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SCHRÖDINGER EQUATION ON NONCOMPACT SYMMETRIC SPACES

JEAN-PHILIPPE ANKER, STEFANO MEDA, VITTORIA PIERFELICE,
MARIA VALLARINO AND HONG-WEI ZHANG

Abstract. We consider the Schrödinger equation on Riemannian symmetric spaces of non-
compact type. Previous studies in rank one included sharp-in-time pointwise estimates for
the Schrödinger kernel, dispersive properties, Strichartz inequalities for a large family of ad-
missible pairs, and global well-posedness and scattering, both for small initial data. In this
paper we establish analogous results in the higher rank case. The kernel estimates, which is
our main result, are obtained by combining a subordination formula, an improved Hadamard
parametrix for the wave equation, and a barycentric decomposition initially developed for the
wave equation, which allows us to overcome a well-known problem, namely the fact that the
Plancherel density is not always a differential symbol.
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1. Introduction

In this paper, we establish sharp-in-time kernel estimates and dispersive properties for the
Schrödinger equation on general Riemannian symmetric spaces of noncompact type. Such
estimates allow us to prove a global-in-time Strichartz inequality for a large family of admissible
couples. This inequality has two important applications in the study of nonlinear Schrödinger
equations. On the one hand, it serves as a tool for finding minimal regularity conditions on the
initial data ensuring well-posedness. On the other hand, it is one of the key ingredient to prove
scattering results.

The Schrödinger equation was studied extensively in the Euclidean setting. We refer to
[Caz03; Tao06] and the references therein for more details. A basic theme in analysis of PDEs
is the influence of geometry on the behavior of solutions. On a compact or nonnegatively curved
manifold, one gets in general a Strichartz inequality with some loss of derivatives, which implies
weaker well-posedness and scattering results than in the Euclidean case, see for instance [Bou93;
BGT04; GePi10; Zha20].

2020 Mathematics Subject Classification. 22E30, 35J10, 35P25, 43A85, 43A90.
Key words and phrases. Noncompact symmetric space, semilinear Schrödinger equation, pointwise kernel
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In this paper we consider general Riemannian symmetric spaces of noncompact type, which
form an important class of non-positively curved Riemannian manifolds with exponential volume
growth. For such geometries, one expects stronger dispersive phenomena than in the Euclidean
setting and hence better well-posedness and scattering results. This was indeed brought to
light in the study of the Schrödinger equation on real hyperbolic spaces, which are the simplest
symmetric spaces of noncompact type and rank one [Pie06; Ban07; BCS08; AnPi09; IoSt09],
and subsequently on Damek-Ricci spaces [APV11], a class of harmonic manifolds which includes
all noncompact symmetric spaces of rank one.

Extending these rank one results to higher rank was a challenging problem, which required
new ideas. Surprisingly, large time estimates are obtained rather easily, while the main difficulty
lies in the kernel estimates at infinity for small time. We have finally overcome it by a clever
combination of the following tools, the last two being borrowed from [AnZh20] :

• the subordination principle for the Schrödinger propagator in terms of the wave propa-
gator;
• an improved Hadamard parametrix for the wave equation;
• a barycentric decomposition of the inverse spherical Fourier transform, which allows us
to integrate by parts as if the Plancherel density were a differentiable symbol.

Let us state the main two results obtained in this paper. Consider the Schrödinger propagator
eit∆ associated to the Laplace-Beltrami operator ∆ defined on a d-dimensional noncompact
symmetric space X = G/K and let us denote by st its K-bi-invariant convolution kernel.

Theorem 1.1 (Pointwise kernel estimates). There exist C>0 and N>0 such that the following
estimates hold, for all t ∈ R∗ and x ∈ X :

|st(x)| ≤ C (1 + |x|)N e−〈ρ,x+〉

|t|
− d

2 if 0 < |t| < 1,

|t|−
D
2 if |t| ≥ 1,

where x+ ∈ a+ denotes the radial component of x in the Cartan decomposition, ρ ∈ a+ the
half sum of all positive roots and D = `+ 2 |Σ+

r | the so-called dimension at infinity or pseudo-
dimension of X.

Remark 1.2. Contrarily to the Euclidean setting, the Schrödinger kernel satisfies no rescaling
and behaves differently for small and large times. Notice that the large polynomial factor (1 +

|x|)N is harmless for the dispersive estimates because of the exponential factor e−〈ρ,x+〉.

Theorem 1.3 (Dispersive properties). Let 2 < q, q̃ < +∞. Then there exists a constant C > 0
such that following dispersive estimates hold for all t ∈ R∗ :

‖eit∆‖Lq̃′ (X)→Lq(X) ≤ C

|t|
−max( 1

2
− 1
q
, 1
2
− 1
q̃

) d if 0 < |t| < 1,

|t|−
D
2 if |t| ≥ 1,

where q̃ and q̃′ are dual indices in the sense that 1
q̃ + 1

q̃′ = 1.

Remark 1.4. At the endpoint q = q̃ = 2, t 7→ eit∆ is a one-parameter group of unitary
operators on L2(X). Theorem 1.1 and Theorem 1.3 extend earlier results obtained in rank one
(where D = 3) to higher rank. Notice that we obtain stronger dispersive properties in our setting
than in Euclidean spaces, especially in large time, where we have a fast time decay independent
of q or q̃.

These sharp-in-time estimates are significantly different from those in the Euclidean setting.
The large scale geometry of symmetric spaces yield better dispersive properties, in the sense that
the large time decay |t|−D/2 is independent of q. Such an improvement allows us to establish
global-in-time Strichartz inequalities for a large family of admissible pairs. As an application to
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the Schrödinger equation with power-like nonlinearities and small initial data, we deduce global
well-posedness and scattering, both in L2 and in H1, for any subcritical power without further
assumptions (in contrast with the Euclidean case).

