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The motion of an object within a viscous fluid and in the vicinity of a soft surface induces a hydrodynamic
stress field that deforms the latter, thus modifying the boundary conditions of the flow. This results in elastohy-
drodynamic (EHD) interactions experienced by the particle. Here, we derive a soft-lubrication model, in order
to compute all the forces and torque applied on a rigid sphere that is free to translate and rotate near an elastic
wall. We focus on the limit of small deformations of the surface with respect to the fluid-gap thickness, and
perform a perturbation analysis in dimensionless compliance. The response is computed in the framework of
linear elasticity, for planar elastic substrates in the limiting cases of thick and thin layers. The EHD forces are
also obtained analytically using the Lorentz reciprocal theorem.

INTRODUCTION

The fluid-structure interaction between flows and boundaries is a central situation in continuum mechanics, encountered at
many length and velocity scales. A classical example is lubrication, where the addition of a liquid film, a lubricant, between
two contacting objects, allows for a drastic reduction of the friction between them. Such a process occurs in a large variety of
contexts with hard materials, such as roller bearings, pistons and gears in industry [1], or faults [2] and landslides [3] in geological
settings. At large velocity, or moderate loading, the liquid film is continuous with no direct contact between the solids. When the
solids are deformable, the friction force can be described using elastohydrodynamic (EHD) models within the soft-lubrication
approximation [1].

The previous EHD coupling is also widely encountered in soft condensed matter, but at very different pressure and velocity
scales [4]. Examples encompass the remarkable frictional properties of eyelids [5] and cartilaginous joints [6, 7], as well as
biomimetic gels [8] and rubbers [9–12]. Of interest as well are the collisions and rebounds of spheres in viscous environments [13–
15], the rheological properties of soft suspensions and pastes [9, 16], and the self-similar properties of the contact [17].

In the last decade, EHD interactions have been of great interest in the material-science community with the emergence of
contactless rheological methods to measure the mechanical properties of confined liquids and soft surfaces [18–29]. Typically, in
such experimental systems, a spherical colloidal probe is immersed in a fluid and driven to oscillate, with a nanometric amplitude,
near a surface of interest. The force exerted on the probe is measured by an atomic force microscope, a surface force apparatus
or a tuning-fork microscope, and depends on the properties of both the fluid and the solid boundary.

Generally, an object that moves in a confined fluid environment experiences an enhanced drag force with respect to the
bulk Stokes law, as a result of the boundary-induced flow modification [30]. Furthermore, near a soft wall, the hydrodynamic
interactions are modified by the deformation of the boundary that they generate, yielding a nonlinear coupling. Perturbation
methods, assuming a small deformation of the interface, have been employed in order to calculate the soft-lubrication interactions
exerted on a free infinite cylinder immersed in a viscous fluid and near a thin compressible elastic material [31]. In particular,
interesting inertial-like features have been predicted despite the low-Re-number aspect of the flow.

Perhaps the most emblematic example of soft-lubrication interaction is the non-inertial lift force predicted for a particle
sliding near a soft boundary [9, 32–36]. It might have important implications for advected biological entities, such as red
blood cells [37] and vesicles [38]. Only recently, the associated dynamical repulsion from an immersed soft interface has
been studied experimentally. A preliminary qualitative observation was reported in the context of smart lubricants and elastic
polyelectrolytes [39]. Then, a study involving the sliding of an immersed macroscopic cylinder along an inclined plane pre-coated
with a thin layer of gel, showed quantitatively an effective reduction of friction induced by the EHD lift force [40]. Subsequently,
the same effect was observed in the trajectories of micrometric spherical beads within a microfluidic channel coated with a
biomimetic polymer layer [41], and through the sedimentation of a macroscopic sphere near a pre-tensed suspended elastic
membrane [42]. Finally, direct measurements of the EHD lift force for two types of elastic materials have been performed at
small scales, using surface force apparatus and atomic force microscopy, respectively [43, 44].

Despite the increasing number of EHD studies involving spherical probes, the soft-lubrication interactions of a free spherical
object immersed in a viscous fluid and moving near an elastic substrate still have to be calculated. In the present article, we aim
at filling this gap by deriving a soft-lubrication perturbation theory, in order to compute all the forces and torque for this problem,
at first order in dimensionless compliance.
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Figure 1: Schematic of the system. A rigid sphere of surface S0 is freely moving in a viscous fluid, near a soft wall of surface Sw in the flat
undeformed state. The lubrication pressure field deforms the latter which induces an elastohydrodynamic coupling, with forces and torque
exerted on the sphere. Note that the surface deformation is magnified for clarity, but that we restrict the analysis to the 𝛿 � 𝑑 case.

The article is organized as follows. First, we introduce the soft-lubrication framework for a sphere translating near a soft
planar surface, both in the normal and tangential directions. The substrate deformation is assumed to follow the constitutive
response of a linear elastic semi-infinite material. Then, we perform a perturbative approach, assuming the substrate deformation
to be small with respect to the fluid-gap thickness, which allows us to find the normal and tangential forces as well as the torque
experienced by the sphere, at first order in dimensionless compliance. Finally, we discuss the rotation of the sphere, before
providing concluding remarks. Besides, in the appendix, the EHD forces are computed analytically using the Lorentz reciprocal
theorem, while the procedure introduced in the main text is reproduced for the compressible and incompressible responses of a
thin material.

MODEL

The system is depicted in Fig. 1. We consider a sphere of radius 𝑎, immersed in a Newtonian fluid of dynamic shear viscosity
𝜂 and density 𝜌. The sphere is moving with a tangential velocity 𝒖(𝑡) = 𝑢(𝑡) 𝒆𝑥 directed along the 𝑥-axis (by definition of the
latter axis), where 𝒆 𝑗 denotes the unit vector along 𝑗 . In this first part, we assume that the sphere does not rotate, i.e. the angular
velocity reads 𝛀 = 0. The sphere is placed at a time-dependent distance 𝑑 (𝑡) (thus a ¤𝑑 𝒆𝑧 normal velocity of the sphere) of an
isotropic and homogeneous linear elastic substrate of Lamé coefficients 𝜆 and 𝜇, with a reference undeformed flat surface in the
𝑥𝑦 plan at 𝑧 = 0. We suppose that the sphere-wall distance is small with respect to the sphere radius, such that the lubrication
approximation is valid. The fluid inertia is neglected here. Specifically, we assume Re (𝑑/𝑎) � 1, with the Reynolds number
Re = 𝜌𝑢𝑎/𝜂. Furthermore, we suppose that the typical time scale of variation of the sphere velocity is much larger than the
diffusion time scale of vorticity that scales as 𝑑2/(𝜂/𝜌), such that the flow is described by the steady Stokes equations. This
amounts to assuming that | ¤𝑢/𝑢 | � 𝜂/(𝜌𝑑2) and | ¥𝑑/ ¤𝑑 | � 𝜂/(𝜌𝑑2). No-slip boundary conditions are assumed at both the sphere
and wall surfaces. Finally, the system is equivalent to a sphere at rest near a wall translating with a −(𝑑 (𝑡)𝒆𝑧 + 𝒖(𝑡)) velocity. In
such a framework, the fluid velocity field can be written as:

