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On Selective Unboundedness of VASS

Stéphane Demri
LSV, ENS Cachan, CNRS, INRIA, France

Abstract

Numerous properties of vector addition systems with statesunt to checking the (un)boun-
dedness of some selective feature (e.g., number of regecsalnter values, run lengths). Some
of these features can be checked in exponential space by Bsickdt’s proof or its variants,
combined with Savitch’s Theorem. However, the questiortiilsapen for many others, e.g.,
regularity detection problem and reversal-boundednegstien problem. In the paper, we in-
troduce the class of generalized unboundedness proptréiesan be verified in exponential
space by extending Rack® technique, sometimes in an unorthodox way. We obtain rgw o
mal upper bounds, for example for place boundedness probdersal-boundedness detection
(several variants are present in the paper), strong prasptdetection problem and regularity
detection. Our analysis is iciently refined so as to obtain a polynomial-space bound winen
dimension is fixed.

Keywords: vector addition systems with states, place boundednebsgpnoregularity
detection problem, exponential space

1. Introduction

Reversal-boundednesé standard approach to circumvent the undecidability ofrdaehabil-

ity problem for counter automata [39] consists in desigrsngclasses with simpler decision
problems. For instance, the reachability problem is ddsdelfor vector addition systems with
states (VASS) [38, 33, 36], for flat counter automata [113) ot for lossy counter automata [1].
Among the other interesting subclasses of counter autgmeatarsal-bounded counter automata
verify that any counter has a bounded number of reversadsnations between a nonincreasing
mode and a nondecreasing mode, and vice versa. Revergadiduness remains a standard con-
ceptthatis introduced in [4] for multistack automata. A arggroperty of such operational mod-
els is that reachability sets arffextively definable in Presburger arithmetic [28], which\pdes
decision procedures for LTL existential model-checkingd ather related problems, see e.g. [12].
However, the class of reversal-bounded counter automatat isecursive [28] but a significant
breakthrough is achieved in [20] by designing a procedudetermine when a VASS is reversal-
bounded (or weakly reversal-bounded as defined later), taergh the decision procedure can
be nonprimitive recursive in the worst-case. This meansréheersal-bounded VASS can bene-
fit from the known techniques for Presburger arithmetic [#ddrder to solve their verification

1Complete version of the conference paper [13]. Work partidy supported by ANR project REACHARD
ANR-11-BS02-001.
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problems. More precisely, we consider subclasses of coapsgems for which the reachability
sets of the form{xX € N" : (qo, Xp) 5 (g, X)} are dfectively Presburger-definablegf( Xp) andq
are fixed). By decidability of Presburger arithmetic, thiswas us to solve problems restricted
to such counter systems such as the reachability problencaihtrol state reachability problem,
the boundedness problem or the covering problem. Indeghose that givengp, Xp) and g,
one can &ectively build a Presburger formujasuch thaty holds true exactly for the values in
{Xe N": (qo, X0) 5 (g, X)}. One can then classically observe thg () 5 (g, 2) iff the formula
below is satisfiable:

(X1, .., X)) AXy = ZA)A -+ Axp = Z(N).

Hence, there is an important gain to havkeetively semilinear reachability sets, which can be
witnessed by detecting reversal-boundedness or by degeegularity (Quaranteeing the semi-
linearity by Parikh’s Theorem [40]).

Selective unboundedneds order to characterize the complexity of detecting reaeb®un-
dedness on VASS (the initial motivation for this work), wekea detour to selective unbound-
edness, as explained below. Numerous properties of vedtiiti@n systems with states amounts
to checking the (un)boundedness of some selective feaBmme of these features can be ver-
ified in exponential space by using Raéke proof or its variants [45], whereas the question
is still open for many of them. In the paper, we advocate thabyrproperties can be decided
as soon as we are able to decide selective unboundednes$, iwld generalization of place
unboundedness for Petri nets (a model known to be equivil&fASS but of greater practical
appeal). The boundedness problem was first considered jrafigilshown decidable by simply
inspecting Karp and Miller trees: the presence of the infimélue o (also denoted bw) is
equivalent to unboundedness. So, unboundedness is equit@lthe existence of a witness run
of the form (o, %) — (G, X1) = (g, X3) such that, < x5, assuming that the initial configuration
is (Qo, Xo) (< is the standard strict ordering on tuples of natural numbédrs[45], it is shown
that if there is such a run, there is one of length at most doelgponential. This leads to the
ExpSpace-completeness of the boundedness problem for VASS usinigiies bound from [37]
and Savitch’s Theorem [50]. A variant problem consists iaaking whether thé&h component

is bounded, i.e., is there a bouBdsuch that for every configuration reachable fram &), its

ith component is bounded B? Again, inspecting Karp and Miller trees reveals the answer
the presence of the infinity value at theith position of some extended configuration is equiv-
alent toi-unboundedness. Surprisingly, the literature often noastithis alternative problem,
see e.g. [46], but never specifies its complexityrEeace-hardness can be obtained from [37]
but as far as we know, no elementary complexity upper bousdban shown. A natural adap-
tation from boundedness is certainly tiatnboundedness could be witnessed by the existence
of a run of the form ¢, Xo) 5 (g, X1) 5 (g, x5) such thatq < X with Xi(i) < %(i). By in-
specting the proof in [45], one can show that if there is suchina then there is one of length
at most doubly exponential. However, although existencgioh a run is a gficient condition
for i-unboundedness (simply iteratanfinitely), this is not a necessary condition. It might be
explained by the fact that, if a VASS is unbounded, then tiseaanitness infinite run with an in-
finite number of distinct configurations. By contrast, it nf@ppen that a VASS isunbounded
but no infinite run has an infinite amount of distinct valuethaith position of the configurations
of the run.



A generalization.In the paper, we present a generalization of place unbouredsdy check-
ing whether a set of components is simultaneously unboymaegibly with some ordering (see
Section 3.2). This amounts to specifying in the Karp andéfiliees, the ordering with which the
valueco appears in the éierent components. Such a generalization is particulagfulisince we
show that many problems such as reversal-boundedness{t8jg reversal-boundedness [29],
reversal-boundedness from [20] can be naturally reducsidtoltaneous unboundedness. More-
over, this allows to extend the class of properties for wiighSpace can be obtained, see e.g.
standard results in [45, 24, 3].

Our contribution. In the paper we show the following results.

1. Detecting whether a VASS is reversal-bounded in the sefh&S] or in the sense of [20]
is ExpSpace-complete by refining the decidability results from [20]€sSEheorem 5.2).

2. To do so, we introduce the generalized unboundedneskeprab which many problems
can be captured such as the reversal-boundedness deteitdams, the boundedness
problem, the place boundedness problem, terminatiomgfpoomptness detection prob-
lem, regularity detection and many other decision problem¥ASS. We show that this
problem can be solved in exponential space by adapting 5} though it does not fall
into the class oincreasing path formulasecently introduced in [3, 2] (see Theorem 4.6).

3. Consequently, we show that regularity and strong proegstdetection problems for VASS
are in ExpSpace. The ExpSpace upper bound has been left open in [3]. Even though most of
our results essentially rest on the fact that the place bedmess problem can be solved in
ExpSpace, our generalization is introduced to obtain new complexgiger bound for other
related problems. On our way to this complexity result, wavjzte a witness run charac-
terization for place unboundedness that can still be egpreB Yen'’s path logic [54, 3]
but with a path formula of exponential size in the dimension.

4. As aby-productof our analysis and following a parameéatianalysis initiated in [48, 27],
for all the above-mentionned problems, we show that fixirgdhmension of the VASS
allows to get a PS¢k upper bound.

The complexity of our witness run characterization for ste unboundedness partly explains
why it has been ignored so far. It is clear that whenever thegoboundedness problem is de-
cidable, the boundedness problem is decidable too. Howteeconverse does not always hold
true: for instance the boundedness problem for transferiselecidable unlike the place bound-
edness problem [17]. Place boundedness problem can bdatteeirgtrinsically more diicult
than the boundedness problem: there is always a simple wag tmbounded but if one looks
for i-unboundedness, it might be much morgidilt to detect it, if possible at all.

The paper has also original contributions as far as prodinigcies are concerned. First, simul-
taneous unboundedness has a simple characterizatiomia t¢éiKarp and Miller trees, but we
provide in the paper a witness run characterization, whildwa us to provide a complexity
analysis along the lines of [45]. We also provide a withegsigs-run characterization in which
we sometimes admit negative component values. This turn®die the right approach when
a characterization from coverability graphs [31, 52] aliyeaxists. Apart from this unorthodox
adaptation of [45], in the counterpart of Raéik® proof about the induction on the dimension,
we provide an induction on the dimension and on the length@ptroperties to be verified (see
Lemma 4.4). The preliminary work [13] has already been usgd2] to obtain new complexity
results. Thisis a genuine breakthrough comparable to B34, 3]. We believe this approach is
still subject to extensions. Finally, a recent work [5] his®astablished similarseSpace upper
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bounds for checking properties on VASS by introducing a terafogic on coverability graphs.

By the way, we pay a special attention to explain most of tblenieal developements, at the
cost of repeating sometimes standard arguments (see esgnathdeterministic procedure in
Section 4.1). We feel that this will considerably help thedier for understanding the chain of
technical results.

Plan of the paper.In Section 2, we present the vector addition systems wittestas well
as their decision problems including the simultaneous unbdedness problem and reversal-
boundedness detection problem. Section 3 introduces #ss of generalized unboundedness
properties as well as the generalized unboundedness probée show how regularity detec-
tion, strong promptness and weak reversal-boundedne=stidet can be reduced to generalized
unboundedness problem. In Section 4, we prove our maintréiselgeneralized unboundedness
problem for VASS is kpSpace-complete. In Section 5, as a consequence of the main resallt,
show that the regularity detection problem and the stroognptness detection problem are in
ExpSpace. Moreover, (weak) reversal-boundedness detection pmolide VASS is also shown
ExpSpace-complete.

2. Preliminaries

In this section, we recall the main definitions for vectoritidd systems with states (VASS),
without states (VAS) as well as the notions of reversal-lb@amess introduced in [28, 20]. We
also present the simultaneous unboundedness problent) géineralizes the place unbounded-
ness problem for Petri nets. First, we write[resp. Z] for the set of natural numbers [resp.
integers] andr, m'] with m,nY € Z to denote the sdfj € Z : m < j < m'}. Given a dimension
n > 1 anda € Z, we writed € Z" to denote the vector with all values equaktoFor X € Z", we

write X(1), ..., X(n) for the entries ok. ForX,y € Z", X <y & for everyi € [1,n], we have
X(i) < y(i). We also writeX < ywhenX < yandX # V.

2.1. Simultaneous unboundedness problem for VASS

VASS. A vector addition system with stat§&6] (VASS for short) is a finite-state automaton
with transitions labelled by tuples of integers viewed adatp functions. A/ASSs a structure
V = (Q,n, ) such thaQ is a nonempty finite set aontrol statesn > 1 is thedimensionands

is thetransition relationdefined as a finite set of triples @x Z" x Q. Elementg = (q, b, qg)esd

are calledtransitionsand are often represented ng g’. Moreover, a VASS has no initial
control state and no final control state but in the sequel w@dunce such control states on
demand. Figure 1 presents a VASS of dimension 4 with two ocbstates. VASS with a unique
control state are callegector addition system®AS for short) [31]. In the sequel, a VAE is
represented by a finite nonempty subseibfencoding naturally the transitions. VASS and VAS
are equivalent to Petri nets, see e.g. [47]. In this papedé&tision problems are defined with the
VASS model and the decision procedures are designed for &ssiming that we know how the
problems can be reduced, see e.g. [26]. Indeed, we prefefiteegoroblems with the help of the
VASS model since when infinite-state transition systemsear the modeling of computational
processes, there is often a natural factoring of each systi&e into a control component and a
memory component, where the set of control states is tyigifiaite. In this paper, we use the
reduction from VASS to VAS defined in [26] that allows to siratd a VASS of dimension by
4
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Figure 1: A simple VASS with two control states

a VAS of dimensiom + 3, independently of its number of control states (formalrdgdin is
recalled in the proof of Lemma 2.5). Even though a simpleucidn exists that increments the
dimension by the cardinal of the set of control states, tdacton from [26] is exactly what we
need, since sometimes, at some intermediate stage, we grapse exponentially the number
of control states.