Our paper is organized as follows. After reviewing spherical Fourier analysis on noncompact
symmetric spaces and the barycentric decomposition of the Weyl chamber in Sect. 2, we prove
in Sect. 3 our main result, namely the pointwise kernel estimates. In Sect. 3, we deduce the
dispersive properties and the Strichartz inequalities for a large family of admissible pairs, by
adapting straightforwardly the method carried out in rank one. Such stronger estimates imply
better well-posedness and scattering results for nonlinear Schrödinger equations, which are listed
in Sect. 5.

Throughout this paper, the symbol A . B between two positive expressions means that there
is a constant C > 0 such that A ≤ CB. The symbol A � B means that A . B and B . A.

2. Preliminaries

In this section we review briefly harmonic analysis on Riemannian symmetric spaces of non-
compact type. We adopt the standard notation and refer to [Hel78; Hel00; GaVa88] for more
details.

2.1. Noncompact symmetric spaces. Let G be a semisimple Lie group, connected, noncom-
pact, with finite center, and K be a maximal compact subgroup of G. The homogeneous space
X = G/K is a Riemannian symmetric space of noncompact type. Let g = k⊕ p be the Cartan
decomposition of the Lie algebra of G, the Killing form of g induces a K-invariant inner product
〈. , .〉 on p, hence a G-invariant Riemannian metric on X. Fix a maximal abelian subspace a
in p. The rank of X is the dimension ` of a. We identify a with its dual a∗ by means of the
inner product inherited from p. Let Σ ⊂ a be the root system of (g, a) and denote by W the
Weyl group associated to Σ. Once a positive Weyl chamber a+ ⊂ a has been selected, Σ+

(resp. Σ+
r or Σ+

s ) denotes the corresponding set of positive roots (resp. positive reduced roots
or simple roots). Let d be the dimension of X and let D be the so-called dimension at infinity
or pseudo-dimension of X:

d = ` +
∑

α∈Σ+ mα and D = ` + 2|Σ+
r | (2.1)

where mα is the dimension of the positive root subspace gα. Notice that these two dimensions
behave quite differently. For example, D = 3 while d ≥ 2 is arbitrary in rank one, D = d if G
is complex, and D > d (actually D = 2d− `) if G is split.

Let n be the nilpotent Lie subalgebra of g associated to Σ+ and let N = exp n be the
corresponding Lie subgroup of G. We have the decompositions{

G = N (exp a)K (Iwasawa),
G = K (exp a+)K (Cartan).

In the Cartan decomposition, the Haar measure on G writes∫
G
dx f(x) = const.

∫
K
dk1

∫
a+

dx+ δ(x+)

∫
K
dk2 f(k1(expx+)k2) ,

with density

δ(x+) =
∏
α∈Σ+ (sinh〈α, x+〉)mα �

∏
α∈Σ+

{ 〈α,x+〉
1+〈α,x+〉

}mα e2〈ρ,x+〉 ∀x+ ∈ a+.

Here ρ ∈ a+ denotes the half sum of all positive roots α ∈ Σ+ counted with their multiplicities
mα:

ρ = 1
2

∑
α∈Σ+ mα α.
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2.2. Spherical Fourier analysis on symmetric spaces. Let S(K\G/K) be the Schwartz
space of K-bi-invariant functions on G. The spherical Fourier transform H is defined by

Hf(λ) =

∫
G
dxϕ−λ(x) f(x) ∀λ ∈ a, ∀ f ∈ S(K\G/K),

where ϕλ ∈ C∞(K\G/K) denotes the spherical function of index λ ∈ a, which is a smooth
K-bi-invariant eigenfunction of all invariant differential operators on X, in particular of the
Laplace-Beltrami operator:

−∆ϕλ(x) = (|λ|2 + |ρ|2)ϕλ(x).

The spherical functions have the following integral representation

ϕλ(x) =

∫
K
dk e〈iλ+ρ,A(kx)〉 ∀λ ∈ a, (2.2)

where A(kx) denotes the a-component in the Iwasawa decomposition of kx. They satisfy the
basic estimate

|ϕλ(x)| ≤ ϕ0(x) ∀λ ∈ a, ∀x ∈ G,

where

ϕ0(x) �
{∏

α∈Σ+
r

(1 + 〈α, x+〉)
}
e−〈ρ,x

+〉 ∀x ∈ G.

Denote by S(a)W the subspace of W -invariant functions in the Schwartz space S(a). Then H
is an isomorphism between S(K\G/K) and S(a)W . The inverse spherical Fourier transform is
given by

f(x) = C0

∫
a
dλ |c(λ)|−2 ϕλ(x)Hf(λ) ∀x ∈ G, ∀ f ∈ S(a)W , (2.3)

where C0 > 0 is a constant depending only on the geometry of X. By using the Gindikin-
Karpelevič formula of the Harish-Chandra c-function (see [Hel00] or [GaVa88]), we can write
the Plancherel density as

|c(λ)|−2 =
∏
α∈Σ+

r
|cα(〈α, λ〉)|−2, (2.4)

with

cα(v) =

Cα︷ ︸︸ ︷
Γ(
〈α,ρ〉
〈α,α〉+

1
2
mα)

Γ(
〈α,ρ〉
〈α,α〉 )

Γ( 1
2
〈α,ρ〉
〈α,α〉+

1
4
mα+ 1

2
m2α)

Γ( 1
2
〈α,ρ〉
〈α,α〉+

1
4
mα)

Γ(iv)

Γ(iv+ 1
2
mα)

Γ( i
2
v+ 1

4
mα)

Γ( i
2
v+ 1

4
mα+ 1

2
m2α)

.

Notice that |cα|−2 is a homogeneous differential symbol on R of order mα + m2α, for every
α ∈ Σ+

r . Hence |c(λ)|−2 is a product of one-dimensional symbols, but not a symbol on a in
general. It has the following behavior

|c(λ)|−2 �
∏
α∈Σ+

r
〈α, λ〉2 (1 + |〈α, λ〉|)mα+m2α−2

and satisfies

|c(λ)|−2 .

