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Robust Transient Stabilization of a Synchronous Generator in an Uncertain Power Network with Transfer Conductances

The robust transient stability problem of a synchronous generator in an uncertain power network with transfer conductances is addressed. A robust adaptive nonlinear feedback control algorithm is designed on the basis of a third order model of the synchronous machine: only two system parameters (synchronous machine damping and inertia constants) along with upper and lower bounds on the remaining uncertain ones are supposed to be known. The conditions to be satisfied by the remote network dynamics for guaranteeing L2 and L∞ robustness and asymptotic relative speed regulation to zero are weaker than those required by the single machineinfinite bus approximation.

I. INTRODUCTION

Power networks are among the most complex large-scale, interconnected nonlinear systems ( [START_REF] Bergen | Power systems analysis[END_REF], [START_REF] Lu | Nonlinear control systems and power system dynamics[END_REF]). Mechanical and electrical perturbations such as load shedding, generation tripping or short circuits may force one or more generators to go out of step and to be disconnected from the network. The transient stabilization problem consists in the design of a suitable excitation feedback control keeping each generator close to the synchronous speed when mechanical and electrical perturbations occur (voltage regulation is not considered at this stage). On the basis of linear approximations around operating conditions, decentralized linear controllers were first designed, which however may not be able to guarantee the power grid stability (see [START_REF] Guo | Global transient stability and voltage regulation for power systems[END_REF]) and to handle the severe disturbances and contingencies typically occurring in power networks. In the recent years, several nonlinear algorithms have been proposed for power systems control. For a particular power systems structure M consisting of a group of generators tied together by a strong network of transmission lines and linked to a single generator by a comparatively weak set of tie lines, the single machine-infinite bus approximation, which models all the remaining network as a fixed voltage source and an impedance, is advantageous in the nonlinear control design: transient stabilization can be achieved even without requiring the knowledge of critical parameters ( [START_REF] Damm | Adaptive nonlinear excitation control of synchronous generators[END_REF], [START_REF] Damm | Adaptive nonlinear output feedback for transient stabilization and voltage regulation of power generators with unknown parameters[END_REF], [START_REF] Damm | Transient stabilization and voltage regulation of a synchronous generator[END_REF], [START_REF] Guo | Global transient stability and voltage regulation for power systems[END_REF], [START_REF] Marino | Adaptive nonlinear excitation control of synchronous generators with unknown mechanical power[END_REF], [START_REF] Marino | Robust adaptive transient stabilization of a synchronous generator with parameter uncertainty[END_REF], [START_REF] Shen | Adaptive nonlinear excitation control with L 2 disturbance attenuation for power systems[END_REF], [START_REF] Tan | Augmentation of transient stability using a superconducting coil and adaptive nonlinear control[END_REF], [START_REF] Wang | Robust nonlinear coordinated control of power systems[END_REF], [START_REF] Wang | Transient stabilization of power systems with an adaptive control law[END_REF]). In particular, L 2 and L ∞ robustness and asymptotic relative speed regulation to zero