Runs. A configurationof <V is defined as a paig(X) € Q x N" (for VAS, we simply omit the
control state). Arinitialized VASSs a pair made of a VASS and a configuration. Given two

configurations @, X), (¢, X') and a transitiort = q 5 g, we write @, X) 4 (¢, X') whenever
X = X+b. We also write ¢, %) — (¢, X) when there is no need to specify the transition
The operational semantics of VASS updates configuratiams, of such systems are essentially
sequences of configurations. Every VASS induces a (possitityte) directed graph of configu-
rations. Indeed, all the interesting problems on VASS cafobaulated on itdransition system
(Q x N",-). Given a VASSY = (Q,n,d), arun p is a nonempty (possibly infinite) sequence
o = (o, X0), - - - » (Ok» X&), - - . O configurations such thatj( X) — (g1, X+1) for all i. We set
ReacltV, (qo, Xp)) & {(gk, Xk) : there is a finite rundp, Xp), . . ., (Ok, X%)}. Considering the VASS
in Figure 1, one can show that

(5)en:d<axhi-

a

{( E )e NS : 3( E )e N°, (qo,( % )) € ReaclfV, (qo,( 5 )))}

A run can be alternatively represented by an initial configion and a sequence of transitions,
assuming that no negative component values is obtainedglyiag the sequence of transitions.
A pathr is a finite sequence of transitions whose successive catatals respeét(actually this
notion is mainly used for VAS without control states).p&eudo-configuratiois defined as an
element ofQ x Z". Whenr = t;-- - tx is a path, thgseudo-rurp = (7, (g, X)) is defined as the
sequence of pseudo-configurationg, &) - - - (G, %) such that §o, Xo) = (9, X), and for every

i €[1,K], there ist = q 5 gi+1 such thatg = Xi_1 + b. So, we deliberately distinguish the notion
of path (sequence of transitions) from the notion of pseudoisequence of elements@x Z"
respecting the transition fro¥). The pseudo-rup is inducedby the pathr and oflength k+ 1;
the pathr is of length k (o, Xo) is called theinitial pseudo-configuration andy Xs) is called

thefinal pseudo-configuration in the pseudo-piWe also use the notatioq,(X) 4 (q, X) with
5



pseudo-configurations. Given a VAS8[resp. a pseudo-configuratioq (), etc.] of dimension
n, we writeV(l) [resp. @, X)(l), etc.] to denote the restriction 67 [resp. @, X), etc.] to the
components in C [1, n].

Sizes. Let us start by defining the size of some VASof dimensionn > 1. GivenX € 7Z",
we write maxnegf) [resp. maxg)] to denote the value magrhax(Q —X(i)) : i € [1,n]}). [resp.

max(X(i) : i € [1,n]})]. By extension, we write maxne@() to denote ma{>maxnegB) ' q 5

g € ¢}. Furthermore, we write scal®) to denote the value ma{jdﬁ(i)| : q—b> q ed iell,n]}).
For instance, maxneg{®, 3)) = 2 and scalg(-2, 3)}) = 3. The size ofr", written|7|, is defined
by the value belown x card(7) x (1 + [logz(1 + scale¢™))1). Given a finite subseX of Z", we
also write|X| to denoten x card(X) x (1 + [logx(1 + scalei))1). We write|X] to denote the size
of X € Z" defined as the size of the singleton 6t Given a VASSV = (Q, n, §), we write|V|
to denote its size defined by

card@) + nx cardg) x (2x card@) + (1 + [logz(1 + scale(V))1))

Observe that ¥ [logy(1 + a)] is a sudficient number of bits to encode integers ea[a] for

a > 0. Moreover scalel) > maxneg(V), scalety) < 2" and|V| > 2. In a few words, we
adopt reasonably succint encodings for all the objectdwedhin decision problems, in particular
the integers are encoded with a binary representation.

Standard problemsThe reachability problem for VASS is decidable [38, 33, 4%, 36]. Nev-
ertheless, the exact complexity of the reachability pnoble open: we know it is kpSpace-
hard [37, 10, 18] and no primitive recursive upper boundtexiBy contrast, the covering prob-
lem and boundedness problems seem easier since thexBede-complete [37, 45]. Decid-
ability is established in [31] but with a worst-case nonptive recursive bound. ThexeSpeace
lower bound is due to Lipton and the upper bound to R&ckin order to be complete, one
should make precise how vectorsZi? are encoded. The upper bound holds true with a bi-
nary representation of integers whereas the lower bourdshole already with the values -1,
0 and 1. Consequently, the problem iseErace-hard even with an unary encoding. The proof
technique in [45] has been also used to establish that LTLetrcliecking problem for VASS
is ExpSpace-complete [24]. By adding the possibility to reset countarthe system (providing
the class ofeset VASE the boundedness and the reachability problems beconuesidable,
see e.g. [16]. By contrast, the covering problem for VASShwitsets is decidable by using the
theory of well-structured transition systems, see e.d- [22

Simultaneous unboundedness probldret (V, (qo, X)) be an initialized VASS of dimensiom
andX C [1, n]. We say that{, (qo, X)) is simultaneously X-unboundé&dor any B > 0, there
is a run from (1o, Xp) to some ¢, y) such that for every € X, we havey(i) > B. WhenX = {j},
we say that Y, (qo, X)) is j-unbounded It is clear that (V, (qo, X)) is bounded (i.e., the set
ReacliV, (qo, X)) is finite) iff for all j € [1, n], (V, (0o, Xo)) is not j-unbounded. So, here is the
simultaneous unboundedness problem.

SIMULTANEOUS UNBOUNDEDNESS PROBLEM:

Input: Initialized VASS (V, (Qo, X)) of dimensiom andX C [1, n].
6



Question: is (V, (qo, X)) simultaneouslyK-unbounded?
Theorem 2.1. [31] Simultaneous unboundedness problem is decidable.

This follows from [31, 52]: (V, (qo, X)) is simultaneousl)-unboundedft the coverability
graphCG(V, (do, X)) (see e.g., [31, 52]) contains an extended configuratipy) (such that
Y(X) = & (for a € ZU{co}, we write@ to denote any vector of dimensiore= 1 whose component
values arer). More properties about coverability graphs are recalleldws but just note that in
the sequel, we show that the simultaneous unboundednédsepris ExpSpace-complete too.

Before going any further, let us recall some properties aboverability graphs [31, 52], see
complete definitions in [47]. Not only this will be useful toqve Lemma 3.1 but we will refer
to it quite often.

A coverability graph approximates the set of reachable garditions from a given config-
uration and it is a finite structure that can kfeetively computed. Let us start by preliminary
definitions. Let us consider the structufé ( {oo}, <) such that for alk, k'’ € N U {0}, k < K’

S eitherk,k € N andk < kK ork’ = co. We writek < k" whenevek < k' andk # k'. The
ordering< can be naturally extended to tuples M {co})" by defining it component-wise: for
all X, X € (NU foo])", X< X & fori e [1,n], eitherx(i), ¥(i) € N andx(i) < (i) or X (i) = co.
We also writex < X whenxX < X andX # ¥. Givenx, X € (N U {co})" such thatx < ¥,
we writeacqX, X') to denote the element oN(U {co})" such that fori € [1,n], if X(i) = X (i)
thenacaX, ¥)(i) £ X (i), otherwiseacdx, X')(i) £ oo. Let us conclude this paragraph by a last
definition. For allX € (NU{co})" and for everyt € Z", X+t is defined as an element ¢t () {co})"
such that for every e [1,n], if X(i) € N then &+ t)(i) = X(i) + t(i), otherwise £ + t)(i) £ co.
Given a VASSV = (Q,n, ) and a configurationgp, Xp), we recall that the coverability graph
CG(V, (qo, Xp)) is a structure\, E) such thal € Qx (NU{eo})"andE C Vx5 xV, see e.g. [31]
or in [19] a generalization to well-structured transitigistems. Here are essential properties of
CG(V. (qo. %0)):

(CG1) CG(V, (qo, X)) is a finite structure (consequence of Kdnig's Lemma andkg§na’s
Lemma).

(CG2) For any configuratiord, y) reachable fromdp, 33) in <V, there is @, y*) in CG(V, (qo. %))
such thay < y’. Otherwise said, any reachable configuration can be cobsrad element
of CG(V, (0o, X0))- Moreover, if Qo, Xo) 5 (q,¥) is a run ofV, then Qo, X0) 5 (q.y) in
CG(V. (qo. X))

(CG3) For every extended configuratio, ) in CG(V, (qo, %)) and for every boun® € N,
there is a rundo, %) — (q,¥) in V such that fori € [1,n], if y'(i) = o theny(i) > B
otherwisey(i) = y'(i).

Unfortunately, even thougBG(7, Xo) is finite, in the worst-case its number of nodes can be
nonprimitive recursive [52, 30]. Figure 2 presents a VASSliafension 1 (on the left) and the

corresponding coverability graph for the initial configtioa (qo, 0).

2.2. Standard reversal-boundedness and its variant

A reversalfor a counter occurs in a run when there is an alternation fnemincreasing
mode to nondecreasing mode and vice-versa. For instanites sequence below, there are three
reversals identified by an upper line:

00112233344433322 333444455555
7
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Figure 2: A VASS and its coverability graph from the initiardiguration ¢, 0)

Figure 3: 5 reversals in a row

Similarly, the sequence 00111222223333334444 has nosadvefigure 3 presents schemati-
cally the behavior of a counter with 5 reversals. A VAS$eigersal-boundewvhenever there is
r > 0 such that for any run, every counter makes no more thawersals. This class of VASS
has been introduced and studied in [28], partly inspireditojylar restrictions on multistack au-
tomata [4]. A formal definition will follow, but before goinany further, it is worth pointing out a
few peculiarities of this subclass. Indeed, reversal-blednVASS are augmented with an initial
configuration so that existence of the bounid relative to the initial configuration. Secondly,
this class is not defined from the class of VASS by imposingastit restrictions but rather
semantical ones. In spite of the fact that the problem ofdiegiwhether a counter automaton
(VASS with zero-tests) is reversal-bounded is undecidgtdg we explain later why reversal-
bounded counter automata have numerous fundamental fiespelMoreover, a breakthrough
has been achieved in [20] by establishing that checking lveret VASS is reversal-bounded is
decidable. The decidability proof in [20] provides a demisprocedure that requires nonprimi-
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tive recursive time in the worst case since Karp and Milleegrneed to be built [31, 52]. In the
sequel, we show that this can be checked with exponentiakspaly, and this is optimal as far
as worst-case complexity is concerned.

LetV = (Q,n, ) be a VASS. Let us define the auxiliary VASR, = (Q', 2n,§’) such that
essentially, then new components inV,, count the number of reversals for each component
from V. We setQ = Q x {DEC,INC}" and, for everw € {DEC, INC}" and everyi € [1,n],

V(i) encodes whether componeérns in a decreasing mode or in an increasing mode. Moreover,

(g, moda > (¢, mode) e &' (with b’ € Z2) & there isq> ¢ € & such that/([1, n]) = B and
for everyi € [1, n], one of the conditions below is satisfied:

B(i) < 0, moddi) = mode(i) = DEC andd’(n + i) = 0,

B(i) < 0, modéi) = INC, mode(i) = DEC andb’(n +1i) = 1,
B(i) > 0, modéi) = mode(i) = INC andb/(n+i) = 0,

B(i) > 0, moddi) = DEC, mode(i) = INC andb/(n +i) = 1,
B(i) = 0, modéi) = mode(i) ando’(n + i) = 0.

Initialized VASS (V, (g, X)) is reversal-bounded28] &S for everyi € [n+ 1,2n], {y(i) :
3 run @, Xio) — (oY) in Vip} is finite with g = (g, INC), Xp restricted to then first compo-
nents iskandx,, restricted to the last components 8. Whenr > max(y(i) : 3 run @b, %) —
(d,Y)in V)i e[n+1,2n)]), (V,(qg,X) is said to be-reversal-boundedror a fixed € [1,n],
when{y(n +i) : 3 run @, %) — (¢, Y) in Vi) is finite, we say that¥, (g, X)) is reversal-
bounded with respect to Reversal-boundedness for counter automataaaodiori for VASS,
is very appealing because reachability sets are semilasegacalled below.

Theorem 2.2. [28] Let (V, (g, X)) be anr-reversal-bounded VASS. For each control statehe
set{y e N": Jrun(, X 5 (q, )} is efectively semilinear.

This means that one can computéeetively a Presburger formula that characterizes pre-
cisely the reachable configurations whose control stajé So, detecting reversal-boundedness
for VASS, which can be easily reformulated as an unboundesjm®blem with the above reduc-
tion, is worth the &ort since semilinearity follows and then decision proceduor Presburger
arithmetic can be used. By a simple observation, boundedmed reversal-boundedness are
related as follows.

Lemma 2.3. (V, (g, X)) is reversal-bounded with respectitdf (Vip, (Grb, Xb)) iS NOt (1 + i)-
unbounded.

