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Abstract
We describe a novel tool, Barcode(P,Q), that,
given a pair of distributions in a high-dimensional
space, tracks multiscale topology spacial discrep-
ancies between manifolds on which the distribu-
tions are concentrated.

1. Introduction
Reconstruction of the data distribution from observing only
a subset of its points has made a significant step forward
since the invention of Generative Adversarial Networks
(Goodfellow et al., 2014). Deep generative networks try to
model a distribution which is as similar as possible to the
true data distribution. Despite the exceptional success that
was achieved by the deep generative models, there exists
a longstanding challenge of good assessment of the gener-
ated samples quality and diversity. We describe a frame-
work, based on Cross-Barcode(P,Q), a novel tool aiming
at attacking this problem. For a pair of point clouds the
Cross-Barcode(P,Q) describes the differences in multiscale
manifold topology between the manifolds approximated by
the two clouds.

2. Cross-Barcode and Manifold Topology
Divergence.

2.1. Multiscale simplicial approximation of manifolds.

According to the well-known Manifold Hypothesis (Good-
fellow et al., 2016) the support of the data distribution Pdata

is often concentrated on a low-dimensional manifold Mdata.
We construct a framework for comparing numerically such
distribution Pdata with a similar distribution Qmodel con-
centrated on a manifold Mmodel produced by a generative
neural network. The immediate difficulty here is that the
manifold Mdata is unknown and is described only through
discrete sets of samples from the distribution Pdata. One
standard approach to resolve this difficulty is to approximate
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the manifold Mdata by simplices with vertices given by the
sampled points. The simplices approximating the manifold
are picked based on proximity information given by the
pairwise distances between sampled points. The standard
approach is to fix a threshold r > 0 and to take the sim-
plices with vertices that are sufficently close to each other
in comparison with the threshold r. The choice of threshold
is essential here since if it is too small, then only the initial
points, i.e., separated from each other 0-dimensional sim-
plices, are allowed. And if the threshold is too large, then
all possible simplices with sampled points as vertices are
included and their union is simply the big blob representing
the convex hull of the sampled points. Instead of trying to
guess the right value of the threshold, the standard recent
approach is to study all thresholds at once. This can be
achieved thanks to the mathematical tool, called barcode,
that quantifies the evolution of topological features over
multiple scales. For each value of r the barcode describes
the topology, namely the numbers of holes or voids of dif-
ferent dimensions, of the union of all simplicies included up
to the threshold r.

2.2. Measuring the differences in simplicial
approximation of two manifolds

However, to estimate numerically the degree of similarity
between the manifolds Mmodel,Mdata ⊂ RD, it is impor-
tant not just to know the numbers of topological features
across different scales for simplicial complexes approximat-
ing Mmodel,Mdata , but to be able to verify that the similar
topological features are located at similar places and appear
at similar scales.

Our method measures the differences in the simplicial ap-
proximation of the two manifolds, represented by samples
P and Q, by constructing sets of simplices, describing dis-
crepancies between the two manifolds. To construct these
sets of simplices we take the edges connecting P−points
with Q−points, and also P−points between them, ordered
by their length, and start adding these edges one by one,
beginning from the smallest edge and gradually increasing
the threshold. We add also the triangles and k−simplices
at the threshold when all their edges have been added. It is
assumed that all edges between Q−points were already in
the initial set. We track in this process the birth and death
of topological features, where the topological features are
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allowed here to have boundaries on any simplices formed by
Q−points. The longer the lifespan of the topological feature
across the change of threshold the bigger the described by
this feature discrepancy between the two manifolds.

