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Abstract

The similarity between two paths can be measured according to the
proportion of arcs they share. We study the complexity of several vari-
ants of the problem of computing “dissimilar” paths (whose measure
of similarity does not exceed a certain threshold) between two given
vertices of a weighted directed graph. For four of the most studied
measures in the literature, we give a unified and simple proof of the
fact that finding k shortest dissimilar paths is NP-complete.

We then consider the problem of finding an alternative to one or
more given paths. We show that finding a path that is dissimilar to
another given path can be done in polynomial time for one of the four
considered measures while it is NP-complete for the three remaining
measures. In addition, we show that if k = 2 paths are given, finding
a new path that is dissimilar to the given ones is NP-complete even
on DAGs for the four considered measures. Moreover, for the four
considered measures, we show that if a path P is given, finding a
shortest path among those that are dissimilar to P is NP-complete
in DAGs.

1 Introduction

The k shortest simple paths problem aims at finding a shortest path, a sec-
ond shortest path, etc., a kth shortest simple paths between a pair of source
and destination node in a digraph. This problem has numerous applications
in various kinds of networks (road and transportation networks, communi-
cations networks, social networks, etc.) and is also used as a building block
for solving many optimization problems. Let D = (V,A) be a digraph, an
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s-t path is a sequence (s = v0, v1, · · · , vl = t) of vertices starting with s and
ending with t, such that (vi, vi+1) ∈ A for all 0 ≤ i < l. A path P is called
simple if all of its vertices are distinct, i.e, for every i 6= j, vi 6= vj .

Let ` : A→ R+ be a length function over the arcs. For any path P , its
length `(P ) =

∑
e∈A(P ) `(e) is the sum of the lengths of its arcs.

However, the k shortest simple paths are often quite “similar”. Roughly,
they often share a “large” proportion of their arcs. This is undesirable in
many applications. For instance, in transportation networks, users may ex-
pect to have several options offering more diversity: a user prefers a shortest
paths, another user wants to avoid a traffic jam, a third one prefers to travel
along the coast etc.

To deal with this issue, the problem of computing “dissimilar” (shortest)
paths has been investigated. Several definitions of the similarity between two
paths (including the Jaccard and the Max measures defined below [4]) were
first proposed by Erkut and Verter [5], motivated by the transportation of
hazardous materials where it is recommended to avoid residential areas and
crowded routes.

Akgün et al. [2] proposed and analyzed a first basic solution, consisting
in computing a huge set of shortest paths and then choosing a subset of
these paths that are mutually dissimilar. In their experiments, this method
scaled only on small transportation networks (about 300 vertices). The
first scalable solutions were proposed by Abraham et al. [1] where a shortest
path P is fixed, and “locally shortest” paths with limited intersection with P
are requested (this corresponds to the Asymmetric measure defined below).
However, except for the initial path P , this definition does not guaranty any
mutual dissimilarity between the computed paths. A noticeable heuristic
proposed in [1] is the penalty based approach. This heuristic adds a penalty
on the arcs of the already chosen paths in order to limit the chances of falling
back on the same paths.

Chondrogiannis et al. [3] offer both theoretical and empirical study of
the problem. They formally proved that finding k shortest dissimilar paths
is weakly NP-complete for both the Asy measure and a new dissimilarity
measure that they define (referred to as Min measure below). For these two
measures, they proposed an exact pseudo-polynomial time algorithm, with
several pruning techniques, that allows to find 4 dissimilar paths in a road
network with 3,000 vertices in less than one second. They also proposed
advanced heuristics enabling to scale on a road network with one million
vertices while computing paths that are close to shortest ones in practice.

In this paper, we further study the computational complexity of com-
puting (shortest) dissimilar paths for four of the main measures studied
so far. More formally, let P, P ′ be two s-t simple paths in D and let
X =

∑
e∈A(P )∩A(P ′) `(e), i.e., the total length of the intersection of P and

P ′. The four considered measures are defined as follows.
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Name (Z) SZ(P, P ′)

Jaccard [5]
X

`(P ∪ P ′)

Asy [1]
X

`(P )

Min [4]
X

min{`(P ), `(P ′)}

Max [5]
X

max{`(P ), `(P ′)}

Table 1: Four similarity measures

Let S = {Asy, Jaccard,Min,Max}. Given one of the measures Z ∈ S
and a threshold value 0 ≤ θ ≤ 1, two paths P and P ′ are said θ-dissimilar
(or P ′ is said θ-dissimilar to P in the case of asymmetrical similarity) for
the measure Z if SZ(P, P ′) ≤ θ.