𝒗(𝒓, 𝑧, 𝑡) = ∇𝑝(𝒓, 𝑡)
2𝜂

(𝑧 − ℎ0 (𝑟, 𝑡)) (𝑧 − 𝛿(𝒓, 𝑡)) − 𝒖(𝑡) ℎ0 (𝑟, 𝑡) − 𝑧
ℎ0 (𝑟, 𝑡) − 𝛿(𝒓, 𝑡)

, (1)

where 𝒓 = (𝑟, 𝜃) is the position in the tangential plane 𝑥𝑦, ∇ is the 2D gradient operator on 𝑥𝑦, 𝛿(𝒓, 𝑡) is the substrate
deformation, and 𝑧 = ℎ0 (𝑟, 𝑡) is the sphere surface. Near contact, the latter can be approximated by its parabolic expansion
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ℎ0 (𝑟, 𝑡) ' 𝑑 (𝑡) + 𝑟2/(2𝑎). Volume conservation further leads to the Reynolds equation:

𝜕𝑡ℎ(𝒓, 𝑡) = ∇ ·
(
ℎ3 (𝒓, 𝑡)

12𝜂
∇𝑝(𝒓, 𝑡) + ℎ(𝒓, 𝑡)

2
𝒖(𝑡)

)
, (2)

where ℎ(𝒓, 𝑡) = ℎ0 (𝑟, 𝑡) − 𝛿(𝒓, 𝑡) is the fluid-gap thickness. In this first part, we assume that the constitutive elastic response is
linear and instantaneous, and that the substrate is a semi-infinite medium, such that the deformation reads [13]:

𝛿(𝒓, 𝑡) = − (𝜆 + 2𝜇)
4𝜋𝜇(𝜆 + 𝜇)

∫
R2

d2𝒙
𝑝(𝒙, 𝑡)
|𝒓 − 𝒙 | . (3)

We non-dimensionalize the problem through:

ℎ(𝒓, 𝑡) = 𝑑∗𝐻 (𝑹, 𝑇), 𝒓 =
√

2𝑎𝑑∗ 𝑹, 𝑑 (𝑡) = 𝑑∗𝐷 (𝑇), 𝛿(𝒓, 𝑡) = 𝑑∗Δ(𝑹, 𝑇), (4)

𝑝(𝒓, 𝑡) = 𝜂𝑢∗
√

2𝑎𝑑∗

𝑑∗2
𝑃(𝑹, 𝑇), 𝒖(𝑡) = 𝑢∗𝑈 (𝑇) 𝒆𝑥 , 𝒗 = 𝑢∗𝑽, 𝑡 =

√
2𝑎𝑑∗
𝑢∗

𝑇. (5)

where 𝑑∗ and 𝑢∗ are characteristic fluid-gap distance and tangential velocity, respectively. The governing equations are then:

12𝜕𝑇𝐻 (𝑹, 𝑇) = ∇ ·
(
𝐻3 (𝑹, 𝑇)∇𝑃(𝑹, 𝑇) + 6𝐻 (𝑹, 𝑇)𝑼(𝑇)

)
, (6)

𝐻 (𝑹, 𝑇) = 𝐷 (𝑇) + 𝑅2 − Δ(𝑹, 𝑇), (7)

and:

Δ(𝑹, 𝑇) = −𝜅
∫
R2

d2𝑿
𝑃(𝑿, 𝑇)

4𝜋 |𝑹 − 𝑿 | , (8)

where we introduced the dimensionless compliance:

𝜅 =
2𝜂𝑢∗𝑎(𝜆 + 2𝜇)
𝑑∗2𝜇(𝜆 + 𝜇)

. (9)

The latter is the only dimensionless parameter in the problem. When 𝜅 is small with respect to unity, it corresponds to the ratio
between two length scales: the typical substrate deformation 𝛿 ∼ 2𝜂𝑢∗𝑎 (𝜆+2𝜇)

𝑑∗𝜇 (𝜆+𝜇) induced by a tangential velocity 𝑢∗, and the typical
fluid-gap thickness 𝑑∗. All along the article, we focus on the small-deformation regime of soft-lubrication where 𝜅 � 1 [45].

PERTURBATION THEORY

We perform a perturbation analysis at small 𝜅 [9, 31–36, 44, 46–48], as follows:

𝐻 (𝑹, 𝑇) = 𝐻0 (𝑹, 𝑇) + 𝜅 𝐻1 (𝑹, 𝑇) +𝑂 (𝜅2), (10)

𝑃(𝑹, 𝑇) = 𝑃0 (𝑹, 𝑇) + 𝜅 𝑃1 (𝑹, 𝑇) +𝑂 (𝜅2), (11)

where the subscript 0 corresponds to the solution for a rigid wall, with 𝐻0 (𝑹, 𝑇) = 𝐷 (𝑇) + 𝑅2.

Zeroth-order solution: rigid wall

Equation (6) reads at zeroth order 𝑂 (𝜅0):

12 ¤𝐷 = ∇ ·
(
𝐻3

0∇𝑃0 + 6𝐻0𝑼

)
. (12)



4

Figure 2: Dimensionless deformation fields at the free surface of the soft substrate, for a sphere placed at a unit distance 𝐷 = 1 and for two
modes of motion: a) the sphere velocity is directed tangentially to the substrate, along the 𝑥-axis (see black arrow), and is fixed to a unit value
𝑈 = 1; b) the sphere is approaching the substrate normally (see black cross) with a unit velocity ¤𝐷 = −1.

In polar coordinates, Eq. (12) can be rewritten as:

L.𝑃0 = 𝑅2𝜕2
𝑅𝑃0 +

(
𝑅 + 6𝑅3

𝐷 + 𝑅2

)
𝜕𝑅𝑃0 + 𝜕2

𝜃𝑃0 =
𝑅2

(𝐷 + 𝑅2)3

(
12 ¤𝐷 − 12𝑅 cos 𝜃 𝑈

)
, (13)

where L is a linear operator. We solve this equation, using an angular-mode decomposition:

𝑃0 (𝑹, 𝑇) = 𝑃 (0)
0 (𝑅,𝑇) + 𝑃 (1)

0 (𝑅,𝑇) cos 𝜃, (14)

where the two coefficients are solutions of the ordinary differential equations:

𝑅2 d2𝑃
(0)
0

d𝑅2 +
(
𝑅 + 6𝑅3

𝐷 + 𝑅2

) d𝑃 (0)
0

d𝑅
= 12

𝑅2 ¤𝐷
(𝐷 + 𝑅2)3 , (15a)

𝑅2 d2𝑃
(1)
0

d𝑅2 +
(
𝑅 + 6𝑅3

𝐷 + 𝑅2

) d𝑃 (1)
0

d𝑅
− 𝑃 (1)

0 = −12
𝑅3𝑈

(𝐷 + 𝑅2)3 . (16a)

In accordance with the boundary conditions, 𝑃(𝑅 → ∞) = 0 and 𝑃(𝑅 = 0) < ∞, the solution is thus:

𝑃0 (𝑹, 𝑇) = − 3 ¤𝐷
2(𝐷 + 𝑅2)2 + 6𝑅𝑈 cos 𝜃

5(𝐷 + 𝑅2)2 . (17)

The first-order substrate deformation 𝐻1 can then be computed from Eq. (8) at order 𝑂 (𝜅):

𝐻1 (𝑹, 𝑇) =
∫
R2

d2𝑿
𝑃0 (𝑿, 𝑇)

4𝜋 |𝑹 − 𝑿 | . (18)

Using e.g. the spatial Fourier transform 𝐻̃1 (𝑲) =
∫
R2 𝐻1 (𝑹)𝑒−𝑖𝑹 ·𝑲d2𝑹, we find:

𝐻1 (𝑹, 𝑇) = − 3 ¤𝐷
8
√
𝐷

E(−𝑅2/𝐷)
𝐷 + 𝑅2 + 3𝑈

10𝑅
√
𝐷

(
− 𝐷 E(−𝑅2/𝐷)

𝐷 + 𝑅2 + K(−𝑅2/𝐷)
)

cos 𝜃, (19)

where K and E are the complete elliptic integrals of the first and second kinds [49]. The dimensionless substrate deformations
are plotted in Fig. 2. In Fig. 2a), the sphere is moving tangentially to the substrate with a unit velocity 𝑈 = 1. The deformation
exhibits a dipolar symmetry, with a negative sign (i.e. the substrate is compressed) at the front. Besides, the isotropic term
generated by a sphere moving normally to the substrate is shown in Fig. 2b). In particular, for a sphere approaching the substrate,
the latter is compressed.
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First-order solution

We can now compute the first-order pressure field 𝑃1, from Eq. (6) at order 𝑂 (𝜅):

12𝜕𝑇𝐻1 = ∇ ·
(
𝐻3

0∇𝑃1 + 3𝐻2
0𝐻1∇𝑃0 + 6𝐻1𝑼

)
. (20)

Invoking the same linear operator L as in Eq. (13), we can rewrite Eq. (20) as:

L.𝑃1 =
𝑅2

𝐻3
0

(
12𝜕𝑇𝐻1 − ∇ ·

[
3𝐻2

0𝐻1∇𝑃0 + 6𝐻1𝑼

] )
. (21)

We then expand all the terms in the right-hand side of Eq. (21), and we perform once again the angular-mode decomposition:

L.𝑃1 = 𝐹0 (𝑅,𝑇) + 𝐹1 (𝑅,𝑇) cos 𝜃 + 𝐹2 (𝑅,𝑇) cos 2𝜃, (22)

where we have introduced the auxiliary functions:

𝐹0 (𝑅,𝑇) =
18𝑅2𝑈2

25𝐷1/2 (𝐷 + 𝑅2)6

[
(−10𝐷2 + 2𝐷𝑅2) E

(
−𝑅

2

𝐷

)
+ (8𝐷2 + 7𝐷𝑅2 − 𝑅4) K

(
−𝑅

2

𝐷

) ]
+ 9𝑅2 ¤𝐷2

4𝐷3/2 (𝐷 + 𝑅2)6

[
(13𝐷2 + 3𝑅2𝐷 + 2𝑅4) E

(
−𝑅

2

𝐷

)
+ (−4𝐷2 − 5𝑅2𝐷 − 𝑅4) K

(
−𝑅

2

𝐷

) ]
−

9𝑅2 ¥𝐷 E
(
−𝑅2

𝐷

)
2𝐷1/2 (𝐷 + 𝑅2)4 ,

(23)

and:

𝐹1 (𝑅,𝑇) = − 27𝑅𝑈 ¤𝐷
5𝐷1/2 (𝐷 + 𝑅2)6

[
(−2𝐷2 + 7𝐷𝑅2 + 𝑅4) E

(
−𝑅

2

𝐷

)
+ 2(𝐷 + 𝑅2) (𝐷 − 𝑅2) K

(
−𝑅

2

𝐷

) ]
− 18𝑅 ¤𝑈

5𝐷1/2 (𝐷 + 𝑅2)4

[
− 𝐷 E

(
−𝑅

2

𝐷

)
+ (𝐷 + 𝑅2) K

(
−𝑅

2

𝐷

) ]
.

(24)

We note that we have not provided 𝐹2 as it does not contribute in the forces and torque. We also note that, by setting
𝐷 (𝑇) = 1 in the latter expressions, we self-consistently recover the expression of [44]. Invoking the angular-mode decomposition
𝑃1 (𝑹, 𝑇) = 𝑃 (0)

1 (𝑅,𝑇) + 𝑃 (1)
1 (𝑅,𝑇) cos 𝜃 + 𝑃 (2)

1 (𝑅,𝑇) cos 2𝜃, we get in particular:

𝑅2 d2𝑃
(0)
1

d𝑅2 +
(
𝑅 + 6𝑅3

𝐷 + 𝑅2

) d𝑃 (0)
1

d𝑅
= 𝐹0 (𝑅,𝑇), (25)

𝑅2 d2𝑃
(1)
1

d𝑅2 +
(
𝑅 + 6𝑅3

𝐷 + 𝑅2

) d𝑃 (1)
1

d𝑅
− 𝑃 (1)

1 = 𝐹1 (𝑅,𝑇). (26)

Using scaling arguments, we can write the two relevant first-order pressure components 𝑃 (𝑖)
1 as:

𝑃
(0)
1 =

𝑈2

𝐷7/2 𝜙𝑈2 (𝑅/
√
𝐷) +

¤𝐷2

𝐷9/2 𝜙 ¤𝐷2 (𝑅/
√
𝐷) +

¥𝐷
𝐷7/2 𝜙 ¥𝐷 (𝑅/

√
𝐷), (27)

and:

𝑃
(1)
1 =

𝑈 ¤𝐷
𝐷4 𝜙𝑈 ¤𝐷 (𝑅/

√
𝐷) +

¤𝑈
𝐷3 𝜙 ¤𝑈 (𝑅/

√
𝐷), (28)

where the 𝜙𝑖 are five dimensionless scaling functions that depend on the self-similar variable 𝑅/
√
𝐷 only. Equations (27) and

(28) can be solved numerically with a Runge-Kutta algorithm, and a shooting parameter in order to ensure the boundary condition
𝑃1 (𝑅 → ∞, 𝜃, 𝑇) = 0. All the scaling functions are plotted in Figs. 3 and 4.
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Figure 3: Scaling functions for 𝑃 (0)
1 (see Eq. (27)), obtained from numerical integration of Eq. (25), with the boundary conditions 𝜕𝑅𝑃

(0)
1 (𝑅 =

0, 𝑇) = 0 and 𝑃 (0)
1 (𝑅 → ∞, 𝑇) = 0.

As a remark, we recall that the substrate deformation is induced by the flow, and that at first order it is linear in the velocity field
(see Eq. (19)). Moreover, the volume-conservation equation involves the time derivative of the fluid-layer thickness, and thus
in particular the time derivative of the substrate deformation. As a consequence, when calculating the first-order EHD pressure
field, we find terms (and thus forces and torques) that are proportional to the acceleration components ¥𝐷 and ¤𝑈 of the sphere. At
first sight, these original inertial-like features might seem inconsistent with steady Stokes flows, but are in fact independent of
the fluid density and solely induced by the intimate EHD coupling.