are achieved in [START_REF] Marino | Robust adaptive transient stabilization of a synchronous generator with parameter uncertainty[END_REF] despite uncertainties in all system parameters. In this paper, we address the transient stabilization problem for the particular power systems structure M above considered. The single machine-infinite bus model is however not used so that remote network dynamics effects are taken into account. Following the theoretical developments in [START_REF] Marino | Robust adaptive state-feedback tracking control for nonlinear systems[END_REF], [START_REF] Marino | Nonlinear output feedback tracking with almost disturbance decoupling[END_REF], [START_REF] Shen | Robust H∞ control of uncertain nonlinear systems via state feedback[END_REF], a robust adaptive nonlinear feedback control is designed which does not assume the knowledge of the system parameters excepting for the machine damping and inertia constants. On the basis of upper and lower bounds on the uncertain model parameters, L 2 and L ∞ robustness and asymptotic relative speed regulation to zero are guaranteed under a set of assumptions on the network dynamics which are weaker than those required by the single machineinfinite bus approximation, while the controller parameters are adapted using the robust adaptive techniques in [START_REF] Marino | Robust adaptive state-feedback tracking control for nonlinear systems[END_REF]. Simulation results with reference to a 3-machine, 9-buses power network illustrate the effectiveness of the adopted approach, showing that the proposed robust nonlinear excitation control prevents each network machine from going out of step in the presence of electrical parameter perturbations and unmodelled dynamics and improves the performance with respect to the controller in [START_REF] Marino | Robust adaptive transient stabilization of a synchronous generator with parameter uncertainty[END_REF] based on the single machine-infinite bus approximation. The presented approach in conjuction with the special structure of power systems considered here allows us, without assuming the availability of the machine internal voltage measurement, to solve the robust transient stabilization problem of a synchronous generator in a power network in the presence of transfer conductances and uncertainties in the most of system parameters, which is typically a difficult result to obtain for general structures of power systems (see for instance [START_REF] Guo | Nonlinear decentralized control of large-scale power systems[END_REF], [START_REF] Lu | Nonlinear decentralized disturbance attenuation excitation control via new recursive design for multi-machine power systems[END_REF], [START_REF] Machowski | Decentralized stability-enhancing control of synchronous generator[END_REF], [START_REF] Ortega | Transient stabilization of multimachine power systems with nontrivial transfer conductances[END_REF], [START_REF] Shen | Adaptive nonlinear excitation control with L 2 disturbance attenuation for power systems[END_REF], [START_REF] Wang | Dissipative Hamiltonian realization and energy-based L 2 -disturbance attenuation control of multimachine power systems[END_REF], [START_REF] Wang | Adaptive H∞ excitation control of multimachine power systems via the Hamiltonian function method[END_REF], [START_REF] Wang | Robust decentralized nonlinear controller design for multimachine power systems[END_REF], [START_REF] Xi | Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method[END_REF], [START_REF] Xi | Nonlinear decentralized saturated controller design for power systems[END_REF], [START_REF] Zecevic | Robust decentralized exciter control with linear feedback[END_REF]).

