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SCHRÖDINGER EQUATION ON NON-COMPACT SYMMETRIC SPACES

JEAN-PHILIPPE ANKER, STEFANO MEDA, VITTORIA PIERFELICE,
MARIA VALLARINO AND HONG-WEI ZHANG

Abstract. We establish sharp-in-time kernel and dispersive estimates for the Schrödinger
equation on non-compact Riemannian symmetric spaces of any rank. Due to the particular
geometry at infinity and the Kunze-Stein phenomenon, these properties are more pronounced
in large time and enable us to prove the global-in-time Strichartz inequality for a larger fam-
ily of admissible couples than in the Euclidean case. Consequently, we obtain the global
well-posedness for the corresponding semilinear equation with lower regularity data and some
scattering properties for small powers which are known to fail in the Euclidean setting. The
crucial kernel estimates are achieved by combining the stationary phase method based on a
subtle barycentric decomposition, a subordination formula of the Schrödinger group to the
wave propagator and an improved Hadamard parametrix.
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1. Introduction

1.1. Strichartz inequality. The Strichartz inequality, which has proved to be an efficient tool
in the study of the nonlinear Schrödinger equation, has been extensively investigated over the
past five decades. Let us start by recalling some well-known results in the Euclidean setting.
Consider the free Schrödinger equation{

i∂tu(t, x) + ∆xu(t, x) = 0, t ∈ R, x ∈ Rd,

u(0, x) = f(x),
(1.1)
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whose solution is given by the convolution of the initial data with the kernel of the Schrödinger
propagator:

u(t, . ) = eit∆ f = f ∗
{

(4πit)−
d
2 ei

| . |2
4t
}
. (1.2)

The Strichartz inequality refers to an a priori estimate of the solution to (1.1): in dimension
d ≥ 2, if a couple (p, q) is admissible, in the sense that

2

p
+
d

q
=

d

2
with p, q ≥ 2 and (p, q, d) 6= (2,∞, 2), (1.3)

then there exists a constant C > 0 such that global solutions to (1.1) satisfy

‖u‖Lp(R;Lq(Rd)) ≤ C ‖f‖L2(Rd). (1.4)

Such an inequality means that, endowed with suitable space-time Lebesgue norms, the solution
to the Schrödinger equation can be estimated in terms of the L2 norm of the initial data. This
type of estimate appeared in the pioneering works [Tom75; Seg76; Str77] around 1976 and was
fully developed after Keel-Tao completed the proof for the endpoint in 1998, see [KeTa98]. Over
these twenty years, there have been many remarkable contributions to this problem, and we
refer to [GiVe95; Caz03; Tao06] for more details.

A related fundamental problem is to figure out how the underlying geometry affects the
Strichartz inequality. This helps us to understand the behavior of solutions to the partial
differential equations in the non-Euclidean background. Let M be a Riemannian manifold of
dimension d ≥ 2 and ∆ be the Laplace-Beltrami operator on M. The question is, for which
(p, q) and s ≥ 0, the following inequality holds:

‖eit∆f‖Lp(I;Lq(M)) ≤ C ‖f‖Hs(M). (1.5)

We say that (1.5) holds global-in-time if I = R. Here Hs denotes the standard L2 Sobolev
spaces. If (1.5) is available only for some s > 0, we say that the Strichartz inequality holds
with loss of s derivatives. The inequality (1.4) shows that, when M = Rd, the global-in-time
Strichartz inequality holds without loss for all (p, q) satisfying the admissible condition (1.3).
However, this is not always the case on manifolds.

Apart from some non-trapping manifolds (see, for instance, [StTa02; HTW05; BoTz07]), the
Strichartz inequality is more or less understood on compact manifolds. In general, (1.5) cannot
hold global-in-time in the compact case. Bourgain proved that, on the flat torusM = Td, if a
couple (p, q) satisfies the admissible condition (1.3), then (1.5) holds for I = T and s > d

4 −
1
2 ,

see [Bou93a; Bou93b]. Later, Burq, Gérard and Tzvetkov [BGT04] showed that, on arbitrary
compact Riemannian manifolds without boundary, (1.5) holds with loss of s = 1/p derivatives
for any finite time interval I and (p, q) satisfying (1.3). This result is sharp in some particular
cases, such as on a three-dimensional sphere, where a 1/2 loss must occur in (1.5).

In this paper we consider non-compact Riemannian symmetric spaces of any rank, which
form an important class of non-positively curved Riemannian manifolds. Due to their expo-
nential volume growth at infinity and the validity of the Kunze-Stein phenomenon, one expects
stronger dispersive phenomena than in the Euclidean setting, hence better Strichartz inequal-
ity, well-posedness and scattering results. This was indeed brought to light in the study of the
Schrödinger equation on real hyperbolic spaces, which are the simplest symmetric spaces of
non-compact type and rank one, see for instance [Pie06; Ban07; BCS08; AnPi09; IoSt09]. See
also [APV11] for similar results on Damek-Ricci spaces (a class of harmonic manifolds which
includes all non-compact symmetric spaces of rank one). Extending these rank one results to
higher rank is a natural but challenging problem since the Schrödinger kernel is sensitive to
the geometry of the underlying manifolds, and the spherical Fourier analysis is well-known to
be much more intricate on the higher rank symmetric spaces. In the next subsections, we will
explain in detail the difficulties involved and share some new ideas to overcome them. Roughly
saying, we establish in the present paper a stronger global-in-time Strichartz inequality, in the
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sense that the related family of admissible pairs is significantly larger than the best possible in
the Euclidean setting. This is achieved by a subtle analysis of the Schrödinger kernel. Once
the Schrödinger equation is understood on globally symmetric spaces, studying it on locally
symmetric spaces is a further natural problem. See [BGH10; FMM18; Wan19] for some first
results in rank one.

1.2. Statements of main results. We adopt the standard TT ∗ duality argument to establish
the Strichartz inequality, see [Kat87; GiVe95]. This argument relies on the dispersive estimates
of the Schrödinger propagator, which can be easily obtained in Rd since the corresponding
convolution kernel is explicitly defined. However, such a fundamental piece of information is
lacking on a general manifold. Our primary task is to find sharp pointwise estimates of the
Schrödinger kernel.

Consider a non-compact symmetric space X = G/K of rank `, where G and K are suitable
Lie groups. Let d ≥ 2 and D ≥ 3 be its manifold dimension and dimension at infinity (see
Sect. 2 for more details about these notations). We denote by ∆ the Laplace-Beltrami operator
on X and consider the free Schrödinger equation{

i∂tu(t, x) + ∆xu(t, x) = 0, t ∈ R, x ∈ X,

u(0, x) = f(x),
(1.6)

whose solution is given by

u(t, x) = eit∆f(x) = f ∗ st(x) =

∫
X
dy f(y) st(y

−1x).