{
|λ|D−` if |λ| ≤ 1,

|λ|d−` if |λ| ≥ 1,
(2.5)

together with all its derivatives.
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Figure 1. Example of barycentric subdivisions in A3

2.3. Barycentric decomposition of the Weyl chamber. This tool plays an important role
in spherical Fourier analysis in higher rank. It allows us to overcome a well-known difficulty,
namely the fact that the Plancherel density is not a symbol in general. We list here only some
useful properties and refer to [AnZh20, Subsection 2.2] for more details about this decomposi-
tion.

Let Σ+
s = {α1, . . . , α`} be the set of positive simple roots, and let {Λ1, . . . ,Λ`} be the dual

basis of a, which is defined by

〈αj ,Λk〉 = δjk ∀ 1 ≤ j, k ≤ `.
Denote by B the convex hull of W.Λ1 t · · · tW.Λ`, and by S its polyhedral boundary. Notice
that B∩ a+ is the `-simplex with vertices 0,Λ1, . . . ,Λ`, and S∩ a+ is the (`− 1)-simplex with
vertices Λ1, . . . ,Λ`. The following tiling is obtained by regrouping the barycentric subdivisions
of the simplices S ∩ w.a+:

S =
⋃
w∈W

⋃
1≤j≤`

w.Sj

where

Sj = {λ ∈ S ∩ a+ | 〈αj , λ〉 = max
1≤j≤`

〈αk, λ〉}.

We project these subdivisions Sj onto the unit sphere and denote these projections by Sj .
We establish next a smooth version of the partition of unity∑

w∈W

∑
1≤j≤`

1w.Sj
(
λ
|λ|
)

= 1 a.e..

Let χC1 : R → [0, 1] be a smooth cut-off function such that χC1(r) = 1 when r ≥ 0 and
χC1(r) = 0 when r ≤ −C1, where C1 > 0 is a suitable constant (see [AnZh20, p.8]). For every
w ∈W and 1 ≤ j ≤ `, we define

χ̃w.Sj (λ) =
∏

1≤k≤`,k 6=j
χC1

( 〈w.αk,λ〉
|λ|

)
χC1

( 〈w.αj ,λ〉−〈w.αk,λ〉
|λ|

)
∀λ ∈ ar {0},

and

χw.Sj =
χ̃w.Sj∑

w∈W
∑

1≤j≤` χ̃w.Sj
.

Then, χw.Sj is a homogeneous symbol of order 0 and∑
w∈W

∑
1≤j≤`

χw.Sj = 1 on ar {0}. (2.6)
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In addition, the following properties hold for the support of χw.Sj

Lemma 2.1. ([AnZh20, Proposition 2.6]) Let w ∈ W and 1 ≤ j ≤ `. Then a root α ∈ Σ
satisfies either 〈α,w.Λj〉 = 0 or

|〈α, λ〉| � |λ| ∀λ ∈ suppχw.Sj . (2.7)

Moreover,

|〈w.Λj , λ〉| � |λ| ∀λ ∈ suppχw.Sj . (2.8)

3. Pointwise estimates of the Schrödinger kernel

For simplicity, we consider in this section the shifted Schrödinger propagator e−itD2 with
D =

√
−∆− |ρ|2, and denote still by st its K-bi-invariant convolution kernel. By using the

inverse formula of the spherical Fourier transform, we have

st(x) = C0

∫
a
dλ |c(λ)|−2 ϕλ(x) e−it|λ|

2 ∀ t ∈ R∗, ∀x ∈ X. (3.1)

As usual, such an oscillatory integral makes sense by applying standard procedures (as a limit
of convergent integrals and/or after performing several integrals by parts). We will study (3.1)
differently, depending whether |t| is large or small. Let us begin with the easier case where |t|
is large.

3.1. Large time kernel estimate. Assume that |t| ≥ 1. In this case, we establish the following
pointwise kernel estimate, by using the standard stationary phase method and the elementary
estimate (2.5) about the Plancherel density and its derivatives.

Theorem 3.1. There exist an integer N > max{d,D} and a constant C > 0 such that

|st(x)| ≤ C |t|−
D
2
(
1 + |x|

)N
ϕ0(x) ∀ |t| ≥ 1, ∀x ∈ X.

Proof. By using the integral expression (2.2) of the spherical function, we write

st(x) = C0

∫
K
dk e〈ρ,A(kx)〉

∫
a
dλ |c(λ)|−2 e−it|λ|

2
ei〈λ,A(kx)〉︸ ︷︷ ︸

I(t,A(kx))

(3.2)

where A(kx) denotes the a-component in the Iwasawa decomposition of kx, which satisfies
|A(kx)| ≤ |x| and which we abbreviate A in the sequel. Theorem 3.1 will follow from

|I(t, A)| . |t|−
D
2
(
1 + |A|

)N
. (3.3)

Let us split up

I(t, A) = I0(t, A) + I∞(t, A) =

∫
a
dλχ0

t (λ) . . . +

∫
a
dλχ∞t (λ) . . .

where χ0
t (λ) = χ(

√
|t||λ|) is a radial cut-off function such that suppχ0

t ⊂ B(0, 2|t|−
1
2 ), χ0

t = 1

on B(0, |t|−
1
2 ) and χ∞t = 1− χ0

t . On the one hand, by using (2.5), we easily estimate

|I0(t, A)| .
∫
|λ|. |t|−

1
2

dλ |c(λ)|−2 . |t|−
D
2 . (3.4)

On the other hand, after performing N integrations by parts based on

e−it|λ|
2

= − 1
2it

∑`
j=1

λj
|λ|2

∂
∂λj

e−it|λ|
2
, (3.5)



SCHRÖDINGER EQUATION ON NONCOMPACT SYMMETRIC SPACES 7

we obtain

I∞(t, A) = (2it)−N
∫
a
dλ e−it|λ|

2
{∑`

j=1
∂
∂λj
◦ λj
|λ|2

}N{
χ∞t (λ) |c(λ)|−2 ei〈λ,A〉

}
. (3.6)