II. SYSTEM DYNAMIC MODEL

A power system consisting of n generators interconnected through a transmission network is described by the 3n-order nonlinear model in [START_REF] Sauer | Power system dynamics and stability[END_REF] 

[1 ≤ i ≤ n] δi = ω i ωi = - D i 2H i ω i + ω 0 2H i P mi - ω 0 2H i P ei (1) 
Ė′ qi = k ci T ′ d0i u f i - E ′ qi T ′ d0i - (x di -x ′ di ) T ′ d0i I di
in which the first two equations represent the i-th generator mechanical dynamics involving the the power angle δ i (rad), the relative angular speed ω i (rad/s), the active electrical power P ei (p.u.), the mechanical input power P mi (p.u.), the synchronous speed ω 0 (rad/s), the damping constant D i (p.u.) and the inertia constant H i (s), while the third equation constitutes the i-th generator electrical dynamics involving the transient EMF E ′ qi (p.u.) in the quadrature axis, the input u f i (p.u.) to the thyristor amplifier, the gain k ci of the excitation amplifier, the direct axis transient open circuit time constant T ′ d0i (s), the direct axis reactance x di (p.u.) and the direct axis transient reactance x ′ di (p.u.). The i-th generator electrical equations are

P ei = E ′2 qi G ii + E ′ qi n j=1,j =i E ′ qj G ij cos (δ ij ) +E ′ qj B ij sin (δ ij ) Q ei = -E ′2 qi B ii + E ′ qi n j=1,j =i E ′ qj G ij sin (δ ij ) -E ′ qj B ij cos (δ ij ) -x ′ di I 2 di + I 2 qi I di = -E ′ qi B ii + n j=1,j =i E ′ qj G ij sin (δ ij ) -E ′ qj B ij cos (δ ij ) I qi = E ′ qi G ii + n j=1,j =i E ′ qj G ij cos (δ ij ) +E ′ qj B ij sin (δ ij ) δ ij = δ i -δ j V ti = x ′ di I qi 2 + E ′ qi -x ′ di I di 2
in which (for the i-th generator): Q ei (p.u.) is the reactive electrical power, I di (p.u.) is the direct axis current, I qi (p.u.) is the quadrature axis current, V ti (p.u.) is the terminal voltage, G ij (p.u.) and B ij (p.u.) are the i-th row and the jth column element of nodal conductance and susceptance matrices, respectively, at the internal nodes after eliminating all physical buses, which depend on x ′ di (p.u.), on the transformer reactance x T i (p.u.), on the loads and on the transmission line reactance x ij (p.u.) between the i-th generator and the j-th generator. The nodal conductance and susceptance matrices represent the full power network of transmission lines and loads connecting the power generators. In this paper, we study a particular structure of power systems, i.e., a group G M of n-1 generators, tied together by a strong network of transmission lines, which is linked to a generator g m (in the following referred to as r-th generator) by a comparatively weak set of tie lines. Accordingly, we explicitly compute Ṗer [G rj and B rj , 1 ≤ j ≤ n, are assumed to be constant], so that the r-th generator third order dynamic model can be written as [I qr > c Ir > 0 (see [START_REF] Shen | Adaptive nonlinear excitation control with L 2 disturbance attenuation for power systems[END_REF]) 1 ] δr = ω r 

u f r is the control input, θ 1r = 1 T ′ d0r , θ 2r = (x dr -x ′ dr ) T ′ d0r , θ 3r = Grr(x dr -x ′ dr ) T ′ d0r , θ 4r = Grr T ′ d0r , θ 5r = kcr T ′ d0r , θ 6r = Grrkcr T ′ d0r and the term R r = n j=1,j =r Ė′ qj G rj cos (δ rj ) + B rj sin (δ rj ) + n j=1,j =r ω j E ′ qj G rj sin (δ rj ) -E ′ qj B rj cos (δ rj )
represents the effect of the network remote dynamics (the group G M of generators) on the r-th generator, where

Ẽ′ qj = E ′ qj -E ′ qj0
, with E ′ qj0 the pre-fault equilibrium value for E ′ qj . In the practice, the exact values of the model parameters are hard to obtain, and in particular P m , G rr , B rr are lumped parameters which account for unmodelled dynamics such as turbine and load dynamics. Those parameters may undergo sudden on line variations due to mechanical and electrical perturbations and faults. In the following, we will suppose the parameters ω 0 , D r , H r to be known and will assume that: the uncertain piecewise continuous parameters T ′ d0r (t), x dr (t), x ′ dr (t), k cr (t) and the uncertain constant parameter G rr are within the corresponding known positive bounds (T ′ d0rm , T ′ d0rM ), (x drm , x drM ), (x ′ drm , x ′ drM ), (k crm , k crM ), (G rrm , G rrM ); the uncertain constant parameter B rr is within the corresponding known bounds (B rrm , B rrM ); the mechanical input power P mr (t) ∈ D p is a class C 1 function satisfying: P mrM ≥ P mr (t) ≥ P mrm and | Ṗmr (t)| ≤ ṖMr , with P mrm , P mrM , ṖMr known positive reals. Physical considerations concerning transmission lines, loads and mechanical turbines make the above assumptions reasonable in the transient stabilization problem of power networks.