Forces and torque

The force 𝑭 exerted by the fluid on the sphere is given by:

𝑭 =

∫
S0

𝒏 · 𝝈 d𝑠, (29)

where 𝝈 = −𝑝I + 𝜂(∇𝒗 + ∇𝒗T) is the fluid stress tensor, 𝒏 is the unit vector normal to the sphere surface and pointing towards
the fluid, and I is the identity tensor. Within the lubrication approximation, the fluid stress tensor reads 𝝈 ' −𝑝I + 𝜂𝒆𝑧𝜕𝑧𝒗. One
can then evaluate the normal force, as:

𝐹𝑧 =

∫
R2
𝑝(𝒓) d2𝒓 = − 6𝜋𝜂𝑎2 ¤𝑑

𝑑
+ 0.41623

𝜂2𝑢2 (𝜆 + 2𝜇)
𝜇(𝜆 + 𝜇)

(
𝑎

𝑑

)5/2

− 41.912
𝜂2 ¤𝑑2 (𝜆 + 2𝜇)
𝜇(𝜆 + 𝜇)

(
𝑎

𝑑

)7/2
+ 18.499

𝜂2 ¥𝑑𝑎(𝜆 + 2𝜇)
𝜇(𝜆 + 𝜇)

(
𝑎

𝑑

)5/2
,

(30)

where the prefactors have been numerically estimated using Eq. (27). We recover in particular the classical Reynolds force
−6𝜋𝜂𝑎2 ¤𝑑/𝑑 at zeroth order, i.e. near a rigid wall. We stress that tangential motions do not induce any normal force at zeroth
order in 𝜅, as the corresponding pressure field is antisymmetric in 𝑥 (see Eq. (13)). In contrast, such motions do induce a lift force
at first order in 𝜅, due to the symmetry breaking of the contact geometry associated with the elastic deformation. Interestingly
as well, normal motions generate a viscous adhesive force at first order in compliance [50]. Besides, an original EHD force
proportional to the sphere’s normal acceleration is also found, as discussed previously. Finally, in the appendix, and following
previous works [42, 47, 51, 52], we use the Lorentz reciprocal theorem in order to recover the prefactors of Eq. (30) analytically,
which gives respectively: 243𝜋3

12800
√

2
≈ 0.41623, 3915𝜋3

2048
√

2
≈ 41.912 and 27𝜋3

32
√

2
≈ 18.499. We note that the latter is in agreement with

the result of the linear-response theory derived in [20]. Furthermore, we recover the lift prefactor (0.416) obtained previously
numerically [44], as well as analytically in a recently-published work [53].

Similarly, the tangential force reads:

𝑭‖ =

∫
R2

(
− 𝑝(𝒓, 𝑡) 𝒓

𝑎
− 𝜂𝜕𝑧𝒗

)
𝑧=ℎ0 (𝑟 ,𝑡)

d2𝒓. (31)
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Figure 4: Scaling functions for 𝑃 (1)
1 (see Eq. (28)), obtained from numerical integration of Eq. (26), with the boundary conditions 𝑃 (1)

1 (𝑅 =

0, 𝑇) = 0 and 𝑃 (1)
1 (𝑅 → ∞, 𝑇) = 0.

Using symmetry arguments, we can show that the tangential force is directed along 𝑥, i.e. 𝑭‖ = 𝐹𝑥 𝒆𝑥 . At small 𝜅, we
further expand it as 𝐹𝑥 ' 𝐹𝑥,0 + 𝜅𝐹𝑥,1, where 𝐹𝑥,0 is the viscous drag force applied on a sphere near a rigid plane wall, and
𝜅𝐹𝑥,1 is the first-order EHD correction. The zeroth-order term cannot be evaluated using the lubrication model introduced in
the previous section, because the integral in Eq. (31) diverges, as the shear term 𝜂𝜕𝑧𝒗 scales as ∼ 𝑟−2 at large 𝑟 . An exact
calculation has been performed using bispherical coordinates and provides a solution in the form of a series expansion [54].
Asymptotic-matching methods have also been employed in order to get the asymptotic behavior at small 𝑑/𝑎 [55, 56], which

reads 𝐹𝑥,0 ≈ 6𝜋𝜂𝑎𝑢
(

8
15 log

(
𝑑
𝑎

)
− 0.95429

)
(see [57] for a high-precision expansion). We note that the sphere’s normal velocity

does not contribute to the zeroth-order tangential force, as expected by symmetry.
The first-order EHD correction can be computed with the present model, as the correction pressure field and shear stress scale

as ∼ 𝑟−5, at large 𝑟 . It reads:

𝐹𝑥,1 = 2𝜋𝜂𝑢∗𝑎
∫ ∞

0

[
− 2𝑅𝑃 (1)

1 − 𝐻0
2

(
𝜕𝑅𝑃

(1)
1 +

𝑃
(1)
1
𝑅

)
−
𝐻

(1)
1
2
𝜕𝑅𝑃

(0)
0 −

𝐻
(0)
1
2

(
𝜕𝑅𝑃

(1)
0 +

𝑃
(1)
0
𝑅

)
+ 2

𝑈𝐻
(0)
1

𝐻2
0

]
𝑅 d𝑅,

(32)

where 𝐻 (𝑖)
1 is the amplitude of the 𝑖th mode in the angular-mode decomposition of 𝐻1. Evaluating the latter integral numerically,

we find:

𝐹𝑥 ≈ 6𝜋𝜂𝑎𝑢
(

8
15

log
(
𝑑

𝑎

)
− 0.95429

)
− 10.884

𝜂2𝑢 ¤𝑑 (𝜆 + 2𝜇)
𝜇(𝜆 + 𝜇)

(
𝑎

𝑑

)5/2
+ 0.98661

𝜂2 ¤𝑢𝑎(𝜆 + 2𝜇)
𝜇(𝜆 + 𝜇)

(
𝑎

𝑑

)3/2
. (33)

In the appendix, we use again the Lorentz reciprocal theorem in order to compute the first-order EHD force, and we obtain the
following analytical expressions for the coefficients of Eq. (33): − 3177𝜋3

6400
√

2
' −10.884 and 9𝜋3

200
√

2
' 0.98661, respectively.