Assume that
• N0 derivatives are applied to the cut-off function χ0

t (λ), which produces O(|t|
N0
2 ),

• N1 derivatives are applied to the factors λj
|λ|2 , which produces O(|λ|−N−N1),

• N2 derivatives are applied to the Plancherel density |c(λ)|−2, which is not a symbol in
general and which produces{

O(|λ|D−`) if |λ| ≤ 1,

O(|λ|d−`) if |λ| ≥ 1,

• N3 derivatives are applied to the exponential factor ei〈λ,A〉, which produces O(|A|N3),

with N0 +N1 +N2 +N3 = N . If some derivatives hit the cut-off function χ0
t (λ), i.e., if N0 ≥ 1,

then the integral reduces to a spherical shell where |λ| � |t|−
1
2 , and the contribution to (3.6) is

estimated by

|t|−
N
2 |t|

N0
2 |t|

N1
2 |t|−

D
2 |A|N3 . |t|−

D
2
(
1 + |A|

)N
, (3.7)

since |t| ≥ 1. If N0 = 0, then

|I∞(t, A)| . |t|−N
∫
|λ|&|t|−

1
2

dλ
∣∣∇N2

λ |c(λ)|−2
∣∣ |λ|−N−N1 |A|N3

. |t|−N |A|N3

{∫
|t|−

1
2.|λ|≤1

dλ |λ|D−`−N−N1 +

∫
|λ|≥1

dλ |λ|d−`−N−N1

}
. |t|−

D
2 (1 + |A|)N + |t|−N (1 + |A|)N . |t|−

D
2 (1 + |A|)N (3.8)

provided that N > d and N ≥ D
2 . In conclusion, (3.3) follows from (3.4), (3.7) and (3.8). �

Remark 3.2. The analysis carried out in the proof of Theorem 3.1 yields at best the following
small time estimate

|st(x)| . |t|−d (1 + |x|)d ϕ0(x) ∀ 0 < |t| < 1, ∀x ∈ X. (3.9)

3.2. Small time kernel estimate. Assume that 0 < |t| < 1. Our aim is to reduce the negative
power |t|−d in (3.9) to |t|−

d
2 . We shall use different tools, depending on the size of |x|√

|t|
. If |x|√

|t|
is small, we decompose the Weyl chamber into several subcones according to the barycentric
decompositions described in Sect. 2.3, and perform in each subcone several integrations by parts
along a well chosen direction. If |x|√

|t|
is large, we express in addition the Schrödinger propagator

in terms of the wave propagator and use the Hadamard parametrix.

Theorem 3.3. The following estimate holds, for 0 < |t| < 1 and |x| ≤
√
|t|:

|st(x)| . |t|−
d
2 ϕ0(x).

Proof. By resuming the notation in the proof of Theorem 3.1, we have

st(x) = C0

∫
K
dk e〈ρ,A(kx)〉 (I0(t, A) + I∞(t, A)

)
.
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Clearly,

|I0(t, A)| =
∣∣∣ ∫

a
dλχ0

t (λ) |c(λ)|−2 e−it|λ|
2
ei〈λ,A〉

∣∣∣ . ∫
|λ|. |t|−

1
2

dλ |c(λ)|−2 . |t|−
d
2 . (3.10)

In order to estimate

I∞(t, A) =

∫
a
dλχ∞t (λ) |c(λ)|−2 e−it|λ|

2
ei〈λ,A〉,

we split up

I∞(t, A) =
∑
w∈W

∑
1≤j≤`

∫
a
dλχw.Sj (λ)χ∞t (λ) |c(λ)|−2 e−it|λ|

2
ei〈λ,A〉︸ ︷︷ ︸

Iw.Sj (t,x)

.

according to the barycentric decomposition (2.6). Next, we study Iw.Sj (t, x) by performing N
integrations by parts based on

e−it|λ|
2

= − 1
2it

1
〈w.Λj ,λ〉 ∂w.Λj e

−it|λ|2 ,

which yields

Iw.Sj (t, x) = (2it)−N
∫
a
dλ e−it|λ|

2
{
∂w.Λj ◦ 1

〈w.Λj ,λ〉

}N {
χw.Sj (λ)χ∞t (λ) |c(λ)|−2 ei〈λ,A〉

}
.

As in the the proof of Theorem 3.1, we assume that
• N0 derivatives are applied to the cut-off function χ∞t (λ):

∂N0
w.Λj

χ∞t (λ) = O(|t|
N0
2 ),

• N1 derivatives are applied to the factors 1
〈w.Λj ,λ〉 , which produces O(|λ|−N−N1),

• N2 derivatives are applied to the factor χw.Sj (λ), which is a homogeneous symbol of
order 0:

∂N2
w.Λj

χw.Sj (λ) = O(|λ|−N2),

• N3 derivatives are applied to the factor ei〈λ,A〉:

∂N3
w.Λj

ei〈λ,A〉 = O(|A|N3),

• N4 derivatives are applied to the Plancherel density |c(λ)|−2,

with N0 + N1 + N2 + N3 + N4 = N . According to Lemma 2.1, any root α ∈ Σ satisfies either
〈α,w.Λj〉 = 0 or |〈α, λ〉| � |λ|, for every λ ∈ suppχw.Sj . On the one hand, if 〈α,w.Λj〉 = 0, all
derivatives

∂kw.Λj |cα(〈α, λ〉)|−2 ∀ k ∈ N∗

vanish. On the other hand, if 〈α,w.Λj〉 6= 0, we have∣∣∂kw.Λj |cα(〈α, λ〉)|−2
∣∣ . |〈α, λ〉|mα+m2α−k � |λ|mα+m2α−k

for any k ∈ N and for every λ ∈ (suppχw.Sj )∩ (suppχ∞t ). Here we have used (2.7) and the fact
that |cα|−2 is an inhomogeneous symbol of order mα +m2α on R. Hence

∂N4
w.Λj
|c(λ)|−2 = O(|λ|d−`−N4) ∀λ ∈ (suppχw.Sj ) ∩ (suppχ∞t ).