An interesting extension of reversal-boundedness isduoited in [20, 49] for which we only
count the number of reversals when their values occur fouateo value above a given bound
B. For instance, finiteness of the reachability set impligsrgal-boundednessin the sense of [20,
49], which we callweak reversal-boundedness

LetV = (Q,n,o) be a VASS and a bounB € N. Instead of defining a counter automa-
ton Vy, as done to characterize (standard) reversal-boundednestefine directly an infinite
directed graph that corresponds to a variant of the tramsiystem ofV,y: still, there aren
new counters that record the number of reversals but onheif tvalues occur above a bound
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B. That is why, the infinite directed graphSg = (Q x {DEC,INC}" x N*", —p) is defined

as follows: @, m8de>§) —p (q’,m6dé, X) & there is a transitiory A g € 6 such that
X ([1,n]) = X([1,n]) + b, and for every € [1, n], one of the conditions below is satisfied:

o B(i) < 0,modéi) = mode(i) = DEC andx' (n+i) — X(n +1i) = 0

o B(i) < 0, modéi) = INC, mode(i) = DEC, X(i) < Bandx'(n+i) - X(n+i) = 0,
e B(i) < 0, modéi) = INC, mode(i) = DEC, X(i) > Bandx'(n +i) - X(n+i) = 1,
o B(i) > 0, moddi) = mode(i) = INC andx'(n+i) — X(n +i) = 0,

o B(i) > 0, modéi) = DEC, mode(i) = INC, X(i) > Bandx (n+i) — X(n+1i) = 1,
o B(i) > 0, modéi) = DEC, mode(i) = INC, X(i) < Bandx'(n +i) - X(n +i) = 0,
o B(i) = 0, modéi) = mode(i) andX' (n + i) — X(n + i) = O.

GivenB > 0 andr > 0, the initialized VASS V., (9, X)) is r-reversal-B-boundeds for every

i e [n+12n], (V) : (o, Xp) — (¢, Y) in TSg} is finite andr > max(y(i) : (G, %) —s
(q,Y) in TSg} ;i € [n+1,2n]). Initialized VASS (V, (g, X)) is weakly reversal-boundef@0]
& there is somé > 0 such that for every e [n+ 1, 2n], {J(i) : (b, %) —5 (. V) in TSs)
is finite. Observe that wheneve®d((q, X)) is r-reversal-bounded¥, (g, X)) is r-reversal-0-
bounded. Reversal-boundedness for counter automatag éortiori for VASS, is again very
appealing because reachability sets are semilinear asl &tatow.

Theorem 2.4. [28, 20] Let (V, (g, X)) be an initialized VASS that is (weakly)reversalB-

bounded for some, B > 0. For each control statg, the setty € N" : run (@, %) — (¢, )}
is effectively semilinear.

This means that one can compufieetively a Presburger formula that characterizes precikel
reachable configurations whose control statg .isThe original proof for reversal-boundedness
can be found in [28] and its extension for weak reversal-bedness is presented in [20]; when-
ever a counter value is beldy this information is encoded in the control state which jules a
reduction to (standard) reversal-boundedness.

REVERSAL-BOUNDEDNESS DETECTION PROBLEM

Input: Initialized VASS (V, (g, X)) of dimensiom andi € [1, n].
Question: Is (V, (g, X)) reversal-bounded with respect to the comporient

We also consider the variant with weak reversal-boundesines

Let us conclude this section by Lemma 2.5 below. The prookseetially based on [26,
Lemma 2.1] and on the definition of the initialized VASSB, (0, X)) The key properties are
that the dimension increases only linearly and the scally"@xponentially in the dimension.

Lemma 2.5. Given a VASSV = (Q,n,d) and a configurationg X), one can &ectively build
in polynomial space an initialized VAS/(, X) of dimension 2 + 3 such that Y, (g, X)) is
reversal-bounded with respectitoff (7, X) is not (h + i)-unbounded. Moreover, scafe] =
max((cardQ) x 2" + 1), scale(V)).

10



Proof. (Lemma 2.5) LetV = (Q, n,§) be a VASS andd, X) € QxN". Suppose tha hasm > 1
control states witlQ = {qs,...,qm}. Let us recall the construction of an equivalent initiadize
VAS of dimensionn + 3 from [26, Lemma 2.1], that we write @ n, ), (g, X))"" = (7", X).
We poses; = i andb; = (m+ 1)(m+ 1 — i) for everyi € [1,m]. A configuration ¢, y) of V is
encoded by the configuratighin 7 such that/ ([1,n]) = y andy'([n+ 1,n + 3]) = (&, b;, 0).
The initial configuratiorx’ is computed fromd, X) by using this encoding. It remains to define
the transitions irv".

e Foreacht = q 5 g; € 6, we consider the transitioth € 7~ such that’([1, n]) = b and
t'([n+1,n+3]) = (a - by, bj, —a).

¢ For technical reasons, for eveinge [1, m], we add two dummy transitiorts andt/ in 7
such that

- t([L.n]) = t/([1,n]) =0,
= ti([n+1,n+3]) = (-a&, ams1-i — b, bme1-i),
— t/([n+1,n+3]) = (bi, —ami1-i, —Bme1-i + &).

Observe that fot = g 5 g ed, '+t +t)([Ln]) = band ¢ +t + t)([(n+1Ln+3]) =
(aj — &, bj — b, 0). The proof of [26, Lemma 2.1] establishes that every ggnyb) - - - (g, ¥k) in
Vleadstoarup’ =2---Zx in 7 such that

o for everyi € [0,K], Z;i([1,n]) = ¥i andZ; is the standard encoding of/(¥}). Moreover,

ttt
each stepd, yi) 4 (9,1, Vi+1) corresponds to the three st@gs'—'» Z3.3 in p’ whereq/ is
thelth control state of).

An analogous property holds true in the converse directamd (this is the place where the
dummy transitions play a crucial role). This implies that éveryi € [1,n], (V,(q, X)) is i-
unboundedft ((V, (g, X)) is i-unbounded.

Let us come back to our reduction. L8t = (Q,n,d), (g,X) andi be an instance of the
reversal-boundedness detection problem. Using Lemman2l 3h& properties of the construc-
tion in [26, Lemma 2.1], it is easy to show that

e (V.(q, X)) is reversal-bounded with respeci i ((Vib, (Grb, X)) is not (1+i)-unbounded.

e The scale of the VAS (Vb (Grb, Xb)))"" is bounded by max((car@) x 2"+ 1)?, scale(V))
(as well as the scale of the target initial configuration).

e ((Vib, (O, %)) can be built in polynomial space.

It is worth noting that the cardinal of the set of control sV, is cardQ) x 2" whereQ is the
set of control states of’. Hence, this excludes the possibility to construgt (f, (g, X)) in
logarithmic space. O

Note that by using the simple reduction from VASS to VAS thatreases the dimension
by the number of control states, we would increase expoalgnthe dimension, which would
disallow us to obtain forthcoming optimal complexity bosndndeed, the number of control
states inVy, is exponential in the number of control stateskin

In Lemma 3.6, we explain how to reduce weak reversal-boumelesidetection to a general-
ization of (n + i)-unboundedness.
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3. Generalized Unboundedness Properties

In this section, we essentially introduce the generalizésbundedness problem and we show
how several detection problems can be naturally reducedd to i

3.1. Witness runs for simultaneous unboundedness

By [31, 52], we know that{’, (qo, X)) isi-unboundedft the coverability grapEG(V, (do, Xo))
contains an extended configuration withon theith component. This is a simple characteri-
zation whose main disadvantage is to induce a nhonprimigeansive decision procedure in the
worst case. By contrast, unboundednessaf(fo, Xo)) (i-e. i-unboundedness for some [1, n))

is equivalent to the existence of witness run of the fogsm %) 5 (g1, X1) 5 (92, X2) such that
X1 < X% andqg; = gp. In [45], it is shown that if there is such a run, there is on&eafjth at most
doubly exponential. Given a componeért [1, n], a natural adaptation ieunboundedness is to
check the existence of a run of the forgp,(X) — (0, %1) — (02, %) such thatd, < %o, g1 =
andXy(i) < %(i). By inspecting the proof in [45], one can show that if thexsiich a run, then
there is one of length at most doubly exponential. Howevtrpagh existence of such a runis
a suficient condition fori-unboundedness (simply iteratenfinitely), this is not necessary as
shown on the VASS below:

DIGOS=NODE

The second componentis unbounded frag @) but no run ¢o, 6)— (g, X1) = (q, %) with X3 <

X2, X1(2) < %2(2) andq € {go, g1} exists. Indeed, in order to increment the second component,
the first component needs first to be incremented. Below, weentt the coverability graph for
this VASS with initial configurationdp, (0, 0))

e
(1) @)

Note that the only way to introduee in the second component s to introduce fixson the first
component. In general for VASS of dimensioni-boundedness amounts to the existence of a
run of the form

(G0 Xo) =5 (G, K1) 5 (01, %) 5 -+ =3 (0, Xok-1) =5 (0, %o

whereXok (i) > Xok-1(i). Moreover, for alll € [1,K] and for all j € [1, n], wheneverky(j) <

Xa-1(j), there isl’” < | such thatty (j) > Xar_1(j) (this will be proved soon formally). This

illustrates the idea that to be able to increment unbourydisd ith component, we may be
12



able to increment earlier other components. Similarly,uhienate condition for simultaneous
unboundedness needs to specify thiedént ways to introduce the valuealong a given branch
of the Karp and Miller coverability graphs. This is done tksuto the condition PB defined
below and further generalized in Section 3.2di&jointness sequendg a nonempty sequence
o = X1 ---- - Xk of nonempty subsets of [f] such that fori # i’, Xi N X, = @ (consequently
K < n). A run of the form

(9o, Xo) i (G, %) 5 (02 %) 3. (G2 1. ok -1) = (Clak» Xok)

satisfies theropertyPB, (Place Boundedness with respect to a disjointness sequérnffehe
conditions below hold true:

(PO) For everyl € [1,K], 02-1 = Q2.

(STRICT) Foralll € [1,K]and allj € X, xa1(]) < %a1(})-

(NONSTRICT) Foralll € [1,K]and allj € ([1,n]\ X)), X2 (]) < XaZ1(]) impliesje | Xp.
Ie[L1-1]

Observe that when (STRICT) holds, the condition (NONSTRJI@&Tequivalent to: for all €

[L,Kland allj ¢ U Xy, we havexy_1(j) < Xa(j). Consequently, for all € [1,K] and
IelTl-1]

for all paths of the formz)* for somek > 1, the défect on thejth component may be negative

onlyif je | X.. Finally, note that the conditions 0fy - - - Xk are reminiscent of chains in
Ie[Ll-1]
automata, see e.g. [41, Chapter 5].

It is now time to provide a witness run characterization fondtaneousK-unboundedness that
is a direct consequence of the properties of the coverabildphs [52].

Lemma 3.1. Let (V,(do, %)) be an initialized VASS of dimension and X ¢ [1,n]. Then,
(V, (9o, X0)) is simultaneouslX-unboundedft there is a rup starting at ¢o, Xo) satisfying PB-
for some disjointness sequenee= X - - - - - Xk such thatX € (X3 U --- U Xk) andX N Xk # 0.

Consequently, Y, (do, Xo)) is i-unboundedft there is a rurp starting at ¢, X) satisfying
PB, for some disjointness sequenge= X - - - - - Xk with i € X.

Proof. As a consequence of the properties on the coverability grapdsented in Section 2.1,
givenX C [1,n], (‘V, (qo, X)) is simultaneousl)X-unboundedft CG(V, (qo, Xp)) contains some
(9, ¥) with y(X) = & [31].

It is now time to show the statement.
(«) Let us consider the rum

(9o, X0) 3 (@1, %) 5 (G, %) 3 (03, %) 5 - - (a1, XoR 1) = (Olak» Xok)

of lengthL satisfying the property PB Let B > 0. We construct a rup’ satisfying PB of the
form (w((ma)Pim) ()’ - - - (mk )%, (Qo, X0)) for somepy, ..., Bk > 1 such thatB, ..., B) < X;(X)
where (s, X;) is the final configuration g#. Now let us defin@, . .., 81 (in this very ordering):

OﬂKZB.
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e Now suppose tha.,, ...,Bk are already defined andck K. Let us defings; by

def

Bi = B+ (K —i)(L — 1)maxnegl) + i/e[ii K]((L — 1)maxneg(V))Bi

For everyj € [i + 1, K], the pathr; has at mostl( — 1) transitions and each transition may
decrease a component by at most maxfngg(The term [_21 K]((L—l)maxnegf(V)),Bi, guarantees
e[i+1,

that each component 4 is large enough to fire; without reaching negative values. Similarly,
each pathr] with j € [i, K — 1], has at mostl( — 1) transitions and each transition may decrease
a component by at most maxngg(. The term K — i)(L — 1)maxneg(/) guarantees that each
component inX; is large enough to fire’ without reaching negative values. Finally the term
B in B; guarantees that the final value of the componestgreater tharB. Consequently, the
expressionK —i)(L — 1)maxned(") is related to the pathsg, ..., 7, whereas the expression
Ziqir1k] ((L — L)maxneg(l))B: is related to the paths,,, ..., 7k. Itis not dificult to show that
(o ()P ()2 - - - (mk )X, (Qo, %0)) defines a run, it satisfies RBind @, . . ., B) < X;(X) where

X; is the final configuration g#’. Since the above construction can be performed for&nye
conclude thaty, (go, X)) is simultaneouslyK-unbounded.

