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Abstract—We continue the investigation of systems of hereditarily
rigid relations started in Couceiro, Haddad, Pouzet and Schölzel
[1]. We observe that on a set V with m elements, there is a
hereditarily rigid set R made of n tournaments if and only if
m(m − 1) ≤ 2n. We ask if the same inequality holds when the
tournaments are replaced by linear orders. This problem has an
equivalent formulation in terms of separation of linear orders.
Let hLin(m) be the least cardinal n such that there is a family
R of n linear orders on an m-element set V such that any two
distinct ordered pairs of distinct elements of V are separated
by some member of R, then ⌈log2(m(m − 1))⌉ ≤ hLin(m) with
equality if m ≤ 7. We ask whether the equality holds for every m.
We prove that hLin(m+1) ≤ hLin(m)+1. If V is infinite, we show
that hLin(m) = ℵ0 for m ≤ 2ℵ0 . More generally, we prove that
the two equalities hLin(m) = log2(m) = d(Lin(V )) hold, where
log2(m) is the least cardinal µ such that m ≤ 2µ, and d(Lin(V ))

is the topological density of the set Lin(V ) of linear orders on V
(viewed as a subset of the power set P(V ×V ) equipped with the
product topology). These equalities follow from the Generalized
Continuum Hypothesis, but we do not know whether they hold
without any set theoretical hypothesis.

I. INTRODUCTION

The motivation for this paper is a question which can be better
formulated in terms of Social Choice Theory. Let us consider
a committee of n members c1, . . . , cn having to express its
preferences among m candidates. Each member ck writes his
own preferences among the m candidates in a linearly ordered
list `k of the candidates. The profile of an ordered pair (x, y) of
two different candidates x and y is the 0-1 list (`k(x, y))1≤k≤n,
where `k(x, y) = 1 if x is preferred to y, and `k(x, y) = 0

otherwise. As the profiles of the m(m−1) ordered pairs belong
to {0,1}n, if m(m − 1) > 2n, there are two distinct ordered
pairs with the same profile. The question is: does the converse
hold? That is, if m(m − 1) ≤ 2n, are there n lists (`k)1≤k≤n

yielding m(m−1) distinct profiles? As we will see, the answer
is positive for m ≤ 7. For other integers we do not know.

Tackling this question, we do not limit ourselves to finite sets.
Considering a set V of cardinality m, let hLin(m) be the least
cardinal n such that there is a family R of n linear orders on
V such that any distinct ordered pairs (x, y) and (x′, y′) of
distinct elements of V yield distinct profiles. This parameter
plays a role in the investigation of systems of hereditarily rigid
relations started in Couceiro, Haddad, Pouzet and Schölzel
[1]. An h-ary relation ρ on a set V is said to be hereditarily
rigid if the unary partial functions on V that preserve ρ are
the subfunctions of the identity map or of constant maps. A
family of relations R is said to be hereditarily rigid if the
unary partial functions on V that preserve every ρ ∈R are the
subfunctions of the identity map or of constant maps. As it
turns out, a family of tournaments R is hereditarily rigid if
and only if any two distinct ordered pairs (x, y) and (x′, y′) of
distinct elements of V yield distinct profiles of tournaments.
We note that for m < ℵ0 we may find such a family R
made of n tournaments if and only if m(m − 1) ≤ 2n, that
is log2(m(m − 1)) ≤ n. We ask if the same inequality holds
when tournaments are replaced by linear orders, that is, wether
hLin(m) = ⌈log2(m(m − 1))⌉.
We show that hLin(m) = ℵ0 if ℵ0 ≤ m ≤ 2ℵ0 . We show
more generally that hLin(m) = log2(m) = d(Lin(V )), where
log2(m) is the least cardinal µ such that m ≤ 2µ and
d(Lin(V )) is the topological density of the set Lin(V ) of
linear orders on V (viewed as a subset of the power set
P(V × V ) equipped with the product topology). The last
set of equalities follows from GCH (Generalized Continuum
Hypothesis); we do not know if it holds without any set
theoretical hypothesis. The finite case is more substantial, but
apparently more difficult. In that direction, we verify that
hLin(m) = ⌈log2(m(m − 1))⌉ for m ≤ 7 and prove that