Homology is a tool that permits to single out topological
features that are similar, and to decompose any topologi-
cal feature into a sum of basic topological features. More
specifically, we use the homology of a pair. In our case,
a k−cycle is a collection of k−simplices formed by P−
and Q− points, such that their boundaries cancel each other,
perhaps except for the part of boundaries consisting of sim-
plices formed only by Q−points. For example, a cycle
of dimension k = 1 corresponds to a path connecting a
pair of Q−points and consisting of edges passing through
a set of P−points. A cycle which is a boundary of a set
of (k + 1)−simplices is considered trivial. Two cycles are
topologically equivalent if they differ by a boundary, and by
collection of simplices formed only by Q−points. A union
of cycles is again a cycle. Each cycle can be represented by
a vector in the vector space where each simplex corresponds
to a generator. In practice, the vector space over {0, 1} is
used most often. The union of cycles corresponds to the sum
of vectors. The homology vector space Hk is defined as the
factor of the vector space of all k−cycles modulo the vec-
tor space of boundaries and cycles consisting of simplices
formed only by Q−points. A set of vectors forming a basis
in this factor-space corresponds to a set of basic topological
features, so that any other topological feature is equivalent
to some partial sum of the basic features.

The homology are also defined for manifolds and for arbi-
trary topological spaces. This definition is technical and
we have to omit it due to limited space, and to refer to
e.g. (Hatcher, 2005; Moraleda et al., 2019) for details. The
relevant properties for us are the following. For each topo-
logical space X the vector spaces Hk(X), k = 0, 1 . . . , are
defined. The dimension of the vector space Hk equals to the
number of independent k−dimensional topological features
(holes,voids etc). An inclusion Y ⊂ X induces a natural
map Hk(Y )→ Hk(X)

In terms of homology, we would like to verify that not
just the dimensions of homology groups H∗(Mmodel) and
H∗(Mdata) are the same but that more importantly the nat-
ural maps:

ϕr : H∗(Mmodel ∩Mdata)→ H∗(Mmodel) (1)
ϕp : H∗(Mmodel ∩Mdata)→ H∗(Mdata) (2)

induced by the embeddings are as close as possible to iso-
morphisms. The homology of a pair is precisely the tool
that measures how far such maps are from isomorphisms.
Given a pair of topological spaces Y ⊂ X , the homology of
a pair H∗(X,Y ) counts the number of independent topolog-
ical features in X that cannot be deformed to a topological

feauture in Y plus independent topological features in Y
that, after the embedding to X , become deformable to a
point. An equivalent description, the homology of a pair
H∗(X,Y ) counts the number of independent topological
features in the factor-space X/Y , where all points of Y are
contracted to a single point. The important fact for us is
that the map, induced by the embedding, H∗(Y )→ H∗(X)
is an isomorphism if and only if the homology of the pair
H∗(X,Y ) are trivial. Moreover the embedding of simple
simplicial complexes Y ⊂ X is an equivalence in homotopy
category, if and only if H∗(X/Y ) are trivial (Whitehead,
1968).

To define the counterpart of this construction for a pair of
manifolds represented by point clouds, we employ the fol-
lowing strategy. Firstly, we replace the pair (Mmodel ∩
Mdata) ⊂ Mmodel by the equivalent pair Mmodel ⊂
(Mdata ∪Mmodel) with the same factor-space. Then, we
represent (Mdata ∪Mmodel) by the union of point clouds
P ∪Q, where the point clouds P , Q are sampled from the
distributions Pdata,Qmodel. Our principal claim here is that
taking topologically the quotient of (Mdata ∪Mmodel) by
Mmodel is equivalent in the framework of multiscale anal-
ysis of topological features to the following operation on
the matrix mP∪Q of pairwise distances of the cloud P ∪Q:
we set to zero all pairwise distances within the subcloud
Q ⊂ (P ∪Q).

2.3. Cross-Barcode(P,Q)

Let P = {pi}, Q = {qj}, pi, qj ∈ RD are two point
clouds sampled from two distributions P , Q. To define
Cross-Barcode(P,Q) we construct first the following fil-
tered simplicial complex. Let (ΓP∪Q,m(P∪Q)/Q) be the
metric space defined as the metrized complete graph on
the union of point clouds P ∪ Q with the distance matrix
given by the pairwise distance in RD for the pairs of points
(pi, pj) or (pi, qj) and with all pairwise distances within the
cloud Q that we set to zero. Our filtered simplicial complex
is the Vietoris-Rips complex of (ΓP∪Q,m(P∪Q)/Q).