The torque exerted by the fluid on the sphere, with respect to its center of mass, is given by:

𝑻 =

∫
S0

𝑎𝒏 × (𝒏 · 𝝈) d𝑠. (34)

The latter is directed along the 𝑦 direction for symmetry reasons, i.e. 𝑻 = 𝑇𝑦 𝒆𝑦 . At small 𝜅, we further expand it as
𝑇𝑦 ' 𝑇𝑦,0 + 𝜅𝑇𝑦,1. For the same reason as with the the viscous drag force near a rigid wall, the viscous torque near a
rigid wall cannot be computed within the lubrication model. Using asymptotic-matching methods [55, 57], it is found to be

𝑇𝑦,0 ≈ 8𝜋𝜂𝑢𝑎2
(
− 1

10 log
(
𝑑
𝑎

)
− 0.19296

)
. In contrast, the first-order EHD correction can be computed with the present model,

and reads:

𝑇𝑦,1 = −2𝜂𝑢∗𝑎2𝜋

∫ ∞

0

[
𝐻0
2

(
𝜕𝑅𝑃

(1)
1 +

𝑃
(1)
1
𝑅

)
+
𝐻

(1)
1
2
𝜕𝑅𝑃

(0)
0 +

𝐻
(0)
1
2

(
𝜕𝑅𝑃

(1)
0 +

𝑃
(1)
0
𝑅

)
+ 2

𝑈𝐻
(0)
1

𝐻2
0

]
𝑅 d𝑅. (35)
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Evaluating the latter integral numerically, we find:

𝑇𝑦 ≈ 8𝜋𝜂𝑢𝑎2
(
− 1

10
log

(
𝑑

𝑎

)
− 0.19296

)
+ 10.884

𝜂2𝑢𝑎 ¤𝑑 (𝜆 + 2𝜇)
𝜇(𝜆 + 𝜇)

(
𝑎

𝑑

)5/2
− 0.98661

𝜂2 ¤𝑢𝑎2 (𝜆 + 2𝜇)
𝜇(𝜆 + 𝜇)

(
𝑎

𝑑

)3/2
. (36)

So far, we focused on the particular case of a semi-infinite elastic material. In appendices and , we apply the same soft-
lubrication approach to other elastic models describing thin substrates, which are also widespread in practice. We find similar
expressions, but with different numerical prefactors and scalings with the sphere-wall distance.

ROTATION

We now add the rotation of the sphere, with angular velocity 𝛀(𝑡) in the 𝑥𝑦 plane (see Fig. 1), to the previous translational
motion. We define 𝛽 as the angle between 𝛀 and the 𝑥-axis. We stress that 𝛀 is not necessarily orthogonal (i.e. 𝛽 = 𝜋/2) to the
translation velocity. We discard the rotation along the 𝑧-axis (e.g. for a spinner), because it does not induce any soft-lubrication
coupling. Finally, the system is equivalent to a purely rotating sphere with angular velocity 𝛀(𝑡), near a wall translating with a
−𝒖(𝑡) velocity. In such a framework, the fluid velocity field at the sphere surface is 𝒗 = −𝛀 × 𝑎𝒏, and thus 𝒗 ' −𝛀 × 𝑎𝒆𝑧 . All
together, the fluid velocity field is modified as:

𝒗(𝒓, 𝑧, 𝑡) = ∇𝑝(𝒓, 𝑡)
2𝜂

(𝑧 − ℎ0 (𝑟, 𝑡)) (𝑧 − 𝛿(𝒓, 𝑡)) − 𝒖(𝑡) ℎ0 (𝑟, 𝑡) − 𝑧
ℎ0 (𝑟, 𝑡) − 𝛿(𝒓, 𝑡)

+ 𝑎𝛀(𝑡) × 𝒆𝑧
𝑧 − 𝛿(𝒓, 𝑡)

ℎ0 (𝑟, 𝑡) − 𝛿(𝒓, 𝑡)
, (37)

and the Reynolds equation becomes:

𝜕𝑡ℎ(𝒓, 𝑡) = ∇ ·
(
ℎ3 (𝒓, 𝑡)

12𝜂
∇𝑝(𝒓, 𝑡) + ℎ(𝒓, 𝑡)

2

[
𝒖(𝑡) − 𝑎𝛀(𝑡) × 𝒆𝑧︸                 ︷︷                 ︸

𝒖̃

] )
. (38)

The problem is thus formally equivalent to the one of a sphere that is purely translating with effective velocity 𝒖̃(𝑡) = 𝒖(𝑡) −
𝑎𝛀(𝑡) × 𝒆𝑧 . Therefore, we can directly apply the results from the previous sections, and write all the forces and torque exerted
on the sphere, as:

𝐹𝑧 = −6𝜋𝜂𝑎2 ¤𝑑
𝑑

+ 243𝜋3

12800
√

2
𝜂2 |𝒖 − 𝑎𝛀 × 𝒆𝑧 |2

𝜇

(
𝑎

𝑑

)5/2
− 3915𝜋3

2048
√

2
𝜂2 ¤𝑑2

𝜇

(
𝑎

𝑑

)7/2
+ 27𝜋3

32
√

2
𝜂2 ¥𝑑𝑎
𝜇

(
𝑎

𝑑

)5/2
, (39)

𝑭‖ = 6𝜋𝜂𝑎𝒖
[

8
15

log
(
𝑑

𝑎

)
− 0.95429

]
+ 6𝜋𝜂𝑎2𝒆𝑧 ×𝛀

[
2
15

log
(
𝑑

𝑎

)
+ 0.25725

]
− 3177𝜋3

6400
√

2
𝜂2 (𝒖 − 𝑎𝛀 × 𝒆𝑧) ¤𝑑

𝜇

(
𝑎

𝑑

)5/2
+ 9𝜋3

200
√

2
𝜂2 ( ¤𝒖 − 𝑎 ¤𝛀 × 𝒆𝑧)𝑎

𝜇

(
𝑎

𝑑

)3/2
,

(40)

and:

𝑻‖ = 8𝜋𝜂𝑎2𝒆𝑧 × 𝒖

[
− 1

10
log

(
𝑑

𝑎

)
− 0.19296

]
+ 8𝜋𝜂𝑎3𝛀

[
2
5

log
(
𝑑

𝑎

)
− 0.37085

]
+ 3177𝜋3

6400
√

2
𝜂2 (𝒖 − 𝑎𝛀 × 𝒆𝑧)𝑎 ¤𝑑

𝜇

(
𝑎

𝑑

)5/2
− 9𝜋3

200
√

2
𝜂2 ( ¤𝒖 − 𝑎 ¤𝛀 × 𝒆𝑧)𝑎2

𝜇

(
𝑎

𝑑

)3/2
,

(41)

where we have invoked the force and torque induced by the rotation of a sphere near a rigid wall [36, 56] and where the analytical
prefactors are computed in the appendix. We stress that the expressions of the EHD forces and torque for a sphere purely
translating near thin elastic substrates, as derived in appendices and , can be generalized to further include the sphere’s rotation
by similarly following the transformation 𝒖(𝑡) → 𝒖(𝑡) − 𝑎𝛀(𝑡) × 𝒆𝑧 .
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CONCLUSION

We developed a soft-lubrication model in order to compute the EHD interactions exerted on an immersed sphere undergoing
both translational and rotational motions near various types of elastic walls. The deformation of the surface was assumed to
be small, which allowed us to employ a perturbation analysis in order to obtain the leading-order EHD forces and torque. The
obtained interaction matrix exhibits a qualitatively similar form as the one found for a two-dimensional cylinder moving near
a thin compressible substrate [31]. In both cases, the EHD coupling is nonlinear and generates quadratic terms in the sphere
velocity, thus breaking the time-reversal symmetry of the Stokes equations. In addition, original inertial-like terms proportional
to the acceleration of the sphere are found – despite the assumption of steady flows. Therefore, while the quantitative details such
as numerical prefactors and exponents differ in 3D and when using more realistic constitutive elastic responses, we expect that
the typical zoology of trajectories identified previously [31] will also hold for spherical objects – and will even be extended with
the added degree of freedom. As such, the asymptotic predictions obtained here may open new perspectives in colloidal science
and biophysics, through the understanding and control of the emerging interactions within soft confinement or assemblies.
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Lorentz reciprocal theorem: normal force