hLin(m) ≤ hLin(m + 1) ≤ hLin(m) + 1 for all m < ℵ0.
Notations in this paper are quite elementary. The diagonal of
a set X is the set ∆X ∶= {(x,x) ∶ x ∈ X}. We denote by
P(X) the collection of subsets of X , by Xm the set of m-
tuples (x1, . . . , xm) of X , by (X

m
) the subset of P(X) made

of m-element subsets of X , and by [X]<ω the collection of
finite subsets of X . The cardinality of X is denoted by ∣X ∣.
If κ denotes a cardinal, 2κ is the cardinality of the power
set P(X) of a set X of cardinality κ; we denote by 2<κ the
supremum of 2µ for µ < κ. If κ is an infinite cardinal, we
set log2(κ) for the least cardinal µ such that κ ≤ 2µ. If κ is
an integer, we use log2(κ) in the ordinary sense, hence the
least integer µ such that κ ≤ 2µ is ⌈log2 κ⌉. We denote by ℵ0

the first infinite cardinal. We refer the reader to [4] for further
background about axioms of set theory if needed. The proof of
one of our results (Theorem 5) relies on the famous theorem
of Sperner (see [2]). To state it, we recall that an antichain of
subsets of a set X is a collection of subsets such that none is
contained in another.

Theorem 1. Let n be a non-negative integer. The largest size
of an antichain family of subsets of an n-element set X is
( n
⌊n/2⌋). It is only realized by ( X

⌊n/2⌋) and ( X
⌈n/2⌉).

Let 2 ∶= {0,1} be ordered with 0 < 1. The poset 2X equipped
with the product order is isomorphic to the powerset P(X)
ordered by inclusion. Also note that if Y is any set, then the
posets (2 × 2)Y , 2Y × 2Y and 2Y ×2, all equipped with the
product order, are isomorphic. If ∣Y ∣ = m, m ∈ N, Sperner’s
theorem asserts that the maximum sized antichain in these
posets, once identified to 0-1-sequences, is made of sequences
containing roughly as many 0 as 1. This is the key for proving
Theorem 5.
We present first the rigidity notions, then the case of tour-
naments and linear orders and we conclude with density
properties.

II. HEREDITARY RIGIDITY

In [1], Couceiro et al. studied a general notion of rigidity for
relations and sets of relations w.r.t. partial operations. They
show a noticeable difference between rigidity w.r.t. to unary
operations and rigidity w.r.t. to operations of arity at least two.
Here we consider the rigidity notion w.r.t. unary operations,
mostly when the relations are binary. Considering hereditarily
rigid sets of binary relations, we give an exact upper bound
on the size of their domain (Theorem 5).
Let V be a set. A partial function on V is a map f from
a subset of V , its domain, denoted by dom (f), to another,
possibly different subset, its image, denoted by im(f). A
partial function f is constant if it does not have two distinct
values. If A is a subset of V , the restriction of f to A,

denoted by f↾A, is the map induced by f on A ∩ dom (f).
A subfunction of f is any restriction of f to a subset of its
domain.
Let h ≥ 1 be an integer, an h-ary relation on V is a subset ρ of
V h. Sometimes, we identify ρ with its characteristic function,
that is, we write ρ(v1, . . . , vh) = 1 if (v1, . . . , vh) ∈ ρ and 0

otherwise. If A is a subset of V , the restriction of ρ to A,
denoted by ρ↾A, is ρ∩Ah. If R is a set of relations on V , we
set R↾A ∶= {ρ↾A ∶ ρ ∈R}.
We say that a partial function f preserves the h-ary relation
ρ, or ρ is invariant under f , if for every h-tuple (v1, . . . , vh)
belonging to (dom (f))h ∩ ρ, its image (f(v1), . . . , f(vh))
belongs to ρ. We say that a partial function f preserves a
family of relations R on V if it preserves each ρ ∈ R. If
A ∶= dom (f), we also say that f is a homomorphism of R↾A
in R.
A h-ary relation ρ on a set V is said to be rigid if the identity
map is the only unary function on V that preserves ρ. The
relation ρ is semirigid if every unary function that preserves
ρ is the identity map or a constant map. It is hereditarily
semirigid if the unary partial functions on V that preserve ρ
are the subfunctions of the identity map or of constant maps. A
family of relations R on V is said to be hereditarily semirigid
if the unary partial functions on V that preserve every ρ ∈ R
are the subfunctions of the identity map or of constant maps.
In order to agree with [1], we delete the prefix ”semi” in the
sequel. Rigid binary relations are introduced in [12], semirigid
relations in [3], [5], [8], [13].