(—) Now suppose that¥, (do, Xo)) is simultaneousl)-unbounded. This means tHa&(V, (qo, X))
has an extended configuratiap §) € Q x (N U {co})" such thatj(X) = (e, ..., ). We can as-
sume tha# is the first extended configuration on that branch witK) = (o, ..., ). Let us
consider the sequence below

(dos %0) =3 (01, Y1) 25 (02, ¥2) = (0, ¥a) 35 -+ =3 (G-, Y1) =5 (G Vo)
obtained fromCG(V, (qo, X)) such that
e Foreveryl € [1,K], gz-1 = Qz, andyok = V.

def

e For everyl € [L K], X # 0 with X = {j € [1,n] : ¥a(]) = oo, ¥a-1(j) # oo} and
Ya-1 < Ya.

Let us suppose that the above sequenc€G(V, (qo, X)) hasL (extended) configurations
and let us poser = X;---Xk. It is easy to show that is a disjointness sequence with

X< U XandXn Xk # 0. Again, we shall design a rup satisfying PB of the form
le[LK]

(np ()P ()2 - - - (mk )X, (Qo, Xo)) for someps, ..., Bk > 1. Now let us defing,....B1 (in
this very ordering):

[ ] BK = 1
e Now suppose thasi,1, ..., Sk are already defined fdr< K. Let us defing3; by g £
1+ (K-=1i)(L-21)maxnegl) + [_21 K]((L — 1)maxneg())s: .
I7e[i+1,
Now, it is not dificult to show thap = (r((m1)Prry (m2)P2 - - - (mk )P, (o, %)) defines a run and it
satisfies PB. 0

Existence of a run satisfying RRan be expressed in the logical formalisms from [54, 3] but
this requires a formula of exponential size in the dimen&iecause an exponential number of
disjointness sequences needs to be taken into account.mysh each disjunct has a size only
polynomial inn. The path formula looks like that (in order to fit exactly thy@tax from [54, 3]

14



we would need a bit more work since existential quantificatannot occur in the scope of
disjunction):

K
VA% X A\ %aal) < D AC Naeali) < %a(i))

Xp---Xg 1€Xk 1=1 jeX jE(XqU-UX_1)

It is worth noting that the satisfaction of RRloes not implyx; < Xox. This prevents us from
defining this condition with an increasing path formula [8ldatherefore the & Space upper
bound established in [3] does not apply straightforwardiyanboundedness.

3.2. A helpful generalization

We introduce below a slight generalization of the propsrB&, in order to underline their
essential features and to provide a future uniform treatm®foreover, this allows us to ex-
press new properties, for instance those helpful to charaetnonregularity. The conditions
(STRICT) and (NONSTRICT) specify inequality constrainestieeen component values. We
introduce intervals in place of such constraints. iAterval is an expression of one of the forms
] — o0, +00[, [a, +o0[, ] — o0, b] Or [a, b] for somea, b € Z interpreted as a subset @f(with the
obvious interpretation).

Definition 3.1. A generalized unboundedness propeRy= (71,...,7x) iS a honempty se-
guence of-tuples of intervals. v

Thelengthof # is K and itsscaleis equal to the maximum between 1 and the maximal absolute
value of integers occurring in the interval expression® @if any). A run of the form

(9o, %0) 3 (1, %) S (G, %) 3 (O3, X3) - - - “ (a1, Kok _1) = (o> Xok)

satisfies the property & the conditions below hold true:

(PO) For everyl € [1,K], g2-1 = Q2.

(P1) Foreveryl € [1,K]andj € [1,n], we haveXx(j) — Xa-1(]) € Z1(}j).

(P2) For everyl € [1,K]andj € [1,n], if X3(j) — X2-1(j) < O, then there i$' < | such that
X (j) = Xar-1(j) > 0.

Given a runp, we say thap, satisfiesP if p admits a decomposition satisfying the conditions

(P0)—(P2). By extension{¥, (qo, Xp)) satisfiesP & there is a finite run starting atd, Xo)
satisfying®. It is easy to see that condition (P1) [resp. (P2)] is a qtatite counterpart for
condition (STRICT) [resp. (NONSTRICT)] defined in Sectioi 3

Let us now introduce below our most general problem, esjigtidlored to capture selective
unboundedness.

GENERALIZED UNBOUNDEDNESS PROBLEM

Input: Initialized VASS (V, (qo, X)) and generalized unboundedness property
Question: Does (V, (Qo, X0)) satisfyP?
Let us first forget about control states: we can safely r@srrselves to VAS without any loss

of generality, as it is already the case for many properties.
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Lemma 3.2. There is a logarithmic-space many-one reduction from #eegalized unbound-
edness problem for VASS to the generalized unboundednebtepr for VAS. Moreover, an
instance of the form (¥, (g, X)), #) is reduced to an instance of the forri((X'), #’) such that

1. if V is of dimensiom, then7 is of dimensiom + 3,
2. P and®’ have the same length and scale,
3. scalef") = max((cardQ) + 1)?, scale(V’)) whereQ is the set of control states 6f.

The proof is essentially based on [26, Lemma 2.1].

Proof. LetV = (Q,n,d), (9, X) € QxN"andP = (74, ..., k) be an instance of the generalized
unboundedness problem for VASS. First,,&) = ((V, (g, X)) following the construction
from [26, Lemma 2.1] (see also the proof of Lemma 2.5). Letas nonstruct’.

o P =(I7,.... 1) with foreveryl € [1,K], I{([1,n]) = I, andI{([n+ L, n+3]) = [0?0].

We recall that every rungg, ¥o) - - - (G, Yk) in V leads to a rup’ = 7 - - - Z in the target VAS
such that

o for everyi € [0,K], Z;i([1,n]) = ¥ andZ; is the standard encoding af/(¥;). Moreover,

ttt
each stepd, ¥i) 4 (9, ;. Vi+1) corresponds to the stepgs N Z33in p’ whereq; is thelth
control state ofQ.

An analogous property holds true in the converse directidrich guarantees the correctness of
the reduction. Observe that wh&p_;([n+ 1,n+ 3]) = Xy([n + 1, n + 3]) for somel € [1,K]
with Xy_1([n+ 1, n + 3]) not of the form &, b;, 0), we can always come back to such a situation
since the dummy transitions are fired in a very controlled.way O

Generalized unboundedness properties can be expressedréinganeral formalisms for
which decidability is known. However, in Section 4, we efisibExpSpace-completeness.

Theorem 3.3. [3, 2] The generalized unboundedness problem is decidable

Given ¢V, (qo, X0)), the existence of a run frongqd, Xp) satisfying® can be easily expressed
in Yen's path logic [54] and the generalized unboundedness@m is therefore decidable by [3,
Theorem 3] and [38, 33]. We cannot rely on [54, Theorem 3.8ll&zidability since [54, Lemma
3.7] contains a flaw, as observed in [3]. [3] precisely esthbl that satisfiability in Yen’s path
logic is equivalent to the reachability problem for VASS. Mover, it is worth noting that the
reduction from the reachability problem to satisfiabili8; Theorem 2] uses path formulae that
cannot be expressed as generalized unboundedness ep6itiiserve that thexeSeace upper
bound obtained for increasing path formulae in [3, Sectipca@not be used herein since obvi-
ously generalized unboundedness properties are not @eitgscreasing. That is why, we need
directly to extend Rackd's proof for boundedness [45].

3.3. From regularity to reversal-boundedness detection

In this section, we explain how simultaneous unboundedmedsem, regularity detection,
strong promptness detection and weak reversal-boundede&ction can be reduced to gener-
alized unboundedness problem. This will allow us to obtairSeace upper bound for all these
problems.
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Lemma 3.4. Every property PB can be encoded as a generalized unboundedness préperty
with lengthK < nand scale®,,) = 1.

Proof. From a disjointness sequenge= X; --- Xk, we define the generalized unboundedness
property®P, = (I1,...,7k) as follows. For every € [1,K]and | € [1,n], if | € X then
Ii(j) = [1,+co[. Otherwise, ifj € ([1,n] \ (U1cr< X)), thenZi(j) = [0, +oo[, otherwise
I1(j) =] — oo, +o0[. Itis easy to check tha®, and PB. define the same set of runs. O

Regularity detection Another example of properties that can be encoded by géredalin-
boundedness properties comes from the witness run cheradtiten for nonregularity, see e.g. [52,
3]. Nonregularity of an initialized VASSY, (qo, X)) is equivalent to the existence of a run of
the form

(Go. %) =3 (1, X1) 25 (G2, %) = (3. %8) 3 (G4, X4)
such that

1.01=0p

2. Qg = O,

3. X1 < X,

4. thereid € [1, n] such thati(i) < x3(i),

5. forall j € [1, n] such thati(j) < X3(j), we havexi(j) < X2(j),

see e.g. [52, 3] and [47, Chapter 6]. Here, the language némed) by the initialized VASS is
the set of finite sequences of transitions firable from thigirconfiguration (no final condition).
Consequently, nonregularity condition can be viewed asjmittion of generalized unbound-
edness properties of the formiy( 7',) where’ (i) = [1, +oo[, T,(i) =] — 00, —1], and forj # i,
we haver’| (j) = [0, +oo[ and I,(j) =] — oo, +oo[. Condition (5.) above will be satisfied thanks
to Condition (P1) in the definition of a generalized unboudriEss property.

Strong promptness detectiolVe show below how the strong promptness detection problem ca
be reduced to the simultaneous unboundedness problenmdetadan EpSeace upper bound.
Thestrong promptness detection problérdefined as follows [51].

SIRONG PROMPTNESS DETECTION PROBLEM

Input: An initialized VASS (Q, n, 9), (g, X)) and a partitiond, 5g) of 5.

Question: Is therek € N such that for every runqg(X) 5 (g, X), there is no rund, X) 5
(9", X") using only transitions from, and of length more thaki(r € 6})?

Let us consider below the VAS® of dimension 1 withs; made of the two transitions in bold.

0 -1
(o) —~(o)==(%)
-1
(V, (0o, 0)) is not strongly prompt and there is no rum,() 5 (g, % 5 (g,y) for someq €
{qo, A1, G2} such thak <y, 7 is nonempty and contains only transitionsjjn

Lemma 3.5. There is a logarithmic-space reduction from strong pravegs detection problem
to the complement of simultaneous unboundedness problem.
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Proof. Let (V, (g, X)) be an initialized VASS withV = (Q, n, §) and equipped with the partition
(61,0g). We construct the VASY/[6,] = (Q x {0,1},n+ 1,6") made of two copies oV. The
0-copy behaves exactly @8 whereas the 1-copy contains only the transitions feprand has
an extra counter that is incremented for each transitiore tfdnsitions from the 0-copy to the
1-copy determines nondeterministically when the lengthezfuences of transitions dn starts

to be computedV[¢] is defined as follows:d, i) 5 (q/,1") € & iff one of the conditions below
holds true:

eizir=0,q° %% ¢ e5,B(n+1)=0,
° i=0,i’=1,5=6andq=q’,
eiz=i=1,02 %% g cs, Bn+ 1) = +1.

It is easy to show that¥, (g, X)) is strongly prompt with respect to the partitiofy ,0g) iff
(V[4a1]. (g, X)) is not (W + 1)-unbounded for som®& with restriction to [1n] equal tox. O

Weak reversal-boundedness detecti@umplement of weak reversal-boundedness involves two
universal quantifications (oB andr) that can be understood as simultaneous unboundedness
properties. Lemma 3.6 below is a key intermediate resultimmvestigation.

Lemma 3.6. Given a VASSV = (Q,n,6) and a configurationg X), (V, (g, X)) is not weakly
reversal-bounded with respectitdf (Vp, (Grb, Xb)) has a run satisfying PBfor some disjoint-
ness sequenge = X;--- Xg withn+i e Xg andi € (Xy U --- U Xk_1).