Here st is the bi-K-invariant convolution kernel of the Schrödinger propagator eit∆. As men-
tioned above, except for a few particular cases, for instance when G is complex (see [Gan68]),
the kernel st has no explicit expression as in (1.2). Moreover, the expression obtained by using
the inverse Abel transform on real hyperbolic spaces (see [AnPi09, p.1859]) is also unavailable in
higher rank. Our main result is the the following sharp-in-time kernel estimates on non-compact
symmetric spaces of any rank.

Theorem 1.1 (Pointwise kernel estimates). There exist C>0 and N>0 such that the following
estimates hold, for all t ∈ R∗ and x ∈ X :

|st(x)| ≤ C (1 + |x+|)N e−〈ρ, x+〉

|t|
− d

2 if 0 < |t| < 1,

|t|−
D
2 if |t| ≥ 1,

(1.7)

where x+ denotes the radial component of x in the Cartan decomposition and ρ is the half sum
of all positive roots.

Remark 1.2. Notice that 〈ρ, x+〉 > 0 as ρ and x+ are two `-dimensional vectors in the so-
called positive Weyl chamber, see Sect. 2 for more details. Hence the large polynomial factor
(1 + |x+|)N is harmless for proving the dispersive estimates because of the exponential factor
e−〈ρ,x

+〉.

In contrast to the Euclidean setting, the kernel st here (expressed as (3.1) according to the
inverse spherical Fourier transform) behaves differently for small and large times and satisfies
no rescaling. Let us emphasize that the existing methods in rank one fail to produce desired
estimates since the Plancherel density |c(λ)|−2 occurring in (3.1) is not always a differential
symbol in general, hence the standard stationary phase method fails. This is in fact a well-known
difficulty in the study of higher rank spherical harmonic analysis, see for instance [BOS95].
As for the recent works about the wave equation on symmetric spaces [AnZh20; Zha21], the
Schrödinger propagator does not enjoy the finite propagation speed as the wave propagator, and
a more involved analysis is required. However, by borrowing some ideas from previous works
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and by combining them cleverly, we can obtain Theorem 1.1 on general symmetric spaces of
non-compact type, see Sect. 3.

Once we establish these key pointwise kernel estimates, the dispersive properties of eit∆ follow
from the Kunze-Stein phenomenon (instead of Young’s convolution inequality) and interpola-
tion. Then we deduce the Strichartz inequality by using the TT ∗ argument. The proofs are not
so different from the ones on real hyperbolic spaces, but we still include the details in Sect. 4
for the reader’s convenience.

Theorem 1.3 (Dispersive properties). Let 2 ≤ q, q̃ < +∞. Then there exists a constant C > 0
such that following estimates hold for all t ∈ R∗ :

‖eit∆‖Lq̃′ (X)→Lq(X) ≤ C

|t|
−max( 1

2
− 1
q
, 1
2
− 1
q̃

) d if 0 < |t| < 1,

|t|−
D
2 if |t| ≥ 1,

(1.8)

where q̃ and q̃′ are dual indices in the sense that 1
q̃ + 1

q̃′ = 1.

Remark 1.4. Theorem 1.3 covers previously known results in rank 1, where the dimension at
infinity is D = 3. Notice that the large time decay in (1.8) becomes faster in higher rank, see
(2.1). Notice also that the estimate (1.8) is quite different from the one in the Euclidean setting
where

‖eit∆Rd‖Lq′ (Rd)→Lq(Rd) ≤ C |t|−( 1
2
− 1
q

)d ∀ t ∈ R∗.

In particular, the large time decay in (1.8) depends no more on the indices q or q̃. Such a
particular phenomenon on non-compact symmetric spaces yields a stronger Strichartz inequality.

Theorem 1.5 (Strichartz inequality). Let (p, q) and (p̃, q̃) be two admissible pairs corresponding
to the triangle {(1

p
,
1

q

)
∈
(

0,
1

2

]
×
(

0,
1

2

) ∣∣∣ 2

p
+
d

q
≥ d

2

} ⋃ {(
0,

1

2

)}
. (1.9)

Then there exists a constant C > 0 such that, for any bounded or unbounded I ⊆ R, the solution
to the inhomogeneous Schrödinger equation

i∂tu(t, x) + ∆xu(t, x) = F (t, x), u(0, x) = f(x), (1.10)

satisfies

‖u‖Lp(I;Lq(X)) ≤ C
(
‖f‖L2(X) + ‖F‖Lp̃′ (I;Lq̃′ (X))

)
. (1.11)

1
p

1
q

1
2

1
2
− 1

d

0 1
2

1
p
= d

2

(
1
2
− 1

q

)
Figure 1. Admissibility in dimension d ≥ 3.
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Remark 1.6. The inequality (1.11) itself is analogous to the one in the Euclidean setting, but
the admissible set (1.9) is much larger than (1.3). The latter one corresponds only to the lower
edge of the admissible triangle (1.9), see Fig. 1. This is due to the large-scale geometry of
symmetric spaces, which yields better dispersive properties.

1.3. Well-posedness and scattering for the semilinear Schrödinger equation. The fixed
point argument, which consists in finding a suitable contraction mapping defined on an appro-
priate Banach space, is nowadays a standard method to prove the well-posedness of nonlinear
partial differential equations. Due to the stronger Strichartz inequality proved in Theorem 1.5,
we are able to obtain the following better results on non-compact symmetric spaces. The proofs
are adapted straightforwardly from the rank one case considered in [AnPi09; APV11] and are
therefore omitted.

Consider the semilinear Schrödinger equation:{
i∂tu(t, x) + ∆xu(t, x) = F (u(t, x)), t ∈ R, x ∈ X,

u(0, x) = f(x).
(NLS)

where F is a power-like nonlinearity of order γ > 1 in the sense that

|F (u)| ≤ C |u|γ and |F (u)− F (v)| ≤ C (|u|γ−1 + |v|γ−1) |u− v|.

Let H1(X) be the Sobolev space defined as the image of L2(X) under the operator (−∆)−
1
2 .

We have the following well-posedness results for the semilinear Schrödinger equation (NLS):

• If 1 < γ ≤ 1 + 4
d , the Cauchy problem (NLS) is globally well-posed for small L2 data.

• If 1 < γ < 1 + 4
d , the Cauchy problem (NLS) is locally well-posed for arbitrary L2 data.

Moreover, if F is in addition gauge invariant, namely, if Im{F (u)ū} = 0, then the L2 con-
servation of mass implies the global well-posedness for arbitrary L2 data in this subcritical
case.

• If 1 < γ ≤ 1 + 4
d−2 , the Cauchy problem (NLS) is globally well-posed for small H1 data.