Our contributions. In Section 2, we study the problem of finding k short-
est pairwise dissimilar paths. We give a unified and simple proof of the
NP-completeness of this problem for each of the four similarity measures
defined above. Then, in Section 3, we study the problem of finding a (short-
est) path that is dissimilar to a given set of paths. In particular, we show
that if only one path P is initially given, computing a second path that is
dissimilar to P for the Asy measure can be done in polynomial time while
it is NP-complete for the remaining measures (Min, Max and Jaccard).
Then, we prove that finding a path dissimilar (for each of the considered
four measures) to a given set of k ≥ 2 paths is NP-complete on DAGs.
Finally, for each of these four measures, we show that computing a shortest
path among those dissimilar to a given path is NP-complete on DAGs.

2 Finding k shortest dissimilar paths

In this section, we show that the problem of finding k shortest dissimilar
paths is NP-complete for all the considered similarity measures.

More formally, given a digraph D = (V,A) with length function ` : A→
R+, a pair of vertices (s, t) ∈ V × V , an integer k ≥ 2, a threshold value
0 ≤ θ ≤ 1, k constants L1, L2, · · · , Lk and a similarity measure Z ∈ S, the
problem k-ShortestDiss(Z) of finding k shortest dissimilar paths asks to
decide whether there exists k paths from s to t that are mutually θ-dissimilar
with respect to Z and such that `(Pi) ≤ Li for 1 ≤ i ≤ k.

Note that, for the extreme case where θ = 0, the problem of finding k
dissimilar paths (not necessarily the shortest) is the problem of finding k
arc-disjoint paths, and it can be solved in polynomial time using a min cost
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flow algorithm.
Finding k shortest dissimilar paths has already been proved NP-complete

for the Asy and Min measures [3]. Here we propose a simple and unified
proof (for all considered measures).

Theorem 1. For every k ≥ 2 and Z ∈ S, the k-ShortestDiss(Z) problem
is NP-complete in the class of DAGs with a single source and a single sink.

Proof. Let us first consider the case k = 2.
For every Z ∈ S, the problem is clearly in NP. We prove the NP-

hardness by a reduction from the Min-MinDP problem. Given a graph
G = (V,E) with length function ` : E → R+, two terminals s, t ∈ V and
a real number δ ∈ R+ as inputs, the Min-MinDP problem asks whether
there exists two edge disjoint paths P and P ′ with `(P ) ≤ δ. This problem
is NP-complete [7].

Let I = (D = (V,A), `, s, t, δ) be an instance of the Min-MinDP prob-
lem and let I ′ = (D, s, t, k = 2, θ = 0, `, L1 = δ, L2 = n ·maxe∈A `(e)) be an
instance of the k-ShortestDiss(Z) problem.

• If I is a positive Min-MinDP instance, it means that there are two
arc disjoint s-t paths P and P ′ such that `(P ) ≤ δ. Let P1 = P and
P2 = P ′. For every similarity measure Z ∈ S, we have SZ(P1, P2) = 0
since A(P1) ∩ A(P2) = ∅, and so

∑
e∈A(P1)∩A(P2)

`(e) = 0. In ad-

dition, `(P1) ≤ δ = L1 and `(P2) ≤ L2. So, I ′ is a positive k-
ShortestDiss(Z) instance

• If I ′ is a positive k-ShortestDiss(Z) instance, it means that there
are two s-t paths P1 and P2 such that `(P1) ≤ L1 and SZ(P1, P2) = 0
for every similarity measure Z ∈ S, In another word, P1 and P2 are
arc-disjoint. Let P = P1 and P ′ = P2. P and P ′ are two arc-disjoint
s-t paths. In addition `(P ) ≤ L1 = δ, so I is a positive Min-MinDP
instance.

We conclude that the 2-ShortestDiss(Z) problem is NP-Hard.
To extend the result to any k ≥ 2, it is sufficient to add, to the digraph

D in I ′, k − 2 arc-disjoint s-t paths P3, · · · , Pk, each with length L2 and to
set L2 = Li for all 2 ≤ i ≤ k.