Recall that given such a graph Γ with matrix m of pair-
wise distances between vertices and a parameter α > 0, the
Vietoris-Rips complex Rα(Γ,m) is the abstract simplicial
complex with simplices that correspond to the non-empty
subsets of vertices of Γ whose pairwise distances are less
than α as measured by m. Increasing parameter α adds
more simplices and this gives a nested family of collections
of simplices know as filtered simplicial complex. Recall
that a simplicial complex is described by a set of vertices
V = {v1, . . . , vN}, and a collection of simplices S, where
a k−simplex is defined as a (k + 1)−elements subset of
the set of vertices V . The set of simplices S should satisfy
the condition that for each simplex s ∈ S all the (k − 1)-
simplices obtained by the deletion of a vertex from the sub-
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set of vertices of s belong also to S. The filtered simplicial
complexes is the family of simplicial complexes Sα with
nested collections of simplices: for α1 < α2 all simplices
of Sα1

are also in Sα2
.

At the initial moment, α = 0, the simplicial complex
Rα(ΓP∪Q,m(P∪Q)/Q) has trivial homology Hk for all
k > 0 since it contains all simplices formed by Q−points.
The dimension of the 0−th homology equals at α = 0 to
the number of P−points, since no edge between them or
between a P−point and a Q−point is added at the begin-
ning. As we increase α, some cycles, holes or voids appear
in our complex Rα. Then, some combinations of these
cycles disappear. The persistent homology principal theo-
rem (Barannikov, 1994) states that it is possible to choose
the set of generators in the homology of filtered complexes
Hk(Rα) across all the scales α such that each generator ap-
pears at its specific ”birth” time and disappears at its specific
”death” time. These sets of “birth” and “deaths” times of
topological features in Rα are registered in Barcode of the
filtered complex. The Cross-Barcodei(P,Q) is thus a list
of intervals consisting of the “birth” and “deaths” times of
i−dimensional topological features in the filtered simplicial
complex Rα(ΓP∪Q,m(P∪Q)/Q). Topological features with
longer “lifespan” are considered essential, and topological
features with a short “lifespan” are considered less essential.
The topological features with “birth”=“death” are trivial by
definition and do not appear in Cross-Barcode∗(P,Q).

2.4. Cross-Barcode∗(P,Q) as obstructions to assigning
P points to distribution Q

Geometrically, the lowest dimensional
Cross-Barcode0(P,Q) is the record of relative hierar-
chical clustering of the following form. For a given
threshold r, let us consider all points of the point cloud Q
plus the points of the cloud P lying at a distance less than r
from a point of Q as belonging to the single Q−cluster. It
is natural to form simultaneously other clusters based on
the threshold r, with the rule that if the distance between
two points of P is less than threshold r then they belong
to the same cluster. When the threshold r is increased,
two or more clusters can collide. And the threshold, at
which this happens, corresponds precisely to the ”death”
time of one or more of the colliding clusters. At the end,
for very large r only the unique Q−cluster survives. Then
Cross-Barcode0(P,Q) records precisely the survival times
for this relative clustering.

Notice that in certain situations, like, for example, in
Figure 1, it is difficult to attribute confidently certain
points of P to the same distribution as the point cloud
Q even when they belong to the ”big” Q−cluster at a
small threshold r, because of the nontrivial topology. Such
”paths/membranes” of P−points in void space, are obstacles

Figure 1. Paths/membranes (red) in the void that are formed
by small intersecting disks around P points (orange), and are
ending on Q (blue), are obstacles for identification of the
distribution P with Q. These obstacles are quantified by
Cross-Barcode1(P,Q). Separate clusters are the obstacles quanti-
fied by Cross-Barcode0(P,Q).

for assigning points from P to distribution Q. These obsta-
cles are quantified by the segments from the higher barcodes
Cross− Barcode≥1(P,Q). The bigger the length of the as-
sociated segment in the barcode, the further the membrane
passes away from Q.

2.5. Basic properties of Cross-Barcode∗(P,Q).

Here is the list of basic propertis of Cross-Barcode∗(P,Q):

• If the two clouds coincide then
Cross-Barcode∗(P, P ) = ∅

• Factoring by the empty cloud changes nothing and
Cross-Barcode∗(P,∅) = Barcode∗(P ) the usual bar-
code of the point cloud itself

• We have verified empirically the diminishing of
Cross-Barcode∗(Q1, Q2) when number of points in
Q1, Q2 goes to +∞ and Q1, Q2 are sampled from the
same uniform distribution on the 2D disk of radius 1.