Proof. (<) Leto = X; - - - Xk be a disjointness sequence such thiate Xk, i € (XpU---UXk_1)
and Vi, (0rb, X)) has a rump satisfying PB.. Suppose that is of the form below

(9o X0) 3 (@, %) 5 Gy %2) 3.9 (i1, Ror-1) = (Claxc, Kok

and of lengthL. By construction of ¥, (b, Xib)), @ reversal foii is operated on the path
mk, and the projection op on then first components and tQ (for the control states from
Q x {INC,DEC}") corresponds to a run of. For allB, B’ > 1, we define a rup’ that performs
at leastB’ reversals abovB for the component which guarantees thad{, (g, X)) is not weakly
reversal-bounded with respectitoThe runp’ is of the form (1?17} (m2)% - - - (nk )%, (0, X)).

Let us defingB,...,B81 > 1 as follows: firstsx = B, then suppose thaj.s, ..., Bk are
already defined andl < K. If i ¢ X;, theng; = [ZlK]((L — 1)maxneg())B;, otherwise
Jel)+1,
Bj = (B + B x L x maxneg(V)) + (K — j)(L — 1)maxnegl) + [_21 K]((L - 1)maxneg())B; -
Jel)+1,

It is not difficult to show that £, (1)P17) (m2)’2 - - - (mk )%, (0, X)) defines a run and in the part of
the run corresponding to the pathcj’<, at leastB’ reversals abov® are observed for thigh
component. Indeed, after firing ()" - - - 7}, _,, the value for the components greater than
B+ B’ x L x maxneg(V). Moreover, after firingr) (1)’ - - - 7y, (nc)) with j € [1, B'], the value
for component is greater thaB + (B’ — j) x L x maxneg(V).
(—) Suppose that¥, (g, X)) is not weakly reversal-bounded. We use [20, Lemma 13]dhat-
acterizes weak reversal-boundedness on the coverabiiph@®G(V, (g, X)). First, let us re-
call [20, Lemma 13] formulated on the coverability grap@(V, (g, X)): (V, (g, X)) isr-reversal-
B-bounded with respect tbfor somer and B iff for every elementary loop iI€G(V, (g, X))
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that performs a reversal on tlith component, thé&h component of every extended configura-
tion on the loop is less thaB. An elementary loop is a sequence of extended configurations
respecting the edge relatidhof CG(V, (g, X)) such that the two extremity (extended) config-
urations are identical and these are the only ones idemtit#he loop. SinceV, (g, X)) is not
weakly reversal-bounded a@iG(V, (g, X)) is a finite structure (with a finite amount of elemen-
tary loops), there is an elementary loop that performs arsav@n theith component and such
that one of its extended configuration kan theith component (otherwise we would findBa

by finiteness). So, there is a sequencE€®(V, (g, X)) of the form below

1 > - Wt I >
(G0, %) = (01, X4) =S -+ (Gl i) 5 -+ =5 (G K1)

with (go, %) = (0, X), K < kand @w, %) pac S (o, %) is an elementary loop. Remem-

tes

ber that thex’s are extended configurations. Sineg (X¢) — - - LY (ok, Xk) has an extended
configuration witheo on theith component, this entails th& (i) is already equal teo. With a

twia

similar reasoning, all the extended configurationsgn, &) — - - - LY (ak, Xk) have the same
amount of components equal 4e. Letis,...,ik < k' be positions on which at least one com-
ponent has been newly given the valweando = X; --- Xk be the disjointness sequence such
that eachX| is the set of components that have been newly given the valatethe position,. It

is then easy to see thdi (- - tk, (Qrb, Xb)) IS @ pseudo-run weakly satisfyiR,.in.iy With P ni)
defined fromo-- {n+i} as done in the beginning of Section 3.3 for dealing with steméous un-
boundedness. Weak satisfaction is introduced in SecttanF3om Lemma 3.7, Vb, (Grb, Xrb))
has a rup’ satisfying?,.n+i;, Which is equivalent tp’ satisfying PB-in.i;. Observe that-{n+i}

is also of the appropriate form. O

As a corollary, we are in a position to present a witness riaratterization for weak reversal-
boundedness detectiorrV((qo, X)) is hot weakly reversal-bounded with respect iff there
exist a disjointness sequenge= X; --- Xk and a run o, Xo) 5 (01, X1) i (02, X2) 5.5
TTK+1
(O +1, Xox+1) — (Qzk+2, Xak+2) Such that
1. ng41 contains a reversal for thith component,

2. the subrundo, %o) — (2« %« ) satisfies PB,
3. i€ (Xlu---UXK),and
4. for everyj € [1,n], Xok+2(]) < Xok+1(]) impliesj e (Xg U -+ U Xk).

Based on Lemmas 2.3 and 3.1, a characterization for revieosaidedness can be also defined.

3.4. Afirst relaxation
Below, we relax the satisfaction of the propefyy allowing negative component values in

a controlled way. A pseudo-run of the form

(9o, %0) 3 (1, %) S (G, %2) 3 (O3, X3) - - - 3 (k-1 Kok _1) = (o> Xok)

weakly satisfie® & it satisfies (P0), (P1), (P2) (see Section 3.2) and (P3) dtbirtow:

(P3) for everyj € [1, n], every pseudo-configuratiofisuch thatx(j) < 0 occurs after somg,
for which X (j) — X2-1(j) > 0.
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If the runp satisfiesP, then viewed as a pseudo-run, it also weakly satisfied emma 3.7
below states that the existence of pseudo-runs weaklhf\satigP is equivalent to the existence
of runs satisfyingP and their length can be compared. Later, we use the withesslpsun
characterization.

Lemma 3.7. Letp be a pseudo-run of lengthweakly satisfying? (of lengthK). Then, there is
a runp satisfying® of length at most (( x maxneg(¥))¥ x (1 + K2 x L x maxneg(V)) + L.

Proof. Letp be a pseudo-run of the form below weakly satisfying the prigf@ = (74, ..., 7x):

(G0 %) = (G, %) > (G, %) = (O3, %) 3 -+ =5 (Gok—1, Rox-1) = (Clakcs %ok

We design a rup satisfying® of the form

(o) rmy ()2 - - - (kY€ (Go. X))

and of the appropriate length for soe. . ., Bk = 1. We use the same type of construction as in
the proof of Lemma 3.1. First, let us defikg . .., Xk C [1, n] that records when components are
strictly increasing: for everye [1,K], X; = {j € [1,n] : X2-1(j) < Xa(})} \ (Ur < X). Observe
that forl # I’, we haveX; N X, = 0. Now let us defin@gx, ..., 1 (again, in this ordering):

def

[ ] BK = 1
e Now suppose thaii.1, ...,Bk are already defined andck K. Let us defing;. If X; = 0,
theng; £ 1. Otherwisgs; £ (K —i)(L — 1)maxneg() + ) K]((L - 1)maxneg())B: .
Veli+1,
The term K—i)(L-1)maxneg{V) is related to the pathsg, ..., _, whereas the term [‘21 K]((L—
Vefi+1,

1)maxneg())B: is related to the paths., ..., 7. Again, it is worth noting that — 1 transi-
tions cannot decrease a component by more than{)maxneg®l’). Now, it is not dificult to
show that

(o) rmy (m2)2 - - - (k YP<. (Go. X))

defines a run (and not only a pseudo-run) and moreover ifisa#3 which is witnessed by the
decomposition below:

(m )1t

(G0 %) 25 (@9 5 (@29 2 (0.9 5 - -

(-1 PK-172m) P
5 (a1, Yok-1) = (G2k, Vo)

It remains to verify that this run is not too long. Let us defthe sequencey,...,yk-1 with
Y = Zireik-i,K)Bir- S0,70 = Bk = 1 andyi,1 = Bk-i-1 + i with
Br-i-1 < (i + 1)(L - )maxnegl) + ((L — L)maxneg))yi

Soyi+1 < (KxLxmaxneg())+(Lxmaxneg(V))y for everyi € [1, K-1]. If Lxmaxneg() = 1,
thenyx_1 < K(K x L x maxneg(V)). Otherwiseyk_1 < (L x maxneg(t))*~ x (1 + K x L x
maxneg(V)). Finally, by using that the sum of the patifsis bounded by, we get the desired
bound. 0
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The principle of the proof of Lemma 3.7 (and part of the prodf@mma 3.1) is identical to the
idea of the proof of the following property of the coveratyilgraphCG(V, (qo, Xp)) (see e.g.,
details in [47]). For every extended configurationy) € Qx (N U {co})" in CG(V, (o, %)) and
boundB € N, there is a rundp, ) — (g, ¥) in V such that foi € [1, n], if y'(i) = oo theny(i) > B
otherwisey(i) = y/(i). In the proof of Lemma 3.7, the pathgs are repeated hierarchically in
order to eliminate negative values.

Additionally, if p is a pseudo-run of length weakly satisfyingP andL is at most doubly
exponential inlN = V| + |(do, Xo)| + K + scalef), then there is a run satisfyirfgand starting in
Xo that is also of length at most doubly exponentialNin

So, standard unboundedness admits also a withess pseudbaracterization with a dis-
junction of n generalized unboundedness properties of length 1. Butp$eado-rup weakly
satisfiesP of length 1, themp is a run satisfyin@, explaining why only the witness run charac-
terization is relevant for standard unboundedness.

4. ExeSeace Upper Bound

In this section, we deal with VAS only and we consider a curkékS 7~ of dimensionn
(see Lemma 3.2). Without any loss of generality, we can asghatn > 1, otherwise it is easy
to show that the generalized unboundedness problem tesitic VAS of dimension 1 can be
solved in polynomial space. Moreover, we assume that mgxneg 1.

4.1. Motivations for approximating properties

Generalized unboundedness properties apply on runs bvdktie shown below, it would
be more convenient to relax the conditions to pseudo-rungrsstep has been done in Sec-
tion 3.4; we push further the idea in order to adapt Ré&tkproof. In forthcoming Section 4.2,
we introduce approximations of generalized unboundedreperties and in Section 4.3, we ex-
plain how to shrink pseudo-runs satisfying such properifiesio so, we extend RacKts proof
technique to obtain a small run property for runs witnesgsigndard) unboundedness. In the
rest of this section, first we recall main ingredients of ReE& proof (with references to forth-
coming results about generalized unboundedness) andwieenptivate the main ingredients of
our approximation properties.

Ingredients in Rack@'s proof. Let us briefly recall the structure of Radks proof to show that
the boundedness problem for VAS is irifSeace. Let (77, Xp) be an initialized VAS of dimension
n. A witness run for unboundedness is of the fgsm: X — yL y with y < ¥. In [45], it

is shown thap can be of length at most doubly exponential. In order to geBtrSeace upper
bound, Savitch’s Theorem is used. Let us be a bit more pregisendeterministic algorithm
guessing such a run of length less thais defined as follows. Here is the algorithm with inputs
T, XandL:

1. guesd’ andL” suchthal’ < L” <L;

2. i :=0; X := X (current configuration);

3. Whilei < L’ do
(a) Guess atransitiare 7-; If Xz +t ¢ N" then abort;
(b) i:=1+1; % =X +t.

4.y :=Xg;
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5. Whilei < L” do
(a) Guess atransitiare 7-; If Xz +t ¢ N" then abort;
(b) i:=i+1; X=X +t.

6. Returny < x¢.

If the maximal absolute value i andx is 2N for someN > 0 andL is doubly exponential
in N, then the maximal absolute value appearing in the algorighshoubly exponential ifN too.
The decision procedure above guesses the small run andezplires exponential space thanks
to the following additional arguments:

1. A counter with an exponential amount of bits can countlantiouble-exponential value.

2. Only two configurations need to be stored thanks to nonaéiésm.

3. Comparing or adding two natural numbers requires ldgauiit space only (if their values
is doubly exponential ifN, then their comparisons require only exponential spadg)in

4. By Savitch’s Theorem [50], a nondeterministic procedare given problem using space
f(N) > log(N) can be turned into a deterministic procedure udifid) x f(N) space.