In this appendix, we compute the first-order normal EHD force using the Lorentz reciprocal theorem for Stokes flows [42, 47,
51, 52], in order to recover analytically the numerical prefactors obtained in the main text. To do so, we introduce the model
problem of a sphere moving in a viscous fluid and towards an immobile, rigid, planar surface. We note 𝑽̂⊥ = −𝑉̂⊥𝒆𝑧 the velocity
at the particle surface S0, and we assume a no-slip boundary condition at the undeformed wall surface Sw located at 𝑧 = 0 (see
Fig. 1). The viscous stress and velocity fields of the model problem follow the steady, incompressible Stokes equations ∇ · 𝝈̂⊥ = 0
and ∇ · 𝒗̂⊥ = 0, and we use the lubrication approximation. In this framework, the stress tensor is 𝝈̂⊥ ' −𝑝⊥I + 𝜂𝒆𝑧𝜕𝑧 𝒗̂⊥, with:

𝑝⊥ (𝒓) =
3𝜂𝑉̂⊥𝑎
ℎ̂2 (𝒓)

, 𝒗̂⊥ (𝒓, 𝑧) =
∇𝑝⊥ (𝒓)

2𝜂
𝑧(𝑧 − ℎ̂(𝒓)), ℎ̂(𝒓) = 𝑑 + 𝒓2

2𝑎
. (42)

The Lorentz reciprocal theorem states that: ∫
S
𝒏 · 𝝈 · 𝒗̂⊥ d𝑠 =

∫
S
𝒏 · 𝝈̂⊥ · 𝒗 d𝑠, (43)

where S = S0 + Sw + S∞ is the total surface bounding the flow, and S∞ is the surface located at 𝒓 → ∞. The latter does not
contribute here. Using the boundary conditions for the model problem, we get:

𝑽̂⊥ · 𝑭 = −𝑉̂⊥𝐹𝑧 =
∫
S
𝒏 · 𝝈̂⊥ · 𝒗 d𝑠. (44)

To find the force exerted on the sphere in the real problem, one needs to specify the boundary conditions for the real velocity
field. Here, we assume that the sphere does not rotate, and we describe the flow in the translating reference frame of the particle.
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The no-slip boundary condition thus reads 𝒗 = 0 on S0. We further assume a small deformation of the wall, so that the velocity
field at the undeformed wall surface can be obtained using the Taylor expansion:

𝒗 |𝑧=0 = 𝒗 |𝑧=𝛿 − 𝛿𝜕𝑧𝒗0 |𝑧=0

= −𝑢𝒆𝑥 − ¤𝑑𝒆𝑧 + (𝜕𝑡 − 𝑢𝜕𝑥)𝛿𝒆𝑧 − 𝛿𝜕𝑧𝒗0 |𝑧=0,
(45)

where 𝒗0 is the zeroth-order velocity field near a rigid surface. Using results from the main text, we find:

𝜕𝑧𝒗0 |𝑧=0 = − 3 ¤𝑑𝑟
(𝑑 + 𝑟2

2𝑎 )2
𝒆𝑟 +

2𝑢
5(𝑑 + 𝑟2

2𝑎 )

((
7 − 6𝑑

𝑑 + 𝑟2

2𝑎

)
cos 𝜃𝒆𝑟 − sin 𝜃𝒆𝜃

)
. (46)

Combining Eqs. (42) and (44), we find the normal force:

𝐹𝑧 =
1
𝑉̂⊥

∫
R2

(
𝑝⊥ (− ¤𝑑 + 𝜕𝑡𝛿 − 𝑢𝜕𝑥𝛿) + 𝜂𝜕𝑧 𝒗̂⊥ |𝑧=0 · 𝜕𝑧𝒗0 |𝑧=0𝛿

)
d𝒓. (47)

After some algebra, and computing the integral in Fourier space, we recover the same expression as in Eq. (30), that reads:

𝐹𝑧 = −6𝜋𝜂𝑎2 ¤𝑑
𝑑

+ 𝐴𝜂
2𝑢2 (𝜆 + 2𝜇)
𝜇(𝜆 + 𝜇)

(
𝑎

𝑑

)5/2
− 𝐵𝜂

2 ¤𝑑2 (𝜆 + 2𝜇)
𝜇(𝜆 + 𝜇)

(
𝑎

𝑑

)7/2
+ 𝐶 𝜂

2 ¥𝑑𝑎(𝜆 + 2𝜇)
𝜇(𝜆 + 𝜇)

(
𝑎

𝑑

)5/2
, (48)

where the numerical coefficients 𝐴, 𝐵, 𝐶 can be found analytically as:

𝐴 =
9𝜋

25
√

2

∫ ∞

0
𝑘2𝐾0 (𝑘)

(
− 2𝐾1 (𝑘) + 𝑘𝐾2 (𝑘)

)
𝑘d𝑘 =

243𝜋3

12800
√

2
, (49)

𝐵 = 9𝜋
√

2
∫ ∞

0
𝑘2𝐾1 (𝑘)

(
𝐾2 (𝑘) −

𝑘𝐾3 (𝑘)
8

)
𝑘d𝑘 =

3915𝜋3

2048
√

2
, (50)

𝐶 =
9
√

2𝜋
2

∫ ∞

0
𝑘2𝐾2

1 (𝑘) d𝑘 =
27𝜋3

32
√

2
, (51)

and where 𝐾𝑖 is the modified Bessel function of the second kind of order 𝑖 [49].

Lorentz reciprocal theorem: tangential force

In order to compute the tangential force acting on the particle, we apply the Lorentz reciprocal theorem, but we introduce
a different model problem with respect to the previous section. We consider a sphere translating parallel to a rigid immobile
substrate, with a velocity 𝑉̂‖ along the 𝑥-axis, and no-slip boundary conditions at both the sphere and substrate surfaces. The
velocity and stress fields are denoted 𝝈̂‖ and 𝒗̂ ‖ , respectively, and are solutions of the Stokes equations. The lubrication
approximation is used here. The solution reads:

𝑝 ‖ (𝒓) =
6𝜂𝑉̂‖𝑟 cos 𝜃

5ℎ̂2 (𝒓)
, 𝒗̂ ‖ (𝒓, 𝑧) =

∇𝑝 ‖ (𝒓)
2𝜂

𝑧(𝑧 − ℎ̂(𝒓)) + 𝑽̂‖
𝑧

ℎ̂(𝒓)
, (52)

as shown in the main text. The Lorentz reciprocal theorem leads to:

𝑽̂‖ · 𝑭 = 𝑉̂‖𝐹𝑥 =

∫
S
𝒏 · 𝝈̂‖ · 𝒗 d𝑠. (53)

Using the lubrication expression of the stress tensor of the model problem, 𝝈̂‖ ' −𝑝 ‖I + 𝜂𝒆𝑧𝜕𝑧 𝒗̂ ‖ , we get an expression for the
tangential force as:

𝐹𝑥 =
1
𝑉̂‖

∫
R2

[
− 𝜂𝜕𝑧 𝒗̂ ‖ · 𝑢(𝑡)𝒆𝑥 − 𝑝 ‖ (𝜕𝑡 − 𝑢(𝑡)𝜕𝑥)𝛿 − 𝜂(𝜕𝑧 𝒗̂ ‖ · 𝜕𝑧𝒗0)𝛿

]
d𝒓. (54)
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Figure 5: Dimensionless deformation fields at the free surface of two soft substrates, for a sphere placed at a unit distance 𝐷 = 1 and for two
modes of motion. In a) and b), the substrate’s mechanical response follows the Winkler foundation (see Eq. (56)). In c) and d), the substrate’s
mechanical response is the one of a thin incompressible layer (see Eq. (67)).