III. PROBLEM STATEMENT

A suitable control problem formulation is introduced in this section, which will allow us to solve the transient stabilization problem for the synchronous generator g m by quantitatively characterizing the robustness with respect to both permanent and vanishing model parameter perturbations. Denote by δ rs ∈ D δ the pre-fault constant value for the power angle δ r and let θ irm , θ irM be the known positive bounds on the uncertain parameters θ ir (t), 1 ≤ i ≤ 6, with Pmr (t) a suitable estimate of the uncertain mechanical power P mr . The transient stabilization problem addressed in this paper is rigorously formulated as follows. Definition 1 (Transient Stabilizing Control): Assume that for any bounded piecewise continuous real-valued function u f r (•) defined on R + 0 and for all t ≥ 0: i) for each j = r, 1 ≤ j ≤ n, the j-th generator power angle δ j (t), the relative angular speed ω j (t) and the quadrature axis transient EMF E ′ qj (t) are piecewise differentiable functions of time t and boundedness of the r-th generator variables δ r (t), ω r (t), P er (t) implies boundedness of E ′ qj (t); ii) there exist µ r , ν r , ρ r (unknown) non-negative reals, φµr (•), φνr (•), φρr (•) known K ∞ functions and g r (t) (unknown) bounded nonnegative real-valued function of time t such that 

|R r (t)| ≤ sup
y r (t) = δ r (t) -δ rs , ω r (t), P er (t) -P mr (t) T ξ r (t) = y r (t) T , P mr (t) -Pmr (t) T w dr (t) = Ṗmr (t), θ 1rM -θ 1rm + ε 1r , θ 2rM -θ 2rm +ε 2r , θ 3rM -θ 3rm + ε 3r , θ 4rM -θ 4rm + ε 4r , max{θ 5rM -θ 5rm + ε 5r , θ 6rM -θ 6rm + ε 6r }, x ′ drM -x ′ drm + ε xr , B rrM -B rrm + ε Br , sup 0≤τ ≤t {g r (τ )}, µ r , ν r , ρ r T .
A bounded control law u f r is called a transient stabilizing control for the r-th generator if it guarantees the closed loop system to satisfy the following: (S1) L ∞ disturbance attenuation property, i.e.

y r (t) 2 ≤ h 1r (ξ r (0))e -crt + 1 k r γ 1r ( w dr (•) ∞ )
holds for all t ≥ 0, where h 1r (ξ r (0)) ≥ 0, c r > 0 and γ 1r (r) 

is a class K ∞ function; (S2) L 2 disturbance

IV. NONLINEAR DESIGN AND STABILITY ANALYSIS

By virtue of techniques similar to those used in [START_REF] Damm | Transient stabilization and voltage regulation of a synchronous generator[END_REF], we design, in this section, a transient adaptive stabilizing control for the r-th generator according to Definitions 1 and 2. Define the power angle regulation and relative angular speed tracking errors: δr = δ rδ rs , ωr = ω rω * r , with δ rs being the power angle constant reference value and ω * r being the relative angular speed time-varying reference signal [k δr is a positive control parameter] 

ω * r = - 5 4 k δr δr . (3) 
Pmr = φ r + 2H r ω 0 5 4 k per + k r 4 + 1 k r + ω 2 0 16H 2 r k ωpr ω r φr = 5 4 k per + k r 4 + 1 k r + ω 2 0 16H 2 r k ωpr -φ r + D r ω 0 ω r + P er - 2H r ω 0 5 4 k per + k r 4 + 1 k r + ω 2 0 16H 2 r k ωpr ω r (5) 
P mrm ≤ Pmr (0) ≤ P mrM and introduce the active electrical power tracking error: Per = P er -P * er . Design the robust control law u f r with the stabilizing and robustifying terms v r , ̟ r as [k pr , k Rr are positive control parameters] 

u f r = I qr θ5r I 2 qr + θ6r P er v r - k r I qr 2I 4 qr + 2P
θ jrm ≤ θjr (0) ≤ θ jrM ẋ′ dr = Proj ξ x (t), x′ dr , x ′ drm , x ′ drM , ε xr x ′ drm ≤ x′ dr (0) ≤ x ′ drM (7) Ḃrr = Proj ξ b (t), Brr , B rrm , B rrM , ε Br B rrm ≤ Brr (0) ≤ B rrM
are designed by using the projection algorithm Proj[ζ, ẑr , z rm , z rM , ε zr ] in [START_REF] Marino | Robust adaptive transient stabilization of a synchronous generator with parameter uncertainty[END_REF] [(z rmε zr ) > 0] whose properties are the following [which hold provided that the uncertain constant z r and the initial condition ẑr (0) belong to the compact set 