Proposition 2. For a family of relations R on a set V the
following properties are equivalent:

(i) R is hereditarily rigid;
(ii) For every 2-element subset A of V , every homomorphism

f with domain A of R↾A in R is either constant or a
subfunction of the identity map;

(iii) For every 2-element subset A of V , every 1-1 homomor-
phism f with domain f of R↾A in R is a subfunction of
the identity map.

Proof: Implications (i) ⇒ (ii) and (ii) ⇒ (iii) are
immediate. We prove that implication (iii) ⇒ (i) holds.
Let V ′ ⊆ V and f be a homomorphism with domain V ′ of
R↾V ′ in R. We need to prove that f is either constant or a
subfunction of the identity. We may suppose that V ′ is not
a singleton, otherwise, f is constant. Suppose that f is 1-1.
Then (iii) asserts that for every two-element subset A of V ′,
f↾A is a subfunction of the identity map. It follows that f is
a subfunction of the identity and (i) holds. If f is not 1-1
then there is some x ∈ V ′ such that X ∶= f−1(f(x)) has a
least two elements. We may suppose that f(x) /= x. If there is
y ∈ V ′ ∖X then f↾{x,y} is 1-1 (indeed, f(x) = f(y) amounts



to y ∈ X which is excluded) and not the restriction of the
identity since f(x) /= x. Hence, X = V ′ and f is constant.
The above result has a particularly simpler form if the relations
are binary and each one is either reflexive or irreflexive. To do
this translation, we view such binary relations on V as maps
from V × V ∖∆V to 2 ∶= {0,1}.

Definition 3. Let R be a set of binary relations on V , each
ρ ∈ R being either reflexive or irreflexive. Let (x, y) ∈ V ×
V ∖∆V . The profile of (x, y) with respect to R is pR(x, y) ∶=
(ρ(x, y))ρ∈R. The profile of R is the map pR from V ×V ∖∆V

to 2R, associating pR(x, y) to each (x, y). The double profile
is the map p̃R associating the element (ρ(x, y), ρ(y, x))ρ∈R
of (2 × 2)R to each ordered pair (x, y) ∈ V × V ∖∆V .

Let − be the involution defined on V × V ∖∆V by (x, y) ∶=
(y, x) for every (x, y) ∈ V × V ∖ ∆V . Similarly, let − be
the involution on 2 × 2 defined by u ∶= (β,α) for every u ∶=
(α,β) ∈ 2 × 2. If θ is any map from a set X to 2 × 2, let θ
be the composition of θ and − , that is θ(ρ) ∶= θ(ρ) for every
ρ ∈ X . We say that a map ϕ ∶ V × V ∖ ∆V → (2 × 2)X is
self-dual if ϕ((x, y)) = ϕ(x, y) for all (x, y) ∈ dom (ϕ).

Lemma 4. Let V be a set.

1) A set R of binary relations on V , each one being either
reflexive or irreflexive, is hereditarily rigid if and only if
p̃R, the double profile of R, is 1-1 and its range is an
antichain of (2 × 2)R.

2) Let X be a set. If ϕ is any 1-1 self-dual map from V ×
V ∖ ∆V to (2 × 2)X whose range is an antichain, then
there is a map θ from X onto a hereditary rigid set R
of irreflexive binary relations on V such that the natural
map θ̃ ∶ (2 × 2)R → (2 × 2)X defined by θ̃(ψ) ∶= ψ ○ θ
satisfies θ̃ ○ p̃R = ϕ.

Proof: 1) Observe that if (x, y) and (x′, y′) are in
V × V ∖ ∆V , the map transforming x to x′ and y to
y′ is a homomorphism of R↾{x,y} to R if and only if
(ρ(x, y), ρ(y, x))ρ∈R ≤ (ρ(x′, y′), ρ(y′, x′))ρ∈R. Hence, the
above condition on p̃R amounts to (iii) of Proposition 2.
2) Let p1 ∶ 2 × 2 → 2 be the first projection, let θ ∶ X →
2V ×V ∖∆V defined by θ(u)(x, y) ∶= p1(ϕ(x, y)(u)) for u ∈X ,
(x, y) ∈ V × V ∖∆V and let R be the range of θ.