Therefore, if no derivative hits the cut-off function χ∞t (λ), i.e., if N0 = 0, then

|Iw.Sj (t, x)| . |t|−N
∫
|λ|&|t|−

1
2

dλ |λ|−N−N1−N2+d−`−N4 |A|N3

. |t|−N |t|−
d
2

+N
2

+
N1
2

+
N2
2

+
N4
2 |t|

N3
2 ≤ |t|−

d
2
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provided that N > d. If N0 ≥ 1, then the integral is reduced to a spherical shell where
|λ| � |t|−

1
2 , and hence

|Iw.Sj (t, x)| . |t|−N |t|
N0
2 |t|−

d
2

+N
2

+
N1
2

+
N2
2

+
N4
2 |A|N3 ≤ |t|−

d
2 ,

since |A| ≤ |x| ≤
√
|t|. Together with (3.10), we conclude that |I(t, A)| . |t|−

d
2 and

|st(x)| . |t|−
d
2 ϕ0(x),

for all 0 < |t| < 1 and x ∈ X such that |x| ≤
√
|t|. �

The above proof shows that, for every λ ∈ (suppχw.Sj ) ∩ (suppχ∞t ), the Plancherel density
|c(λ)|−2 behaves like an inhomogeneous symbol of order d − ` if we differentiate it along the
direction w.Λj . When |x| >

√
|t|, we combine this argument with the Hadamard parametrix,

which was used in the study of other equations on symmetric spaces, see for instance [CGM01;
AnZh20].

Let us express the Schrödinger propagator

e−itD
2

= π−
1
2 e−i

π
4

sign (t)︸ ︷︷ ︸
C2

|t|−
1
2

∫ +∞

0
ds e

i
4t
s2 cos(sD)

in terms of the wave propagator and correspondingly

st(x) = C2 |t|−
1
2

∫ +∞

0
ds e

i
4t
s2 Φs(x) (3.11)

for their K-bi-invariant convolution kernels. On the one hand, by finite propagation speed,

Φs(x) = 0 if |x| > |s|. (3.12)

On the other hand, recall the Hadamard parametrix

Φs(expH) = J(H)−
1
2 |s|

+∞∑
k=0

4−k Uk(H)R
k− d−1

2
+ (s2 − |H|2) ∀ s ∈ R∗, ∀H ∈ p, (3.13)

where J denotes the Jacobian of the exponential map p→ G/K, which is given by

J(H) =
∏
α∈Σ+

( sinh〈α,H〉
〈α,H〉

)mα ∀H ∈ a+,

and {Rz+ | z ∈ C} denotes the analytic family of Riesz distributions on R, which is defined by

Rz+(r) =

{
Γ(z)−1 rz−1 if r > 0

0 if r ≤ 0
∀ Re z > 0.

This parametrix was constructed and used in various settings, see for instance [Ber77; Hor94;
CGM01]. We refer to [AnZh20, Appendix B] for details about the wave propagator cos (t

√
−∆)

associated to the unshifted Laplacian ∆ on noncompact symmetric spaces and notice that the
same results hold for cos (tD). Specifically (3.13) is an asymptotic expansion

Φs(expH) = J(H)−
1
2 |s|

[d/2]∑
k=0

4−k Uk(H)R
k− d−1

2
+ (s2 − |H|2) + E(s,H) (3.14)

where the coefficients Uk are AdK-invariant smooth functions on p, which are bounded together
with their derivatives, while the remainder satisfies

|E(s,H)| . (1 + |s|)3( d
2

+1) e−〈ρ,H〉 ∀s ∈ R∗, ∀H ∈ a+. (3.15)
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Let us split up∫ +∞

0
ds =

∫ +∞

0
dsχ0( s

|x|) +

∫ +∞

0
dsχ1( s

|x|) +

∫ +∞

0
dsχ∞( s

|x|)

in (3.11) by means of a smooth partition of unity 1 = χ0 + χ1 + χ∞ on R such that
suppχ0 ⊂ (−1, 1),

suppχ1 ⊂ (−2C3,−1
2) ∪ (1

2 , 2C3),

suppχ∞ ⊂ (−∞,−C3) ∪ (C3,+∞)

where the choice of C3 > 1 will be specified later. Then the contribution of the first integral
vanishes according to (3.12) and we are left with

st(x) = C2 |t|−
1
2

∫ +∞

0
dsχ1( s

|x|) e
i
4t
s2 Φs(x)︸ ︷︷ ︸

s1t (x)

+ C2 |t|−
1
2

∫ +∞

0
dsχ∞( s

|x|) e
i
4t
s2 Φs(x)︸ ︷︷ ︸

s∞t (x)

where s1
t (x) and s∞t (x) are K-bi-invariant. Let us first study s∞t (x) by using again the barycen-

tric decomposition. In comparison with the proof of Theorem 3.3, we have now |x| >
√
|t| and

there is an additional integral over s ∈ (1,∞) to control. Let us state the theorem.

Theorem 3.4. The following estimate holds, for all 0 < |t| < 1 and |x| >
√
|t| :

|s∞t (x)| . |t|−
d
2 ϕ0(x).

Proof. We express

s∞t (x) = 1
2 C0C2 |t|−

1
2

∫ +∞

−∞
dsχ∞( s

|x|) e
i
4t
s2
∫
a
dλ |c(λ)|−2 ϕλ(x) e−is|λ|

by evenness and by expressing the wave kernel Φs by means of the inverse spherical Fourier
transform. Let us split up s∞t = 1

2 C0C2 (s∞,0t + s∞,∞t ), where

s∞,0t (x) = |t|−
1
2

∫ +∞

−∞
dsχ∞( s

|x|) e
i
4t
s2
∫
a
dλχ0

t (λ) |c(λ)|−2 ϕλ(x) e−is|λ|︸ ︷︷ ︸
I0(s,t,x)

and

s∞,∞t (x) = |t|−
1
2

∫ +∞

−∞
dsχ∞( s

|x|) e
i
4t
s2
∫
a
dλχ∞t (λ) |c(λ)|−2 ϕλ(x) e−is|λ|︸ ︷︷ ︸

I∞(s,t,x)

.