[z rm , z rM ]]: 1. z rm -ε zr ≤ ẑr (t) ≤ z rM + ε zr , for all t ≥ 0; 2. Proj[ζ, ẑr , •, •, •] is Lipschitz continuous; 3. |Proj[ζ, ẑr , z rm , z rM , ε zr ]| ≤ |ζ|; 4. (z r -ẑr )Proj[ζ, ẑr , z rm , z rM , ε zr ] ≥ (z r -ẑr )ζ.
0≤τ ≤t {g r (τ )} 2 + µ 2 r + ν 2 r + ρ 2 r
we can establish [recall property 1. of the projection algorithm] that the robust adaptive nonlinear feedback control algorithm (3)-( 7) is a transient stabilizing control for the rth generator. Suppose that, in addition to assumptions i)-ii), assumptions iii)-iv) hold and consider the quadratic function [β jr , β xr , β Br (1 ≤ j ≤ 6) are positive reals]

W r = V r + 1 2 6 j=1 β jr θ2 jr + 1 2 β xr x′2 dr + 1 2 β Br B2
ir whose time derivative along the trajectories of the error system, for all t ≥ t 0 , satisfies [recall property 4. of the projection algorithm]

Ẇr ≤ - 5 4 k δr δ2 r - 5 4 k ωr ω2 r - 5 4 k pr P 2 er - 5 4 k per P 2 mr + R r (t) 2 k Rr (8) 
provided that the yet to be defined functions ξ θj (t), ξ x (t), ξ b (t) (1 ≤ j ≤ 6) are chosen as then, according to (3), ( 4), ( 8) and Barbalat's Lemma, we can establish that the robust adaptive nonlinear feedback control algorithm (3)-( 7), ( 9) is a transient adaptive stabilizing control for the r-th generator. The result holds for any initial condition (of the r-th generator) and positive control parameter k r maintaining, according to (S1), δ r (t) ∈ D δ and P er (t) ∈ D p (guaranteeing I qr (t) > c Ir > 0) for all t ≥ 0. The main result of this paper can be summarized in the following theorem, which somehow2 extends the recent theoretical contribution in [START_REF] Marino | Robust adaptive transient stabilization of a synchronous generator with parameter uncertainty[END_REF]. Theorem: The robust adaptive nonlinear feedback control algorithm ( 3)-( 7), ( 9) is: 

ξ
• a transient

V. SIMULATION RESULTS

In this section we illustrate the performance and the robustness of the feedback control algorithm (3)-( 7), ( 9) in the presence of unmodelled dynamics: the proposed control is applied to each generator of the popular Western System Coordinating Council (WSCC) 3-machine, 9-bus system reported in [START_REF] Sauer | Power system dynamics and stability[END_REF] and [START_REF] Anderson | Power system control and stability[END_REF] [D i = 0, 1 ≤ i ≤ 3] and described by the two-axis model in [START_REF] Sauer | Power system dynamics and stability[END_REF] 

k δi = k ωi = k pei = k ωpi = 1, k pi = 720, k i = 0.001, k Ri = 0.1, β 1i = β 2i = β 3i = β 4i = β 5i = β 6i = β xi = β Bi =
348000 while the initial conditions for the parameter estimates are set equal to the corresponding nominal values. In order to avoid division by zero, for 1 ≤ i ≤ 3, η(P ei ) and η(I qi ) replace P ei and I qi in the control algorithm (3)-( 7), [START_REF] Guo | Nonlinear decentralized control of large-scale power systems[END_REF], respectively, where