Theorem 5. There is a hereditarily rigid set R of κ binary
relations, each one reflexive or irreflexive on a set V of
cardinality µ if and only if µ(µ − 1) ≤ ∣(2κ

κ
)∣ if κ is finite

and µ ≤ 2κ otherwise.

Proof: According to 1) of Lemma 4 and Sperner’s
Theorem the first inequality is satisfied. If κ is infinite, we get
the second. For the converse, we define a 1-1 self dual map
ϕ from V ×V ∖∆V to (2× 2)X , where ∣X ∣ = κ, whose range

is an antichain and apply 2) of Lemma 4. For that, let ` be a
tournament on V . Due to Sperner’s Theorem, we may choose
a 1-1 map ϕ′ from ` to the middle level of (2 × 2)X . Next,
select an involution σ on this middle level with no fixed point
(e.g. associate to each 0-1-sequence the sequence obtained by
exchanging the 0 and 1). Then, set ϕ(x, y) ∶= ϕ′(x, y) for
(x, y) ∈ ` and ϕ(x, y) ∶= σ(ϕ′(y, x)) otherwise. This map is
self-dual.
We examine the case of tournaments and linear orders in the
next two sections.

III. SEPARATION AND HEREDITARY RIGIDITY OF
TOURNAMENTS

Let V be a set. A tournament on V is an irreflexive binary
relation τ on V such that for every ordered pair (x, y) either
(x, y) ∈ τ or (y, x) ∈ τ , but not both.
Let Tour(V ) be the set of tournaments on V . We say
that a tournament τ separates two distinct ordered pairs
(x, y), (x′, y′) ∈ V × V ∖∆V if τ(x, y) /= τ(x′, y′).
Despite that fact that linear orders are reflexive, and tourna-
ments are not, we may view linear orders as tournaments and
apply to them what follows.

Lemma 6. Let V be a set; then two distinct pairs
(x, y), (x′, y′) ∈ V × V ∖ ∆V are always separated by some
linear order.

Proof: Indeed, if (x, y) = (y′, x′) any linear order
containing (x, y) will do. If not then the reflexive transitive
closure of {(x, y), (y′, x′)} is an order. Any linear extension
of that order will do.

Lemma 7. Let R be a family of tournaments on a set V . The
following properties are equivalent:

(i) For all distinct ordered pairs (x, y), (x′, y′) ∈ V ×V ∖∆V

there is always some member of ρ ∈ R that separates
them;

(ii) The family R is hereditarily rigid.

Proof: (i) ⇒ (ii). Let U be a two-element subset of
V and f be a partial homomorphism of R defined on U .
Supposing f non constant, we prove that f is the identity. Let
x, y be the two elements of U , let x′ ∶= f(x), y′ ∶= f(y).
If the ordered pairs (x, y) and (x′, y′) are distinct, they are
separated by some ` ∈ R, i.e., verifying `(x, y) /= `(x′, y′).
Since f is an endomorphism, if `(x, y) = 1 then `(x′, y′) = 1.
Thus `(x, y) = 0. Since ` is a tournament, `(y, x) = 1

and since f is an endomorphism, `(y′, x′) = 1, but then
`(x, y) = `(x′, y′) = 0, contradicting the fact that ` separates
(x, y) and (x′, y′).
(ii) ⇒ (i). Let (x, y), (x′, y′) be two distinct irreflexive
ordered pairs. The 1-1 map f defined on U ∶= {x, y}



such that f(x) ∶= x′, f(y) ∶= y′ is not the identity, hence
it cannot be a homomorphism; so there is some ` ∈ R
which is not preserved by f , meaning that there is some
(u, v) ∈ ` such that (f(u), f(v)) /∈ `. If (u, v) = (x, y) then
1 = `(x, y) /= `(x′, y′) = 0 while if (u, v) = (y, x), then since
` is a tournament, 0 = `(x, y) /= `(x′, y′) = 1, proving that `
separates these two ordered pairs.