5. Exponential functions are closed under multiplication.

Rackdt’s proof to establish the small run property goes as folldwisst, a technical lemma
shows that if there is sonmeB-bounded pseudo-run (instance of the approximation ptppér
introduced in forthcoming Section 4.2), then there is orlergth at mosB” " for some constant
C. i-B-boundedness refers to the fact thatitiefirst components have values in ®- 1]. The
proof essentially shows that existence of such a pseudesmounts to solving an inequation
system and by using [8], small solutions exist, whence thstexce of a shori-B-bounded
pseudo-run (the same technique is used in forthcoming Leth@)a The idea of using small
solutions of inequation system to solve problems on cowystems dates back from [45, 23]
and nowadays, this is a standard proof technique, see &[. This proof can be extended
to numerous properties on pseudo-runs for which interntediaunter value dierences can
be expressed in Presburger arithmetic as done in [54, 3].n,Tag@roof by induction on the
dimension is performed by using this very technical lemma tie ability to repeat sequences
of transitions; the proof can be extended when the first inéeliate configuration is less or
equal to the last configuration of the sequence (leadinggadmcept of increasing path formula
in [3]). This condition allows to perform the induction oretdimension with a unique increasing
formula. Unfortunately, generalized unboundedness ptigseare not increasing in the sense
of [3]. Therefore, Rackid’s proof requires to be extended even though the essengaddients
remain, see the proof of Lemma 4.4. The generalization ote¢bknical lemma corresponds
to forthcoming Lemma 4.2; it is not surprising since gerigeal unboundedness properties are
Presburger-definable properties. However, not only we needfine the expressioB"”Ic in
terms of various parameters (lengti®fscalef), n, scale{")) in order to get the final £»Spack
upper bound (or the B&ce upper bound with fixed dimension), but also we have to cheatktie
new ingredients in the definition of the forthcoming approation propertiesA do not prevent
us from extending [45, Lemma 4.4]. Finally, it is importamspecify the length of small pseudo-
runs with respect to parameters frgm

What needs to be approximatedemma 3.7 states that the existence of a run satisfying the
generalized unboundedness propé?tys equivalent to the existence ofpseudo-run weakly
satisfying®? = (71,...,Zk). Therefore, in the sequel, without any loss of generality,can

focus on weak satisfaction. Suppose that the pseud@-ranx, Y X1 Y Xo -+ Xok—1 i Xok
weakly satisfieg”. Note that
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. every element off(y, . .., Ik) constraintg, as far as each path) is concerned,

. each pseudo-configuratigriakes its values i&",

. whenever a componentvalue is negative, there is somiergaathr; that strictly increases
that component (see Condition (P3)).

WN -

An approximation propertyA (parameterized by elements made explicit below) relaxeskwe
satisfaction in the following way (compare each conditibabove withC’).

1’. Only a stfix (Z},...,Zk) of £ is considered and a pseudo-rpnsatisfyingA will be

therefore of the forny,_, = Voot —> Yo -+ - Ty Voko1 =5 Vox. Hencel € [1,K]is a
parameter ofA. Such a relaxation is useful when gluing pseudo-runs wesddigfying
distinct parts ofP.

2'. For each configuratiopiand for each component |, ¥(i) € [0, B— 1] for somel C [1,n]
andB > 0 unless values on tlith component can be pumped (séelflow). Hence and
B are parameters ofl too and such a relaxation will allow to provide a proof by intion
on the dimension.

3. Whenever a component value is negativefineither there is some earlier pathin p’
that strictly increases that component or that componeloinige to some set INCR of
components whose values can be pumped. Hence, INCIRn] is a parameter ofi and
such a relaxation is useful when gluing pseudo-runs and pugwalues can be performed
thanks to paths occurring in other pseudo-runs (mateeidli® the fact that the component
belongs to INCR).

4.2. Approximating generalized unboundedness properties

We are now in position to define the proper{#, |, INCR, I, B]. Given a generalized un-
boundedness propery of lengthK, | € [1,K], INCR € [1,n], | € [1,n]andB > 0, a pseudo-
run of the form below

, ,
M1

Va2 — yZI—lﬂ) Yo oo — Yok-1 = Yok
satisfies thepproximation propertyA[P, |, INCR, |, B] (also abbreviated byA) & the condi-
tions below are verified:

(P2) Foreveryl’ € [I,K] and for everyj € [1,n], we haveyy (]) — Yar-1(j) € Z1(]) (only the
sufix (71, ...,x) is considered).

(P2) For everyl’” € [I,K] and for everyj € [1,n], if Va.(j) — Var-1(]) < O, then one of the
conditions holds true:

e thereisl” € [I,I" — 1] such tha(j) — Ya-1(j) > O,
e j € INCR.

(P3) For every pseudo-configuratiaiin p occurring betweegi,. and strictly before,. > with
I”>1-1,XJ) € [0,B-1]" with J = | \ PUMP(, ") where PUMPI(I") = (INCR U {j :
1" € [LI'], Yar(]) = Yar-1(j) > O}).

Condition (P3) reflects the intuition that only the values from componémt$ need to be con-
trolled. We also writeA[P, |, INCR, |, +o0] to denote the property obtained fraf{#, |, INCR, |, B]
by replacing [0B — 1]’ by N7 in the condition (P3. Observe that a pseudo-run satisfies
AP, 1,0,[1,n], +c0]iff it weakly satisfied (see Section 3.4). The properf P, |, INCR, |, +o0]
is exactly the condition we need in the proof of Lemma 4.4 Wwelwanks to the property stated
below.
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Lemma 4.1. If the pseudo-rup = ya_» =) Vo1 = Yo - -+ =5 Vo satisfies the approximation
propertyA[P, |, INCR, |, +0], then

(g ()" (i)™ - - - ()™, Yai-2)
also satisfies it, for afh, ..., ng > 1.

A similar statement does not hold for pseudo-runs satigfyih(values for components in
J might become out of [(B — 1]) and for runs satisfying® (component values might become
negative).

Proof. (Lemma 4.1) Lep’ be the pseudo-run

o (m)nt M ()KL K
Va2 =212 =LA Zy1— oy Tt k-1 Zx

obtained fronp by copyingn; times the pathr;. For everyl’ € [I, K] and for everyj € [1, n],
Vor () = Yar-1()) = Zo (j) — Za-—1(]), whencey’ satisfies the conditions (Bland (P2). Of course,
we need also to take advantage jhaatisfies (P2. Indeed, suppose thai (j)—Zx-1(j) < 0. So
var (j) — Var-1(j) < 0 and by satisfaction of (PRby p, we can also conclude that eithee INCR
or there id” € [I,I” — 1] such that/y-(j) — Yar-1(]) > 0 (equivalent ta@y- (j) — Zy--1(j) > 0).

Sincep satisfies condition (PR for every pseudo-configuratictin p occurring betweegi,
and strictly beforgfy. > with I’ > | — 1, X(J) € NY with J = | \ PUMP(,I’). Now letXin p’
occurring betwee, and strictly before ., with I’ > 1 - 1. LetJd = | \ PUMP(, I’). For every
I” € [I,I'] and for everyj € J, the pathr» has a positive ffect on the componerjt One can
show that this entails th&(J) € N’ using the property (PBonp. O

PropertyA[#P, 1, INCR, |, B] can be viewed as a collection lafcal path increasing formulae
in the sense of [3].

4.3. Bounding the length of pseudo-runs

It is important to specify the length of small pseudo-runthwespect to parameters frggh
as done in Lemma 4.2 below.

Lemma 4.2. Let7 be a VAS of dimension > 2, be a generalized unboundedness property of
lengthK, | € [1,K], B > 2,1,INCR C [1, n]andp be a pseudo-run satisfying[#, |, INCR, I, B].
Then, there exists a pseudo-run starting by the same psmrdgruration, satisfyingd[#, |, INCR, |, B]
and of length at most (& K) x (scalef") x scalef?) x B)™* for some constart; independent of

K, scalef), scale{"), B andn.

The length expression in Lemma 4.2 can be certainly refinéztins of card(INCR), card
andl but these values are anyhow boundeahlayndK respectively, which is used in Lemma 4.2.
The proof below is essentially a refinement of the proof of [4&mma 4.4].

Proof. Let® = (I1,...,7«), | € [1,K], I,INCR < [1,n] and p be the pseudo-run described
below satisfyingA[#, |, INCR, |, B]:

m_y i Ty K
p =X — K1 KXoy - -+ — Xok-1— Xk
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We posedy = card@o) with Jop = | \ INCR. We suppose that the pseudo-puis induced by
the patht; ...t with p = Uy - - - Ux. Let f : [2] — 2,2K] — [0, K] be the map such that = Tx;
consequenthyf (2l — 2) = 0 and f(2K) = k. By the satisfaction of the condition (A3rom
A[P,1,INCR, 1, B], for every pseudo-configuratian with j < f(2-1), we havarj(Jp) € [0, B—
1]%. Ifthe length ofr|_,isat leasB%, then there are two distinct positiops: j’ < f(21-1) such
that dj(Jo) = dj(Jo) (by the pigeonhole principle) and therefote.( . tjtj .1 ... &, Xa-2) also
satisfiesA[P, |, INCR, |, B]. Observe that the values for components im]1\ Jo are allowed to
be negative. By iterating this contraction process, witlamy loss of generality, we can assume
that inp, we havef (2 — 1) - f(21 - 2) < B% and for every’ e [I -1, K-1], f(2I' + 1)- f(2I") <
Bcard@) < B".

Now;, for eachD € [I, K] we shorten the pseudo-r&p_1 — Xp. This is done by removing
loops, as explained below, and by following the key stepsefdroof of [45, Lemma 4.4]. We
posed = card() with

J=1\(INCRU{j: 3" €[l,D - 1], %3 (j) - Xi"-1(j) > O}) = | \ PUMP(, D — 1).

A simple loop with respect to i3 a pairsl = (5, ) such thats € [0, B- 1]” andr = t] .. tisa
path satisfying the conditions below:

(SL1) Foreveryj€[1,9], S+ E]tf(J) e [0, B - 1]’ (the boundB is never exceeded).
i€[1,]
(SL2) E ]ti’(J) = 0 (the total &ect on the components ihis zero),
i€[l,y

(SL3) Forj < j €[1,y]with (j, ") # (1,7), we have [Z‘ ]ti’(J) # 0 (minimality of the path).
€[]’

Thelengthof slis defined as the length of its patrand itseffectis the value E ]ti' (remember
i€[l,y

that not all the components aredj. Consequently, lef, - - - ¥, be a pseudo-run induced by the
simple loop {o(J).t; ...t)). Then,

1. Yo(J) = ¥,(J) (by (SL2)).

2. Forj < j e€[l,y]suchthat{, j) # (1, v), we havey;(J) # ¥ (J) (by (SL3)).

It is easy to show that the length of a simple loop with respedtis strictly belowB¢ with
BY < B% < B, |ts efect is therefore in{scale¢")B?, scale¢")B|". LetZ,...,Z, be the

. . . top- t; .
effects of simple loops occurring p_1 2% ... B »yp as factors. Because thiects of simple
loops are bounded (see above), we have

a < (1+2xscaleg)BY)" < (1+ 2 x scale¢))"B".

~ From the pseudo-rurpp_1 i Xop, we define a finite sequence of pairs made of a pseudo-run
Yo Yk and atuples € N* such that

° \70 = 6and98---)7|%) = )?QD,]_---)?ZD.

o Y51 -¥iet andvi,, are computed fromy- - -y, andv; by removing a simple loop from
Yo -+ Yk, with effectZ; and by computingi,1 from v by only incrementing/i (), i.e. a
simple loop is removed but we remember iffeet by incrementing; (5).

e The length of the final pseudo-rlgt'gi . -y',jN (on which no simple loop can be removed) is

less than (& B%)?2. Explanations about this bound are provided below.
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o {(%p-1(J),..., Xen(I)} = {Fh(J). . ... Y (I} for everyi € [0, N]. In words, the set of tuples
restricted to components ihremains even all over this process of removing simple loops.
This will be useful to bring back simple loops.

Consequently, whenevei(j) > 0, there is a simple loops(r) with effect someZ; such that
Se{Yp(D):-- - Vi, (D). ‘ , o A

Let us explain how to compu%+1 . -y‘,{i}l andvi,, fromyy -+ i, Vi. Suppose thaf, - - - i
is induced by the path; =t; --- tk,. If 7 has no simple loop, --- tj as a factor such that

%0-1(3), - - -, %o (D} = {%(3): - - ¥j 1 (D). ¥ (D) - i, (DD,

thenN =i (we stop the process). Otherwise, IE'JL((J),t,- --- t;) be a simple loop with respect
to J such that

{%op-1(J). - .. %en ()} = (¥o(I). - ... ¥,.1(D). ¥, (9) . ... ¥ ().

Thenyi+t. ..yl is the pseudo-rurt{ --- ti_1,ti,1 --- tx, V) andvi,s is equal tov; except that
0 Kis1 ] ] i 0}

Vir1(8) = Yi(B) + L with tj, ..., t; having the &ectZ;. SinceXop-1 - Xop IS finite, it is clear that
this process eventually stops and the above-mentionedtmorgiare clearly satisfied (except for
the bound on the length @) - -y ).

Before going any further, let us briefly explain why evenlyitie length ofy'a‘ . ~)7‘|2‘N is less
than (1+ BY)% Suppose that the pseudo-ijjp - -y}, has at least (& B)? pseudo-run config-
urations. First, observe that each blockBSf+ 1 consecutive pseudo-configurations contains
at least one simple loop. Moreover, we wish to preserve th¢gsg 1(J), ..., Xop(J)}, SO we
cannot remove any simple loop. The $&8ip_1(J), . .., %p(J)} has cardinal at mo®“. Conse-
quently, there is a block @% + 1 successive pseudo-configurations so that all the réstricto
the components id have already appeared earlier.