η(ξ) = ξ, if ξ ≥ 0.05 0.05, otherwise.
The goal of the simulation is to verify the effects of a three-phase fault occurring near bus 7 at the end of line 5-7 at t = 0.001 s, which is cleared at 0.084 s by opening line 5-7 (circuit breakers reclose at t = 1 s). , θ3 (0) = P m , θ7 (0) = 1) designed in [START_REF] Marino | Robust adaptive transient stabilization of a synchronous generator with parameter uncertainty[END_REF] on the basis of a (third order) single machine-infinite bus model. As illustrated by the simulation results reported in Fig. 3, neglecting the transient behaviour of the other generators and the interconnections between them may be critical for the control design in [START_REF] Marino | Robust adaptive transient stabilization of a synchronous generator with parameter uncertainty[END_REF]: in the presence of the considered perturbation, synchronous speeds can not quickly restored.

CONCLUSIONS

A robust adaptive nonlinear feedback control (3)-( 7), [START_REF] Guo | Nonlinear decentralized control of large-scale power systems[END_REF] has been designed on the basis of a third order model (1) of a synchronous generator in an uncertain power network with transfer conductances. The proposed controller guarantees the L 2 and L ∞ disturbance attenuation and asymptotic regulation properties (S1)-(S3) under assumptions on the network dynamics generalizing those required by the single machine-infinite bus approximation used in [START_REF] Marino | Robust adaptive transient stabilization of a synchronous generator with parameter uncertainty[END_REF]. 

  0≤τ ≤t {g r (τ )} + µ r φµr max 0≤τ ≤t {|δ r (τ )δ rs |} +ν r φνr max 0≤τ ≤t {|ω r (τ )|} +ρ r φρr max 0≤τ ≤t {|P er (τ ) -P mr (τ )|} . Define [ε jr , ε xr , ε Br (1 ≤ j ≤ 6) are positive reals]:

  from which the model (1) has been derived by neglecting the dynamics of the fast damper-winding E ′ di and by using the simplification x qi = x ′ di with x qi (p.u.) being the quadrature axis reactance. The initial conditions for the state variables are computed by systematically solving the load-flow equations of the network and by computing the values of the algebraic variables. For 1 ≤ i ≤ 3, the functions φµi (•), φνi (•), φρi (•) are set equal to I(•) [0,∞) [I(•) is the identity function], the control parameters are chosen as
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 1 2 show a satisfactory performance of the proposed control even with the physical saturations (which are hit several times according to Fig. 2(b)): despite the considered

Fig. 1 .

 1 Fig. 1. Proposed control algorithm [Generator 1 (solid), Generator 2 (dot), Generator 3 (dash)]: a) Power angle regulation errors δ i -δ is (1 ≤ i ≤ 3); b) Relative angular speeds ω i (1 ≤ i ≤ 3); c) Active electrical powers P ei (1 ≤ i ≤ 3).

Fig. 2 .

 2 Fig. 2. Proposed control algorithm [Generator 1 (solid), Generator 2 (dot), Generator 3 (dash)]: a) Terminal voltages V ti (1 ≤ i ≤ 3); b) Control signals u f i (1 ≤ i ≤ 3).

Fig. 3 .

 3 Fig. 3. Robust adaptive control in [15] [Generator 1 (solid), Generator 2 (dot), Generator 3 (dash)]: a) Power angle regulation errors δ i -δ is (1 ≤ i ≤ 3); b) Relative angular speeds ω i (1 ≤ i ≤ 3); c) Active electrical powers P ei (1 ≤ i ≤ 3).

