0.21 - 1

2π - 3
2π - 3.6π - 7.75π - 17.9π

(from lighter to darker); – · – · – equilibrium profiles of section §3.2.

that of the mean temperature. Indeed, for every x/δ, one can identify a near-wall region
where the profile agrees with the one at equilibrium, a region which is still not affected
by the isothermal wall and the profile is flat, and a region in between where the turbulent
heat flux is developing.
Interestingly, the same cannot be said about the fluctuating temperature profiles in
Fig. 23a. If one can identify, for every x/δ, a portion of the boundary layer where the level
of the r.m.s. temperature is zero, it is only at a certain distance from the leading edge
that the level of fluctuations starts agreeing with the equilibrium one. This shows how
the turbulent fluctuations have a stronger inertia and need a larger distance to settle, an
aspect which has also been observed experimentally (see Teitel & Antonia 1993).
Figure 23b also outlines the fast wall-normal expansion of the turbulent heat flux during
the early boundary layer development mentioned previously in §4.3. This explains the
fast decay of the region y∗ > h∗n−eq seen in Fig. 21.
On the other hand, in both cases the peak shifts with x/δ towards the higher y∗ until it
stabilises at y∗ ≈ 20 for the r.m.s temperature and y∗ ≈ 45 for the turbulent heat flux.
The time-averaged transport equation for the enthalpy variance reads (see appendix A.1
for the detailed derivaton):

0 = − ∂

∂x

(
ρũ
h̃′′2

2
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− ∂
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ρṽ
h̃′′2

2

)

︸ ︷︷ ︸
Iy

− ∂

∂x

(
qcd′x h′

)

︸ ︷︷ ︸
IIx

− ∂

∂y

(
qcd′y h′

)

︸ ︷︷ ︸
IIy

+

+ qcd′x
∂h′

∂x
+ qcd′y

∂h′

∂y
+ qcd′z

∂h′

∂z︸ ︷︷ ︸
III

+h′N ′︸︷︷︸
IV
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)
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, (4.14)

where on the right-hand side of (4.14) there are the streamwise and wall-normal mean
convective terms (Ix and Iy), the streamwise and wall-normal molecular diffusion (IIx
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Figure 24: Budgets of enthalpy variance at x/δ = 0.73 (a), 2π (b), 5.7π (c) and 16.5π :
—— streamwise (Vx: gray) and wall-normal (Vy: black) production; - · · - · · - molecular
dissipation III; - - - - - streamwise (IIx: gray) and wall-normal (IIy: black) molecular
diffusion; – · – · – streamwise (V Ix: gray) and wall-normal (V Iy: black) turbulent
diffusion; · · · · · · streamwise (Ix: gray) and wall-normal (Iy: black) mean convective terms.

and IIy), molecular dissipation (III), a term of correlation between enthalpy and N

(IV ) where N = Dp
Dt + τij

∂ui
∂xj

+Sener regroups the compressibility effects and the source

term (see appendix A), the streamwise and wall-normal production terms (Vx and Vy),
the streamwise and wall-normal turbulent diffusion terms (V Ix and V Iy) and a term
related to the enthalpy-density correlation (V II).
Figure 24 shows the evolution of the different terms (scaled with respect to qw(x)2/µw(x))
for different crosswise sections. For each subplot at a given x/δ, the respective h∗eq and
h∗n−eq defined in section §4.3 are put into evidence. Some terms (IV and V II), being
always small and negligible, are not plotted.
Figure 24a is relative to x/δ = 0.73. At this close distance from the leading edge, the
different terms of (4.14) are active only in a small portion (approximately 10%) of the
boundary layer which is delimited by h∗n−eq, beyond which the flow is still not affected
by the heated wall. It is between h∗eq and h∗n−eq that the non-equilibrium effects can be
observed. The classic contributions (wall-normal production, molecular dissipation and
wall-normal turbulent and molecular diffusion) are far from being fully developed and
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the streamwise convective and production terms are not negligible. On the other hand,
even at this close distance from the leading edge, the wall-normal convective term as well
as the streamwise molecular and turbulent diffusion can be neglected.
Figure 24b is relative to x/δ = 2π. It is interesting to notice how at this crosswise section
all the non-equilibrium terms in the temperature variance budget (even the streamwise
production and the streamwise convective term) have disappeared. In the region between
h∗eq and h∗n−eq, while the mean energy balance presents strong streamwise non-equilibrium
terms as seen in §4.3, the enthalpy variance budget seems to merely feature the gradual
development of the classic budget terms. For y∗ < h∗eq, which represents the equilibrium
region where the mean energy balance is equilibrated and the temperature profile is very
close to the equilibrium, the different contributions controlling the r.m.s. temperature
have also settled as it can be seen in figures 24b, 24c and 24d. Comparing these figures
one can observe, for example, that the peak of production or the level of wall-normal
molecular diffusion at the wall are identical.

