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Toward a new fully algebraic preconditioner for
symmetric positive definite problems

Nicole Spillane

Abstract A new domain decomposition preconditioner is introduced for efficiently
solving linear systems Ax = b with a symmetric positive definite matrix A. The
particularity of the new preconditioner is that it is not necessary to have access to
the so-called Neumann matrices (i.e.: the matrices that result from assembling the
variational problem underlying A restricted to each subdomain). All the components
in the preconditioner can be computed with the knowledge only of A (and this is
the meaning given here to the word algebraic). The new preconditioner relies on the
GenEO coarse space for a matrix that is a low-rank modification of A and on the
Woodbury matrix identity. The idea underlying the new preconditioner is introduced
here for the first time with a first version of the preconditioner. Some numerical
illustrations are presented. A more efficient version will be proposed in a full-length
article.

1 Introduction

We set out to solve the linear system Ax∗ = b, for a given symmetric positive definite
(spd) matrixA. Let n be the order of the matrix. Assume that there are N subdomains
defined by a family of full-rank boolean interpolation matrices Rs> : Rns

→ Rn (for
s ∈ ~1, N�) that satisfy Rn =

∑N
s=1 range(Rs>).

There exist a variety of two-level methods for which convergence is guaranteed
without making assumptions on the number of subdomains, their shape, or the
distribution of the coefficients in the underlying PDE (see e.g [11, 5, 14, 15, 7, 10,
12, 6, 17, 16, 3]). These methods have in common to select vectors for the coarse
space by computing low- or high-frequency eigenvectors of well chosen generalized
eigenvalue problems posed in the subdomains. To the best of the author’s knowledge,
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none of these methods can be applied if the so called local Neumannmatrices are not
known. Specifically, the pencils of the generalized eigenvalue problems that enter
into the definition of the coarse space make use of a family of symmetric positive
semi-definite (spsd) matrices Ns that satisfy the assumption

∃C > 0, such that
N∑
s=1

x>Rs>NsRsx ≤ C x>Ax; ∀x ∈ Rn. (1)

The Neumann matrices are a natural choice for Ns and the above estimate then holds
with constant C equal to the maximal multiplicity of a mesh element. This limitation
is very well known (and stated clearly in e.g.:, [1, 2]).

In this work, it is proposed to relax the assumptions on the family of matrices Ns

in (1) by allowing the matrices to be symmetric (but not necessarily positive semi-
definite (psd)). Such matrices Ns can always be defined based on the knowledge only
of the coefficients in A and the choice of the interpolation operators Rs>. Special
treatment will need to be applied to the non-positive part of Ns and this will be
reflected in the cost of setting up and applying the preconditioner. In Section 2 the
new preconditioner is defined and the result on the condition number is given. In
Section 3 some preliminary numerical illustrations are provided. Finally, Section 4
offers up some conclusive remarks about the new preconditioner, as well as some of
its current limitations that will be addressed in the upcoming full length article.

2 Definition of the new preconditioner and theory

In this section we first introduce a splitting of A (in the sense of (1)) that can be
computed algebraically. The matrices Ns in this splitting are symmetric (but not
psd). Then, an auxiliary matrix A+ is defined. It is is a low-rank modification of A
for which a splitting with spsd matrices is known. This auxiliary matrix satisfies the
assumptions for the abstract GenEO coarse space theory [13]. Consequently, a family
of two-level preconditioner H+(τ) parametrized by a threshold τ can be defined in
such a way that the preconditioned operator (H+(τ)A+) is well conditioned. Finally,
a preconditioner for the original operator A is defined by adding to H+(τ) a term
coming from the Woodbury matrix identity.

2.1 Splitting of A with symmetric matrices Ns

The following theorem is not groundbreaking, but it is new so a proof is given. The
proof provides one way of choosing symmetric matrices Bs that satisfy (1). The
choice is not unique.