Definitions 8. Let V be a set, κ be its cardinality (possibly
infinite) and R be a set of tournaments on V satisfying one
of the equivalent conditions of Lemma 7. We define hR(κ)
as the least cardinal µ such that there is some subset X
of R of cardinality µ such that all distinct ordered pairs
(x, y), (x′, y′) ∈ V × V ∖ ∆V are always separated by some
member of X . Let X ⊆ R. Fix ` ∈ X . The profile of X with
respect to ` is the family p`(X) ∶= {pX(x, y) ∶ (x, y) ∈ `}.
This profile is minimal if pX(x, y) /= pX(x′, y′) for any two
distinct ordered pairs (x, y), (x′, y′) ∈ `.

Lemma 9. Let ` ∈ X and p`(X) be the profile of X

with respect to `. Then p`(X) is minimal if and only if all
distinct ordered pairs (x, y), (x′, y′) ∈ V ×V ∖∆V are always
separated by some member of X .

Proof: Suppose that p`(X) is minimal. Let
(x, y), (x′, y′) ∈ V × V ∖ ∆V be two distinct ordered
pairs. If ` separates these pairs, we are done. Otherwise
`(x, y) = `(x′, y′). If the common value is 1, then since
pX(x, y) /= pX(x′, y′) there is some `′ ∈ X ∖ {`} such
that `′(x, y) /= `′(x′, y′). If the common value is 0, then
(y, x), (y′, x′) ∈ ` and the previous reasoning yields the same
conclusion. Suppose that the separation property holds. Then
two distinct ordered pairs (x, y), (x′, y′) ∈ ` are separated by
some member of X , thus pX(x, y) /= pX(x′, y′).
An immediate corollary is the following.

Corollary 10. If the profile of X with respect to ` ∈ X is
minimal, then its profile with respect to any other `′ ∈ X is
minimal too.

Another straightforward consequence is the following result.

Proposition 11. Let V be a set of cardinality κ, R be a set of
tournaments on V satisfying one of the equivalent conditions
of Lemma 7. Then hR(κ) is the minimum of the cardinality
of a subset X of R such that its profile with respect to some
tournament ` ∈X is minimal.

Lemma 12. Under the conditions of Definition 8 the following
inequality holds: hR(κ) ≥ log2(κ ⋅ (κ − 1)).

Proof: Let V be a set, X be a subset of Tour(V ).
Suppose that p`(X) is minimal. Associate to each (x, y) ∈ `
the profile of X∖{`}, that is pX∖{`}(x, y). This defines a map

from ` into 2X∖{`}. This map being 1-1, we have ∣`∣ ≤ 2∣X ∣−1,
that is κ.(κ−1)

2
≤ 2∣X ∣−1. This amounts to κ ⋅(κ−1) ≤ 2∣X ∣, that

is log2(κ ⋅ (κ − 1)) ≤ ∣X ∣.
We show in Theorem 13 below that the equality holds for
R = Tour(V ) but for R ∶= Lin(V ) the exact value of hR(n)
for n ∈ N eludes us.

Theorem 13. hTour(κ) = log2(κ) if κ is an infinite cardinal
and hTour(κ) = ⌈log2(κ⋅(κ−1))⌉ if κ is a non negative integer.

Proof: From the lemma above we have hTour(κ) ≥
log2(κ ⋅ (κ− 1)). For the reverse inequality, let Z be a subset
of cardinality ⌈log2(κ ⋅ (κ − 1))⌉ of Tour(V ). Fix ` ∈ Z.
Choose a 1-1 map ϕ from ` into 2Z∖{`}. For k ∈ Z ∖ {`}
set `k ∶= {(x, y) ∈ ` ∶ ϕ(x, y)(k) = 1} ∪ {(x, y) ∶ (y, x) ∈
` and ϕ(y, x)(k) = 0}. It is straightforward to check that
X ∶= {`k ∶ k ∈ Z ∖ {`}} ∪ {`} is a separating family of
tournaments. Inequality hTour(κ) ≤ log2(κ ⋅ (κ − 1)) follows.

Remark 14. We could choose Z ⊆ Lin(V ) in the proof above.
However, there is a priori no much relationship between Z and
X .