Concerning the wall-normal turbulent heat flux, the time-averaged transport equation
reads (see A.2 for the details):
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, (4.15)

where on the right-hand side of the equation there are the mean streamwise and
wall-normal convective terms (Ix and Iy), the streamwise and wall-normal molecular
diffusion (IIx and IIy), the molecular dissipation (III), the enthalpy-pressure-gradient
correlation (IV ), the correlation between the wall-normal velocity and N (V ) where
N regroups the compressibility effects and the source term (see appendix A), the
streamwise and wall-normal production (V Ix and V Iy), the streamwise and wall-normal
turbulent diffusion (V IIx and V IIy) and two terms related to the enthalpy-density and
wall-normal-velocity-density correlations (V III).
Figure 25 shows the evolution of the different terms (scaled with respect to
qw(x)τw(x)/µw(x)) for different crosswise sections with the respective h∗eq and h∗n−eq
defined in section §4.3. The terms V and V III are always small and negligible and are
not plotted.
Most of the observations made concerning the budgets of enthalpy variance are still valid.
The non-equilibrium region h∗eq < y∗ < h∗n−eq manifests with a gradual development of
the classic terms (including, in this case, the enthalpy-pressure-gradient) rather than
with the presence of strong streamwise terms as seen in section §4.3 for the mean energy
balance. Concerning the wall-normal turbulent heat flux budgets, the only streamwise
terms that are important near the leading edge are the streamwise production and
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Figure 25: Budgets of wall-normal turbulent heat flux at x/δ = 0.73 (a), 2π (b), 5.7π (c)
and 16.5π: —— streamwise (V Ix: gray) and wall-normal (V Iy: black) production; - · · - ·
· - molecular dissipation III; - - - - - streamwise (IIx: gray) and wall-normal (IIy: black)
molecular diffusion; – · – · – streamwise (V IIx: gray) and wall-normal (V IIy: black)
turbulent diffusion; · · · · · · streamwise (Ix: gray) and wall-normal (Iy: black) convective
terms; - - - - enthalpy-pressure-gradient correlation IV .

convection, as shown in figure 25a. Yet, even these terms become negligible at x/δ = 2π
(see Fig. 25b).
It is evident that also in this budget, the definitions of h∗eq and h∗n−eq are suited for
describing the evolution towards equilibrium of the different terms of 4.15. For every
x/δ, between the wall and h∗eq the classic budgets have settled while between h∗n−eq
and the centre of the channel all the terms are essentially zero. Figure 26 shows the
details of the budgets of enthalpy variance and wall-normal turbulent heat flux for
y∗ ∼ h∗n−eq at x/δ = 0.73, i.e., the same crosswise section of figures 24a and 25a. In
both figures 26a and 26b, it can be seen how, at this distance from the leading edge,
the turbulent diffusion plays an important role in the development of both enthalpy
fluctuations and enthalpy-wall-normal velocity correlation. In the case of the enthalpy
variance (see Fig. 26a), turbulent diffusion is actually the only term inducing a gain of
enthalpy fluctuations, mostly counterbalanced by the mean streamwise convective term.
The presence of non-negligible turbulent diffusion around y∗ ∼ h∗n−eq corroborates the
hypothesis formulated in §4.3, i.e., that the fast decay of the temperature-homogeneous
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Figure 26: Budgets of enthalpy variance (a) and wall-normal turbulent heat flux (b) at
x/δ = 0.73 zoomed at y∗ ∼ h∗n−eq. See figures 24 and 25 for the notation.

region beyond y∗ > h∗n−eq might be due to the efficient heat transport carried out by
turbulence.

4.5. Turbulent Prandtl number

When heat transfer is considered in turbulence modelling (either RANS or LES), the
turbulent transport in the mean energy balance is commonly modelled via the definition
of a turbulent eddy conductivity λt, which plays the same role of the turbulent eddy
viscosity νt in the momentum equation. A simple way of relating λt and νt is based on
the definition of a turbulent Prandtl number, analogous to the molecular Prandtl number
and thus defined as

Prt =
ρνtcp
λt

=
−ρũ′′v′′
−ρṽ′′h′′/cp

dT/dy

du/dy
. (4.16)