Let 9’8‘ . -VQN be the final sequence induced by the piath-- tk, with final loop vector
\7N e N2,

Since the pseudo-rynsatisfiesA[P, |, INCR, I, B], we have the following properties.

1. Foreveryj € [1,n], we have (i(e[%a]VN(i)Z) + ie[EKN]ti)(j) € I'p(j). Depending on the value
of Zp(j), this can encoded by at most 2 inequality constraints ofdima iE[%a]ai\m(i)(j) >
2. For everyj € J, ((iE[%a]VN(i)Z) + iE[EJKN]'[i)(j) > 0.

There is a bit of redundancy here for the componentksimce removing simple loops does not
change the projection ovérof the first and last pseudo-configurations. Hence, we orgylte
bother about the componentsin,(fil\ J). The vector is a solution to the following inequality
system:

C A €z W0D+ % 6)0) e Io()

je([1.n\J)

The number of inequalities can be bounded bythe number of variables is bounded by+{1
2 x scale(i’))“B”2 and all the absolute values of the components are boundetl ByB[")? x
scale{”) + scalef). Itis time to apply [8] in order to obtain a small solution:
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Theorem 4.3. [8] Let A € [-M, M]Y" andb € [-M, M]Y, whereU,V,M € N. If there is
X € NV such thatAxX > b, then there ig/ € [0, (maxV, M})Y]V such thatAy > b, whereC is
some constant.

By application of Theorem 4.3 on the above system with theesbelow

= (1+ 2 x scale("))"B".
2. M = (1+ B"? x scale{") + scalef).
3. U=2n

It has a solutiorX € NV such that each value is indeed within the interval
[0, (1 + 2 x scalef") x scalef))"B2")°2]

Indeed, we have max(M) < ((1 + 2 x scale(i’)scaleP))”BZ”Z). Now, it is time to re-inject in
Y5 - - Yk, the simple loops encoded by

Fromyy - -y andvy, we define a finite sequence of pseudo-rifps - 0 = (t; -t , th)
such that

T R A ARER

e The length of the sequence is exactly 1 (« is the number of distinctféects).

o u(i)+1 gt = (t:{+l"'tlj_-;—+];’u(j)+l) is computed fromt{--~t{i,d(j)) as follows. Let 6,1, 7j+1)

LJ+1

be a simple loop withféectZ;,;. There existg such thadé(\]) = §j.1. Then,

tj+l . t]+l deftj

X(j+1) 4] j
) ) (j+ )'tﬁ+1"'tLi

: (7Tj+1
anddy® o7t = @t ).
Itis easy to check thabp_1 = Uf. By replacingfp-1 B %p by ug -~ -y foreachD € [I, K], we
obtain a pseudo-run satlsfynﬁ[P, [,INCR, I, B] whose Iength is bounded by the value below:
(K +1)B"+ K[(B" + 1)?+
number of &ects maximal number of copies peffect

(1+2x scalef)"B” x [(1 + 2 x scalef) x scale@))"B2"]°2" x

bound on the length of simple loop

(B"+1) ]

This value is bounded by
(K + 1) x ¢’ x scalef")PWscale)P) x BP:(

whereC’ is a constant angi(-), p2(-) and ps(-) are polynomials. Since,B > 2, this value
is bounded by K + 1)(scale{") x scalef) x B)P(M for some polynomialp(-). Suppose that
p(n) = Oa. n' (without any loss of generallty, we can assume thagflseare non-negative and
ar # O). Let f* > 0 be such thaEi:Oa < 2", Sincen > 2, (scale{") x scalef) x B)PM™ is
bounded by (scal&() x scalef’) x B)”m/. Hence, the length of the final pseudo-run satisfying
A[P,1,INCR, I, B] and starting aK, is bounded byK + 1) x (scalef) x scalef’) x B)"™ for
some constarg;. O
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For everyi € [0, n], let us define the valug(i) that serves to bound the length of pseudo-runs
satisfyingA, not only the approximation:

(2u(maxnegl) x g(i — 1)))ncl +9(i—-1) ifi > 0.

Lemma 4.4 below is an extension of [45, Lemmas 4.6 & 4.7], t&®[&, Lemma 7].

o) & {(2;1)'*1 with 1 = (1 + K) x scalef") x scale@) ifi =0,

Lemma4.4. Letl,INCRC [1,n],| € [1, K]andp be a pseudo-run satisfyingi[#, |, INCR, I, +co].
Then, there exists a pseudo-rnstarting from the same pseudo-configuration, satisfyirg th
propertyA[P, |, INCR, I, +] and of length at mogg(card()).

Proof. Letp = Xoi-2 -3 Ro1 5 o1 -+ =3 Rox_1 55 % be a pseudo-run satisfying the property
AP, I,INCR, I, +o0]. We suppose that is induced by the pathy --- tx with p = Up - - - Uk and
f:[21 - 2,2K] — [0,K] is the map such tha§ = Usg. Sof(2l —2) = 0 andf(2K) = k.

The proof is by induction om = card(). If i = 0, then we apply Lemma 4.2 witB = 2
and we obtain a pseudo-run satisfying the approximatiopgng A[P, |, INCR, |, +0] leading
to the boundg x 2)™.

Now suppose cartl( =i + 1 andJ = (I \ INCR). We poseB = maxneg{") x g(i). We recall
that7 is the current VAS wittn > 2. We perform a case analysis depending whegeanvalue
from a component id is strictly greater thaB — 1 (if any).

Case 1:Every configuratioiZin p satisfies#(J) € [0, B - 1], i.e.,p satisfiesA[P, |, INCR, I, B].
Obviously, the casd = 0 is captured here. By Lemma 4.2, there is a pseudgfwtarting at
%o1_o satisfyingA[#, |, INCR, I, B] of length at most (4 K) x (scalef") x scalef) x B)"™, which
is bounded byu x (maxneg{") x g(i)))”cl.

Case 2:A value for some component ihis strictly greater thaB— 1 for the first time within the
pathr, for someD € [I - 1, K — 1]. Leta be the minimal position such that.1(J) ¢ [0, B— 1]
anda + 1 € [f(2D) + 1, f(2D + 1)], sayU,+1(io) = B for someip € J. The pseudo-rup can be
decomposed as follows wittf, = nlt,.173 (INCR' is defined few lines below):

satisfiesA[P,D+LINCR’,(I\{io}),+oo]

Ty ”1D tas1 ”ZD K
Xoj_p — Xoj_1 -+ Xop = Xop = Uy — Ugs1 = Xops1 -+ Xok-1 = Xok

P1 P2 P3

We construct a pseudo-run of the foprp’,p7; such that each’j is obtained by shortening and
the length ofo} [resp.p}, p3] is bounded by x B)™ + 1 [resp.B* + 1, g(i) + 1].

e If D >1-1, then we introduc®* = (77,...,7p) with for everyl” € [I, D] and for every
jelLn],

— if %1 (J) = %-1(j) > 0 thenZ}, (j) = Z1(j) N [1, +oo],
— otherwiseZ],(j) = Zi-(j).

The construction oP* allows us to preserve the set of elementd,iD] whose values can

be arbitrarily increased. Moreover, above, by taking thersection with [1+oo[, in p],

we preserve the set of components in which proper pumpingssiple. By Lemma 4.2,

there is a pseudo-rysi = (t] -+ -ty , Xa-2) satisfyingA[#*, 1,INCR, I, B] such tha; <
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(u x B)™. Indeed, scal§f*) < scalef) and the length of°* is obviously bounded by
K. Sayp] = Va2 5 Va1 — Yoo — Yapo1 — Yop. Suppose thap] = U(l)---ﬁél

andf; : [2] — 2,2D] — [0,B1] is the map such that, = U}() with f;(2I - 2) = 0 and

f1(2D) = B1. If D =1 =1, thenp; = (t1 - - t,, X21_2) With an analogous decomposition in
terms ofyi’s.
So, wheneveD > | — 1, we have(j : Vor_1()) < Yar(j), I’ € [I,D]} = {j : Xr-1()) <

X1 (j), I’ € [l, D]} — partly by construction ofP*. We write Z to denote the sefj :
Yar-1(J) < Yar(j), I € [I. D]}.

e Now, by the pigeonhole principle, there is a pseudo-run
Py = (15, Yo0)

such thatll, = yop + t2 + --- + 17, 0,(J) = Uu(J) andB, < B < B*L. We pose
a = lj + ty41.

a+l —

e Finally, observe thatt{,,---t, O ,) satisfiesA[P,D + 1, INCR’, (I \ {io}), +oo] with
INCR’ £ INCRUZ. By the induction hypothesis, there is a pseudogrua (t3 t3 a,,)

satisfyingA[P, D + 1, INCR’, (I \ {io}), +o0] and such thaBs < g(i). Becausal’ +l(|o) >
maxnegd{") x d(i), o5 also satisfiesA[, D + 1, INCR, |, +c0].

Gluing the previous transitions, the pseudo-run
(- tht] -ttty - 1, X1 2)

satisfies the approximation propedf®, |, INCR, |, +oo] and its length is bounded byxB)"™ +
B+ g(i).

Case 3:A value for some component ihis strictly greater thamB — 1 for the first time within
the pathrp for someD € [I, K].

The pseudo-rup can be written as follows withp = ni73 andnd # ¢

”I— 1 2

)?ZI 2 )?ZI 1 )?ZD—l _D> UQ‘Fl _D> XZD T XZK—l n_K’ )?ZK
By Lemma 4.1, the pseudo-ryn = (z|_ - ~nl’371(nD)27r’D -7k, Xo1_2) also satisfies the ap-

”D 17D

proximation propertﬂl[?, [,INCR, I, +o0] and can be written ag;_» S Xoj_1 -+ Xop_p ——>
Xop = Zop-1 i Zop D—”> ce 2okt S Zk. We are therefore back to Case 2. O

We are now in position to bound the length of pseudo-runs Wesatisfying the generalized
unboundedness prope®y

Lemma 4.5. If p is a pseudo-run weakly satisfyiifgy then there is @’ starting from the same
pseudo-configuration, weakly satisfyifjand of length at mosj(x 2 x maxneg"))"™""" for
someC > 1 withu = (1 + K) x scale{") x scalef).

Proof. Since7 has a pseudo-runweakly satisfyiRgff 7~ has a pseudo-run satisfyic{ P, 1, 0, [1, n], +o0],
by Lemma 4.4, it is sfiicient to boundy(n). By Lemma 4.4, for some constaty > C; (for in-
stanceC, = C1 + 1), we have

g(i) < (2u)" ifi =0,
= | @u(maxneg) x (i - L))" if i > 0.
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By induction oni, we can show thay(i) < (v'*1)""”? with v = 2u x maxneg("). Fori = 0 this
is obvious. Otherwise,

g(i + 1) < (2u x maxneg?) x g(i))"" < (I <
< ((vi+2)n(2”1)cz)nc2 < (Vi+2)n(2i+2)c2 < (Vi+2)n(2i+3)c2

Hence,g(n) < (V1" As soon as1 > 2, there is a constart such thatg(n) < (2u x
maxneg?))"""". O

Let us conclude the section by the main result of the paper.

Theorem 4.6. (I) The generalized unboundedness problem for VASSisSkace-complete. (I1)
For eachn > 1, the generalized unboundedness problem restricted t&\WR8imension at most
nis in PSack.

Proof. (I, upper bound) Let¥, (g, X)) be an initialized VASS of dimensiomand® be a gen-
eralized unboundedness property. By Lemma 3.2, one canwenip logarithmic space an
initialized VAS ((7, X), #’) such that{, (g, X)) satisfiesP iff (7, X) satisfiesP’, 7 has dimen-
sionn + 3, P and®’ have the same length and scdl@(= max((cardQ) + 1)?, scale(V)). The
propositions below are equivalent:

1. 7 has a run satisfying”.

2. 7 has a pseudo-run weakly satisfyiftg (see Lemma 3.7).

3. 7 has a pseudo-run satisfyiof[#’, 1, 0, [1, n + 3], +o0] (by definition of A).
4. 7 has a pseudo-run weakly satisfyi®gwhose length is bounded by

(1 + K) x 2 x scalef) x scalef) x maxneg"))™3*"*

(by Lemma 4.5).

Then, we guess a witness pseudo-run weakly satistfinghose length is bounded by
((1+ K) x 2 x scalef") x scalef) x maxneg{"))™3*" >

This can be done in exponential space in the combined siz& giy(X)) and®. By Savitch’s
Theorem [50], we get the xeSpace upper bound. It is indeed ficient to adapt the nonde-
terministic algorithm designed at the beginning of Secta® in order to consider the above-
mentionned length. Actually, one needs to consider 1 intermediate pseudo-configurations
and a current set of components among[% 3] in order to record which components can be
strictly increased in preceeding loops.