• If 1 < γ < 1 + 4
d−2 , the Cauchy problem (NLS) is locally well-posed for arbitrary H1

data. Moreover, if F is in addition defocusing, namely, if there exists a nonnegative C1

function G such that F (u) = G′(|u|2)u, then the H1 conservation of energy implies the
global well-posedness for arbitrary H1 data in this subcritical case.

Notice that these results are better than the known ones on Euclidean spaces. For instance,
global well-posedness for small L2 initial data holds for any exponent 1 < γ ≤ 1+ 4

d on X, while
on Rd one must assume in addition gauge invariance. However, under this condition, one can
handle arbitrary L2 data by using conservation laws.

The Strichartz inequality can also be used to prove scattering results, which means that
global solutions to the nonlinear Schrödinger equation behave asymptotically as solutions to
the linear equation. Specifically, Theorem 1.5 implies the following scattering results.
• If 1 < γ ≤ 1+ 4

d , then the global solution u(t, x) to the Cauchy problem (NLS) corresponding
to small L2 data satisfies the following scattering property: there exists u± ∈ L2(X) such
that

‖u(t, ·)− eit∆u±‖L2(X) −→ 0 as t −→ ±∞.

• If 1 < γ ≤ 1+ 4
d−2 , then the global solution u(t, x) to the Cauchy problem (NLS) correspond-

ing to small H1 data satisfies the following scattering property: there exists u± ∈ H1(X)
such that

‖u(t, ·)− eit∆u±‖H1(X) −→ 0 as t −→ ±∞.
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This scattering property remains valid for any H1 initial data in the subcritical case 1 <
γ < 1 + 4

d−2 if the nonlinearity F is assumed to be defocusing.

Notice that, on Rd, these scattering properties are known to fail for small powers γ ∈ (1, 1+ 2
d ].

However, our stronger Strichartz inequality on non-compact symmetric spaces makes these
properties possible in the full range.

1.4. Layout. After reviewing spherical Fourier analysis on non-compact symmetric spaces in
Sect. 2, we prove in Sect. 3 our main result, namely the pointwise kernel estimates. More pre-
cisely, we start with the large time estimate, which is surprisingly straightforward, see Sect. 3.1.
In small time, we get the desired estimates by combining the stationary phase method based
on the barycentric decomposition in Theorem 2.1, the subordination formula (3.11), and the
improved Hadamard parametrix (3.13), see Sect. 3.2. By adapting the method carried out in
rank one, we deduce in Sect. 4 our stronger dispersive and Strichartz inequalities.

2. Preliminaries

In this section we review briefly harmonic analysis on Riemannian symmetric spaces of non-
compact type. We adopt the standard notation and refer to [Hel78; Hel00; GaVa88] for more
details. Throughout this paper, the symbol A . B between two positive expressions means
that there is a constant C > 0 such that A ≤ CB. The symbol A � B means that A . B and
B . A.

2.1. Non-compact symmetric spaces. Let G be a semisimple Lie group, connected, non-
compact, with finite center, and K be a maximal compact subgroup of G. The homogeneous
space X = G/K is a Riemannian symmetric space of non-compact type. Let g = k ⊕ p be
the Cartan decomposition of the Lie algebra of G, the Killing form of g induces a K-invariant
inner product 〈. , .〉 on p, hence a G-invariant Riemannian metric on X. Fix a maximal abelian
subspace a in p. The rank of X is the dimension ` of a. We identify a with its dual a∗ by means
of the inner product inherited from p. Let Σ ⊂ a be the root system of (g, a) and denote by W
the Weyl group associated to Σ. Once a positive Weyl chamber a+ ⊂ a has been selected, Σ+

(resp. Σ+
r or Σ+

s ) denotes the corresponding set of positive roots (resp. positive reduced roots
or simple roots). Let d be the dimension of X and let D be the so-called dimension at infinity
or pseudo-dimension of X:

d = ` +
∑

α∈Σ+ mα and D = ` + 2|Σ+
r |, (2.1)

where mα is the dimension of the positive root subspace gα. Notice that these two dimensions
behave quite differently. For example, D = 3 while d ≥ 2 is arbitrary in rank one, D = d if G
is complex, and D > d (actually D = 2d− `) if G is split.

Let n be the nilpotent Lie subalgebra of g associated to Σ+ and let N = exp n be the
corresponding Lie subgroup of G. We have the decompositions{

G = N (exp a)K (Iwasawa),
G = K (exp a+)K (Cartan).

In the Cartan decomposition, the Haar measure on G writes∫
G
dx f(x) = const.

∫
K
dk1

∫
a+

dx+ δ(x+)

∫
K
dk2 f(k1(expx+)k2) ,

with density

δ(x+) =
∏
α∈Σ+

(sinh〈α, x+〉)mα �
∏
α∈Σ+

{ 〈α, x+〉
1 + 〈α, x+〉

}mα
e2〈ρ,x+〉 ∀x+ ∈ a+. (2.2)
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Here ρ ∈ a+ denotes the half sum of all positive roots α ∈ Σ+ counted with their multiplicities
mα:

ρ =
1

2

∑
α∈Σ+

mα α.

2.2. Spherical Fourier analysis on symmetric spaces. Let S(K\G/K) be the Schwartz
space of bi-K-invariant functions on G. The spherical Fourier transform H is defined by

Hf(λ) =

∫
G
dxϕ−λ(x) f(x) ∀λ ∈ a, ∀ f ∈ S(K\G/K),

where ϕλ ∈ C∞(K\G/K) denotes the spherical function of index λ ∈ a, which is a smooth
bi-K-invariant eigenfunction of all invariant differential operators on X, in particular of the
Laplace-Beltrami operator:

−∆ϕλ(x) = (|λ|2 + |ρ|2)ϕλ(x).

The spherical functions have the following integral representation

ϕλ(x) =

∫
K
dk e〈iλ+ρ,A(kx)〉 ∀λ ∈ a, (2.3)

where A(kx) denotes the a-component in the Iwasawa decomposition of kx. They satisfy the
basic estimate

|ϕλ(x)| ≤ ϕ0(x) ∀λ ∈ a, ∀x ∈ G,

where

ϕ0(expx+) �
{ ∏
α∈Σ+

r

(1 + 〈α, x+〉)
}
e−〈ρ,x

+〉 ∀x ∈ G. (2.4)

Denote by S(a)W the subspace of W -invariant functions in the Schwartz space S(a). Then H
is an isomorphism between S(K\G/K) and S(a)W . The inverse spherical Fourier transform is
given by

f(x) = C0

∫
a
dλ |c(λ)|−2 ϕλ(x)Hf(λ) ∀x ∈ G, ∀ f ∈ S(a)W , (2.5)

where C0 > 0 is a constant depending only on the geometry of X. By using the Gindikin-
Karpelevič formula of the Harish-Chandra c-function (see [Hel00] or [GaVa88]), we can write
the Plancherel density as

|c(λ)|−2 =
∏
α∈Σ+

r

|cα(〈α, λ〉)|−2, (2.6)

with

cα(v) =

Cα︷ ︸︸ ︷
Γ(
〈α,ρ〉
〈α,α〉+

1
2
mα)

Γ(
〈α,ρ〉
〈α,α〉 )

Γ( 1
2
〈α,ρ〉
〈α,α〉+

1
4
mα+ 1

2
m2α)

Γ( 1
2
〈α,ρ〉
〈α,α〉+

1
4
mα)

Γ(iv)

Γ(iv+ 1
2
mα)

Γ( i
2
v+ 1

4
mα)

Γ( i
2
v+ 1

4
mα+ 1

2
m2α)

.