Theorem 1 Let A be an order n spd matrix. Let Rs> : Rns
→ Rn for s ∈ ~1, N� be

a family of full-rank boolean matrices that satisfy Rn =
∑N

s=1 range(Rs>). A family
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of symmetric matrices Bs ∈ Rn
s×ns for s = 1, . . . , N such that

A =
N∑
s=1

Rs>BsRs, (2)

can be computed with no further knowledge.

Proof We provide a constructive proof. Let spy(A) be the boolean matrix that has
the same sparsity pattern asA. For any s ∈ ~1, N�, let spy(As) be the boolean matrix
that has the same sparsity pattern as As := RsARs>. Then, the multiplicity of each
entry in A can be defined and stored in the matrix mult :=

∑N
s=1 Rs>spy(As)Rs .

A matrix partition of unity is given by the matrices POUs ∈ Rn
s×ns whose only

non-zero entries are (POUs)i j := 1/
(
RsmultRs>

)
i j

if
(
RsmultRs>

)
i j
, 0.

Finally,Bs ∈ Rn
s×ns is defined to be theHadamard product (or entrywise product)

of the partition of unity matrix by the local matrix:(
Bs)

i j :=
(
POUs)

i j

(
As)

i j , ∀ i, j ∈ ~1, n�. (3)

By definition these matrices are symmetric and they satisfy (2). �

2.2 A splitting of the splitting

In the proof of the result for the GenEO coarse space, the positive semi-definitness of
the matrices in the splitting of A is crucial. We are unable to provide such a splitting
algebraically. Instead, a matrix A+ is defined that is as closely as possible related to
A and with a known spsd splitting.

We proceed in the following way for each subdomain s = 1, . . . , N :

1. Diagonalize Bs . Matrix Bs is symmetric so there exist a diagonal matrix Λs and
an orthogonal matrix Vs such that Bs = VsΛsVs>. Recall that the eigenvalues
of Bs are on the diagonal of Λs . Assume (without restriction) that they are sorted
in non-decreasing order. Also recall that the i-th column in Vs is an eigenvector
corresponding to the eigenvalue (Λs)ii .

2. Form two diagonal submatrices of Λs denoted by Λs
− and Λ

s
+ whose entries are,

respectively, the non-positive and positive eigenvalues of Bs (once again sorted
in non-decreasing order). Then define Vs

− and Vs
+ to be the two submatrices of V

whose columns are eigenvectors corresponding, respectively, to the non-positive
and positive eigenvalues of Λs . The following holds:

Λs =

(
Λs
− 0

0 Λs
+

)
, Vs =

[
Vs
− |V

s
+

]
, Λs

+ is spd, −Λs
− is spsd.

3. Define the two following matrices in Rns×ns
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As
+ := Vs

+Λ
s
+V

s
+
> and As

− := −Vs
−Λ

s
−V

s
−
>.

Both As
+ and As

− are spsd matrices and Bs = As
+ − As

−.

Finally two global matrices A+ and A− are defined as

A+ :=
N∑
s=1

Rs>As
+R

s, and A− :=
N∑
s=1

Rs>As
−R

s .

It is rather straightforward that A = (A+ −A−); A− is spsd; and A+ is spd, indeed

〈x,A+x〉 = 〈x,Ax〉 + 〈x,A−x〉 ≥ 〈x,Ax〉 ≥ 0 with equality only if x = 0.

2.3 Two-level preconditioner for A+ with a GenEO coarse space

Following [13], there are many possible choices for a two-level preconditioner for
A+ with a GenEO coarse space. This is not the novelty here so only one is given
with no further comment on other possibilities. For a threshold τ > 1, let H+(τ) be
the two level Additive Schwarz preconditioner defined by

H+(τ) :=
N∑
s=1

Rs>(RsA+Rs>) −1Rs + R0(τ)>(R0(τ)A+R0(τ)>)−1R0(τ), (4)

where the lines of R0(τ) span the GenEO coarse space V 0(τ). The coarse space is
defined according to [13][Definition 5]:

V 0(τ) :=
N∑
s=1

range
(
Rs>YL (τ−1, (Ds)−1Ns (Ds)−1,RsA+Rs>)

)
,

where the matrices Ds := Rs
(∑N

t=1 Rt>Rt
)−1

Rs> form a partition of unity in
the usual sense and the columns of YL (τ−1, (Ds)−1Ns (Ds)−1,RsA+Rs>) are the
(RsA+Rs>)-normalized eigenvectors ys corresponding to an eigenvalue λs < τ in
the generalized eigenvalue problem:

(Ds)−1Ns (Ds)−1ys = λsRsA+Rs>ys .