(1) Easy consequence of the proof of (I, upper bound).

(I, lower bound) A first temptation is to statexiSpace-hardness from &Space-hardness of

the unboundedness problem for VAS. However, we are looking flogarithmic-space many-
one reduction and an instance of unboundedness can bellyatedaiced ton instances of the

generalized unboundedness problem with property of lefigahd scale 1. We shall directly
adapt [37, 18] to obtain the lower bound.
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By [39] (see also [53]), a deterministic Turing machifé€of sizen running in spacé 2"
can be simulated by a deterministic counter autométcmﬁ sizeO(n) with 4 counters and that

is 22" -bounded (counter values are bounded By 2vhen the initial configuration has zero
counter values). Moreovem can reach a halting state on the empty tdp@ can reach a halting
control state with a run starting with zero counter valuesieferministic counter automaton is
understood as a simple machine with a finite set of contr@staquipped with counters and the
only instructions on counters are increments, decremetzero-tests. In [37, 18], it is shown
that given a deterministic counter automatdof sizen with a halting control state, one can build
anet program(equivalent to a Petri net) of sizg(n?) simulatingC. In particular, its dimension
is also inO(n?). This net program can be easily shown equivalent to a VAS& dimension’

(in O(n?)), with ' control states (also i@(n?)) and with two distinguished control states g
satisfying the following conditions:

e (C halts if there is a run fromdp, 6) reaching a configuration with control staje

e Whenever the simulation @ in a run inV is not faithful toC, then the run eventually
terminates.

e C does not haltff there is an infinite run fromog, 0) that never reaches a configuration
with control stateg,.

Consequently, whe@ halts, all the runs fromcp, 6) are finite and there is a finite number
of runs from ¢, 0). We define the VASS)” of dimensionn’ + 1 that behaves a8’ except
that we add a self-loop transition tp whose &ect is to add one to the(+ 1)st component.
Then, we havee halts if there is a run im” of the form @o,0) — (g, %) — (g, X) such that
X([1,n]) = X([1,n']) and X(n”" + 1) < X (n" + 1). This can be easily turned into an instance
of the generalized unboundedness problem. TheSkace-hardness proof is therefore a simple
adaptation of the £ Space-hardness result from [37, 18]. Reproducing the argumeatgdwnot
add much apart from repeating arguments from [18]. Moreildedhout this standard reduction
can be also found in the slides [14].

O

5. Other Applications

In this section, we draw conclusions from Theorem 4.6. Fast by-product of Theorem 4.6
and using the reductions from Section 3.3, we can easilyimega ExpSpace upper bound men-
tioned below.

Corollary 5.1. The regularity detection problem and the strong promptiketection problem
are in &pSpace. The simultaneous unboundedness problemxisSeace-complete. For each
fixedn > 1, their restriction to VASS of dimension at maséare in P$ack.

Proof. The EpSpace upper bound for regularity detection problem and strongnmimess de-

tection problem is a consequence of remarks from SectianlBdzed, for both problems, one

needs to guess a generalized unbounded progeofiiength at mosh (dimension of the input

VASS) and of scale 1 and then check whether there is a rurfysagjsP. In case of positive

answer to this question, we answer negatively to the origiiséance of the original problem.
Let us establish the lower bound for the simultaneous untéedmness problem. L&Y be the

VASS from the lower bound proof for Theorem 4.6(1). We defimeVASSV’ of dimensiom’+1
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that behaves a¥ except that we add a self-loop transitiorggowhose €ect is to add one to the
(n"+1)th component. Then, we hagéalts if (V’, (qo, 6)) is not (" +1)-unbounded. Simultane-
ous unboundedness problem is thereforexe@eace-hard but since cofrSpace= ExpSpack, the
simultaneous unboundedness problemxs3eace-hard. Now, let us establish the upper bound
for the simultaneous unboundedness problem. 4&{(d, X)) be an initialized VASS of dimen-

sionn andX be a subset of []. We first guess a disjointness sequence X; - - - - - Xk such
thatX € |J X andXn Xk # 0 (this requires only polynomial space). Let us now consider t
le[LK]

generalized unboundedness propéttyas defined in Section 3.3 for dealing with simultaneous
unboundedness. Checking wheth@f, (g, X)) satisfiesP,. can be reduced in logspace to an in-
stance of the generalized unboundedness problem, thaecsoiled in exponential space in the
size of (V, (g, X)): indeed the length dP, is bounded by and its scale is equal to one. O

The complexity upper bound for regularity detection probleas been left open in [3]. De-
cidability of the strong promptness detection problem talgshed in [51]. The kEpSeace upper
bound has been already stated in [54, 3]. We cannot rely onbjédause of the flaw in [54,
Lemma 7.7]. Condition 4. in [3, page 13] does not charaatesirong promptness (but only
promptness) as shown in Section 3.3. Finally, increasirnly flmmulae from [3] cannot char-
acterize strong promptness detection unlike generalinbdwndedness properties. Therefore,
the upper bound for strong promptness detection is also Belew, we state how the previous
results allow us to characterize the computational conitylex reversal-boundedness detection
problem for VASS and its variant with weak reversal-bountess.

Theorem 5.2.
() Reversal-boundedness detection problem for VASXisSkace-complete.
(I) For each fixedh > 1, its restriction to VASS of dimension at masis in PSack.

(1 (1) and (I1) hold true for weak reversal-boundedness.

Proof. () Let us start by showing £ Space-hardness. LeV be the VASS from the lower bound
proof for Theorem 4.6(1) obtained from [37, 18]. We define A& SV’ of dimensiom’ + 1 that

behaves ag’ except that we add two transitioqg;eiﬁ Oh andgp A On Whereg denotes the

ith unit vector andy, is the halting control state 6. Then, we have halts f (V", (0o, 0)) is

not reversal-bounded with respectte- 1. Reversal-boundedness detection problem is therefore
CoExpSpace-hard but since cokrSpace= ExpSpack, the problem is kpSpace-hard.

Now, let us show EkpSpace upper bound. LetV = (Q,n,é) be a VASS andd, X) be a
configuration. By Lemma 2.5¢), (g, X)) is not reversal-bounded with respect tidf (7, X') =
((Vrbs (Grb» Xp)))HP is (n + i)-unbounded. The operato)'{” refers to the reduction from VASS
to VAS in [26] (see also the proof of Lemma 2.5). sca@lg(s bounded by max((car@) x
2" + 1), scale(V)) and ((Vip, (Grb. Xb)))'P can be built in polynomial space. Dimension7f
is 2n + 3. First, we gues® of length at most & + 3 for characterizingr{ + i)-unboundedness
(this requires only polynomial space): its scale is equalrte. A witness pseudo-run weakly
satisfying® (in 7°) does not need to be longer than

((1+ 2n + 3) x 2 x max((cardQ) x 2" + 1), scale(V))?)@3)*@

which is doubly exponential in the size 6f and @, X) (our initial instance). This comes from

Lemma 4.5. A nondeterministic algorithm guessing such ag@eun requires only exponential
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space.

(I Whennis fixed, the above expression is only exponential in theaizE and @, X).

(1IN This partis similar to (1) and (I1). By combining Lemns&.6 and 3.2, we build in polynomial
space an initialized VAST(, X) such that ¥, (g, X)) is not weakly reversal-boundeft {7, X)
satisfiegP/. for some disjointness sequenee= X --- Xk withn+1i € Xg,i € (XgU--- U Xk_1)
and such that

e P/ is defined fronP, as done in the proof of Lemma 3.2 (length boundedlaynd scale
equal to 1),

e the dimension o is 2n + 3,
e scalef”) < max((cardQ) x 2" + 1), scale(V)).

Again, a witness pseudo-run weakly satisfyig (in (7, X)) does not need to be longer than
((1+ 2n + 3) x 2 x max((cardQ) x 2" + 1), scale(V))?)@m3)*

which is doubly exponential in the size @f and @, X) (our initial instance). A nondeterministic
algorithm guessing such a pseudo-run requires only expiahepace.

Let us establish thexeSpace-hardness. Le®’ be the VASS from the lower bound proof for
Theorem 4.6(1). We define the VASB' of dimensiom’ +1 that behaves &¥ except that we add

" 26y, 6y . .

two transitiongy, 2y a, i 0h Then,C halts it (V7, (qo, 5)) is not weakly reversal-bounded
with respect tav + 1. Weak reversal-boundedness detection problem is thereédxrSeace-
hard, whence krSpace-hard. O

By Theorem 5.2(l), once an initialized VASS is shown to beereal-bounded, one can com-
pute dfectively semilinear sets corresponding to reachabilitg,ser instance one by control
state, see recent developments in [32]. The size of the geptation of such sets is at least
polynomial in the maximal number of reversals. However, wew that an initialized VASS
can be bounded but still the cardinality of its reachabitief may be nonprimitive recursive,
see e.g. [52]. A similar phenomenon occurs with reversaiRdedness, as briefly explained be-
low. Not only we wonder what is the computational complexifythe problem of determining
whether a VASS is reversal-bounded but also in case of revbmindedness, it is important
to evaluate the size of the maximal reversah terms of the size of the VASS, see e.g. the
recent work [32] following [27] that uses in an essential viag valuer. In case of reversal-
boundedness, the maximal reversal can be nonprimitiveseeuin the size of the initialized
VASS in the worst case, which, we admit, is not an idyllic attan for analyzing reversal-
bounded VASS. Indeed, given> 0, one can compute in polynomial time man initialized
VASS (Vh, (0o, X)) that generates a finite reachability set of card@@(n)) for some nonprim-
itive recursive map\(-) similar to Ackermann function, see e.qg., the construciigi30]. Let us
precise what this means by recalling a variant of Ackermamation:

o Ag(m) =2m+1, An1(0) = 1.
* Ania(Mm+ 1) = An(Ansa(M).
o A(N) = Ay(2).
The functionA(n) majorizes the primitive recursive functions.
Moreover, (Vy, (Qo, Xn)) can be shown to admit only finite runs, see details in [30k then

easy to compute a variant VASB;, by adding a component and such that each transitioW,of
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is replaced by itself followed by incrementating the new poment and then decrementing it
(creating a reversal). Stifl’], has no infinite computationsi(J,, (0o, X)) is reversal-bounded{
restricted to the components®f, is equal toX,) and its maximal reversal is @(A(n)).

6. Concluding Remarks

We have proved thexeSpace upper bound for the generalized unboundedness probletm (bot
the initialized VASS and the generalized unboundednesgsepty are part of the inputs). For
example, this allows us to show, for the first time (apart ftbmpreliminary version [13]), that
the following problems on VASS can be solved in exponenpate:

¢ the place boundedness problem,

e the reversal-boundedness detection problem,
¢ the regularity detection problem,

¢ the strong promptness detection problem.

We have shown that these problems can be solved in polynepaale when the dimension is
fixed. Even though our proof technique is clearly tailoreahal the lines of [45], we had to
provide a series of adaptations in order to get the finalSesce upper bound (and the Pfse
upper bound for fixed dimension). In particular, we advodhge use of witness pseudo-run
characterizations (instead of using runs) when there drisision procedures using coverability
graphs.

Let us conclude by possible continuations. First, okrSeace proof can be obviously ex-
tended for example by admitting covering constraints, aee intervals in properties by more
complex sets of integers or to combine our proof techniquk thie one from [3], see also [5].
The robustness of our proof technique still deserves to termméned. A challenging question is
to determine the complexity of checking when a reachalsktyobtained by an initialized VASS
is semilinear. Indeed, it was proved independently by Haildicand Lambert that the class of
semilinear VASS is recursive: checking whether a given VASS a semilinear reachability set
is decidable [see the unpublished works by 25, 35]. Moredherreachability set isfiectively
computable when it is semilinear. Observe that reguldsiyndedness or reversal-boundedness
imply semilinearity.

Another direction consists in considering a richer clasmoflels. It is shown in [21] that
checking whether an initialized VASS with one zero-testegersal-bounded is decidable, but
with a nonprimitive recursive worst-case complexity, tiestence of an kpSeace upper bound
being open; see also recent results on VASS with one zet@Gteq.

Besides, various subclasses of VASS exist for which detipioblems are of lower com-
plexity. For instance, in [43], the boundedness problemhma to be in P&t for a class
of VASS with so-called boundelenefit depthlt is unclear for which subclasses of VASS, the
generalized unboundedness problem can be solved in polghspace too.

Acknowledgmentd:would like to thank Thomas Wahl (U. of Oxford) and anonymoeferees
for their suggestions and remarks about a preliminary oarsf this work.
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