Notice that |cα|−2 is an inhomogeneous differential symbol on R of order mα +m2α, for every
α ∈ Σ+

r . Hence |c(λ)|−2 is a product of one-dimensional symbols, but not a symbol on a in
general. It satisfies indeed {

|c(λ)|−2 . |λ|D−` if |λ| ≤ 1,

|∇kac(λ)|−2 . |λ|d−` if |λ| ≥ 1,
(2.7)

for all k ∈ N. The estimate away from the origin means that one cannot obtain any additional
decay from general derivatives, hence the standard stationary phase method fails. To overcome
this difficulty, we introduce the following barycentric decomposition.
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Theorem 2.1. There exists a smooth partition of unity∑
w∈W

∑
1≤j≤`

χw.Sj = 1 on ar {0} (2.8)

consisting of homogeneous symbols χw.Sj of order 0, and some nonzero vectors w.Λj ∈ suppχw.Sj
such that for all w ∈W and 1 ≤ j ≤ `,

|〈w.Λj , λ〉| � |λ| ∀λ ∈ suppχw.Sj (2.9)

and the following dichotomy holds: for every α ∈ Σ,

• either 〈α,w.Λj〉 = 0,

• or |〈α, λ〉| � |λ| for all λ ∈ suppχw.Sj .

This theorem allows us to split up the Cartan subspace a into several subcones suppχw.Sj
by using some appropriate cut-off functions χw.Sj . In each subcone, we can choose a vector
w.Λj such that if a root α is not orthogonal to w.Λj , then the inner product between α and
any vector λ in this subcone is comparable to |λ|, see [AnZh20, Subsection 2.2] for more details.
Thanks to this decomposition, the Plancherel density can be handled as if it were a differential
symbol, provided that we differentiate it in suppχw.Sj along the well-chosen vector w.Λj .

Corollary 2.2. For every w ∈W , 1 ≤ j ≤ ` and k ∈ N, we have

∂kw.Λj |c(λ)|−2 = O(|λ|d−`−k) ∀λ ∈ suppχw.Sj . (2.10)

Proof. Let α be an arbitrary root in Σ. If 〈α,w.Λj〉 = 0, then all terms

∂kw.Λj |cα(〈α, λ〉)|−2 ∀ k ∈ N∗

vanish. Otherwise, we deduce from the previous dichotomy that∣∣∂kw.Λj |cα(〈α, λ〉)|−2
∣∣ . (1 + |〈α, λ〉|)mα+m2α−k � (1 + |λ|)mα+m2α−k

for all λ ∈ suppχw.Sj , since |cα|−2 is an inhomogeneous differential symbol of order mα +m2α.
We conclude by using (2.1) and (2.6). �

3. Pointwise estimates of the Schrödinger kernel

For simplicity, we consider in this section the shifted Schrödinger propagator e−itD2 with
D =

√
−∆− |ρ|2, and denote by st its bi-K-invariant convolution kernel. By using the inverse

formula of the spherical Fourier transform, we have

st(x) = C0

∫
a
dλ |c(λ)|−2 ϕλ(x) e−it|λ|

2 ∀ t ∈ R∗, ∀x ∈ X. (3.1)

As usual, such an oscillatory integral makes sense by applying standard procedures (as a limit
of convergent integrals and/or after performing several integrals by parts). We will study (3.1)
differently, depending whether |t| is large or small. Let us begin with the easier case where |t|
is large.

3.1. Large time kernel estimate. Assume that |t| ≥ 1. In this case, we establish the fol-
lowing pointwise kernel estimate, by using the standard stationary phase method based on the
elementary estimate (2.7).

Theorem 3.1. There exist an integer N > max{d,D} and a constant C > 0 such that

|st(x)| ≤ C |t|−
D
2
(
1 + |x|

)N
ϕ0(x) ∀ |t| ≥ 1, ∀x ∈ X.
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Proof. By using the integral expression (2.3) of the spherical function, we write

st(x) = C0

∫
K
dk e〈ρ,A(kx)〉

∫
a
dλ |c(λ)|−2 e−it|λ|

2
ei〈λ,A(kx)〉︸ ︷︷ ︸

I(t,A(kx))

(3.2)

where A(kx) denotes the a-component in the Iwasawa decomposition of kx, which satisfies
|A(kx)| ≤ |x| and which we abbreviate by A in the sequel. Theorem 3.1 will follow from the
estimate

|I(t, A)| . |t|−
D
2
(
1 + |A|

)N
. (3.3)

Let us split up

I(t, A) = I0(t, A) + I∞(t, A) =

∫
a
dλχ0

t (λ) . . . +

∫
a
dλχ∞t (λ) . . .

where χ0
t (λ) = χ(

√
|t||λ|) is a radial cut-off function such that suppχ0

t ⊂ B(0, 2|t|−
1
2 ), χ0

t = 1

on B(0, |t|−
1
2 ) and χ∞t = 1− χ0

t . On the one hand, by using (2.7), we easily estimate

|I0(t, A)| .
∫
|λ|. |t|−

1
2

dλ |c(λ)|−2 . |t|−
D
2 . (3.4)

On the other hand, after performing N integrations by parts based on

e−it|λ|
2

= − 1
2it

∑`
j=1

λj
|λ|2

∂
∂λj

e−it|λ|
2
, (3.5)

we obtain

I∞(t, A) = (2it)−N
∫
a
dλ e−it|λ|

2
{∑`

j=1
∂
∂λj
◦ λj
|λ|2

}N{
χ∞t (λ) |c(λ)|−2 ei〈λ,A〉

}
. (3.6)

Assume that
• N0 derivatives are applied to the cut-off function χ0

t (λ), which produces O(|t|
N0
2 ),

• N1 derivatives are applied to the factors λj
|λ|2 , which produces O(|λ|−N−N1),