IV. THE CASE OF LINEAR ORDERS

On {1, . . . ,m} the m cyclic permutations of the natural order
form a separating family, hence hLin(m) ≤m for every integer
m. Due to the minoration of hLin(m) by ⌈log2(m ⋅ (m− 1))⌉
we get the equality for 3 ≤ m ≤ 5. Here is an example of a
separating family of 5 linear orders on a 6-element set proving
that hLin(6) = 5. We give these orders by the five following
strings: 123456; 136542; 216543; 432165; 532146.
With the proposition below we get hLin(7) = 6. We do not
know if hLin(8) = 6.

Proposition 15. Let m ∈ N. Then hLin(m) ≤ hLin(m + 1) ≤
hLin(m) + 1.

Proof: The first inequality is trivial. For the second, let
V ∶= {1, . . . ,m}. Let R ∶= (≤k)1≤k≤n, with n ∶= hLin(m), be
a separating family of linear orders ≤k on V . Our aim is to
extend these linear orders on V ∪ {m + 1} and, with an extra
linear order, obtain a separating family. We suppose that ≤1 is
the natural order on V and we add m+1 just after m in ≤1. For
each k, 2 ≤ k ≤ n, we insert m+1 just before or just after m in
≤k. These choices are decided by a 0−1-sequence s(m,m+1)
of length n− 1 that we are going to define. For 1 ≤ i < j ≤m,
let s(i, j) ∶= (sk(i, j))2≤k≤n, where sk(i, j) = 1 if i <k j and
0 otherwise. Since R is separating, m(m − 1) ≤ 2n, hence
2n−1 − m(m+1)

2
≥ p ∶= 2

n
2 −1 ≥ 1. Hence, there are at least

p 0-1-sequences of length n − 1, which are distinct of all the
m(m−1)

2
sequences s(i, j). Let s(m,m+1) be such a sequence.

Extend the orders as said, and add a new linear order, say ≤n+1,



for which m + 1 is the least element and m the last one. We
show that all new profiles, still denoted s(i, j), are distinct,
thus proving that the new family of orders is separating. The
claimed inequality follows from the following observations.
1) s(i,m) /= s(i,m+1) for i = 2,m−1 since sn+1(i,m+1) =
0 /= 1 = sn+1(i,m).
2) s(m,m + 1) /= s(i, j) for i < j ≤m. This is just the choice
of s(m,m + 1).
3) s(i,m + 1) /= s(j,m + 1) for i < j < m + 1. Indeed, since
for every k, 2 ≤ k ≤ n, m+1 is immediately before or after m
in ≤k we have sk(h,m) = sk(h,m + 1) for all h <m. Hence
s(h,m) = s(h,m + 1), and in particular s(i,m) = s(i,m + 1)
and s(j,m) = s(j,m + 1). Since R is separating, we have
s(i,m) /= s(j,m), hence s(i,m + 1) /= s(j,m + 1).

V. DENSITY

Let T be a topological space and D be a subset of T . An
element x of T is adherent to D if every open set containing
x meets D. The topological closure (or the adherence) of D is
the set of elements of T adherent to D, denoted by D; this is
the least closed set containing D. The subset D is dense in T
if D = T . The density character of T , denoted by d(T ), is the
minimum cardinality of a dense subset. Let V be a set; if ` is a
linear order on V , we may equip V with the interval topology
whose open sets are generated by the open intervals of this
order, i.e., sets of the form ]a, b[ with a <` b. We will denote
by d(V, `) the density of this space. We may note that the
density of any subset with the interval topology is at most the
density of (V, `). We may equip the power set P(V ) with the
product topology, a basis of open sets being made of sets of
the form O(F,G) ∶= {X ∈ P(V ) ∶ F ⊆X ⊆ V ∖G} where F ,
G are finite subsets of V . This is the well known Cantor space.
A basic result in topology due to Hausdorff (1936) (see [11]
in the Handbook on Boolean Algebras, vol. 2 p. 465) asserts
that d(P(V )) = log2(∣V ∣) provided that V is infinite.
Let m be an integer and R be a set of m-ary relations on a
set V ; each ρ ∈R can be viewed as a map from V m to {0,1}
as well as a subset of V m. Viewing R as a subset of 2V

m

, we
may equip R of the topology induced by the product topology
on 2V

m

. Let D be a subset of R and k be an integer. A
relation ρ ∈R is k-adherent to D if on every k-element subset
F of V m, ρ coincides with some ρ′ ∈D. The k-adherence of
D in R is the set of ρ ∈ R that are k-adherent to D. If this
set is R, D is said k-dense. The relation ρ is adherent to D