3 Finding a path dissimilar to several given paths

In this section, we present our main results. First, we show that the problem
of finding a path dissimilar to another given path can be solved in polynomial
time for the Asy measure. Then, we prove that the problem of finding a
path dissimilar to two given paths is NP-complete. Finally, we show that
finding a shortest path dissimilar to one given path is also NP-complete.
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Figure 1: Digraph D′ defined from D (Theorem 2) with `′(ut′) = 1 for the
Min measure and `′(ut′) = 0 for the Max and Jaccard measures.

3.1 Finding a path dissimilar to another given path

First, let us start with the easiest variant of the problem that is the problem
of finding a path dissimilar to another for the Asy measure. Given a digraph
D = (V,A) with ` : A → R+, two vertices s, t ∈ V , a threshold value
0 ≤ θ ≤ 1, a s-t simple path P and a similarity measure Z ∈ S, Diss(1, Z)
is the problem of finding a s-t path Q that is θ-dissimilar to P using the
measure Z.

Proposition 1. Diss(1, Asy) can be solved in same time as any shortest-
path algorithm.

Proof. Let `′ : A → R+ be defined such that, for every e ∈ A, `′(e) =
`(e) if e ∈ A(P ), and `′(e) = 0 otherwise. Hence, a shortest s-t simple
path Q is a solution of the Diss(1, Asy) problem if and only if `′(Q) =∑

e∈A(P )∩A(Q) `(e) ≤ θ · `(P ).

Theorem 2. Diss(1, Z) is NP-complete for all Z ∈ {Jaccard,Min,Max}

Proof. For every Z ∈ {Jaccard,Min,Max}, the problem is clearly in NP,
so we only prove the NP-hardness by a reduction from the Long-Path
problem. Given a digraph D = (V,A) with length function ` : A→ R+, two
terminals s, t ∈ V and a real number L ∈ R+ as inputs, the Long-Path
problem asks whether there exists an s-t simple path Q with `(Q) ≥ L. This
problem is NP-complete [8]. Moreover, it remains NP-complete when
L ≤ 1 (by dividing the length of each arc by M =

∑
a∈Aw(a)).

Let I = (D = (V,A), `, s, t, L) be a Long-Path instance with 0 < L ≤ 1.
Let D′ = (V ∪ {s′, u, t′}, A ∪ {s′u, ut′, us, tt′}) with lengths `′(a) = `(a) for
every a ∈ A, `′(s′u) = 1−L, the value of `′(u, t′) depends on the considered
measure and will be specified later, `′(us) = 0 and `′(tt′) = 0 (see Figure 1).
Let also I ′ = (D′, `′, P, θ = 1−L), with P = {s′, u, t′}, be an instance of the
Diss(1, Z) problem.

First, let us consider the Min measure and let `′(ut′) = L.
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• If I is a positive Long-Path instance, then there is an s-t path R =
(s, · · · , t) of length at least L in D. Let Q = (s′, u, s, · · · , t, t′) be the
concatenation of s′, u, R and t′. Note that `′(P ) = 1 and `′(Q) ≥ 1. We

have SMin(P,Q) = `′(s′u)
min{`′(P ),`′(Q)} = 1−L

1 = θ, and so I ′ is a positive

Diss(1,Min) instance.

• If I ′ is a positive Diss(1,Min) instance, then there is an s-t path Q

s.t. SMin(P,Q) = `′(P∩Q)
min{`′(P ),`′(Q)} ≤ θ. Since `′(P ∩ Q) = `′(s′u) =

1 − L = θ, we have min{`′(P ), `′(Q)} ≥ 1 and so `′(Q) ≥ 1 (since
`′(P ) = 1). Let R be the subpath of Q starting from s and ending at
t, i.e., R = (s, · · · , t) and `(R) = `′(R) = `′(Q)− (1−L) ≥ L (since R
is a simple path and `′(Q) ≥ 1). Therefore, I is a positive Long-Path
instance.

We conclude that Diss(1,Min) is NP-Hard.
Using a similar construction, the NP-hardness of Diss(1,Max) and

Diss(1, Jaccard) can be proved.
Precisely, for both the Jaccard and Max measure, it is sufficient to keep

the same reduction as before but setting `′(ut′) = 0.