2.6. The Manifold Topology Divergence (MTop-Div)

Since Cross-Barcode∗(P, P ) = ∅, the closeness of
Cross-Barcode∗(P,Q) to the empty set is a measure of
discrepancy between P and Q. Various numerical char-
acteristics capture this discrepancy.

Each Cross-Barcodei(P,Q) is a multiset of intervals de-
scribing the persistent homology Hi. To measure the close-
ness to the empty set, one can use: number of segments,
sum of lengths of segments, sum of squared lengths of seg-
ments, the longest segment, specific quantile of segments
lengths or histogram of relative living time and its distance
to the histogram of the empty barcode. We assume that
various characteristics of different Hi could be useful in



Manifold Topology Divergence

various cases, but the cross-barcodes for H0 and H1 can be
calculated relatively fast.

Our MTop-Divergency(P,Q) is based on the sum of
lenghts of segments in Cross-Barcode1(P,Q), see section
2.7 for details.

The sum of lengths of segments in Cross-Barcode1(P,Q)
has an interesting interpretation via the Earth Mov-
ing Distance. Namely, it is easy to prove that EM-
Distance between the Relative Living Time histogram for
Cross-Barcode1(P,Q) and the histogram of the empty bar-
code, multiplied by the parameter αmax from the definition
of RLT, see e.g. (Khrulkov & Oseledets, 2018), for αmax
bigger than all the ”death” times in H1, coincides with the
sum of lengths of segments inH1. This ensures the standard
stability properties of this quantity.

Our metrics can be applied in two settings: to a pair of
distributions Pdata, Qmodel, in which case we denote our
score MTop-Div(D,M) and to a pair of distribtions Qmodel,
Pdata, in which case our score is denoted MTop-Div(M,D).
These two variants of the Cross-Barcode, and of the MTop-
Divergency are related to the concepts of precision and
recall, we leave exploration of this analogy for further re-
search.

2.7. Algorithm

To calculate the score that evaluates the similitude between
two distributions, we employ the following algorithm. First,
we compute Cross-Barcode1(P,Q) on point clouds P,Q
of sizes bP , bQ sampled from the two distributions P , Q.
For this we calculate the matrices mP , mP,Q of pairwise
distances within the cloud P and between clouds P and
Q. Then the algorithm constructs the Vietoris-Rips filtered
simplicial complex from the matrix m(P∪Q)/Q which is
the matrix of pairwise distances in P ∪Q with the pairs of
points from cloudQ block replaced by zeroes and with other
blocks given by mP , mP,Q. Next step is to calculate the
barcode of the constructed filtered simplicial complex. This
step and the previous step constructing the filtered complex
from the matrixm(P∪Q)/Q can be done using one of the fast
scripts1, some of them are optimized for GPU acceleration,
e.g.(Zhang et al., 2020). The calculation of barcode is based
on the persistence algorithm (Barannikov, 1994). Next, one
of the numerical characteristcs of Cross-Barcode1(P,Q) is
computed. Using numerical tests, the H1sum characteristic
was picked as the principal, however depending on the situa-
tion, other characteristics can also be interesting to compute,
like H1max, RLT or H0sum. Then this experiment is run a
sufficient number of times to obtain the mean value of the
picked characteristic. In our experiments we have found that
for common datasets the number of times from 10 to 100

1Persistent Homology.Computation (wiki)

Algorithm 1 Cross-Barcodei(P,Q)

Input: m[P, P ],m[P,Q] : matrices of pairwise distances
within point cloud P , and between point clouds P and Q
Require: VR(M): function computing the filtered com-
plex from pairwise distances matrix M
Require: B(c, i): function computing persistence inter-
vals of filtered complex c in dimension i
bQ ← number of columns in matrix m[P,Q]
m[Q,Q]← zeroes(bQ, bQ)