• N2 derivatives are applied to the Plancherel density |c(λ)|−2, which is not a symbol in
general and which produces {

O(|λ|D−`) if |λ| ≤ 1,

O(|λ|d−`) if |λ| ≥ 1,

• N3 derivatives are applied to the exponential factor ei〈λ,A〉, which produces O(|A|N3),

with N0 +N1 +N2 +N3 = N . If some derivatives hit the cut-off function χ0
t (λ), i.e., if N0 ≥ 1,

then the integral reduces to a spherical shell where |λ| � |t|−
1
2 , and the contribution to (3.6) is

estimated by

|t|−
N
2 |t|

N0
2 |t|

N1
2 |t|−

D
2 |A|N3 . |t|−

D
2
(
1 + |A|

)N
, (3.7)

since |t| ≥ 1. If N0 = 0, then

|I∞(t, A)| . |t|−N
∫
|λ|&|t|−

1
2

dλ
∣∣∇N2

λ |c(λ)|−2
∣∣ |λ|−N−N1 |A|N3

. |t|−N |A|N3

{∫
|t|−

1
2.|λ|≤1

dλ |λ|D−`−N−N1 +

∫
|λ|≥1

dλ |λ|d−`−N−N1

}
. |t|−

D
2 (1 + |A|)N + |t|−N (1 + |A|)N . |t|−

D
2 (1 + |A|)N (3.8)

provided that N > d and N ≥ D
2 . In conclusion, (3.3) follows from (3.4), (3.7) and (3.8). �
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Remark 3.2. The analysis carried out in the proof of Theorem 3.1 yields at best the following
small time estimate

|st(x)| . |t|−d (1 + |x|)d ϕ0(x) ∀ 0 < |t| < 1, ∀x ∈ X. (3.9)

3.2. Small time kernel estimate. Assume that 0 < |t| < 1. Our aim is to reduce the negative
power |t|−d in (3.9) to |t|−

d
2 . We shall use different tools, depending on the size of |x|√

|t|
. If |x|√

|t|
is small, we decompose the Weyl chamber into several subcones according to the barycentric
decompositions described in Theorem 2.1, and perform in each subcone several integrations by
parts along a well chosen direction. If |x|√

|t|
is large, we express in addition the Schrödinger

propagator in terms of the wave propagator and use the Hadamard parametrix.

Theorem 3.3. The following estimate holds, for 0 < |t| < 1 and |x| ≤
√
|t|:

|st(x)| . |t|−
d
2 ϕ0(x).

Proof. By resuming the notation in the proof of Theorem 3.1, we have

st(x) = C0

∫
K
dk e〈ρ,A(kx)〉 (I0(t, A) + I∞(t, A)

)
.

Clearly,

|I0(t, A)| =
∣∣∣ ∫

a
dλχ0

t (λ) |c(λ)|−2 e−it|λ|
2
ei〈λ,A〉

∣∣∣ . ∫
|λ|. |t|−

1
2

dλ |c(λ)|−2 . |t|−
d
2 . (3.10)

In order to estimate

I∞(t, A) =

∫
a
dλχ∞t (λ) |c(λ)|−2 e−it|λ|

2
ei〈λ,A〉,

we split up

I∞(t, A) =
∑
w∈W

∑
1≤j≤`

∫
a
dλχw.Sj (λ)χ∞t (λ) |c(λ)|−2 e−it|λ|

2
ei〈λ,A〉︸ ︷︷ ︸

Iw.Sj (t,x)

.

according to the barycentric decomposition (2.8). Next, we study Iw.Sj (t, x) by performing N
integrations by parts based on

e−it|λ|
2

= − 1
2it

1
〈w.Λj ,λ〉 ∂w.Λj e

−it|λ|2 ,

which yields

Iw.Sj (t, x) = (2it)−N
∫
a
dλ e−it|λ|

2
{
∂w.Λj ◦ 1

〈w.Λj ,λ〉

}N {
χw.Sj (λ)χ∞t (λ) |c(λ)|−2 ei〈λ,A〉

}
.

As in the the proof of Theorem 3.1, we assume that
• N0 derivatives are applied to the cut-off function χ∞t (λ):

∂N0
w.Λj

χ∞t (λ) = O(|t|
N0
2 ),

• N1 derivatives are applied to the factors 1
〈w.Λj ,λ〉 , which produces O(|λ|−N−N1),

• N2 derivatives are applied to the factor χw.Sj (λ), which is a homogeneous symbol of order
0:

∂N2
w.Λj

χw.Sj (λ) = O(|λ|−N2),

• N3 derivatives are applied to the factor ei〈λ,A〉:

∂N3
w.Λj

ei〈λ,A〉 = O(|A|N3),
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• N4 derivatives are applied to the Plancherel density |c(λ)|−2 (see Corollary 2.2):

∂N4
w.Λj
|c(λ)|−2 = O(|λ|d−`−N4),

with N0 +N1 +N2 +N3 +N4 = N . Therefore, if no derivative hits the cut-off function χ∞t (λ),
i.e., if N0 = 0, then

|Iw.Sj (t, x)| . |t|−N
∫
|λ|&|t|−

1
2

dλ |λ|−N−N1−N2+d−`−N4 |A|N3

. |t|−N |t|−
d
2

+N
2

+
N1
2

+
N2
2

+
N4
2 |t|

N3
2 ≤ |t|−

d
2

provided that N > d. If N0 ≥ 1, then the integral is reduced to a spherical shell where
|λ| � |t|−

1
2 , and hence

|Iw.Sj (t, x)| . |t|−N |t|
N0
2 |t|−

d
2

+N
2

+
N1
2

+
N2
2

+
N4
2 |A|N3 ≤ |t|−

d
2 ,

since |A| ≤ |x| ≤
√
|t|. Together with (3.10), we conclude that |I(t, A)| . |t|−

d
2 and

|st(x)| . |t|−
d
2 ϕ0(x),

for all 0 < |t| < 1 and x ∈ X such that |x| ≤
√
|t|. �

The above proof shows that, for every λ ∈ (suppχw.Sj ) ∩ (suppχ∞t ), the Plancherel den-
sity |c(λ)|−2 behaves like an inhomogeneous symbol of order d − ` if we differentiate it along
the direction w.Λj . When |x| >

√
|t|, we write the Schrödinger propagator in terms of the

wave propagator according to the subordination principle, and use an improved Hadamard
parametrix. Let us express the Schrödinger propagator

e−itD
2

= π−
1
2 e−i

π
4

sign (t)︸ ︷︷ ︸
C1

|t|−
1
2

∫ +∞

0
ds e

i
4t
s2 cos(sD)

in terms of the wave propagator and correspondingly

st(x) = C1 |t|−
1
2

∫ +∞

0
ds e

i
4t
s2 Φs(x) (3.11)

for their bi-K-invariant convolution kernels. On the one hand, by finite propagation speed,

Φs(x) = 0 if |x| > |s|. (3.12)

On the other hand, recall the Hadamard parametrix

Φs(expH) = J(H)−
1
2 |s|

+∞∑
k=0

4−k Uk(H)R
k− d−1

2
+ (s2 − |H|2) ∀ s ∈ R∗, ∀H ∈ p, (3.13)

where J denotes the Jacobian of the exponential map p→ G/K, which is given by

J(H) =
∏
α∈Σ+

( sinh〈α,H〉
〈α,H〉

)mα ∀H ∈ a+,

and {Rz+ | z ∈ C} denotes the analytic family of Riesz distributions on R, which is defined by

Rz+(r) =

{
Γ(z)−1 rz−1 if r > 0

0 if r ≤ 0
∀ Re z > 0.