in the topological sense if it is k-adherent for every integer
k. The adherence of D is often called the local closure of
D. The topological density of several sets of relations can be
computed. For example, the following sets of relations on a
set of cardinality κ have density log2(κ): the collection of
n-ary relations, of binary relations, of directed graphs without

loops, of undirected graphs, of tournaments. Indeed, all of
these sets are homeomorphic to the powerset of some set of
cardinality κ. We just illustrate this fact with the collection of
tournaments. Fix a tournament τ ∶= (V,E) on a set V of size
κ. To each map f ∶ E → 2 associate the tournament τf whose
arc set is Ef ∶= f−1(1) ∪ {(u, v) ∈ V 2 ∖ ∆V ∶ f(v, u) = 0}.
This defines a homeomorphism from 2E onto the set of
tournaments.

If X is a set of binary relations ρ on V , we set X−1 ∶= {ρ−1 ∶
ρ ∈X}.

Lemma 16. Let R be a collection of tournaments on V such
that two distinct ordered pairs (x, y), (x′, y′) ∈ V × V ∖ ∆V

are always separated by some member of R. The following
properties are equivalent for a non-empty subset X of R:

(i) All distinct ordered pairs (x, y), (x′, y′) ∈ V × V ∖ ∆V

can be always separated by some member of X;
(ii) X ∪X−1 is 2-dense in R.

Proof: (i) ⇒ (ii) Let ρ ∈ R. Let U be a two element
subset of V ×V ∖∆V . We need to prove that some τ ∈X∪X−1

coincides with ρ on U . Let (x, y) and (x′, y′) be two distinct
ordered pairs such that U = {(x, y), (x′, y′)}. Let α ∶= ρ(x, y)
and β ∶= ρ(x′, y′). If (α,β) = (0,0), let τ be a tournament
separating (x, y) and (y′, x′). Then τ or τ−1 coincides with ρ
on U . If (α,β) = (0,1), let τ separating (x, y) and (x′, y′).
Then τ or τ−1 coincides with ρ. The two other cases are
similar.
(ii) ⇒ (i) Let (x, y) and (x′, y′) be two distinct ordered
pairs. These pairs are separated by some member ρ of A.
Since X ∪X−1 is 2-dense in A there is some τ ∈ X ∪X−1

which coincides with ρ on U ∶= {(x, y), (x′, y′)}. Hence τ

separates (x, y) and (x′, y′).
Let Lin(V ) be the set of linear orders on an infinite set V of
cardinality κ. We may identify each linear order with a subset
of V ×V ∖∆V . By definition a subset X of Lin(V ) is dense if
every nonempty open set of Lin(V ) meets X . This amounts
to the fact that for every ρ ∈ Lin(V ), every finite subsets F ,
G of V ×V ∖∆V ), every set O(F,G) ∶= {τ ∈ P(V ×V ∖∆V ) ∶
F ⊆ τ ⊆ V × V ∖G} containing ρ meets X .
According to Lemma 6, we may apply Lemma 16. This yields:

Lemma 17. If X is dense in Lin(V ), then X separates all
distinct ordered pairs. Hence: hLin(V )(∣V ∣) ≤ d(Lin(V ).

An alternative condition to density is this:

Lemma 18. X is dense in Lin(V ) if and only if for every non-
negative integer m and every m-tuple (a1, . . . , am) of distinct
elements of V there is some ` ∈X such that a1 <` ⋅ ⋅ ⋅ <` am.

Proof: Suppose that X is dense. Let m ∈ N and a m-tuple



(a1, . . . am) ∈ V m with distinct entries. Let ρ ∈ Lin(V ) such
that a1 <ρ ⋅ ⋅ ⋅ <ρ am. Set F ∶= {(ai, ai+1) ∶ 1 ≤ i < m} and
G ∶= ∅. Then ρ ∈ O(F,G) thus there is some ` ∈X ∩O(F,G)
that is a1 <` ⋅ ⋅ ⋅ <` am. Conversely, let ρ ∈ O(F,G)∩Lin(V ).
We prove that O(F,G) meets X . Let A be a finite subset of
V such that ⋃{{x, y} ∶ (x, y) ∈ F ∪G}} ⊆ A. Let (a1, . . . am)
be an enumeration of elements of A so that a1 <ρ ⋅ ⋅ ⋅ <ρ am.
Then there is ` ∈ X such that the ordering on A coincides
with this of ρ. It follows that ` ∈ O(F,G) ∩X .
It is easy to show that d(Lin(V )) = log2(∣V ∣) if ℵ0 ≤ ∣V ∣ ≤ 2ℵ0