Recall that χ0
t (λ) = χ(

√
|t||λ|) is a radial cut-off function such that suppχ0

t ⊂ B(0, 2|t|−
1
2 ),

χ0
t = 1 on B(0, |t|−

1
2 ) and χ∞t = 1− χ0

t .

Estimate of s∞,0t . Notice that the obvious estimate |I0(s, t, x)| . |t|−
d
2 |ϕ0(x) is not enough

for our purpose. We need indeed to compensate on the one hand the factor |t|−
1
2 and to get on

the other hand enough decay in |s| to ensure the convergence of the external integral. To this
end, we perform two integrations by parts based on

e
i
4t
s2 = −2it

s
∂
∂s e

i
4t
s2 (3.16)

and obtain this way

s∞,0t (x) = −4 |t|
3
2

∫ +∞

−∞
ds e

i
4t
s2 ∂

∂s

(
1
s
∂
∂s

) {
1
s χ∞( s

|x|) I0(s, t, x)
}
. (3.17)
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Notice that ∣∣( ∂∂s)k I0(s, t, x)
∣∣ . |t|− d+k2 ϕ0(x) ∀ k ∈ N.

If any derivative hits χ∞( s
|x|) in (3.17), the integral reduces to two intervals where |s| � |x|,

and the corresponding contribution is estimated by

|t|−
d−3

2 ϕ0(x)

∫
|s|�|x|

ds {s−2 |x|−2 + s−3 |x|−1 + s−2 |x|−1 |t|−
1
2 } . |t|−

d
2 ϕ0(x),

since |t|
1
2 < |x|. Otherwise we end up with the estimate

|t|−
d−3

2 ϕ0(x)

∫
|s|&|x|

ds {s−4 + s−3 |t|−
1
2 + s−2 |t|−1} . |t|−

d
2 ϕ0(x).

In conclusion,

|s∞,0t (x)| . |t|−
d
2 ϕ0(x),

for all 0 < |t| < 1 and x ∈ X such that |x| >
√
|t|.

Estimate of s∞,∞t . Let us turn to

s∞,∞t (x) =

∫ +∞

−∞
dsχ∞( s

|x|) e
i
4t
s2 I∞(s, t, x).

We will prove the following estimate, for any integer N > d,

|I∞(s, t, x)| . |s|−N |t|−
d
2

+N
2 ϕ0(x) ∀ |s| ≥ C3|x|. (3.18)

Then, as |x| >
√
|t| , we conclude easily that

|s∞,∞t (x)| . |t|−
d
2

+N
2
− 1

2 ϕ0(x)

∫
|s|&|x|

ds |s|−N . |t|−
d
2
(√|t|
|x|
)N−1

ϕ0(x) . |t|−
d
2 ϕ0(x). (3.19)

In order to establish (3.18), we express

I∞(s, t, x) =

∫
a
dλχ∞t (λ) |c(λ)|−2 ϕλ(x) e−is|λ|

=

∫
K
dk e−〈ρ,A〉

∑
w∈W

∑
1≤j≤`

∫
a
dλχw.Sj (λ)χ∞t (λ) |c(λ)|−2 e−i(s|λ|−〈λ,A〉)︸ ︷︷ ︸

Iw.Sj (s,t,A)

by using again the integral formula (2.2) and the barycentric decomposition (2.6). According
to (2.8), we can choose C3 > 0 such that, if |s| ≥ C3|x|, then

|∂w.Λj (s|λ| − 〈λ,A〉)| =
∣∣∣s 〈w.Λj ,λ〉|λ| − 〈w.Λj , A〉

∣∣∣
≥ |s| |〈w.Λj ,λ〉||λ|︸ ︷︷ ︸

&1

− |〈w.Λj , A〉|︸ ︷︷ ︸
. |x|

& |s|,

for every λ ∈ (suppχ∞t ) ∩ (suppχw.Sj ). Under these assumptions, the phase function λ 7→
s|λ| − 〈λ,A〉 has no critical point along the direction w.Λj . By performing N integrations by
parts based on

e−i(s|λ|−〈λ,A〉) = i
∂w.Λj (s|λ|−〈λ,A〉) ∂w.Λj e

−i(s|λ|−〈λ,A〉),
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we write

Iw.Sj (s, t, A) = (is)−N
∫
a
dλ e−i(s|λ|−〈λ,A〉)

{
∂w.Λj ◦ s

∂w.Λj (s|λ|−〈λ,A〉)

}N {
χw.Sj (λ)χ∞t (λ) |c(λ)|−2

}
.

Assume that

• N0 derivatives are applied to the cut-off function χ∞t (λ), which produces O(|t|
N0
2 ),

• N1 derivatives are applied to the factors s
∂w.Λj (s|λ|−〈λ,A〉) , which produces O(|λ|−N1),

• N2 derivatives are applied to the cut-off functions χw.Sj (λ), which produces O(|λ|−N2),

• N3 derivatives are applied to the Plancherel density |c(λ)|−2, which produces O(|λ|d−`−N3),

with N0 + N1 + N2 + N3 = N . Again, if some derivatives hit χ∞t (λ), i.e., if N0 ≥ 1, then the
integral reduces to a spherical shell where |λ| � |t|−

1
2 , and its contribution is estimated by

|s|−N |t|−
`
2 |t|

N0
2 |t|

N1
2 |t|

N2
2 |t|−

d
2

+ `
2

+
N3
2 = |s|−N |t|−

d
2

+N
2 .