This parametrix was constructed and used in various settings, see for instance [Ber77; Hor94;
CGM01]. We refer to [AnZh20, Appendix B] for the details about the wave propagator
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cos (t
√
−∆) associated to the unshifted Laplacian ∆ on non-compact symmetric spaces. Notice

that the same results hold for cos (tD). Specifically (3.13) is an asymptotic expansion

Φs(expH) = J(H)−
1
2 |s|

[d/2]∑
k=0

4−k Uk(H)R
k− d−1

2
+ (s2 − |H|2) + E(s,H) (3.14)

where the coefficients Uk are AdK-invariant smooth functions on p, which are bounded together
with their derivatives, while the remainder satisfies

|E(s,H)| . (1 + |s|)3( d
2

+1) e−〈ρ,H〉 ∀s ∈ R∗, ∀H ∈ a+. (3.15)

Let us split up∫ +∞

0
ds =

∫ +∞

0
dsχ0( s

|x|) +

∫ +∞

0
dsχ1( s

|x|) +

∫ +∞

0
dsχ∞( s

|x|)

in (3.11) by means of a smooth partition of unity 1 = χ0 + χ1 + χ∞ on R such that
suppχ0 ⊂ (−1, 1),

suppχ1 ⊂ (−2C2,−1
2) ∪ (1

2 , 2C2),

suppχ∞ ⊂ (−∞,−C2) ∪ (C2,+∞)

where the choice of C2 > 1 will be specified later. Then the contribution of the first integral
vanishes according to (3.12) and we are left with

st(x) = C1 |t|−
1
2

∫ +∞

0
dsχ1( s

|x|) e
i
4t
s2 Φs(x)︸ ︷︷ ︸

s1t (x)

+ C1 |t|−
1
2

∫ +∞

0
dsχ∞( s

|x|) e
i
4t
s2 Φs(x)︸ ︷︷ ︸

s∞t (x)

where s1
t (x) and s∞t (x) are bi-K-invariant. Let us first study s∞t (x) by using again the barycen-

tric decomposition. In comparison with the proof of Theorem 3.3, we have now |x| >
√
|t| and

there is an additional integral over s ∈ (1,∞) to control. Let us state the theorem.

Theorem 3.4. The following estimate holds, for all 0 < |t| < 1 and |x| >
√
|t| :

|s∞t (x)| . |t|−
d
2 ϕ0(x).

Proof. We express

s∞t (x) = 1
2 C0C1 |t|−

1
2

∫ +∞

−∞
dsχ∞( s

|x|) e
i
4t
s2
∫
a
dλ |c(λ)|−2 ϕλ(x) e−is|λ|

by evenness and by expressing the wave kernel Φs by means of the inverse spherical Fourier
transform. Let us split up s∞t = 1

2 C0C1 (s∞,0t + s∞,∞t ), where

s∞,0t (x) = |t|−
1
2

∫ +∞

−∞
dsχ∞( s

|x|) e
i
4t
s2
∫
a
dλχ0

t (λ) |c(λ)|−2 ϕλ(x) e−is|λ|︸ ︷︷ ︸
I0(s,t,x)

and

s∞,∞t (x) = |t|−
1
2

∫ +∞

−∞
dsχ∞( s

|x|) e
i
4t
s2
∫
a
dλχ∞t (λ) |c(λ)|−2 ϕλ(x) e−is|λ|︸ ︷︷ ︸

I∞(s,t,x)

.

Recall that χ0
t (λ) = χ(

√
|t||λ|) is a radial cut-off function such that suppχ0

t ⊂ B(0, 2|t|−
1
2 ),

χ0
t = 1 on B(0, |t|−

1
2 ) and χ∞t = 1− χ0

t .



SCHRÖDINGER EQUATION ON NON-COMPACT SYMMETRIC SPACES 13

Estimate of s∞,0t . Notice that the obvious estimate |I0(s, t, x)| . |t|−
d
2 |ϕ0(x) is not enough

for our purpose. We need indeed to compensate on the one hand the factor |t|−
1
2 and to get on

the other hand enough decay in |s| to ensure the convergence of the external integral. To this
end, we perform two integrations by parts based on

e
i
4t
s2 = −2it

s
∂
∂s e

i
4t
s2 (3.16)

and obtain this way

s∞,0t (x) = −4 |t|
3
2

∫ +∞

−∞
ds e

i
4t
s2 ∂

∂s

(
1
s
∂
∂s

) {
1
s χ∞( s

|x|) I0(s, t, x)
}
. (3.17)

Notice that ∣∣( ∂∂s)k I0(s, t, x)
∣∣ . |t|− d+k2 ϕ0(x) ∀ k ∈ N.

If any derivative hits χ∞( s
|x|) in (3.17), the integral reduces to two intervals where |s| � |x|,

and the corresponding contribution is estimated by

|t|−
d−3

2 ϕ0(x)

∫
|s|�|x|

ds {s−2 |x|−2 + s−3 |x|−1 + s−2 |x|−1 |t|−
1
2 } . |t|−

d
2 ϕ0(x),

since |t|
1
2 < |x|. Otherwise we end up with the estimate

|t|−
d−3

2 ϕ0(x)

∫
|s|&|x|

ds {s−4 + s−3 |t|−
1
2 + s−2 |t|−1} . |t|−

d
2 ϕ0(x).

In conclusion,

|s∞,0t (x)| . |t|−
d
2 ϕ0(x),

for all 0 < |t| < 1 and x ∈ X such that |x| >
√
|t|.

Estimate of s∞,∞t . Let us turn to

s∞,∞t (x) =

∫ +∞

−∞
dsχ∞( s

|x|) e
i
4t
s2 I∞(s, t, x).