  Ir > 0, which describes the whole practical operating region of the generator.Ṗer = -θ 1r P erθ 2r I dr I qrθ 3r I dr P er

	ωr = -	D r 2H r	ω r +	ω 0 2H r	P mr -	ω 0 2H r	P er	(2)
									I qr	-θ 4r	P 2 er I 2 qr
	+	θ 5r I 2 qr + θ 6r P er I qr	u f r -Q er + B rr	P 2 er I 2 qr
	+x ′ dr (I 2 dr + I 2 qr ) ω r +	P er I qr	R

1 

We assume that there exist bounded connected open sets D δ and Dp such that E ′ qr (0) > 0, δr(t) ∈ D δ and Per(t) ∈ Dp imply Iqr(t) > c r in which δ r , ω r , P er are the state variables,

  [functions ξ θj (t), ξ x (t), ξ b (t) are yet to be chosen] θjr = Proj ξ θj (t), θjr , θ jrm , θ jrM , ε jr

	4 θ5r I 2 qr + θ6r P er 5 4 k pr Per + ω 0 2H r ωr + 2 + v r = -2H r ω 0 ω + θ4r P 2 er I 2 qr + Brr P 2 er ω r I 2 qr + x′ dr I 2 dr + I 2 qr ω r +Q er ω r -5k δr 4ω 0 D r ω r -ω 0 ( Pmr -P er ) -2H r ω 0 5 4 k ωr + 1 k ωpr 5 4 k ωr + D r 2H r ωr + δr + ω 0 2H r Per + 1 k ωpr ωr + ̟ r (6) ̟ r = -k Rr 4 P 2 er I 2 qr Per -k r 4 Per P 2 er + I 2 dr I 2 qr + I 2 dr P 2 er I 2 qr + P 4 er I 4 qr 1 + ω 2 r + ω 2 r I 2 dr + I 2 qr 2 -k r 4 5 4 k ωr + 5 4 k δr + 5 4 k per + k r 4 + 1 k r + ω 2 0 16H 2 r k ωpr + 1 k ωpr 2 Per -k r 4 P 2 er I 2 qr Per φ2 µr max 0≤τ ≤t { δr (τ )} + φ2 νr max 0≤τ ≤t {ω r (τ )} + 5 4 k δr max 0≤τ ≤t { δr (τ )} + φ2 ρr max 0≤τ ≤t k per + 2H r ω 0 5 4 k ωr + 1 k ωpr + 5 4 k δr max 0≤τ ≤t {ω r (τ )} + 2H r ω 0 1 + 25 16 k 2 δr + 5D r k δr 4ω 0 max 0≤τ ≤t { δr (τ )} +1 which rely on the estimates θjr , x′	2 er v 2 r Per θ 5rm I 2 qr + θ 6rm P er 5D r k δr 4ω 0 ω r

r + θ1r P er + θ2r I dr I qr + θ3r I dr P er I qr { Per (τ )} + P mrM -P mrm + ṖMr dr , Brr of the uncertain parameters θ jr , x ′ dr , B rr whose estimation laws (1 ≤ j ≤ 6)

  Defining the estimation errors (1 ≤ j ≤ 6): θjr = θ jr -θjr , x′

			whose the time derivative of function V r along the trajecto-
			ries of the error system satisfies
			Vr ≤ -	5 4	k δr	δ2 r + k ωr	ω2 r + k pr	P 2 er + k per	P 2 mr
			+	1 k r	Ṗ 2 mr + θ2 1r + θ2 2r + θ2 3r + θ2 4r
			+ max θ2 5r , θ2 6r + x′2 dr + B2
	V r =	1 2	δ2 r + ω2 r + P 2 er + P 2 mr				

dr = x ′ dr -x′ dr , Brr = B rr -Brr and considering the quadratic function ir + sup

  stabilizing control for the r-th generator;• a transient adaptive stabilizing control for the r-th generator when

	k Rr > max	4γ δr k δr	,	4γ ωr k ωr	,	16γ pr k pr	,	16γ pr k per	,

for any initial condition (of the r-th generator) and positive control parameter k r maintaining, according to (S1), δ r (t) ∈ D δ and P er (t) ∈ D p (guaranteeing I qr (t) > c Ir > 0) for all t ≥ 0.

Here the machine damping and inertia constants are assumed to be known.

We denote by u f 0 the nominal input value.
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