If N0 = 0, then

|Iw.Sj (s, t, A)| . |s|−N
∫
|λ|& |t|−

1
2

dλ |λ|−N1 |λ|−N2 |λ|d−`−N3 . |s|−N |t|−
d
2

+N
2

provided that N > d. This proves (3.18) and hence (3.19). �

Theorem 3.5. The following estimate holds, for all 0 < |t| < 1 and |x| >
√
|t|:

|s1
t (x)| . |t|−

d
2 (1 + |x|)

3
2
d+4 e−〈ρ,x

+〉.

Proof. Since s1
t is K-bi-invariant, we have

s1
t (x) = C2

2 |t|
− 1

2 J(x+)−
1
2

[d/2]∑
k=0

4−k Uk(x
+)

Ik(t,|x|)︷ ︸︸ ︷∫ +∞

0
d(s2)χ1( s

|x|) e
i
4t
s2 R

k− d−1
2

+ (s2− |x|2)

+ C2
2 |t|

− 1
2

∫ +∞

0
dsχ1( s

|x|) e
i
4t
s2 E(s, x+)︸ ︷︷ ︸

Ẽ(t,|x|)

according to (3.14). On the one hand, the remainder estimate

|Ẽ(t, |x|)| . |x| (1 + |x|)3( d
2

+1) e−〈ρ,x
+〉 (3.20)

follows from (3.15). On the other hand, we claim that

|Ik(t, |x|)| . |t|k−
d−1

2 (3.21)

if |x|>
√
|t| >0. Let us first prove (3.21) when d is odd. By a change of variables and by using

the fact that Rk−
d−1

2
+ (s−1) =

(
∂
∂s

)d−1
2
−k
R0

+(s−1), we obtain

|Ik(t, |x|)| = |x|2k−d+1

∫ +∞

0
dsχ1(

√
s) e

i|x|2
4t

sR
k− d−1

2
+ (s− 1)

= |x|2k−d+1

∫ +∞

0
dsR0

+(s−1)
(
− ∂
∂s

)d−1
2
−k ∣∣{χ1(

√
s) e

i|x|2
4t

s
}
.
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As R0
+(s−1) is the Dirac measure at s=1, we conclude that

Ik(t, |x|) = |x|2k−d+1
(
− i

4
|x|2
t

)d−1
2
−k

= O(|t|k−
d−1

2 ).

When d is even, we obtain similarly

|Ik(t, |x|)| = π−
1
2 |x|2k−d+1

∫ +∞

1

ds√
s−1

(
− ∂
∂s

) d
2
−k {

χ1(
√
s) e

i|x|2
4t

s
}
,

which is a linear combination of expressions

tj+k−
d
2 |x|1−2j

∫ +∞

1

ds√
s−1

θj(s) e
i|x|2

4t
s︸ ︷︷ ︸

Jj(t,|x|)

where 0 ≤ j ≤ d
2 − k and θj ∈ C∞c (R) with supp θj ⊂ (−4C2

3 , 4C
2
3 ). Notice that the elementary

estimate Jj(t, |x|) = O(1), together with the assumption |x|>
√
|t| implies that

|Ik(t, |x|)| . |x| |t|−
d
2

+k,

which might be enough for our purpose as long as k > 0. The case k = 0 requires actually a
more careful analysis. Let us show that

Jj(t, |x|) .
√
|t|
|x|

by splitting up ∫ +∞

1
ds =

∫ 1+
|t|
|x|2

1
ds +

∫ +∞

1+
|t|
|x|2

ds

in the definition of Jj(t, |x|). The contribution of the first integral is easily estimated by∫ 1+
|t|
|x|2

1
ds ds√

s−1
= 2
√
s−1

∣∣∣s=1+
|t|
|x|2

s=1
= 2

√
|t|
|x| .

After performing an integration by parts based on

e
i|x|2

4t
s = − i 4t

|x|2
∂
∂s e

i|x|2
4t

s,

the contribution of the second integral is also estimated by

|t|
|x|2

∫ 4C2
3

1+
|t|
|x|2

ds
{

(s−1)−
1
2 + (s−1)−

3
2
}
.
√
|t|
|x|

under the assumption |x|>
√
|t| . Thus (3.21) holds as well when d is even. In conclusion,

|s1
t (x)| . |t|−

d
2 J(x+)−

1
2 + |t|−

1
2 |x| (1 + |x|)3( d

2
+1) e−〈ρ,x

+〉

. |t|−
d
2 (1 + |x|)

3
2
d+4e−〈ρ,x

+〉

when 0 < |t| < 1 and x ∈ X satisfies |x| >
√
|t| . �

In summary, we have divided our kernel analysis into three parts and deduced Theorem 1.1
from Theorem 3.1, Theorem 3.3 and Theorem 3.5. Notice that the method used to prove small
time kernel estimates can be also used for large time.
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4. Dispersive estimates and Strichartz inequalities on symmetric spaces

Once pointwise kernel estimates are available on symmetric spaces, one can deduce disper-
sive properties for the corresponding propagator, by using an interpolation argument based on
the Kunze-Stein phenomenon, more precisely the following K-bi-invariant version, which is a
straightforward generalization of [APV11, Theorem 4.2].

Lemma 4.1. Let κ be a reasonable K-bi-invariant function on G. Then

‖ · ∗κ ‖Lq′ (X)→Lq(X) ≤
{∫

G
dxϕ0(x) |κ(x)|

q
2

} 2
q

for every q ∈ [2,+∞). In the limit case q =∞,

‖ · ∗κ ‖L1(X)→L∞(X) = supx∈G |κ(x)|.

The following dispersive property generalizes the results previously obtained on hyperbolic
spaces. Its proof is adapted straightforwardly from the rank one case [AnPi09; APV11] and is
therefore omitted.