We will prove the following estimate, for any integer N > d,

|I∞(s, t, x)| . |s|−N |t|−
d
2

+N
2 ϕ0(x) ∀ |s| ≥ C2|x|. (3.18)

Then, as |x| >
√
|t| , we conclude easily that

|s∞,∞t (x)| . |t|−
d
2

+N
2
− 1

2 ϕ0(x)

∫
|s|&|x|

ds |s|−N . |t|−
d
2
(√|t|
|x|
)N−1

ϕ0(x) . |t|−
d
2 ϕ0(x). (3.19)

In order to establish (3.18), we express

I∞(s, t, x) =

∫
a
dλχ∞t (λ) |c(λ)|−2 ϕλ(x) e−is|λ|

=

∫
K
dk e−〈ρ,A〉

∑
w∈W

∑
1≤j≤`

∫
a
dλχw.Sj (λ)χ∞t (λ) |c(λ)|−2 e−i(s|λ|−〈λ,A〉)︸ ︷︷ ︸

Iw.Sj (s,t,A)
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by using again the integral formula (2.3) and the barycentric decomposition (2.8). According
to (2.9), we can choose C2 > 0 such that, if |s| ≥ C2|x|, then

|∂w.Λj (s|λ| − 〈λ,A〉)| =
∣∣∣s 〈w.Λj ,λ〉|λ| − 〈w.Λj , A〉

∣∣∣
≥ |s| |〈w.Λj ,λ〉||λ|︸ ︷︷ ︸

&1

− |〈w.Λj , A〉|︸ ︷︷ ︸
. |x|

& |s|,

for every λ ∈ (suppχ∞t ) ∩ (suppχw.Sj ). Under these assumptions, the phase function λ 7→
s|λ| − 〈λ,A〉 has no critical point along the direction w.Λj . By performing N integrations by
parts based on

e−i(s|λ|−〈λ,A〉) = i
∂w.Λj (s|λ|−〈λ,A〉) ∂w.Λj e

−i(s|λ|−〈λ,A〉),

we write

Iw.Sj (s, t, A) = (is)−N
∫
a
dλ e−i(s|λ|−〈λ,A〉)

{
∂w.Λj ◦ s

∂w.Λj (s|λ|−〈λ,A〉)

}N {
χw.Sj (λ)χ∞t (λ) |c(λ)|−2

}
.

Assume that

• N0 derivatives are applied to the cut-off function χ∞t (λ), which produces O(|t|
N0
2 ),

• N1 derivatives are applied to the factors s
∂w.Λj (s|λ|−〈λ,A〉) , which produces O(|λ|−N1),

• N2 derivatives are applied to the cut-off functions χw.Sj (λ), which produces O(|λ|−N2),

• N3 derivatives are applied to the Plancherel density |c(λ)|−2, which produces O(|λ|d−`−N3),

with N0 + N1 + N2 + N3 = N . Again, if some derivatives hit χ∞t (λ), i.e., if N0 ≥ 1, then the
integral reduces to a spherical shell where |λ| � |t|−

1
2 , and its contribution is estimated by

|s|−N |t|−
`
2 |t|

N0
2 |t|

N1
2 |t|

N2
2 |t|−

d
2

+ `
2

+
N3
2 = |s|−N |t|−

d
2

+N
2 .

If N0 = 0, then

|Iw.Sj (s, t, A)| . |s|−N
∫
|λ|& |t|−

1
2

dλ |λ|−N1 |λ|−N2 |λ|d−`−N3 . |s|−N |t|−
d
2

+N
2

provided that N > d. This proves (3.18) and hence (3.19). �

Theorem 3.5. The following estimate holds, for all 0 < |t| < 1 and |x| >
√
|t|:

|s1
t (x)| . |t|−

d
2 (1 + |x|)

3
2
d+4 e−〈ρ,x

+〉.

Proof. Since s1
t is bi-K-invariant, we have

s1
t (x) = C1

2 |t|
− 1

2 J(x+)−
1
2

[d/2]∑
k=0

4−k Uk(x
+)

Ik(t,|x|)︷ ︸︸ ︷∫ +∞

0
d(s2)χ1( s

|x|) e
i
4t
s2 R

k− d−1
2

+ (s2− |x|2)

+ C1
2 |t|

− 1
2

∫ +∞

0
dsχ1( s

|x|) e
i
4t
s2 E(s, x+)︸ ︷︷ ︸

Ẽ(t,|x|)

according to (3.14). On the one hand, the remainder estimate

|Ẽ(t, |x|)| . |x| (1 + |x|)3( d
2

+1) e−〈ρ,x
+〉 (3.20)
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follows from (3.15). On the other hand, we claim that

|Ik(t, |x|)| . |t|k−
d−1

2 (3.21)

if |x|>
√
|t| >0. Let us first prove (3.21) when d is odd. By a change of variables and by using

the fact that Rk−
d−1

2
+ (s−1) =

(
∂
∂s

)d−1
2
−k
R0

+(s−1), we obtain

|Ik(t, |x|)| = |x|2k−d+1

∫ +∞

0
dsχ1(

√
s) e

i|x|2
4t

sR
k− d−1

2
+ (s− 1)

= |x|2k−d+1

∫ +∞

0
dsR0

+(s−1)
(
− ∂
∂s

)d−1
2
−k ∣∣{χ1(

√
s) e

i|x|2
4t

s
}
.

As R0
+(s−1) is the Dirac measure at s=1, we conclude that

Ik(t, |x|) = |x|2k−d+1
(
− i

4
|x|2
t

)d−1
2
−k

= O(|t|k−
d−1

2 ).

When d is even, we obtain similarly

|Ik(t, |x|)| = π−
1
2 |x|2k−d+1

∫ +∞

1

ds√
s−1

(
− ∂
∂s

) d
2
−k {

χ1(
√
s) e

i|x|2
4t

s
}
,

which is a linear combination of expressions

tj+k−
d
2 |x|1−2j

∫ +∞

1

ds√
s−1

θj(s) e
i|x|2

4t
s︸ ︷︷ ︸

Jj(t,|x|)

where 0 ≤ j ≤ d
2 − k and θj ∈ C∞c (R) with supp θj ⊂ (−4C2

2 , 4C
2
2 ). Notice that the elementary

estimate Jj(t, |x|) = O(1), together with the assumption |x|>
√
|t| implies that

|Ik(t, |x|)| . |x| |t|−
d
2

+k,

which might be enough for our purpose as long as k > 0. The case k = 0 requires actually a
more careful analysis. Let us show that

Jj(t, |x|) .
√
|t|
|x|

by splitting up ∫ +∞

1
ds =

∫ 1+
|t|
|x|2

1
ds +

∫ +∞

1+
|t|
|x|2

ds

in the definition of Jj(t, |x|). The contribution of the first integral is easily estimated by∫ 1+
|t|
|x|2

1
ds ds√

s−1
= 2
√
s−1

∣∣∣s=1+
|t|
|x|2

s=1
= 2

√
|t|
|x| .