(e.g., see the proof of Theorem 19 below). Provided that GCH
holds, the equality d(Lin(V )) = log2(∣V ∣) holds for every
infinite set; but we do not know if this holds without any set
theoretical hypothesis.
To prove that this equality holds, we introduce the following
related parameters. For a cardinal κ, let δ(κ) be the least
cardinal µ such that there is a linear order ` on a set of
cardinality κ admitting a dense subset of cardinality µ and
for a cardinal µ, let ded(µ) be the supremum of cardinals κ
such that there is a chain of cardinality κ and density at most
µ. Recall that if GCH holds then 2<ν = ν for every infinite car-
dinal ν. Next, under this cardinality condition, δ(κ) = log2(κ)
and ded(µ) = 2µ for every infinite κ and µ. (hint: let W be
a well ordered chain of cardinality µ and 2W be the power
set lexicographically ordered. The density of this chain, as
any subchain, is at most 2<µ. By definition, if µ ∶= log2(κ),
2<µ ≤ κ ≤ 2µ, thus δ(κ) ≤ 2<µ. If 2<µ = µ then δ(κ) ≤ µ and
hence δ(κ) = log2(κ). The proof of the second equality is
similar, and shorter). Mitchell [7] showed that it is consistent
with ZFC that for uncountable regular µ, ded(µ) < 2µ [7] and
in fact that no chain of cardinality 2κ has a dense subchain of
cardinality κ. In particular, δ(κ) /= log2(κ). Now we prove:

Theorem 19. For every infinite cardinal κ and set V of car-
dinality κ, we have log2(κ) ≤ hLin(∣V ∣) ≤ d(Lin(V )) ≤ δ(κ).

Proof: The first inequality is Lemma 12 and the second
is Lemma 17. We prove that the third inequality holds. For
that, let ` ∶= (V,≤) be a linear order having a dense set D
of cardinality δ(κ). For each finite subset F of D, write its
elements in an increasing order, F ∶= d1 < ⋅ ⋅ ⋅ < dm−1 with
m = ∣F ∣ + 1 and decompose ` into the m intervals `1 ∶=] −
∞, d1[, . . . , `i+1 ∶= [di, di+1[, . . . , `m ∶= [dm−1,+∞[. Let Sm

be the set of permutations of {1, . . . ,m}. Each permutation
σ ∈Sm induces a permutation of the intervals `1, . . . , `m. The
lexicographical sum `σ ∶= ∑1≤i≤m `σ(i) yields a linear order
≤σ on V .
Claim. The set C ∶= {≤σ ∶ F ∈D<ωand σ ∈S∣F ∣+1} is dense in
Lin(V ).
Since the number of pairs (F,σ) where F ∈ D<ω and σ ∈
S∣F ∣+1 is ∣D∣ this claim suffices to prove the inequality.

Proof of the Claim. According to Proposition 18 this amounts
prove that for every integer m and every m-tuple (a1, . . . am)
of distinct elements of V there is some ≤σ∈ C such that
a1 <σ ⋅ ⋅ ⋅ <σ am. Let σ ∈ Sm such that aσ−1(1) < ⋅ ⋅ ⋅ <
aσ−1(m) in the chain `. Due to the density of D, there are
di ∈ [aσ−1(i), aσ−1(i+1)[∩D for 1 ≤ i ≤ m − 1. Let `1 ∶=] −
∞, d1], . . . , `i+1 ∶=]di, di+1], . . . , `m ∶=]dm−1,+∞[. Permute
these intervals according to σ. The resulting chain `σ reorders
the m-tuple aσ−1(1) < ⋅ ⋅ ⋅ < aσ−1(m) as a1 <σ ⋅ ⋅ ⋅ <σ am. This
proves our claim.

Corollary 20. log2(κ) = hLin(∣V ∣) = d(Lin(V )) =
δ(κ) iff log2(κ) = δ(κ).
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