Theorem 4.2 (Dispersive property). Let 2 < q, q̃ ≤ +∞. There exists a constant C > 0 such
that, for every t ∈ R∗,

‖eit∆‖Lq̃′ (X)→Lq(X) ≤ C

|t|
−max{ 1

2
− 1
q
, 1
2
− 1
q̃
} d if 0 < |t| < 1,

|t|−
D
2 if |t| ≥ 1

As already observed on hyperbolic spaces [Ban07; AnPi09], the large scale dispersive effects
in negative curvature imply stronger dispersion properties than in the Euclidean setting. Notice
that D = 3 in rank one and that D is larger in higher rank. Thus we obtain a fast decay for
large time, which is independent of q and q̃.

By using the classical TT ∗ method (see [GiVe95] and [KeTa98] for the endpoint), one can
deduce the Strichartz inequality from the dispersive property. This space-time estimate serves
as an important tool for finding minimal regularity conditions on the initial data ensuring
well-posedness of nonlinear Schrödinger equations.

Consider the inhomogeneous linear Schrödinger equation on X:{
i∂tu(t, x) + ∆xu(t, x) = F (t, x),

u(0, x) = f(x),
(LS)

whose solution is given by Duhamel’s formula:

u(t, x) = eit∆ f(x) − i

∫ t

0
ds ei(t−s)∆ F (s, x).

A couple (p, q) is called admissible if (1
p ,

1
q ) belongs to the triangle{

(1
p ,

1
q ) ∈

(
0, 1

2

]
×
(
0, 1

2

) ∣∣ 2
p + d

q ≥
d
2

}
∪
{(

0, 1
2

)}
Theorem 4.3. Let (p, q) and (p̃, q̃) be two admissible couples and I ⊆ R be any bounded or
unbounded time interval. Then there exists a constant C > 0 such that the following estimate
holds for all solutions to the Cauchy problem (LS):

‖u‖Lp(I;Lq(X)) ≤ C
{
‖f‖L2(X) + ‖F‖Lp̃′ (I;Lq̃′ (X))

}
.

This inequality was established progressively in rank one, see for instance [Pie06; BCS08;
AnPi09; IoSt09] on real hyperbolic spaces and [Pie08; APV11] on Damek-Ricci spaces. In
higher rank, the admissible set for X is again much large than the admissible set for Rd, which
corresponds only to the lower edge of the admissible triangle. Notice however that we don’t
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1
p

1
q

1
2

1
2
− 1

d

0 1
2

1
p

= d
2

(
1
2
− 1

q

)
Figure 2. Admissibility in dimension d ≥ 3.

take full advantage of the large time decay |t|−
D
2 in Theorem 4.2. The proof of Theorem 4.3

requires indeed only |t|−1.

5. Well-posedness and scattering for the semilinear Schrödinger equation

Strichartz inequalities for linear inhomogeneous equations are used to prove well-posedness
and scattering results for nonlinear perturbations. We list in this section some of these results
in higher rank. The proofs are adapted straightforwardly from the rank one case considered in
[AnPi09; APV11] and are therefore omitted.

Consider the nonlinear Schrödinger equation on X:{
i∂tu(t, x) + ∆xu(t, x) = F (u(t, x)),

u(0, x) = f(x),
(NLS)

where F = F (u(t, x)) is a power-like nonlinearity of order γ > 1 in the sense that

|F (u)| . |u|γ and |F (u)− F (v)| . (|u|γ−1 + |v|γ−1) |u− v|.
Recall some classical definitions in the analysis of PDE. The nonlinearity F is called gauge
invariant if Im{F (u)ū} = 0. It is well known that gauge invariance implies L2 conservation of
mass. If there exists a nonnegative C1 function G such that F (u) = G′(|u|2)u, the nonlinearity
F is called defocusing and we have H1 conservation of energy. Here the Sobolev space H1(X)

is defined as the image of L2(X) under the operator (−∆)−
1
2 . Let us state our well-posedness

and scattering results.

Well-posedness for nonlinear Schrödinger equation on X:

• If 1 < γ ≤ 1 + 4
d , the Cauchy problem (NLS) is globally well-posed for small L2 data.

• If 1 < γ < 1 + 4
d , the Cauchy problem (NLS) is locally well-posed for arbitrary L2 data.

Moreover, if F is in addition gauge invariant, then the L2 conservation of mass implies
the global well-posedness for arbitrary L2 data in this subcritical case.

• If 1 < γ ≤ 1 + 4
d−2 , the Cauchy problem (NLS) is globally well-posed for small H1 data.

• If 1 < γ < 1 + 4
d−2 , the Cauchy problem (NLS) is locally well-posed for arbitrary H1

data. Moreover, if F is in addition defocusing, then the H1 conservation of energy
implies the global well-posedness for arbitrary H1 data in this subcritical case.



REFERENCES 16

As for real hyperbolic spaces, the stronger Strichartz inequality obtained on noncompact
symmetric spaces implies better well-posedness results than in Euclidean spaces. For instance,
small L2 data global well-posedness holds for any exponent 1 < γ ≤ 1 + 4

d on X, while on Rd
one must assume in addition gauge invariance. However, under this condition, one can handle
arbitrary L2 data by using conservation laws as in Euclidean spaces.

Scattering for nonlinear Schrödinger equation on X:
• If 1 < γ ≤ 1+ 4

d , then global solutions u(t, x) to the Cauchy problem (NLS) correspond-
ing to small L2 data have the following scattering property: there exists u± ∈ L2 such
that

‖u(t, ·)− eit∆u±‖L2(X) −→ 0 as t −→ ±∞.

• If 1 < γ ≤ 1 + 4
d−2 , then global solutions u(t, x) to the Cauchy problem (NLS) corre-

sponding to small H1 data have the following scattering property: there exists u± ∈ H1

such that

‖u(t, ·)− eit∆u±‖H1(X) −→ 0 as t −→ ±∞.

On Euclidean spaces, scattering to linear solutions is known to fail in general for small
exponents γ ∈ (1, 1 + 2

d ]. On noncompact symmetric spaces, the stronger Strichartz inequality
allows us again to obtain scattering for small data in the full range.
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