For the same reason as the one invoked in the main text, the zeroth-order tangential drag force (i.e. the integral of −𝜂𝜕𝑧 𝒗̂ ‖ ·𝑢(𝑡)𝒆𝑥
in Eq. (54)) cannot be computed here as the integral diverges within the lubrication approximation. In contrast, the first-order
EHD force is well defined in the lubrication framework and can be computed in Fourier space using Parseval’s theorem, leading
to:

𝜅𝐹𝑥,1 = − 3177𝜋3

6400
√

2
𝜂2𝑢 ¤𝑑 (𝜆 + 2𝜇)
𝜇(𝜆 + 𝜇)

(
𝑎

𝑑

)5/2
+ 9𝜋3

200
√

2
𝜂2 ¤𝑢𝑎(𝜆 + 2𝜇)
𝜇(𝜆 + 𝜇)

(
𝑎

𝑑

)3/2
. (55)

Thin compressible substrate

In this appendix, we derive the EHD interactions exerted on a sphere immersed in a viscous fluid and near a thin compressible
substrate of thickness ℎsub. The deformation field follows the Winkler foundation:

𝛿(𝒓, 𝑡) = − ℎsub
(2𝜇 + 𝜆) 𝑝(𝒓, 𝑡), (56)

which is valid for substrates of thickness smaller than the typical extent of the pressure field, namely the hydrodynamic radius√
2𝑎𝑑 [20, 53, 58]. We perform the same asymptotic expansion as the one in the main text, defining the Winkler dimensionless

compliance as [31]:

𝜅W =

√
2ℎsub𝜂𝑢

∗𝑎1/2

𝑑∗5/2 (2𝜇 + 𝜆)
. (57)

The first-order substrate deformation, or equivalently here the zeroth-order pressure, reads:

𝐻W
1 (𝑹, 𝑇) = 𝑃0 (𝑹, 𝑇) =

3 ¤𝐷
2(𝐷 + 𝑅2)2 + 6𝑅𝑈 cos 𝜃

5(𝐷 + 𝑅2)2 . (58)

The first-order deformation fields are plotted in Fig. 5a) and b) for tangential and normal motions of the sphere, respectively. The
deformation exhibits the same structure as the one in Fig. 2 for semi-infinite substrates, but the lateral extent of the deformation
is narrower. This is expected as the deformation response induced by a given applied pressure is local for a thin compressible
layer (see Eq. (56)), while semi-infinite substrates display a non-local response due to the convolution of the pressure with their
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Green’s function (see Eq. (3)). The first-order pressure correction follows the same type of equation as in the main text:

L.𝑃W
1 = 𝐹W

0 (𝑅,𝑇) + 𝐹W
1 (𝑅,𝑇) cos 𝜃 + 𝐹W

2 (𝑅,𝑇) cos 2𝜃, (59)

with:

𝐹W
0 (𝑅,𝑇) = − 144𝑅2𝑈2

25(𝐷 + 𝑅2)7

[
𝐷2 − 6𝐷𝑅2 + 𝑅4

]
+ 18𝑅2 ¤𝐷2

(𝐷 + 𝑅2)7

[
5𝐷 − 4𝑅2

]
− 18𝑅2 ¥𝐷

(𝐷 + 𝑅2)5 , (60)

and:

𝐹W
1 (𝑅,𝑇) = 216𝑅3𝑈 ¤𝐷

5(𝐷 + 𝑅2)7

[
− 5𝐷 + 𝑅2

]
+ 72𝑅 ¤𝑈

5(𝐷 + 𝑅2)5 . (61)

We note that 𝐹W
2 does not contribute for the forces and torque. The isotropic component of the pressure can be found analytically,

using polynomial fractions, as:

𝑃
W, (0)
1 (𝑅,𝑇) = 9

125
7 − 5𝑌2

(1 + 𝑌2)5
𝑈2

𝐷4 − 3
40

71 + 55𝑌2 + 30𝑌4

(1 + 𝑌2)5

¤𝐷2

𝐷5 + 3
2

1
(1 + 𝑌2)3

¥𝐷
𝐷4 , (62)

where 𝑌 = 𝑅/𝐷1/2 is the self-similar variable. However, the first angular component of the pressure does not exhibit such an
analytical solution, and is thus found by numerical integration of two scaling functions. Its general expression reads:

𝑃
W, (1)
1 (𝑅,𝑇) = 𝑈 ¤𝐷

𝐷9/2 𝜙
W
𝑈 ¤𝐷

(
𝑅

𝐷1/2

)
+

¤𝑈
𝐷7/2 𝜙

W
¤𝑈

(
𝑅

𝐷1/2

)
. (63)

Following the same calculation as in the main text, we find the normal force as:

𝐹W
𝑧 = −6𝜋𝜂𝑎2 ¤𝑑

𝑑
+ 48𝜋

125
𝜂2𝑢2ℎsub
𝑎(2𝜇 + 𝜆)

(
𝑎

𝑑

)3
− 72𝜋

5
𝜂2 ¤𝑑2ℎsub
𝑎(2𝜇 + 𝜆)

(
𝑎

𝑑

)4
+ 6𝜋𝜂2 ¥𝑑ℎsub

(2𝜇 + 𝜆)

(
𝑎

𝑑

)3
. (64)

We stress that the prefactors 48𝜋/125 and 6𝜋 are in agreement with the results in [35] and [20], respectively. Similarly, the force
along 𝑥 reads:

𝐹W
𝑥 = 6𝜋𝜂𝑎𝑢

(
8
15

log
(
𝑑

𝑎

)
− 0.95429

)
− 23.9

𝜂2𝑢 ¤𝑑ℎsub
𝑎(2𝜇 + 𝜆)

(
𝑎

𝑑

)3
+ 4.520

𝜂2 ¤𝑢ℎsub
(2𝜇 + 𝜆)

(
𝑎

𝑑

)2
. (65)

The torque can be evaluated as well, and reads:

𝑇W
𝑦 = 8𝜋𝜂𝑢𝑎2

(
− 1

10
log

(
𝑑

𝑎

)
− 0.19296

)
+ 12.2

𝜂2𝑢 ¤𝑑ℎsub
(2𝜇 + 𝜆)

(
𝑎

𝑑

)3
− 1.51

𝜂2 ¤𝑢𝑎ℎsub
(2𝜇 + 𝜆)

(
𝑎

𝑑

)2
. (66)

All the prefactors for the EHD corrections of the tangential force and torque have been found numerically. Finally, following the
approach in the main text, it is straightforward to generalize Eqs. (64), (65) and (66) in order to incorporate rotation.