By [13][Remark 3,Corollary 4,Assumption 6], if τ > 1 and N+ is the minimal
number of colors that are needed to color each subdomain in such a way that two
subdomains with the same color are A+-orthogonal, then the eigenvalues of the
preconditioned operator satisfy

λ(H+(τ)A+) ∈
[
((1 + 2N+)τ)−1 ,N+ + 1

]
, (5)
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2.4 New preconditioner for A

The rank of A−, which we denote by n−, satisfies n− ≤
∑N

s=1 ns − n. Indeed, it holds
that

rank(A+) + rank(A−) ≤
N∑
s=1

ns with rank(A+) = n.

Consequently, the rank of A− is small compared to the rank n of A (n− � n) as long
as there is little overlap between subdomains. Note that n− can (and hopefully is)
much smaller even than

∑N
s=1 ns − n. Following this observation it is natural to write

A as a low rank modification of A+. To this end, let Λ− ∈ Rn−×n− and V− ∈ Rn×n−
be the diagonal matrix and the orthogonal matrix that are obtained by removing the
null part of A− from its diagonalization in such a way that

A− = V−Λ−V>− .

It now holds that A = A+ − V−Λ−V>− with A, A+, Λ− spd matrices and V− a full
rank matrix. The Woodbury matrix identity applied to computing the inverse of A
gives

A−1 = A−1
+ + A−1

+ V−
(
Λ−1
− − V>−A−1

+ V−
)−1

V>−A−1
+ .

This identity leads, rather straightforwardly, to a new preconditioner for the original
matrix A that is defined in the following theorem.

Theorem 2 For τ > 1, let the new preconditioner be defined as

H(τ) := H+(τ) + A−1
+ V−

(
Λ−1
− − V>−A−1

+ V−
)−1

V>−A−1
+ .

The eigenvalues of the preconditioned operator satisfy

λ(H(τ)A) ∈
[
((1 + 2N+)τ)−1 ,N+ + 1

]
, (6)

where, once more N+ is the coloring constant with respect to the operator A+.

Proof The estimate for the eigenvalues of H+(τ)A+ in (5) is equivalent to

((1 + 2N+)τ)−1 〈x,A−1
+ x〉 ≤ 〈x,H+(τ)x〉 ≤ (N+ + 1)〈x,A−1

+ x〉, ∀x ∈ Rn.

Adding, 〈x,A−1
+ V−

(
D−1
− − V>−A−1

+ V−
)−1

V>−A−1
+ x〉 to each term, it holds that

((1 + 2N+)τ)−1 〈x,A−1x〉 ≤ 〈x,H(τ)x〉 ≤ (N+ + 1)〈x,A−1x〉, ∀x ∈ Rn,

where the Woodbury matrix identity was applied as well asN+ ≥ 1 and τ ≥ 1. This
is equivalent to (6). �

In order to apply the preconditioner, the matrix A−1
+ V− must be formed. This can

be done by solving iteratively n− linear systems preconditioned by H+(τ). It is likely
that block Krylov methods would be advantageous.
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3 Numerical Illustration

The results in this section are obtained using the software FreeFem++ [8], GNU Oc-
tave [4] andMETIS [9]. The linear systems that are considered arise fromdiscretizing
with P1 finite elements some two-dimensional linear elasticity problems.

Fig. 1 Testcase 1 – partition into N = 4 subdomains and distribution of E (108 in white layers and
103 in dark layers)

The first test case is posed on the domain Ω = [4, 1] discretized by 112 × 28
elements. The problem size is n = 6496 degrees of freedom. The coefficients in the
linear elasticity equation are ν = 0.3 for Poisson’s ratio and

E(x, y) = 108 if y ∈ [1/7, 2/7]∪[3/7, 4/7]∪[5/7, 6/7]; E(x, y) = 103 otherwise.