Its relevance in complex three-dimensional turbulent flows is arguable but because of
its applicability in simpler flows such as thin shear layers, a great number of analytical,
numerical and experimental investigations have been carried out (see Kays 1994). Blom
(1970) analysed the evolution of the turbulent Prandtl number in a developing thermal
boundary layer and found out that it varies in both wall-normal and streamwise directions
while suggesting that a universal distribution of Prt can only be expected in the near-
wall region. Antonia et al. (1977) carried out similar investigations and found that the
turbulent Prandtl number is generally in the order of magnitude of one, thus showing the
overall validity of the Reynolds analogy; according to their experimental results, values
of Prt strongly exceeding unity can only be found in the proximity of the leading edge
of the thermal boundary layer.
Given the difficulty of experimentally measuring the turbulent Prandtl number, direct
numerical simulation, despite being strongly limited in terms of Reynolds number, is
a powerful tool for precisely calculating its evolution in boundary layers and improve
current turbulence models, even in modern simulations. Indeed, the turbulent Prandtl
number is extensively used in wall-modelled large-eddy simulations (see Benarafa et al.
2007; Bocquet et al. 2012; Zhang et al. 2013) and several algebraic models describing
its evolution in the wall-normal direction have been proposed (see Kays 1994; Weigand
et al. 1997).
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Figure 27: Evolution of turbulent Prandtl number in the wall-normal direction for
different x/δ: —— present results at (from light to dark gray) x/δ = 0.18, 0.73 0.5π
and 0.75π (a), at x/δ = π, 1.25π, 1.5π and 1.75π (b); at x/δ = 5.67π, 8.25π, 10.8π and
16.5π (c); – · – · – profile of equilibrium configuration of section §3.2.

Figure 27 shows the evolution of the turbulent Prandtl number in the wall-normal
direction for different x/δ compared to the profile of the equilibrium configuration
described in section §3.2.
The dashed-dotted line represents the equilibrium profile: it can be seen that Prt is
slightly greater than unity at the wall before decreasing and attaining Prt ≈ 0.7 in the
channel core flow. Its mild gradient along the wall-normal direction can justify the use of
a constant average turbulent Prandtl number (usually Prt ≈ 0.9) in both wall-modeled
and wall-resolved LES, at least in equilibrium boundary layers (see Kawai & Larsson
2012; Fu et al. 2018).
Figure 27a shows the evolution of Prt for four crosswise sections which are relatively close
to the leading edge. As can be seen, the turbulent Prandtl number is larger compared to
equilibrium, even in the near-wall region where the thermal boundary layer is supposed to
be at equilibrium. Similarly to the temperature root-mean-square profiles, the settlement
of the turbulent Prandtl number is longer than the mean temperature. As x/δ increases,
the turbulent Prandtl number profiles decrease until converging towards its value at
equilibrium; besides that, the peak shifts towards the higher y∗ while its value decreases.
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The same tendency can be observed in figure 27b for x/δ ranging between [π, 1.75π]
while in figure 27c it is shown how the turbulent Prandtl number essentially returns to
equilibrium for x/δ & 5π. The peak larger values of Prt are explained from the ratio
between the turbulent eddy viscosity and conductivity. The numerator, νt, is already
well-established with the incoming adiabatic turbulent boundary layer. On the other
hand, λt, which quantifies turbulent heat transfer, is initially small and grows as the
thermal boundary layers develops.

These results show how the perturbation of the heated wall on the turbulent Prandtl
number essentially consists in a limited portion of the boundary layer where Prt is
higher than at equilibrium and, in particular, exceeds unity; the effect is, as expected,
more important in proximity of the leading edge; the results are therefore in qualitative
agreement with those of Antonia et al. (1977). Despite the perturbation of the turbulent
Prandtl number, its value remains in the order of magnitude of one and the Reynolds
analogy seems to stand reasonable. Consequently, keeping standard modelling approaches
for Prt even in the case of a developing boundary layer seems appropriate.
On the other hand, there is no evidence of the existence of a universal distribution in the
near-wall region as indicated in Blom (1970). It appears to be quite the opposite since
the highest values of Prt can be found near the leading edge in the very proximity of the
wall.

5. Conclusion

The direct numerical simulation of a thermal turbulent boundary layer developing in a
channel flow is performed. The flow evolves from a fully turbulent adiabatic, temperature-
homogeneous state towards a new equilibrium state characterised by a fully developed
thermal boundary layer.