After performing an integration by parts based on

e
i|x|2

4t
s = − i 4t

|x|2
∂
∂s e

i|x|2
4t

s,

the contribution of the second integral is also estimated by

|t|
|x|2

∫ 4C2
2

1+
|t|
|x|2

ds
{

(s−1)−
1
2 + (s−1)−

3
2
}
.
√
|t|
|x|
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under the assumption |x|>
√
|t| . Thus (3.21) holds as well when d is even. In conclusion,

|s1
t (x)| . |t|−

d
2 J(x+)−

1
2 + |t|−

1
2 |x| (1 + |x|)3( d

2
+1) e−〈ρ,x

+〉

. |t|−
d
2 (1 + |x|)

3
2
d+4e−〈ρ,x

+〉

when 0 < |t| < 1 and x ∈ X satisfies |x| >
√
|t| . �

In summary, we have divided our kernel analysis into three parts and deduced Theorem 1.1
from Theorem 3.1, Theorem 3.3 and Theorem 3.5. Notice that the method used to prove small
time kernel estimates can be also used for large time.

4. Dispersive estimates and Strichartz inequalities on symmetric spaces

Once pointwise kernel estimates are available on symmetric spaces, one can deduce disper-
sive properties for the corresponding propagator, by using an interpolation argument based
on the Kunze-Stein phenomenon. The following bi-K-invariant version is a straightforward
generalization of [APV11, Theorem 4.2].

Lemma 4.1. Let κ be a reasonable bi-K-invariant function on G. Then

‖ · ∗κ ‖Lq′ (X)→Lq(X) ≤
{∫

G
dxϕ0(x) |κ(x)|

q
2

} 2
q

for every q ∈ [2,+∞). In the limit case, we have

‖ · ∗κ ‖L1(X)→L∞(X) = supx∈G |κ(x)|.

Proof of Theorem 1.3. At the endpoint q = q̃ = 2, t 7→ eit∆ is a one-parameter group of unitary
operators on L2(X):

‖eit∆‖L2(X)→L2(X) = 1.

For 2 < q <∞, we deduce from estimates (1.7) and (2.2) that

‖st‖Lq(X) . ω(t)
{∫

a
dx+ (1 + |x+|)qN e−(q−2)〈ρ,x+〉

} 1
q
. ω(t)

where

ω(t) =

|t|
− d

2 if 0 < |t| < 1,

|t|−
D
2 if |t| ≥ 1.

Moreover, since st is the bi-K-invariant convolution kernel of the propagator eit∆, we deduce,
by combining the above lemma with (1.7), (2.2), and (2.4) that

‖eit∆‖
q
2

Lq′ (X)→Lq(X)
≤
∫
a
dx+ δ(x+)ϕ0(expx+) |st(expx+)|

q
2

. ω(t)
q
2

{∫
a
dx+ (1 + |x+|)

qN+D−`
2 e−( q

2
−1)〈ρ,x+〉

}
︸ ︷︷ ︸

= O(1)

.

We conclude by interpolation between
‖eit∆‖L1(X)→Lq(X) ≤ ‖st‖Lq(X) . |t|−

d
2 ,

‖eit∆‖Lq′ (X)→L∞(X) ≤ ‖st‖Lq(X) . |t|−
d
2 ,

‖eit∆‖L2(X)→L2(X) = 1,
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when |t| ≤ 1 and 
‖eit∆‖L1(X)→Lq(X) ≤ ‖st‖Lq(X) . |t|−

D
2 ,

‖eit∆‖Lq′ (X)→L∞(X) ≤ ‖st‖Lq(X) . |t|−
D
2 ,

‖eit∆‖Lq′ (X)→Lq(X) . |t|
−D

2 ,

when |t| ≥ 1. �

Finally, we establish our Strichartz inequality (1.11) by using the TT ∗ argument. Notice that
the solution to the Schrödinger equation (1.10) is given by the Duhamel formula:

u(t, x) = eit∆ f(x) − i

∫ t

0
ds ei(t−s)∆ F (s, x).

Consider the operator T and its formal adjoint T ∗:

Tf(t, x) = eit∆f(x) and T ∗F (x) =

∫
R
ds e−is∆ F (s, x).

By duality, T is bounded from L2
x to LptL

q
x if and only if T ∗ is bounded from Lp

′

t L
q′
x to L2

x.
Equivalently, the operator

TT ∗F (t, x) =

∫
R
ds ei(t−s)∆ F (s, x) (4.1)

is bounded from Lp
′

t L
q′
x to LptL

q
x. We prove the latter for all (p, q) in the admissible triangle

(1.9). The Strichartz inequality (1.11) follows from the Christ-Kiselev lemma, see [ChKi01] or
[Tao06, Section 2.3].

Proof. The endpoint (1
p ,

1
q ) = (0, 1

2) is settled by L2 conservation and (1
p ,

1
q ) = (1

2 ,
1
2 −

1
d) can be

handled by using the method carried out in [KeTa98]. Let us focus on the non-endpoint cases
where (1

2 −
1
q )n2 ≤

1
p ≤

1
2 and 1

2 −
1
n <

1
q <

1
2 . According to the dispersive estimates (1.8), we

have

‖TT ∗F‖Lp(I;Lq(X)) ≤
∥∥∥∫

R
ds
∥∥ei(t−s)∆ F (s, . )

∥∥
Lq(X)

∥∥∥
Lpt (I)

.
∥∥∥∫
|t−s|≤1

ds |t− s|−( 1
2
− 1
q

)d ∥∥F (s, . )
∥∥
Lq′ (X)

∥∥∥
Lpt (I)

+
∥∥∥∫
|t−s|≥1

ds |t− s|−
D
2

∥∥F (s, . )
∥∥
Lq
′
(X)

∥∥∥
Lpt (I)

.

On the one hand, the convolution kernel |t−s|−
D
2 1{|t−s|≥1} on R defines a bounded operator from

Lp
′ to Lp for all 2 ≤ p ≤ ∞. On the other hand, the convolution kernel |t− s|−( 1

2
− 1
q

)d
1{|t−s|≤1}

is bounded from Lp
′ to Lp for all 2 ≤ p < ∞ such that 0 ≤ 1

p′ −
1
p ≤ 1− (1

2 −
1
q )d, or in other

words, when p satisfies (1
2 −

1
q )n2 ≤

1
p ≤

1
2 . �

Remark 4.2. We do not take full advantage of our strong large time decay |t|−
D
2 in the dis-

persive estimates (1.8). Indeed, the convolution kernel |t − s|−1−ε
1{|t−s|≥1} defines a bounded

operator from Lp
′ to Lp for any ε > 0 and 2 ≤ p ≤ ∞.
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