• If I is a positive Long-Path instance, then there is an s-t path R =
(s, · · · , t) of length at least L in D. Let Q = (s′, u, s, · · · , t, t′) be the
concatenation of s′, u, R and t′. Note that `′(P ) = 1−L and `′(Q) ≥ 1.

In the case of the Max measure, we get that SMax(P,Q) = `′(P∩Q)
max{`′(P ),`′(Q)} ≤

1−L
1 = θ, and so I ′ is a positive Diss(1,Max) instance.

In the case of the Jaccard measure, we get that SJaccard(P,Q) =
`(P∩Q)
`(P∪Q) = 1−L

1−L+`(R) ≥ 1 − L = θ (since `(R) ≥ L), and so I ′ is a

positive Diss(1, Jaccard) instance.

• If I ′ is a positive Diss(1,Max) instance, then there is an s-t path Q

s.t. SMax(P,Q) = `′(P∩Q)
max{`′(P ),`′(Q)} ≤ θ. Since `′(ut′) = 0, we have that

`′(P ) = `′(su) = `′(P ∩ Q) = 1 − L = θ and `′(Q) ≥ `′(P ). Since
SMax(P,Q) ≤ θ, `′(Q) ≥ 1. Let R be the subpath of Q starting from
s and ending at t, i.e., R = (s, · · · , t) and `(R) = `′(R) = `′(Q)− (1−
L) ≥ L (since Q is a simple path). Therefore, there is a path from s
to t in D of length at least L and I is a positive Long-Path instance.

• If I ′ is a positive Diss(1, Jaccard) instance, then there is an s-t path Q

s.t. SJaccard(P,Q) = `′(P∩Q)
`′(P∪Q) ≤ θ. By construction, `′(P ∪Q) = `′(Q).

Since, moreover `′(P ∩Q) = `′(s′u) = 1−L = θ, then `′(Q) ≥ 1. Let R
be the subpath of Q starting from s and ending at t, i.e., R = (s, · · · , t)
and `(R) = `′(R) = `′(Q) − θ ≥ 1 − (1 − L) = L (since Q is a simple
path). Therefore, there is a path from s to t in D of length at least L
and I is a positive Long-Path instance.
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Figure 2: Digraph DS = (V,A) defined from S = {x1, · · · , xn}. For all
1 ≤ i ≤ n, `(ei) = xi. For all 1 ≤ i ≤ n, we have `(fi) = xi in the proof of
Theorem 3 and `(fi) = M · xi with M > 1 in the proof of Theorem 4.

We conclude that Diss(1,Max) and Diss(1, Jaccard) are NP-Hard.

3.2 Finding a path dissimilar to several given paths

Given a digraph D = (V,A) with ` : A → R+, two vertices s, t ∈ V , a
threshold value 0 ≤ θ ≤ 1, k s-t simple paths P1, · · · , Pk and a similarity
measure Z ∈ S, Diss(k, Z) is the problem of finding a s-t path Q that is
θ-dissimilar to Pi for all i ≤ k using the measure Z.

Theorem 3. For every k ≥ 2 and Z ∈ S, the Diss(k, Z) problem is NP-
complete even if D is a Directed Acyclic Graph (DAG) with a single source
and a single sink.

Proof. Let Z ∈ S. Let us first consider the case k = 2. We use a reduction
from the Partition problem. Recall that the Partition problem takes
as input a multiset S = {x1, ..., xn} of positive integers and asks whether
there exists a partition (X,Y ) of S such that

∑
x∈X x =

∑
x∈Y x = h

where 2h =
∑

x∈S x (so
∑

x∈S x is even). The Partition problem is weakly
NP-complete [6].

LetDS = (V,A) be the DAG defined such that V = {s = v0, v1, · · · , vn−1, vn =
t} and, for every 1 ≤ i ≤ n, let us add arcs ei = vi−1vi and fi = vi−1vi with
length `(ei) = `(fi) = xi (see Figure 2). Let P1 be induced by {ei | 1 ≤ i ≤
n}, P2 be induced by {fi | 1 ≤ i ≤ n} (note that `(P1) = `(P2) = 2h) and
let θ = 1/2.