In section §4.2 the impact on the velocity boundary layer is analysed. It is shown that
near the leading edge (both downstream and upstream) the streamwise velocity profile
deviates from the canonical equilibrium profiles as well as a considerable increase of the
wall-normal velocity is observed. The impact of the isothermal wall especially manifests
itself through a local perturbation of the wall shear stress and, consequently, of the
streamwise pressure gradient. A wall scaling taking into account the mean fluid property
variations as well as the streamwise pressure gradient (which slightly differs from the one
proposed by Manhart et al. (2008)) is therefore introduced, allowing to make the mean
streamwise velocity and all the r.m.s. velocity profiles collapse on the equilibrium ones.
Due to the small temperature ratio between the wall and the centre of the channel, the
perturbation is small and localised in a very limited portion of the channel flow. The
solution proposed is thus to be considered appropriate, a priori, only in this particular
context.

The evolution of the mean temperature is described in section §4.3. It is shown that
for every crosswise section there is always a part of the boundary layer, which can be
very small near the leading edge, where the thermal boundary layer can be considered at
equilibrium. The existence of such an equilibrium layer is an important assumption which
may a priori justify the use of an equilibrium wall-model in WMLES even when applied
to non-equilibrium configurations as long as the modelled portion of the flow lays within
the aforesaid equilibrium layer. So as to quantitatively determine the evolution of the
equilibrium layer along the channel flow, a criterion based on the different equilibrium
and non-equilibrium terms of the mean energy equation is introduced; the equilibrium
layer is thus defined as the portion of the boundary layer where the non-equilibrium
terms are a negligible contribution to the total heat flux.
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The evolution of the r.m.s. temperature as well as the wall-normal turbulent heat flux
is shown in section §4.4. The respective transport equations are also analysed; it is shown
how the mean streamwise contributions are always small, even in the early development
stage of the thermal boundary layer; it is also shown how within the equilibrium layer
all the different budgets are fully developed.

Finally, the evolution of the turbulent Prandtl number is described in section §4.5. It
is shown how, despite always staying within the same order of magnitude, the turbulent
Prandtl number is impacted and exceeds unity in a relatively large portion of the
developing boundary layer; it is also shown how there is no evidence of a universal
behaviour of the turbulent Prandtl number in the near-wall region.

Results are obtained for a unique flow regime in terms of temperature ratio and
Reynolds number. Therefore, other flow regimes need to be studied in order to generalise
these results for the sake of RANS or LES modelling of turbulent heat transfer.
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Appendix A. Derivation of averaged enthalpy variance and
wall-normal turbulent heat flux transport equations

A.1. Averaged transport equation for the enthalpy variance

The energy balance reads (see (2.3)):

∂ρh

∂t
+
∂ρujh

∂xj
=

Dp

Dt
−
∂qcdj
∂xj

+ τij
∂ui
∂xj

+ Sener , (A 1)

which can also be rewritten as:

∂ρh

∂t
+
∂ρujh

∂xj
= −

∂qcdj
∂xj

+N , (A 2)

where N regroups all those terms (pressure material derivative, viscous dissipation and
source term) which play a marginal role in the derivation of the transport equation.
Applying the Reynolds average to (A 2), one has:

∂

∂t
ρh̃+

∂

∂xj
ρũj h̃ = −

∂qcdj
∂xj

− ∂

∂xj
ρũ′′j h

′′ +N , (A 3)

which, multiplied by h̃, gives:

∂

∂t
ρ
h̃2

2
+

∂

∂xj
ρũj

h̃2

2
= −h̃

∂qcdj
∂xj

− h̃ ∂

∂xj
ρũ′′j h

′′ + h̃N . (A 4)
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On the other hand, multiplying (A 2) by h and applying the Reynolds average, one has:

∂

∂t
ρ
h̃2

2
+

∂

∂xj
ρ
ũjh2

2
= −h

∂qcdj
∂xj

+ hN , (A 5)

allowing to obtain the transport equation for h̃′′2 = h̃2 − h̃2 by simply subtracting (A 4)
from (A 5):

∂

∂t
ρ
h̃′′2

2
+

∂

∂xj

[
ρ
ũjh2

2
− ρũj

h̃2

2

]
= −h

∂qcdj
∂xj

+ h̃
∂qcdj
∂xj

+ h̃
∂

∂xj
ρũ′′j h

′′+ hN − h̃N . (A 6)

After several developments and simplifications, (A 6) can be rewritten as:

∂

∂t
ρ
h̃′′2

2
+

∂

∂xj
ρ
ũj h̃′′2

2
= − ∂

∂xj
qcd
′

j h′ + qcd
′

j

∂h′

∂xj
+ h′N ′ − ρũ′′j h′′

∂h̃

∂xj
+

−1

2

∂

∂xj
ρũ′′j h

′′h′′ + h′′

(
−
∂qcdj
∂xj

+N

)
, (A 7)

where h′′ can also be written as −ρ′h′/ρ .
The unsteady term as well as all derivatives of mean quantities in the spanwise direction
are zero, which leads to the final expression of the mean transport equation for the
enthalpy variance:

0 = − ∂

∂x

(
ρũ
h̃′′2

2

)

︸ ︷︷ ︸
Ix

− ∂

∂y

(
ρṽ
h̃′′2

2

)

︸ ︷︷ ︸
Iy

− ∂

∂x

(
qcd′x h′

)

︸ ︷︷ ︸
IIx

− ∂

∂y

(
qcd′y h′

)

︸ ︷︷ ︸
IIy

+

+ qcd′x
∂h′

∂x
+ qcd′y

∂h′

∂y
+ qcd′z

∂h′
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III

+h′N ′︸︷︷︸
IV

−ρũ′′h′′ ∂h̃
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Vx
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+

−1

2

∂
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(
ρũ′′h′′h′′
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V Ix

−1

2

∂
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(
ρ ˜v′′h′′h′′

)
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V Iy

+h′′

(
−∂q

cd
x

x
− ∂qcdy

y
+N

)
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V II

, (A 8)

where on the right-hand side of (A 8) there are the mean streamwise and wall-normal
convective terms (Ix and Iy), the streamwise and wall-normal molecular diffusion (IIx
and IIy), molecular dissipation (III), a term of correlation between enthalpy and N (IV )
where N regroups the compressibility effects and the source term, the streamwise and
wall-normal production terms (Vx and Vy), the streamwise and wall-normal turbulent
diffusion terms (V Ix and V Iy) and a term related to the enthalpy-density correlation
(V II).

A.2. Averaged transport equation for the wall-normal turbulent heat flux

In order to obtain the transport equation for ṽ′′h′′, both the energy equation (2.3) and
the momentum equation (2.2) projected along the wall-normal direction are needed. The
latter reads:

∂ρv

∂t
+
∂ρvuj
∂xj

= −∂p
∂y

+
∂τ2j
∂xj

, (A 9)
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which, once the Reynolds average is applied, gives:

∂

∂t
ρṽ +

∂

∂xj
ρṽũj = −∂p

∂y
+
∂τ2j
∂xj

− ∂

∂xj
ρũ′′j v

′′ . (A 10)

Now, by multiplying (A 10) by h̃ and the averaged energy equation (A 3) by ṽ and
summing them, one has:

∂

∂t
ρṽh̃+

∂

∂xj
ρũj ṽh̃ = −h̃ ∂p

∂y
+ h̃

∂τ2j
∂xj
− ṽ

∂qcdj
∂xj

+ ṽN− h̃ ∂

∂xj
ρũ′′j v

′′− ṽ ∂

∂xj
ρũ′′j h

′′ , (A 11)

which is a transport equation for ṽh̃. A similar equation for ṽh can be obtained by
multiplying ((A 9)) by h, ((A 2)) by v and averaging the sum:

∂

∂t
ρṽh+

∂

∂xj
ρuj ṽh = −h∂p

∂y
+ h

∂τ2j
∂xj

− v
∂qcdj
∂xj

+ vN +

− ∂

∂xj
ρũ′′j v

′′h′′ − ∂

∂xj
ρh̃ũ′′j v

′′ − ∂

∂xj
ρṽũ′′j h

′′ . (A 12)

The transport equation for ṽ′′h′′ is obtained subtracting (A 11) to (A 12), which, after
several developments and simplifications, gives:

∂

∂t
ρṽ′′h′′ +

∂

∂xj
ρũj ṽ′′h′′ =

∂

∂xj
τ ′2jh
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′
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′
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(
−∂p
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∂xj

)
+
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(
N −

∂qcdj
∂xj

)
, (A 13)

where v′′ = −ρ′v′/ρ and h′′ = −ρ′h′/ρ.
Finally, the unsteady term as well as all derivatives of mean quantities along the spanwise
direction are zero, giving the final expression of the averaged transport equation of the
wall-normal turbulent heat flux:
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where on the right-hand side of the equation there are the mean streamwise and
wall-normal convective terms (Ix and Iy), the streamwise and wall-normal molecular
diffusion (IIx and IIy), the molecular dissipation (III), the enthalpy-pressure-gradient
correlation (IV ), the correlation between the wall-normal velocity and N (V ) where
N regroups the compressibility effects and the source term (see §A.1), the streamwise
and wall-normal production (V Ix and V Iy), the streamwise and wall-normal turbulent
diffusion (V IIx and V IIy) and two terms related to the enthalpy-density and wall-
normal-velocity-density correlations (V III).
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