M ←
(
m[P, P ] m[P,Q]
m[P,Q] m[Q,Q]

)
Cross-Barcodei ← B(VR(M), i)
Return: list of intervals Cross-Barcodei(P,Q) repre-
senting ”births” and ”deaths” of topological discrepancies

Algorithm 2 MTop-Divergency(P,Q), see section 2.7 for
details, default suggested values: bP = 1000, bQ = 10000,
n = 100

Input: XP , XQ: NP ×D, NP ×D arrays representing
datasets
for j = 1 to n do
Pj ← random choice(XP ,bP )
Qj ← random choice(XQ,bQ)
Bj ← list of intervals Cross-Barcode1(Pj , Qj) calcu-
lated by Algorithm 1
mtdj ← sum of lengths of all intervals in Bj

end for
MTop-Divergency(P,Q)← mean(mtd)
r ← mean distance to the closest neighbor in a sample of
1000 points from Pdata

Normalized MTop-Divergency(P,Q)← mean(mtd)/r
Return: numbers MTop-Divergency(P,Q), and Nor-
malized MTop-Divergency(P,Q) representing disrep-
ancy between the distributions P,Q

is generally sufficient. For comparison of scores for differ-
ent datasets, the characteristics measured in units of length
are normalized by the mean distance to the closest neigh-
bor in a sample of 1000 points from Pdata. Our method is
summarized in the Algorithms 1 and 2.

Complexity. The Algorithm 1 requires computation of the
two matrices of pairwise distances m[P, P ], m[P,Q] for
a pair of samples P ∈ RbP×D, Q ∈ RbQ×D involving
O(b2PD) and O(bPbQD) operations. After that, the com-
plexity of the computation of barcode does not depend on
the dimension D of the data. Generally the persistence algo-
rithm is at worst cubic in the number of simplices involved.
In practice, the boundary matrix is sparse in our case and
thanks also to the GPU optimization, the computation of
cross-barcode takes similar time as in the previous step on
datasets of big dimensionality. Since only the discrepancies
in manifold topology are calculated, the results are quite

https://en.wikipedia.org/wiki/Persistent_homology#Computation
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robust and a relatively low number of iterations is needed to
obtain accurate results. Since the algorithm scales linearly
with D it can be applied to the most recent datasets with D
up to 107. For example, for D = 3, 15 × 106, and batch
sizes bP = 103, bQ = 104, on NVIDIA TITAN RTX and
40Intel(R) Xeon(R) CPU 2.20GHz, the time for GPU ac-
celerated calculation of pairwise distances was 15 seconds,
and GPU-accelerated calculation of Cross-Barcode1(P,Q)
took 30 seconds.

3. Conclusions
We have described a new framework for the evaluation
of quality of GANs. We have introduced a novel tool,
Cross-Barcodei(P,Q), which tracks multiscale topology
discrepancies between manifolds on which the distributions
are concentrated. Various numerical characteristics of Cross-
Barcode(P,Q) provide qualitative and quantitative measures
for the evaluation of generative models. Based on Cross-
Barcode, we introduce the Manifold Topology Divergence
score (MTop-Divergence)



Manifold Topology Divergence

References
Barannikov, S. Framed Morse complexes and its invariants.

Adv. Soviet Math., 22:93–115, 1994.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
Deep learning, volume 1. MIT press Cambridge, 2016.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks, 2014.

Hatcher, A. Algebraic topology. 2005.

Khrulkov, V. and Oseledets, I. Geometry score: A method
for comparing generative adversarial networks. arXiv
preprint arXiv:1802.02664, 2018.

Moraleda, R. R., Valous, N. A., Xiong, W., and Halama, N.
Computational Topology for Biomedical Image and Data
Analysis: Theory and Applications. CRC Press, 2019.

Whitehead, G. W. Elements of homotopy theory, volume 61.
Springer Science & Business Media, 1968.

Zhang, S., Xiao, M., and Wang, H. Gpu-accelerated com-
putation of vietoris-rips persistence barcodes. In 36th
International Symposium on Computational Geometry
(SoCG 2020). Schloss Dagstuhl-Leibniz-Zentrum für In-
formatik, 2020.