The domain is partitioned into 4 subdomains with Metis. No overlap is added.
Figure 1 shows both the partition into subdomains and the distribution of E. For this
problem, the coloring constants with respect to A and A+ are N = 2, and N+ = 3.
The problem is solved with the one-level Additive Schwarz, the two-level Additive
Schwarz with the GenEO coarse space from [13][Section 5.2.2] and the newmethod.
The value of the threshold τ for the last two methods is chosen to be τ = 10. The
theoretical bounds for GenEO and the new method is that the eigenvalues are in the
interval [1/70 ≈ 0.014, 3] and [1/70, 4], respectively. The A-norm of the error at
each iteration of the preconditioned conjugate gradient is represented in Figure 2.
The quantities of interest are in Table 1. The one-level method is not efficient on
this problem. This was to be expected. Both the GenEO solver and the new solver
converge fast. With τ = 10 in both methods, the coarse space for the new method is
larger than with GenEO (58 versus 49 coarse vectors). For the newmethod there is an
additional problem of size 49. Note that it is posed in a space that is also a subspace
of the coarse space. The results show that the new preconditioner converges a little
bit faster than GenEO. A study with more values of all the parameters is needed to
compare GenEO and the new solver as the parameter τ does not play exactly the
same role in the setup of both preconditioners. Since there is a lot more information
injected into GenEO (through the matrices Ns), it is expected that GenEO will be
more efficient. However the new method has the very significant advantage of being
algebraic, and being almost as efficient as GenEO wuld be an achievement.

It is very good news that the coarse space and the space V− did not explode on the
previous test case. The second test case is a rather easy problem posed on Ω = [1, 1]
with a distribution of both coefficients that is homogeneous: ν = 0.3 and E = 108.
Two partitions are considered: one into N = 16 regular subdomains and the other
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Fig. 2 Testcase 1 – Convergence history for the one-level method, the two-level GenEO method
and the new method.

λmin λmax κ It #V 0 n−
One-level Additive Schwarz 2 · 10−4 2.0 1.0 · 104 >100 0 0

Two-level Additive Schwarz with GenEO 0.059 3.0 51 65 49 0
New method 0.24 2.93 12 30 58 49

Table 1 Testcase 1 – Extreme eigenvalues, condition number κ, Iteration count, size of coarse
space, and n− in the new method

into N = 16 subdomains with Metis. No overlap is added to the subdomains. The
results are presented in Table 2. For the problem with regular subdomains, the new
method selects a coarse space of size 44 (versus 40 for GenEO). This means, that
even without the knowledge of the Neumann matrix, a coarse space is constructed
that has almost the same number of vectors as the optimal coarse space for this
problem which consists of 3 × 12 = 36 rigid body modes (there are 4 non-floating
subdomains).

N = 16 regular subdomains
λmin λmax κ It #V 0 n−

One-level Additive Schwarz 2 · 10−3 4.0 1996 97 0 0
Two-level Additive Schwarz with GenEO 0.07 4.0 60 61 40 0

New method 0.19 4 21 39 44 24
N = 16 subdomains with Metis

λmin λmax κ It #V 0 n−
One-level Additive Schwarz 1.7 · 10−3 3.0 1817 >100 0 0

Two-level Additive Schwarz with GenEO 0.095 3.4 36 54 74 0
New method (τ = 10) 0.26 3.0 11.3 31 117 94

Table 2 Testcase 2 – The coefficient distribution is uniform. – Extreme eigenvalues, condition
number κ, Iteration count, size of coarse space, and n− in the new method
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4 Conclusion

A new preconditioner that is computed algebraically from A was defined and bounds
for the spectrum of the resulting preconditioned operator were proved. They are
independent of the number of subdomains and any parameters in the problem.
Future versions of the preconditioner will aim at improving some of its limitations:
computation of A−1

+ V−, rather exotic coarse solve, and cost of H+.
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