Note that there is a one-to-one mapping between the s-t simple paths
and the bipartitions of {1, · · · , n}. Indeed, let P be any such path. Then,
for every 1 ≤ i ≤ n, path P goes through exactly one of ei or fi. Let
XP = {1 ≤ i < n | ei ∈ A(P )} and YP = {1 ≤ i < n | fi ∈ A(P )}.
Clearly, (XP , YP ) is a partition of {1, · · · , n}. Reciprocally, let (X,Y ) be
any partition of {1, · · · , n}. Then, let PXY be the path induced by {ei | i ∈
X} ∪ {fi | i ∈ Y }. Clearly, PXY is a s-t simple path.

First, we consider only the three similarity measures Asy, Min andMax.
Note that every s-t simple path has length 2h and therefore, for every s-t sim-
ple paths P and R, SAsy(P,R) = SAsy(R,P ) = SMin(P,R) = SMax(P,R).
Hence, all similarity measures in {Asy,Min,Max} are equivalent.
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By construction, for every bipartition (X,Y ) of {1, · · · , n} (equivalently,
for every s-t simple path PXY ), `(P1 ∩PXY ) =

∑
i∈X xi and `(P2 ∩PXY ) =∑

i∈Y xi. Since `(P1∩PXY ) = SZ(P1, P ) ·2h and `(P2∩PXY ) = SZ(P2, P ) ·
2h, it follows that (DS , `, s, t,

1
2 , P1, P2) admits a s-t simple path P with

SZ(P1, P ) ≤ 1
2 and SZ(P2, P ) ≤ 1

2 if and only if S admits a balanced parti-
tion. So the Diss(2, Z) problem is NP-Hard for all Z ∈ {Asy, Min,Max}.

Concerning the Jaccard measure, i.e, the Diss(2, Jaccard) problem, us-
ing the same construction proposed above but with θ = 1

3 one can prove
that the described reduction is valid.

Finally, to extend the result to any k ≥ 2, it is sufficient to add, to DS ,
k − 2 arc-disjoint s-t paths P3, · · · , Pk with length = 2h.

3.3 Shortest path dissimilar to one given path

We now study the problem of finding a path of bounded length that is
dissimilar to a set of k given paths. By Theorem 3, this problem is NP-
complete (without bounding the length) whenever k ≥ 2. So, let us study
the case for k = 1. By Theorem 2, the problem is NP-complete for
Z ∈ {Min,Max, Jaccard}. So, the only remaining case is the Asy measure.
In contrast with Proposition 1, we prove that SDiss(Asy) is NP-complete.
Moreover, this result hold on DAGs and for every Z ∈ S.

Precisely, the SDiss(Z) problem takes as input a tuple (D, `, s, t, θ, L, P )
where D = (V,A) is a directed graph with ` : A→ R+, s, t ∈ V , 0 ≤ θ ≤ 1,
L ∈ R+, and P is an s-t simple path. It aims at deciding whether there
exists an s-t simple path Q that is θ-dissimilar to P and `(Q) ≤ L.

Theorem 4. Let Z ∈ S. For every k ≥ 1, The SDiss(Z) problem is NP-
complete in the class of DAGs with a single source and a single sink.

Proof. The problems is clearly in NP, so we prove its NP-hardness by a
reduction from the Partition problem.

Let S = {x1, ..., xn} be an instance of the Partition problem and 2h =∑n
i=1 xi. Let M > 1. Let DS = (V,A) be the DAG defined such that

V = {s = v0, v1, · · · , vn−1, vn = t} and, for every 1 ≤ i ≤ n, let us add
arcs ei = vi−1vi and fi = vi−1vi with length `(ei) = xi and `(fi) = M · xi
respectively (see Figure 2).

Let P be the s-t simple path that consists of arcs e1, · · · , en and so
`(P ) = 2h. Note that, since M > 1, `(P ) ≤ `(P ′) for every s-t simple path
P ′. Finally, let L = h(M + 1) and let θ = 1/2 for Asy and Min measures,
θ = 1

M+1 for the Max measure and θ = 1
M+2 for the Jaccard measure.

As in the proof of Theorem 3, it can be shown that there is a s-t simple
path Q with `(Q) ≤ L and Q is θ-dissimilar from P if and only if S is a
positive instance of the Partition problem.
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4 Conclusion

In this paper, we studied several versions of the problem of finding (short-
est) dissimilar paths in a digraph considering four similarity measures. An
interesting question is whether there is a similarity measure for which the
problem of finding k dissimilar paths can be solved in polynomial time. An-
other interesting question regards the accuracy of these similarity measures
for real life applications.
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