Thin incompressible substrate

In this appendix, we suppose that the substrate of thickness ℎsub is incompressible, i.e. of Poisson ratio 𝜈 = 1/2, which means
that the first Lamé coefficient 𝜆 is infinite. In this situation, the Winkler foundation is not valid. Instead, the mechanical response
of a thin substrate follows the relation ([20, 58]):

𝛿(𝒓, 𝑡) =
ℎ3

sub
3𝜇

∇
2𝑝(𝒓, 𝑡), (67)
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where ∇2 denotes the 2D Laplacian operator in the (𝑥, 𝑦) plan. We perform the same asymptotic expansion as in the main text,
defining the thin-incompressible dimensionless compliance as:

𝜅t-i =
𝜂𝑢∗ℎ3

sub

3
√

2𝜇𝑑∗7/2𝑎1/2
. (68)

The first-order substrate deformation reads:

𝐻t-i
1 (𝑹, 𝑇) = −∇2𝑃0 (𝑹, 𝑇) = −12 ¤𝐷 (𝐷 − 2𝑅2)

(𝐷 + 𝑅2)4 + 48𝑅𝑈 (2𝐷 − 𝑅2) cos 𝜃
5(𝐷 + 𝑅2)4 . (69)

The deformation fields are plotted in Figs. 5 c) and d), for tangential and normal motions of the sphere, respectively. The
first-order pressure correction follows the same type of equation as in the main text:

L.𝑃t-i
1 = 𝐹 t-i

0 (𝑅,𝑇) + 𝐹 t-i
1 (𝑅,𝑇) cos 𝜃 + 𝐹 t-i

2 (𝑅,𝑇) cos 2𝜃, (70)

with:

𝐹 t-i
0 (𝑅,𝑇) =

1152𝑅2𝑈2 (
𝑅2 − 2𝐷

) (
+2𝐷2 − 11𝑅2𝐷 + 2𝑅4)

25
(
𝐷 + 𝑅2)9

+
432𝑅2 (

2𝐷
(
𝐷 − 5𝑅2) + 3𝑅4) ¤𝐷2(
𝐷 + 𝑅2)9 +

144𝑅2 (
2𝑅2 − 𝐷

) ¥𝐷(
𝐷 + 𝑅2)7 ,

(71)

and:

𝐹 t-i
1 (𝑅,𝑇) = −

2592𝑅3 ¤𝐷𝑈
(
7𝐷2 − 12𝑅2𝐷 + 𝑅4)

5
(
𝐷 + 𝑅2)9 −

576𝑅3 ¤𝑈
(
−2𝐷 + 𝑅2)

5
(
𝐷 + 𝑅2)7 . (72)

We note that 𝐹 t-i
2 does not contribute for the forces and torque. The isotropic component of the pressure can be found analytically,

using polynomial fractions, as:

𝑃
t-i, (0)
1 (𝑅,𝑇) =

288
(
7𝑌4 − 21𝑌2 + 17

)
875

(
1 + 𝑌2)7

𝑈2

𝐷5 + 126𝑌2 − 198
7
(
1 + 𝑌2)7

¤𝐷2

𝐷6 + 36
5
(
1 + 𝑌2)5

¥𝐷
𝐷5 , (73)

where 𝑌 = 𝑅/𝐷1/2 is the self-similar variable. However, the first angular component of the pressure does not exhibit such an
analytical solution, and is thus found by numerical integration of two scaling functions. Its general expression reads:

𝑃
t-i, (1)
1 (𝑅,𝑇) = 𝑈 ¤𝐷

𝐷11/2 𝜙
t-i
𝑈 ¤𝐷

(
𝑅

𝐷1/2

)
+

¤𝑈
𝐷9/2 𝜙

t-i
¤𝑈

(
𝑅

𝐷1/2

)
. (74)

Following the same calculation as in the main text, we find the normal force as:

𝐹 t-i
𝑧 = −6𝜋𝜂𝑎2 ¤𝑑

𝑑
+ 432𝜋

875
𝜂2𝑢2ℎ3

sub
𝑎3𝜇

(
𝑎

𝑑

)4
− 192𝜋

35
𝜂2 ¤𝑑2ℎ3

sub
𝑎3𝜇

(
𝑎

𝑑

)5
+ 12𝜋

5
𝜂2 ¥𝑑ℎ3

sub
𝑎2𝜇

(
𝑎

𝑑

)4
. (75)

We stress that the prefactor 12𝜋/5 is consistent with the linear-response theory in [20]. Similarly, the force along 𝑥 reads:

𝐹 t-i
𝑥 = 6𝜋𝜂𝑎𝑢

(
8
15

log
(
𝑑

𝑎

)
− 0.95429

)
− 12.2

𝜂2𝑢 ¤𝑑ℎ3
sub

𝑎3𝜇

(
𝑎

𝑑

)4
+ 2.41

𝜂2 ¤𝑢ℎ3
sub

𝑎2𝜇

(
𝑎

𝑑

)3
. (76)

The torque can be evaluated as well, and reads:

𝑇 t-i
𝑦 = 8𝜋𝜂𝑢𝑎2

(
− 1

10
log

(
𝑑

𝑎

)
− 0.19296

)
+ 7.75

𝜂2𝑢 ¤𝑑ℎ3
sub

𝑎2𝜇

(
𝑎

𝑑

)4
− 0.804

𝜂2 ¤𝑢ℎ3
sub

𝑎𝜇

(
𝑎

𝑑

)3
. (77)

Here again, the prefactors of the transverse force and torque are found using the Lorentz reciprocal theorem, as discussed above in
the appendix. We stress that the thin-incompressible limit is mathematically valid for strictly incompressible substrates, but that
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its range of application is limited in practice. Indeed, usual elastomers and gels, that are considered as almost incompressible,
have a Poisson ratio close to 𝜈 ' 0.49, and thus a tiny but finite compressibility. In recent studies [40, 47, 48], it has been observed
that the mechanical response of very thin incompressible elastic substrates is better described by the Winkler foundation (i.e.
thin and compressible) than the thin-incompressible limit discussed here. This observation has then been established on solid
theoretical grounds for the EHD lift [58], and is intimately rooted in the structure of the elastic Green’s function. An empirical
scaling, based on the numerical calculation of the EHD lift coefficient, has been derived subsequently [53] and suggests that the
thin-incompressible model is valid for thicknesses comprised in the range

√
7

3 (1/2 − 𝜈)1/2 � ℎsub/
√

2𝑎𝑑 ≤ 0.12. For 𝜈 = 0.49,
the lower bound of the latter range is 0.088, which confirms that the validity window of the thin-incompressible model is limited.
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